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Abstract. This paper presents a new general class of compound autoregressive (Car)
models for non-Gaussian time series. The distinctive feature of the class is that Car models
are specified by means of the conditional Laplace transforms. This approach allows for
simple derivation of the ergodicity conditions and ensures the existence of forecasting
distributions in closed form, at any horizon. The last property is of particular interest for
applications to finance and economics that investigate the term structure of variables and/
or of their nonlinear transforms. The Car class includes a number of time-series models
that already exist in the literature, as well as new models introduced in this paper. Their
applications are illustrated by examples of portfolio management, term structure and
extreme risk analysis.
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1. INTRODUCTION

In finance and economics, the dependence betwen the forecasted values of a
process and the forecast horizon, called the term structure, is an important
topic of theoretical and applied research. In finance, considerable attention is
given to term structures of variables such as interest rates, volatility of
financial assets and optimal portfolio allocations. The forecasts generally
concern the exponential transforms of variables of interest, and therefore,
require the computation of real conditional Laplace transforms. This paper
introduces a new class of non-Gaussian time-series models, called the
compound autoregressive (Car)1. models. The Car models are distinguished
from other processes by their specifications based on the conditional Laplace
transforms. The advantage of this approach, compared with the commonly
used conditional mean- or variance-based specification, is simple derivation
and verification of stationarity and ergodicity conditions. Another advantage,
compared with the conditional density (distribution)-based specification is that
it provides a unified treatment for discrete, continuous and mixed variables.
Furthermore, the conditional Laplace transform specification ensures that any
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forecast of a Car process, or its nonlinear transforms, can be found easily, and
written in a closed form. This characteristic is very important in the term
structure analysis of financial and economic variables, and their nonlinear
transforms. In particular, the use of discrete time Car models facilitates the
term structure analysis of interest rates, commonly conducted in a continuous
time setup that entails restrictive time coherency conditions (see Duffie et al.,
2003; Gouriéroux et al., 2005).

The class of Car processes is very large and includes a variety of linear and
nonlinear time series. It differs from other extensions of autoregressive moving-
average (ARMA) models that appeared recently in the literature, such as the
generalized linear GARMA models (see Li, 1994; Kuchler and Sorensen, 1997;
Benjamin et al., 2003; Fokianos and Kedem, 2004). The advantage of GARMA
models is simple estimation by partial likelihood. However, the strength of Car
models lies in the availability and closed form of any forecasting distribution.

The paper is organized as follows. Section 2 defines the conditional Laplace
transform of a Car process and derives the closed-form expressions of forecasting
distributions at any horizon. Examples of Car processes are described in Section
3. Weak and geometric ergodicity are characterized in Section 4. A comprehensive
classification of univariate time-reversible Car processes is given in Section 5.
Section 6 illustrates the application of Car to portfolio allocations, term structure
of interest rates, and introduces a new, and so far unexplored, application to
extreme risks. Section 7 concludes the paper. The proofs are given in the
Appendices.

2. THE COMPOUND AUTOREGRESSIVE MODEL

The dynamics of a Car process are defined in terms of the conditional Laplace
transform which is the conditional expectation E[exp (�z0Yt) j Yt�1], where z is a
complex vector argument, and Yt�1 denotes the r-algebra generated by the lagged
values of the process. Below, we define the Car process and show that the
nonlinear forecasts based on Car and standard Gaussian AR(1) have similar
expressions.

2.1. Definition

Definition 1. The vector process Y of dimension n is compound autoregressive of
order p[Car(p)], if and only if the conditional distribution of Yt given Yt�1 admits the
conditional Laplace transform:

E expð�z0YtÞ j Yt�1

� �
¼ exp½�a01 zð ÞYt�1 � � � � � a0p zð ÞYt�p þ b zð Þ�; ð1Þ
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where ap 6¼ 0, for any multivariate z ¼ u þ iw with complex components, such that
the conditional expectation exists.

The conditional log-Laplace transform in eqn (1) is an affine function of the p
most-recent lagged values of the process. This implies that Y is a Markov process
of order p.

The coefficients in the series expansion of the conditional Laplace transform
allow for identification of the conditional moments (if these exist). In particular,
the logarithm of the conditional Laplace transform admits an expansion with
coefficients related to the conditional multivariate cumulant moments (see
McCullagh, 1987). Proposition 1 follows.

Proposition 1. If the conditional moments of all orders exist and the conditional
distribution is characterized by the sequence of conditional moments, then the
process admits a Car(p) representation if and only if the conditional multivariate
cumulant moments are affine functions of Yt�1, . . . ,Yt�p.

In particular, the conditional mean is affine. Therefore, when the conditional
mean exists, a Car process is a conditional linear AR(1) [CLAR(1)] model, as
defined in Grunwald et al. (2000). Like any Markov process, a Car process of
order p is equivalent to a Car process of order 1 obtained by stacking the lagged
values into a vector of dimension p.

Proposition 2. The process Y is a Car(p) process if and only if the process
ðeYtÞ ¼ ðY 0

t ; Y
0
t�1; . . . ; Y

0
t�pþ1Þ

0 is a Car(1) process.

Proof. See Appendix A. u

Therefore, without loss of generality only Car(1) processes are considered in the
sequel.

2.2. Invariant distributions

Proposition 3. The log-Laplace transform of an invariant distribution of a Car(1)
process is a function c such that: b(z) ¼ c(z)� c[a(z)].

Proof. By the invariance property and the iterated expectation theorem, we get:

exp c zð Þ½ � ¼ E expð�z0YtÞ½ � ¼ E E expð�z0YtÞ j Yt�1

� �� �
¼ E exp �a zð Þ0Yt�1 þ b zð Þ

� �� �
¼ exp c½a zð Þ� þ b zð Þ½ �: (
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The conditions of existence and uniqueness of function c are not always
satisfied (see Section 4 for a discussion of ergodicity). When Yt has an invariant
distribution, the conditional Laplace transform can be parameterized either by a
and b, or by a and c. In the first case, functional parameters a and b represent the
time dependence and the distribution of innovations, respectively (see Section
3.1); in the second case, functional parameters a and c represent the serial
dependence and the marginal distribution, respectively. Under the latter
functional parameterization, we get:

E expð�z0YtÞ j Yt�1

� �
¼ exp �a zð Þ0Yt�1 þ cðzÞ � c½aðzÞ�

� �
: ð2Þ

2.3. Nonlinear Forecasting

An important characteristic of Car processes is the existence of closed form of the
forecast of any nonlinear transform of a Car process at any horizon. For
comparison, Grunwald et al. (1996, 2000) focus on linear forecasts, which are less
often used in financial applications. The forecasting distribution of a Car(1)
process at any horizon h is easily obtained by recursive substitution.

Proposition 4. For a Car(1) process we get:

E expð�z0YtþhÞ j Yt
� �

¼ exp �a�hðzÞ0Yt þ
Xh�1

k¼0

b½a�kðzÞ�
" #

; ð3Þ

where a�h denotes function a compounded h times with itself.

The nonlinear forecast function of a Car extends the forecast function of an
autoregressive Gaussian model of order 1 where a�h(u) ¼ qhu and q is the
autoregressive coefficient. The forecasting distribution has a simple form for a
stationary process Yt which has a stationary (invariant) distribution with log-
Laplace transform c, since:Xh�1

k¼0

b½a�kðzÞ� ¼ cðzÞ � c½a�hðzÞ�:

For a Gaussian autoregressive process, this expression defines the distribution
of innovations at horizon h given the marginal distribution and the
autocorrelation coefficient q.

Corollary 1. For a Car(1) process with log-Laplace transform c, we get:

E expð�z0YtþhÞ j Yt
� �

¼ exp �a�hðzÞ0Yt þ cðzÞ � c½a�hðzÞ�
� �

: ð4Þ

Similarly, it is possible to derive a closed-form expression of the joint
conditional Laplace transform for Ytþ1, . . . ,Ytþh.
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Proposition 5. We get:

E expðz0tþ1Ytþ1 þ � � � þ z0tþhYtþhÞ j Yt
� �

¼ exp Aðt; t þ hÞ0Yt þ Bðt; t þ hÞ
� �

;

where coefficients A and B satisfy the backward recursions:

Aðt þ j; t þ hÞ ¼ a ztþjþ1 þ Aðt þ jþ 1; t þ hÞ
� �

;

and

Bðt þ j; t þ hÞ ¼ b ztþjþ1 þ Aðt þ jþ 1; t þ hÞ
� �

þ Bðt þ jþ 1; t þ hÞ;

for j < h, with terminal conditions A(tþh,tþh) ¼ 0, B(tþh,tþh) ¼ 0.

Proof. See Appendix B. u

3. EXAMPLES OF CAR PROCESSES

A theoretical advantage of a Laplace transform model compared with a density
model is that this approach provides a unified treatment for discrete, continuous
and mixed variables. Thus, Car processes can represent the dynamics of count
data, non-negative continuous variables, dichotomous variables taking values 0
and 1, and so on, depending on the specification of functions a and b. In this
section, we show some examples of Car models and comment on the relation
between the Car family and the class of affine processes in continuous time
introduced by Duffie et al. (2003).

3.1. Example 1. compound Poisson process

In risk analysis, the variable of interest Yt is often integer-valued and measures the
number of claims in period (t, t þ 1). Therefore, one may be interested in an
autoregressive specification for (Yt), that has the marginal Poisson distribution,
for instance. It is not possible to use the standard linear AR(1) model such as:
Yt ¼ qYt�1þet, where |q| < 1 and (et) is a strong white noise, independent of
Yt�1. A stationary, integer-valued Yt would require integer-valued et and qYt�1.
This condition can hold only under the absence of serial correlation q ¼ 0. To
circumvent this difficulty, the deterministic autoregression can be replaced by the
following stochastic autoregression:

Yt ¼
XYt�1

i¼1

Zi;t þ et; ð5Þ
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where et, Zi,t, i varying, are independent and independent of Yt�1, and the
variables Zi,t follow a Bernoulli distribution B(1,q).

In particular, the invariant distribution of a Poisson-distributed et, et � P(k), is
P(k/(1�q)). The processes in this class are called (Integer-Valued autoregressive
INAR) and have been explored in the time series and insurance literature (see, e.g.
McKenzie, 1985, 1988, and Al-Osh and Alzaid, 1987 for the definition, Brannas
and Hellstrom, 2001 for survey, and Edwards and Gurland, 1961 and Gouriéroux
and Jasiak, 2002a for applications to car insurance and insurance premium
updating). The INAR(1) process is a Car process with:

aðzÞ ¼ � ln q expð�zÞ þ 1� q½ �; bðzÞ ¼ �k 1� expð�zÞ½ �;

cðzÞ ¼ � k
1� q

1� expð�zÞ½ �:

3.2. Example 2. compounding processes with non-negative continuous values

A process Yt with non-negative values is obtained from two components: an
infinitely divisible distribution on Rþ with Laplace transform exp[�a(u)] and a
distribution on Rþ with Laplace transform exp[�b(u)]. Then the function:

W u; ytð Þ ¼ exp �aðuÞyt þ bðuÞ½ �;

is a well-defined conditional Laplace transform. Thus, under compounding, it is
equivalent to specify: (1) a Car process or (2) function a as an infinitely divisible
distribution and function b as a continuous distribution. The set of alternatives is
quite large. For instance, among the infinitely divisible distributions are
compound Poisson distributions, gamma distributions, stable distributions,
mixtures of exponential distributions, and so on. Moreover, it is possible to
specify a (resp. b) as a discrete distribution and b (resp. a) as a continuous
distribution, or to select distributions a and b with different tail behaviours (see
Section 6.3). In some sense, the Car processes are defined by extending the
definition of the thinning operator. Let Zi denote independent and identically
distributed (i.i.d.) Bernoulli variables with common distribution B(1, p),
p 2 [0, 1]. The thinning operator associated with the sequence Z ¼ (Zi), and
applied to a (deterministic or stochastic) integer-valued function of Y denoted by
N(Y), yields the variable defined as:

Z � NðY Þ ¼
XNðY Þ

i¼1

Zi;

(see, e.g. Sim, 1990 for such a model for continuous positive variables Zi). Loosely
speaking, the extension consists in replacing the arithmetic sum by a stochastic
integral

R NðY Þ
0 Zi di, where N is continuously valued. In Car processes, we have
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N(y) ¼ y. This shows that Car processes considerably extend the class of �thinning
models defined on the positive real line�, in Grunwald et al. (2000).

3.3. Example 3. Continuous time affine processes

Continuous time affine processes have been considered independently by Duffie
et al. (2003). A continuous time Markov process is affine if and only if:

Et exp �z0Ytþhð Þ½ � ¼ exp �ahðzÞ0Yt þ bhðzÞ
� �

8t 2 R; 8h 2 Rþ; 8z 2 D:

Since the requirement that the log-Laplace transform has an affine form has to
be satisfied for any real positive horizon, it is in particular satisfied for any integer
horizon. Thus, any-time discretized continuous time affine process is a Car (but
there exist many Car processes without a continuous time counterpart). For
example, the autoregressive gamma process (Gouriéroux and Jasiak, 2005) is the
time-discretized Cox–Ingersoll–Ross diffusion process (Cox et al., 1985). It is
defined in two steps by introducing an intermediate latent variable Xt. We assume
that: (1) the conditional distribution of Yt given the latent variable Xt is gamma
with degree of freedom d þ Xt: Yt j Xt � c(d þ Xt), and (2) the conditional
distribution of Xt given Yt�1 is Poisson with parameter bYt�1:
Xt j Yt�1 � P(bYt�1), where b � 0, d � 0. Then,

aðzÞ ¼ bz
1þ z

; bðzÞ ¼ �d lnð1þ zÞ; cðzÞ ¼ �d ln 1þ z
1� b

� �
:

In particular, the marginal distribution is such that: (1 � b)Yt � c(d).

3.4. Example 4. Wishart autoregressive process

Let us consider a Gaussian VAR(1) process: Xt ¼ AXt�1 þ �t, �t � N(0, R), and
the matrix process defined by Yt ¼ XtXt

0. For any symmetric matrix C we get:
(Gouriéroux et al., 2004; Gouriéroux, 2006)

E½expðX 0
tþ1CXtþ1ÞjXt� ¼

exp½X 0
tR

�1ðR�1 � 2CÞ�1CAXt�
detðId � 2RCÞ1=2

:

Equivalently, this relation can be written:

E exp
Xn
i¼1

Xn
j¼1

cijYij;tþ1

 !����Xt

" #
¼

expð
Pn

i¼1

Pn
j¼1ðR�1ðR�1 � 2CÞ�1CAÞijYij;tÞ
detðId � 2RCÞ1=2

;

where Bij denotes the (i,j)th element of a matrix B. Therefore, the matrix process
(Yt) is a Markov process with an exponential affine conditional Laplace
transform. The process (Yt) can be considered as a dynamic extension of the
Wishart distribution. The Wishart autoregressive processes (WAR) are dynamic
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models for stochastic, symmetric matrices which extend the autoregressive gamma
process to a multivariate framework.

4. ERGODICITY

The ergodicity and mixing properties of a Car can be derived by using the well-
known sufficient conditions based on Lyapunov functions (see Tong, 1990; Meyn
and Tweedie, 1992, 1999). This section discusses two types of ergodicity
conditions. The condition limh!1a�h¼0 ensures that the transition distribution
at horizon h tends to a limiting distribution. The second condition concerns the
stability of the Jacobian matrix (@a/@u0) (0) and ensures geometric ergodicity and
b-mixing.

4.1. Weak ergodicity

Let us consider a Car process with marginal log-Laplace transform c. We get:

E expð�z0YtþhÞ j Yt½ � ¼ exp �a�hðzÞ0Yt þ cðzÞ � c a�hðzÞ
� �� �

:

Since the weak convergence is equivalent to the convergence of Laplace
transforms, we get the following property.

Proposition 6. If there exists an invariant distribution with Laplace transform
exp c(z), where c is continuous at zero, then the conditional distribution of Ytþh given
Yt weakly converges to the invariant distribution if and only if: limh!1a�h(z) ¼ 0,
8z 2 D.

Proof. Indeed we get

lim
h!1

E expð�z0YtþhÞ j Yt
� �

¼ exp � lim
h!1

a�hðzÞ0Ytþ cðzÞ� c lim
h!1

a�hðzÞ
� 	� �

¼ exp cðzÞ: (

Under the condition limh!1a�h¼0, 8z 2 D, the invariant distribution is
necessarily unique and, at an infinite horizon, the conditional distribution does
not depend on the initial value of the process.

4.2. Geometric ergodicity

Under the condition limh!1 a�h¼0, we have:

lim
h!1

jP Ytþh 2 A j Yt
� �

� p1 Að Þj ¼ 0;
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for any set A such that the invariant distribution p1 has mass zero on the
boundary @A of set A. Asymptotically valid statistical inference requires a
stronger ergodicity condition such as geometric ergodicity, which is met if and
only if there exists a scalar r>1 such that:X1

h¼1

rh sup
A

jP Ytþh 2 A j Yt ¼ y½ � � p1 Að Þj < 1;

for any y, where the supremum is taken over all measurable sets. The condition
above implies a geometric rate of convergence of the transition distributions.
Proposition 7 is proved in Appendix C.

Proposition 7. Let us assume:

(A.1.) The conditional Laplace transform admits a series expansion in the
neighbourhood of 0;

(A.2.) The process is a Car process, which satisfies one of the following conditions:
(i) a and b are either distributions on Nn or on Zn.
(ii) if a and b are both distributions onRn (resp.Rþn), a is infinitely divisible.

Then the process (Yt) is geometrically ergodic and b-mixing with a geometric decay
rate if the largest eigenvalue of the Jacobian matrix (@a/@u0) (0) has modulus <1,
that is if:

lim
h!1

@a
@u0

ð0Þh ¼ 0:

For the univariate Car, the stability condition becomes:

da
du

ð0Þ
���� ���� < 1:

4.3. Relation between weak and geometric ergodicity (for a univariate process)

4.3.1. Non-negative processes
Let us consider a non-negative process and function a which is the log-Laplace
transform of an infinitely divisible distribution. Function a is increasing, concave
and satisfies a(0) ¼ 0. In particular, we get the Lipschitz condition:

aðuÞ � da
du

ð0Þ � u; 8u 2 Rþ:

Thus the stability condition da/du (0) < 1 (geometric ergodicity) implies
limh!1 a�h(u) ¼ 0, 8u 2 Rþ (weak ergodicity).

485STRUCTURAL LAPLACE TRANSFORM AND CAR MODELS

� 2006 The Authors
Journal compilation � 2006 Blackwell Publishing Ltd.

JOURNAL OF TIME SERIES ANALYSIS Vol. 27, No. 4



4.3.2. The autoregressive gamma process
For the autoregressive gamma process, we have a(z) ¼ bz/1þz. We see that: if

b 6¼ 1 : a�hðzÞ ¼ bhz 1þ 1� bh

1� b
z

� 	�1

;

and if
b ¼ 1 : a�hðzÞ ¼ z 1þ hz½ ��1:

The weak ergodicity condition is satisfied if

lim
h!1

a�hðzÞ ¼ 0; 8z 2 D () b � 1:

Similarly, the geometric ergodicity is satisfied if:

da
du

ð0Þ
���� ���� ¼ b < 1:

In the limiting case b¼1,(Yt) is a martingale and, as h tends to infinity, we get:

E exp �uYtþhð Þ j Yt½ � � E exp �uYtþhð Þ½ �
¼ exp �a�hðuÞYt þ cðuÞ � c a�hðuÞ

� �� �
� exp cðuÞ

¼ exp � u
1þ hu

Yt þ cðuÞ � c
u

1þ hu

� 	� �
� exp cðuÞ

� � 1

h
Yt þ

dc
du

ð0Þ
� �

exp cðuÞ:

We observe a hyperbolic decay rate of the conditional expectation written as a
function of h, which creates a long memory effect.

4.4. Spectral decomposition of the conditional expectation operator

When the geometric ergodicity condition is satisfied, the rate of convergence of a
prediction at horizon h, E[g(Ytþh) jYt], to the stationary level E [g(Ytþh)] is less
than or equal to a geometric rate, but for some well-chosen transformations g the
rate of convergence can be strictly smaller. Proposition 8 provides insights into
basic transformations that yield different geometric decay rates.

Proposition 8. Let us assume that the Laplace transform exists for any real
argument and that

da
du

ð0Þ
���� ���� < 1:

Then the conditional expectation operator u ! Tu, defined by:

TuðyÞ ¼ E u Ytþ1ð Þ j Yt ¼ y½ �;
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admits a spectral decomposition. The eigenvalues are real, and given by:

kn ¼
da
du

0ð Þ
���� ����n; n � 0;

and the eigenfunction associated with kn is polynomial Pn of degree n.

Proof. See Appendix D. u

In particular, the b-mixing coefficient is equal to |(da/du) (0)|, and the
transformation with the lowest rate of convergence is an affine transformation.
This extends the well-known result for AR(1) Gaussian process with Hermite
polynomials as eigenfunctions.

5. CLASSIFICATION OF REVERSIBLE CAR(1) PROCESSES

In this section, we provide a comprehensive classification of univariate reversible
Car(1) processes and their properties.

5.1. Definition and characterization

The process Y is reversible if its dynamic properties in calendar and reversed time
are identical. Since the process is Markov, the reversibility condition is equivalent
to the symmetry of joint distribution of (Yt,Yt�1) with respect to both arguments.
The Laplace transform for Yt and Yt�1 associated with the joint distribution can
be written as:

E expð�uYt � vYt�1Þ½ � ¼ E expð�vYt�1ÞE expð�uYtÞ j Yt�1

� �� �
¼ E exp �ðaðuÞ þ vÞYt�1 þ cðuÞ � c aðuÞ½ �ð Þ½ �
¼ exp c aðuÞ þ v½ � þ cðuÞ � c aðuÞ½ �ð Þ
¼ exp Uðu; vÞ½ �; say.

Proposition 9. The Car(1) process Y is reversible if and only if U(u,v) ¼
c[a(u) þ v] þ c(u) � c[a(u)] is a symmetric function of u and v.

The condition above implies some restrictions on functions c and a [see
Appendix F (i), (ii), (iii)].
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Proposition 10. When the process Y is reversible:

(i)

aðuÞ ¼ dc
du

� ��1
dað0Þ
du

dcðuÞ
du

� dcð0Þ
du


 �
þ dcð0Þ

du

� 	
;

(ii) the function

cðuÞ ¼ d2c
du2

� dc
du

� ��1

ðuÞ

is quadratic.

Therefore the log-Laplace transform of the marginal distribution of a reversible
Car process satisfies necessarily a Ricatti differential equation:

d2c
du2

ðuÞ ¼ b0 þ b1
dc
du

ðuÞ þ b2
dc
du

ðuÞ
� �2

: ð6Þ

This equation is solved in Section 5.3. Once the marginal distribution is found,
the dynamics of a reversible Car process is characterized by the single parameter
ðda=duÞð0Þ equal to the b-mixing coefficient.

5.2. Nonlinear canonical decomposition

Let us assume

da
du

ð0Þ
���� ���� < 1:

For a reversible Car(1) process, the eigenfunctions Pn, n � 0, of the conditional
expectation operator are orthogonal with respect to the innerproduct associated
with the invariant probability density function f. We can derive the nonlinear
canonical decomposition of the transition probability (see Lancaster, 1958).

Proposition 11. If

da
du

0ð Þ
���� ���� < 1;

and the stationary Car(1) process is reversible, we have:

f ðyt j yt�1Þ ¼ f ðytÞ 1þ
X1
n¼1

da
du

0ð Þ
� 	n

PnðytÞPnðyt�1Þ
" #

; ð7Þ

where Pn, n varying, is an orthonormal basis of polynomial eigenfunctions of the
conditional expectation operator.
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By recursions, we derive the forecasting distribution at any horizon h:

fhðyt j yt�hÞ ¼ f ðytÞ 1þ
X1
n¼1

da
du

ð0Þ
� 	hn

PnðytÞPnðyt�hÞ
" #

:

5.3. The classification

This section describes all univariate reversible Car(1) processes. To proceed, we
need to find the expression of function c by solving the Ricatti equation in (6) (see
Appendix E), and to infer function a from Proposition 10. The processes given
below are distinguished with respect to the roots of the characteristic equation:
b0 þ b1x þ b2x

2¼0, which can be of degrees 0, 1 or 2. We review their
distributional properties, ergodicity conditions and canonical decomposition (for
the eigenpolynomials, see Wong and Thomas, 1962).

5.3.1. Class 1: autoregressive Gaussian process
The Gaussian processes are obtained when b1 ¼ b2 ¼ 0, that is when the
c-function is constant. Then Yt ¼ qYt�1 þ et, where (et) is a standard Gaussian
white noise, and we get:
	 Conditional distribution: N(qyt�1,1); Marginal distribution: Nð0; 1

1�q2Þ;
	 Log-Laplace transforms:

aðuÞ ¼ uq; bðuÞ ¼ u2

2
; cðuÞ ¼ u2

2ð1� q2Þ ;

	 Geometric ergodicity condition:

da
du

ð0Þ
���� ���� ¼ qj j < 1;

	 Polynomial eigenfunctions: Hermite polynomials;
	 Forecasting distribution at horizon h:

N qhyt�h;
1� q2h

1� q2

� �
;

	 Compound function a : a�h(u) ¼ qhu;
	 c-function:

cðuÞ ¼ 1

1� q2
;

	 Joint log-Laplace transform:

Wðu; vÞ ¼ 1

2ð1� q2Þ ðu
2 þ v2 þ 2quvÞ:
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5.3.2. Class 2: compound Poisson process
This process is obtained when b2 ¼ 0, b1 6¼ 0, that is when the c-function is affine.

	 Conditional distribution: B(yt�1,a)*P(k(1�a)); Marginal distribution: P(k);
	 Log-Laplace transforms:

aðuÞ¼�log aexpð�uÞþ1�a½ �; bðuÞ¼�kð1�aÞ 1�expð�uÞ½ �;
cðuÞ¼�k 1�expð�uÞ½ �;

	 Geometric ergodicity condition: 0<a<1;
	 Polynomial eigenfunctions: Charlier polynomials;
	 Forecasting distribution at horizon h: B(yt�h,a

h)*P(k(1�ah));
	 Compound function a:

a�hðuÞ ¼ � log ah expð�uÞ þ 1� ah
� �

;

	 c-function: c(u) ¼ �u;
	 Joint log-Laplace transform:

Wðu; vÞ ¼ �kð2� aÞ þ ka expð�u� vÞ þ kð1� aÞ expð�uÞ þ expð�vÞ½ �:

5.3.3. Class 3: autoregressive gamma process
This process (see Gouriéroux and Jasiak, 2005) is obtained when the c-function is
quadratic and has a double root, i.e. for b2 6¼ 0, b21 � 4b0b2 ¼ 0.

	 Conditional distribution: c(d,byt�1); marginal distribution: (1 � b)Yt � c(d);
	 Log-Laplace transforms:

aðuÞ ¼ bu
1þ u

; bðuÞ ¼ �d logð1þ uÞ; cðuÞ ¼ �d log 1þ u
1� b

� �
;

	 Geometric ergodicity condition:

da
du

ð0Þ
���� ���� ¼ bj j < 1;

	 Polynomial eigenfunctions: Laguerre polynomials
	 Forecasting distribution at horizon h:

1� b

1� bh
Yt � c d; bh

1� b

1� bh
yt�h

� �
;

	 Compound function a:

a�hðuÞ ¼ bhu 1þ 1� bh

1� b
u

� 	�1

;
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	 c-function:

cðuÞ ¼ u2

d
;

	 Joint log-Laplace transform:

Wðu; vÞ ¼ �d log 1þ uvþ uþ v
1� b

� 	
:

5.3.4. Class 4: Bernoulli process with switching regimes
This process is obtainedwhen the c-function is quadraticwith twodistinct real roots,
i.e. for b2 6¼ 0, b21 � 4b0b2 > 0. The process is aMarkov chainwith two states 0 an 1.

	 Conditional distribution: B(1, a(1 � c) þ cyt�1); Marginal distribution:
B(1, a);

	 Log-Laplace transforms:

aðuÞ ¼ � log
ð1� ð1� aÞð1� cÞÞ expð�uÞ þ ð1� aÞð1� cÞ

að1� cÞ expð�uÞ þ 1� að1� cÞ

� 	
;

bðuÞ ¼ logð1� að1� cÞ þ að1� cÞ expð�uÞÞ;
cðuÞ ¼ logða expð�uÞ þ 1� aÞ;

	 Geometric ergodicity condition:

da
du

ð0Þ
���� ���� ¼ cj j < 1;

	 Polynomial eigenfunctions: Two polynomials only, which are the first
Krawtchouk polynomials (see Abramowitz and Stegun, 1970, 22.17).

	 Forecasting distribution at horizon h: B(1, a(1 � ch) þ chyt�1);
	 Compound function a:

a�hðuÞ ¼ � log
ð1� ð1� aÞð1� chÞÞ expð�uÞ þ ð1� aÞð1� chÞ

að1� chÞ expð�uÞ þ 1� að1� chÞ

� 	
;

	 c-function: c(u) ¼ �u(1þu);
	 Joint log-Laplace transform:

Wðu; vÞ ¼ log½ð1� aÞð1� að1� cÞÞ þ að1� aÞð1� cÞðexpð�uÞ þ expð�vÞÞ
þ að1� ð1� aÞð1� cÞÞ expð�ðuþ vÞÞ�:

5.3.5. Class 5
Is formed by processes, with a quadratic c-function with conjugate complex roots,
obtained for b2 6¼ 0, b21 � 4b0b2 < 0.

491STRUCTURAL LAPLACE TRANSFORM AND CAR MODELS

� 2006 The Authors
Journal compilation � 2006 Blackwell Publishing Ltd.

JOURNAL OF TIME SERIES ANALYSIS Vol. 27, No. 4



	 Log-Laplace transforms:

aðuÞ ¼ arctan c tan u½ �;
bðuÞ ¼ � log cos uþ log cos arctan c tan u½ �; cðuÞ ¼ � log cos u;

	 Geometric ergodicity condition:

da
du

ð0Þ
���� ���� ¼ cj j < 1;

	 Compound function a:

a�hðuÞ ¼ arctan ch tan u
� �

;

	 c-function: c(u) ¼ 1þu2;
	 Joint log-Laplace transform:

Wðu; vÞ ¼ � log½cosðuþ vÞ þ ð1� cÞ sin u sin v�:

6. STRUCTURAL MODELLING USING REAL CONDITIONAL LAPLACE TRANSFORM

A number of problems encountered in finance, insurance and duration analysis
involve the real conditional Laplace transform as the functional parameter of
interest. This is due to common use of exponential transformations for modelling
positively valued functions such as utility functions, intensity functions, stochastic
discount factors and so on. Some typical examples of models based on conditional
real Laplace transforms are presented in this section. Their common feature is the
importance of the term structure (forecast function) of some variables, such as
prices, interest rates, defaults, extreme risks and so on, which defines the
dependence of the forecast function on horizon h.

6.1. Portfolio management

The optimal strategy of portfolio management is usually considered in the
conditional mean–variance framework based on the conditional normal
distribution of returns and constant absolute risk aversion (CARA) utility
function (see Markovitz, 1976). The CARA utility function is defined as U(w) ¼
�exp(�Aw), and is increasing and concave. It depends on the positive risk aversion
parameterA. A natural extension consists in relaxing the assumption of conditional
normality. Then the optimal portfolio at horizon h is determined by maximizing:

max
a0;a

Et � exp�A a0ptþh þ a0ð1þ rt;tþhÞ
� �� 


;

subject to the budget constraint a0pt þ a0 ¼ wt, where a ¼ (a1, . . . , an)0 is the
allocation in the n risky assets, pi,t, i ¼ 1, . . . , n, the price per share of asset i, a0 the
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quantity of risk-free assets, rt,tþh the risk-free rate at horizon h, and wt the amount
invested at time t. After eliminating the quantity invested in the risk-free asset a0,
we obtain the new optimization:

max
a

Et � exp �Aa0Ytþh½ �f g; ð8Þ

where Ytþh ¼ ptþh � (1 þ rt,tþh)pt denotes the excess gain. This optimization
depends directly on the conditional real Laplace transform of the excess gain Y. In
the stationary case, this problem is equivalent to minimizing:

1

A
ln Et exp �Aa0Ytþh½ �f g ¼ 1

A
cðAaÞ � 1

A
a�h Aað Þ0Yt þ c½a�hðAaÞ�
� 


;

where Ytþh ¼ ptþh � (1 þ rt,tþh)pt denotes the excess gain. The objective function
is a sum of two terms. The first term does not depend on horizon h, corresponds to
the static (time-invariant) allocation, and represents the marginal expected utility.
The second term provides the adjustment to the price dynamics through function
a. In the i.i.d. case, or when horizon h tends to infinity, only the first term in the
criterion function matters, and the optimal allocation is static.

As an illustration, let us consider a portfolio that includes a risk-free asset with
a constant risk-free interest rate r and a risky asset, with a stable conditional
distribution of the price per share, such that:

Et exp �uYtþ1ð Þ½ � ¼ exp½�jujbYt�;

with 0<b<1. The process Y takes positive values, and its conditional moments
do not exist because of the heavy tails of the the stable distribution. In this case,
a�h(u) ¼ ub

h

, and the optimal allocation in risky asset:

a�h ¼
ð1þ rÞh

bhAbh�1

" # 1

bh�1

;

does not depend on the current price level. In the long run (h ! 1), the allocation
in the risky asset a�h tends to þ1, and the allocation in the risk-free asset tends to
�1 to satisfy the budget constraint. Thus the investor will borrow the risk-free
asset to acquire more of the risky asset, despite the risk associated with fat tails.

6.2. Term structure of interest rates

A common element in asset pricing models in discrete time is a stochastic discount
factor (sdf), which accommodates both temporal discounting and risk adjustment
(see, e.g. Gouriéroux and Jasiak, 2001). Let us consider the price at t of a zero-
coupon bond with residual maturity h which pays $1 at date t þ h. Its price at t,
denoted B(t, t þ h), can be written as:

Bðt; t þ hÞ ¼ Et Mt;tþ1 � � �Mtþh�1;tþh
� �

;
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where Mt,tþ1 denotes the sdf between t and t þ 1. The sdf depends on the
information available at date t þ 1 and is positive due to the arbitrage-free
constraints. The stochastic discount factor is often specified as an exponential
affine function of underlying factors (see, e.g. Gouriéroux and Monfort, 2006):

Mt;tþ1 ¼ exp a0Ytþ1 þ bð Þ; say:

Then the price of the zero-coupon bond becomes:

Bðt; t þ hÞ ¼ expðbhÞEt exp a0Ytþ1 þ � � � þ a0Ytþhð Þ½ �; ð9Þ

A closed-form expression of this price is easily derived when the factor process
is Car. From Proposition 5, it follows that:

Bðt; t þ hÞ ¼ expðbhÞ exp AðhÞ0Yt þ BðhÞ
� �

; ð10Þ

where A(h), B(h) satisfy the recursive equations A(h) ¼ a[a þ A(h � 1)], B(h) ¼
b[a þ A(h � 1)] þ B(h � 1), h � 1, with A(0)¼0, B(0)¼0. In particular, the
geometric yield defined by:

Bðt; t þ hÞ ¼ exp �hrðt; t þ hÞ½ �;

is such that:

rðt; t þ hÞ ¼ �b� AðhÞ0

h
Yt �

BðhÞ
h

; ð11Þ

h varying. We get an affine term structure driven by factor Yt and characterized by
functions A and B. The discrete time approach presented above is much more
flexible than the standard affine term structure analysis in continuous time (see
Duffie and Kan, 1996).

6.3. Extreme risk

The approach based on conditional Laplace transform is applicable to extreme
risk analysis. Indeed, by the Karamata’s Tauberian theorem the asymptotic
behaviour of a cumulative density function (cdf) at infinity is related to the
behaviour of the Laplace transform at the origin. We have the proposition 12
(see Feller (1971), Chapter 13, Bingham, Goldie, Teugels (1987), Corollary
8.1.7).

Proposition 12. For 0 � d(Yt) � 1, the following relations are equivalent:

(i)

E exp �uYtþ1ð Þ j Yt
� �

� 1� udðYtÞl
1

u
; Yt

� �
; for u 
 0;
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(ii)

P Ytþ1 < y j Yt
� �

� 1� lðy; YtÞ
ydðYtÞC 1� a Ytð Þð Þ ; for y ! 1;

where l is a slowly varying function and C denotes the gamma function.

In finance, the extreme risk analysis concerns the conditional Value-at-Risk
(VaR), which is a conditional quantile associated with a small risk level a (see
Gouriéroux and Jasiak, 2002b). Typically, a conditional VaR for horizon h and risk
level a is:

VaRtðh; aÞ ¼ F �1
t;h að Þ;

where Ft,h is the conditional cdf of Ytþh given Yt.
Let us consider a non-negative univariate Car process and assume that

a(u) 
 c0u
d0, c(u) 
 c1u

d1, for u 
 0, where 0 � d0 � 1, 0 � d1 � 1. Thus we
allow for different behaviours of a and c in a neighbourhood of the origin or
equivalently of the tails of the conditional andmarginal distributions of the process.

Then

a�hðuÞ 
 c0;hud
h
0 ; cðuÞ 
 c1ud1 ; c a�hðuÞ

� �

 c1;hud1d

h
0 :

Therefore the conditional real Laplace transform at horizon h is equivalent to:

E exp �uYtþhð Þ j Yt
� �

¼ exp �a�hðuÞYt þ cðuÞ � c a�hðuÞ
� �� �


 1� c0;hud
h
0Yt þ c1ud1 ;

when u 
 0. When

dh0 > d1; E exp �uYtþhð Þ j Yt½ � 
 1� c0;hud
h
0Yt:

By applying Tauberian Theorem 6.1, we get:

P Ytþh < y j Yt
� �


 1� c0;hYt
yd

h
0C 1� dh0
� � ;

and the VaR:

VaRtðh; aÞ 

c0;hYt

1� að ÞC 1� dh0
� �" # 1

dh
0

:

When dh0 < d1, the application of Tauberian theorem 6.1 implies:

VaRtðh; aÞ 

c1

1� að ÞC 1� d1ð Þ

� 	 1
d1

:

Let us, for instance, discuss the case d0>d1. There exists the smallest integer H
such that dH0 < d1. For h<H, the conditional VaR depends on the lagged value of
Y and its behaviour is driven by function a. If h>H, the conditional VaR is
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equivalent to the marginal VaR computed from function c. In conclusion, the
behaviour of functions a and c in a neighbourhood of 0 provides information on
the dependence of VaR on the risk level and residual maturity for small a.

7. CONCLUDING REMARKS

Several models in finance, credit management and insurance concern the term
structures and are specified in terms of conditional Laplace transforms. This
paper proposed a family of dynamic processes for the analysis of term structures,
called the Car. The Car model represents the conditional Laplace transform as an
affine function of lagged values of a process. The class of dynamic Car models is
quite large. It comprises continuous as well as discrete or qualitative processes,
and is easy to use for nonlinear forecasting at any horizon.

APPENDICES

A. PROOF OF PROPOSITION 2

Let us consider a Car(p) process. The conditional Laplace transform associated with the
conditional p.d.f. of eY is:

E½expð�z0eYtÞ j eYt�1�
¼ E½expð�z01Yt � z02Yt�1 � � � � � z0pYt�pþ1Þ j Yt�1�
¼ expð�½a01ðz1Þ þ z02�Yt�1 � � � � � ½a0p�1ðz1Þ þ z0p�Yt�pþ1 � a0pðz1ÞYt�p þ bðz1ÞÞ:

The above expression of Laplace transform defines a Car(1) process with:

aðzÞ ¼ a1 z1ð Þ þ z2; :::; ap�1 z1ð Þ þ zp; apðz1Þ
� �0

:

B. JOINT LAPLACE TRANSFORM

We get:

E½expðz0tþjþ1Ytþjþ1 þ � � � þ z0tþhYtþhÞ j Ytþj�
¼ EfE½expðz0tþjþ1Ytþjþ1 þ � � � þ z0tþhYtþhÞ j Ytþjþ1� j Ytþjg
¼ Efexp½z0tþjþ1Ytþjþ1 þ Aðt þ jþ 1; t þ hÞ0Ytþjþ1 þ Bðt þ jþ 1; t þ hÞ� j Ytþjg
¼ expfa½ztþjþ1 þ Aðt þ jþ 1; t þ hÞ�0Ytþjþ1 þ Bðt þ jþ 1; t þ hÞ
þ b½ztþjþ1 þ Aðt þ jþ 1; t þ hÞ�g:
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The backward recursion follows by comparing the first and last expressions. The
terminal conditions are satisfied, since

Aðt þ h� 1; t þ hÞ ¼ aðztþhÞ; Bðt þ h� 1; t þ hÞ ¼ bðztþhÞ:

C. GEOMETRIC ERGODICITY

The proof of geometric ergodicity of a Markov process is a multistep procedure which is
well known in the literature (see, e.g. Tong, 1990; Meyn and Tweedie, 1999) and adapted to
Car processes below.

C.1. Choice of a basic r-finite measure

First, we have first to select a r-finite measure U, such as a Lebesgue measure kn, k
þ
n , or a

counting measure
P

Nndj,
P

Zndj, depending on the domain of the conditional distribution
which can be Rn, Rþn, Nn, or Zn (see Assumption A.2).

C.2. U-irreductibility

The chain is U-irreductible if and only if
P1

h¼1 P Ytþh 2 A j Yt½ � > 0, 8A with U(A)>0. This
condition is satisfied by Assumption A.1 of Proposition 7 since P[Ytþh 2 AjYt]>0.

C.3. Definition of the small sets

By the result established by Feigin and Tweedie (1985), which says that every compact set C
such that U(C)>0 is small, if E[g(Ytþ1) j Yt ¼ y] is a continuous function of y for any
bounded continuous function g. Since E [exp(�iwYtþ1) j Yt ¼ y] ¼ exp[�a(iw)y þ b(iw)],

is continuous in y for any w, the result follows since the set of exponential functions
(exp(�iwy), w varying) is dense in the set of bounded continuous functions and the
dominated convergence theorem applies.

C.4. U-aperiodicity

The chain is aperiodic if and only if there exists a small set C and a positive integer h such
that

P Ytþh 2 C j Yt ¼ y½ � > 0 and P Ytþhþ1 2 C j Yt ¼ y½ � > 0; 8y 2 C:

This condition is satisfied for h ¼ 1 and any compact set C such that U(C)>0 by
Assumption A.2.
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C.5. Drift condition

Proposition C.1 (Drift property, Tong, 1990, p. 457). Let (Yt) be U-irreductible and

U-aperiodic. Suppose that there exists a small set C, a non-negative measurable function g
and constant 0<r<1, c>0, B>0 such that:

E gðYtþ1Þ j Yt ¼ y½ � < r gðyÞ � c½ �; y j2C; and E gðYtþ1Þ j Yt ¼ y½ � < B; y 2 C;

then (Yt) is geometrically ergodic.

The drift condition is applied for a compact set C ¼ fy : kyk<Kg. Then, the Lyapunov
function g can be quadratic. This choice is due to the special form of the first- and second-
order conditional moments. Indeed we have:

E½Ytþ1 j Yt ¼ y� ¼ � @a
@u0

ð0Þy þ @b
@u0

ð0Þ;

E½Ytþ1Y 0
tþ1 j Yt ¼ y�

¼ @2

@u@u0
E expð�uYtþ1Þ j Yt ¼ y½ �

� �
u¼0

¼ @2

@u@u0
expð�aðuÞy þ bðuÞ

� �
u¼0

¼
Xn
j¼1

yj
@2ajð0Þ
@u@u0

þ @2bð0Þ
@u@u0

þ @að0Þ
@u0

y þ @bð0Þ
@u0

� 	
�y0

@a0ð0Þ
@u

þ @b0ð0Þ
@u

� 	
:

For a large value of y, these conditional moments are equivalent to:

E½Ytþ1 j Yt ¼ y� � � @a
@u0

ð0Þy; E½Ytþ1Y 0
tþ1 j Yt ¼ y� � @a

@u0
ð0Þyy0 @a

0

@u
ð0Þ:

The conditional moments of a Gaussian vector autoregressive model

Yt ¼ WYt�1 þ ut; ut � Nð0;XÞ;

are obtained by substituting W ¼ (@a/@u0)(0) in the last expression. This explains the
condition given in Proposition 7. More precisely, let us first assume that the Jacobian

matrix (@a/@u0)(0) can be diagonalized with eigenvectors ej, j ¼ 1, . . . , n and eigenvalues kj,
j ¼ 1, . . . , n. The following form of the Lyapunov function can be used:

gðyÞ ¼ max
j

ke0jyk
2:

The conditional expectation E[g(Ytþ1) j Yt ¼ y] is quadratic in y and continuously

valued. Thus the second condition of the drift property is satisfied. Moreover:

E½gðYtþ1Þ j Yt ¼ y� � max
j

E ke0jYtþ1k2 j Yt ¼ y
� �

� max
j

jkjj2y;

for large y. Thus it follows from Feigin and Tweedie (1985; Theorem 1), that the first

condition of the drift property is satisfied if maxj|kj|
2<1. When the matrix (@a/@u0)(0)

cannot be diagonalized, the Lyapunov function can be modified following the lines in Tong
(1990), proof of Theorem A.1.7.
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C.6. Mixing conditions

The geometric ergodicity implies b-mixing with geometric decay (see Davidov, 1973; or

Doukhan, 1994, Chap. 2.4).

D. SPECTRAL DECOMPOSITION OF THE CONDITIONAL EXPECTATION OPERATOR

D.1. Preliminary lemma

Lemma D.1. We have:

E Y n
t j Yt�1

� �
¼ PnðYt�1Þ;

where Pn is a polynomial of degree n, and its coefficient of the highest degree is: [(da/du)(0)]n.

Proof. We have just to compare the series expansions of:

E expð�uYtÞ j Yt�1

� �
¼
X1
n¼0

un

n!
E Y n

t j Yt�1

� �
;

and of:

exp �a uð ÞYt�1 þ b uð Þ½ � ¼
X1
n¼0

�a uð ÞYt�1 þ b uð Þ½ �n

n!

¼
X1
n¼0

1

n!

X1
k¼1

� dakð0Þ
duk

uk

k!
Yt�1 þ

dbk 0ð Þ
duk

uk

k!

� 	 !n

;

to prove the proposition. u

In particular, the Car processes are such that

E YtjYt�1

� �
¼ aYt�1 þ b;

that is they satisfy a weak linear AR(1) model as defined by Grunwald et al. (2000).

D.2. Spectral decomposition

From Lemma D.1, the space of polynomial functions of degree less than or equal to n is
invariant with respect to the conditional expectation operator. The operator restricted to
this space can be represented by a diagonal matrix, with diagonal elements kj, j ¼ 0, . . . , n.
The result follows directly.
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E. REVERSIBILITY CONDITION

(i) The reversibility condition can be written as:

c½aðuÞ þ v� � c½aðuÞ� � c½aðvÞ þ u� � cðuÞf g � cðvÞ þ c½aðvÞ� ¼ 0; 8u;

()
X1
j¼1

1

j!
djc
duj

a uð Þ½ � � djc
duj

0ð Þ

 �

vj ¼
X1
j¼1

1

j!
djc
duj

uð Þ � djc
duj

0ð Þ

 �

aðvÞj;

By equating the coefficients of the term vj, we deduce that there exist constants djk such
that:

8j : d
jc

duj
a uð Þ½ � ¼

Xj
k¼1

djk
dkc
duk

uð Þ þ dj0; 8u: ðE:1Þ

(ii) Let us first consider the condition corresponding to j ¼ 1. We get:

dc
du

aðuÞ½ � � dc
du

ð0Þ ¼ da
du

ð0Þ dc
du

ðuÞ � dc
du

ð0Þ
� 	

:

Thus, if dc/du is invertible, we get an expression of function a:

aðuÞ ¼ dc
du

� ��1
da
du

ð0Þ dc
du

ðuÞ � dc
du

ð0Þ
� 	

þ dc
du

ð0Þ
� 	

: ðE:2Þ

(iii) The condition written for j ¼ 2 implies a constraint on function c. Indeed this
condition can be written as:

d2c
du2

aðuÞ½ � � d2c
du2

ð0Þ ¼ da
du

ð0Þ
� �2

d2c
du2

ðuÞ � d2c
du2

ð0Þ
� 	

þ d2a
du2

ð0Þ dc
du

ðuÞ � dc
du

0ð Þ
� 	

; 8u:

Let us introduce the function:

cðuÞ ¼ d2c
du2

� dc
du

� ��1

ðuÞ;

the change of variable v ¼ dc/du(u), and use equation E.2, so that the condition becomes:

c
da
du

ð0Þvþdc
du

ð0Þ 1�da
du

ð0Þ
� �� 	

�d2c
du2

0ð Þ¼ cðvÞ�d2c
du2

ð0Þ
� 	

da
du

ð0Þ
� �2

þd2a
du2

ð0Þ v�dc
du

ð0Þ
� 	

; 8v:

Thus there exist scalars aj, j ¼ 1, ... , 4 such that:

c a1vþ a2ð Þ ¼ a21cðvÞ þ a3vþ a4; 8v: ðE:3Þ

We deduce that function c is quadratic.
(iv) Case b1 ¼ b2 ¼ 0

The function c is quadratic, whereas the function a is linear by E.2: c(u) ¼
d1u þ d2u

2,a(u) ¼ c1u, and it is easily checked that the joint log-Laplace transform:

U u; vð Þ ¼ d2ðu2 þ v2Þ þ 2d2c1uvþ d1ðuþ vÞ;

is symmetric in u and v. We get a Gaussian process with mean m ¼ �d1 variance 2d2 and
autocorrelation q ¼ d2/d1.
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(v) Case b1 6¼ 0, b2 ¼ 0
By integrating the differential eqn (6), we get the necessary form:

cðuÞ ¼ d1uþ d2ð1� exp d3uÞ;

and, by eqn (E.2), we deduce the necessary form for function a:

aðuÞ ¼ 1

d3
log a0 expðd3uÞ þ ð1� a0Þ½ �:

Then we get:

U u; vð Þ ¼ d1ðuþ vÞ þ d2ð2� a0Þ � d2a0 exp½d3ðuþ vÞ� � d2ð1� a0Þðexp d3uþ exp d3vÞ:

(vi) Case b21 � 4b0b2 ¼ 0, b2 6¼ 0
By integrating the differential eqn (6) we get the necessary form:

cðuÞ ¼ d1uþ d2 logð1þ d3uÞ;

and by eqn (E.2), the necessary form for function a:

aðuÞ ¼ a1u
1þ ð1� a1Þd3u

:

Then the joint log-Laplace transform is symmetric:

U u; vð Þ ¼ d1ðuþ vÞ þ d2 log 1þ d3ðuþ vÞ þ d23ð1� a1Þuv
� 


:

Up to a change of scale and location, we get the autoregressive gamma process.
(vii) Case b21 � 4b0b2 > 0, b2 6¼ 0

The necessary form for function c is:

cðuÞ ¼ d1uþ d2 log a expðd3uÞ þ 1� a½ �;

and by eqn (E.2), the necessary form of function a:

aðuÞ ¼ 1

d3
log

ð1� ð1� aÞð1� cÞÞ expðd3uÞ þ ð1� aÞð1� cÞ
að1� cÞ expðd3uÞ þ 1� að1� cÞ

� 	
:

Then the joint log-Laplace transform is symmetric:

Uðu; vÞ ¼ d1ðuþ vÞ þ d2 log½ð1� aÞð1� að1� cÞÞ
þ að1� aÞð1� cÞðexpðd3uÞ þ expðd3vÞÞ þ að1� ð1� aÞð1� cÞÞ expðd3ðuþ vÞÞ�:

This case is associated with the Bernoulli process with switching regimes.
(viii) Case b21 � 4b0b2 < 0, b2 6¼ 0

The necessary form for function c is:

cðuÞ ¼ d1uþ d2 log cosðd3uþ d4Þ½ � � d2 log cosðd4Þ;

and by eqn E.2, a necessary form for function a:

aðuÞ ¼ 1

d3
arctan c tanðd3uþ d4Þ þ ð1� cÞ tan d4ð Þ � d4½ �:

Then the joint log-Laplace transform is symmetric:
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Uðu; vÞ ¼ d1ðuþ vÞ � d2 cos d4

þ d2 log cosðd3ðuþ vÞ þ d4Þ þ ð1� cÞ sin d3u sin d3v
cos d4

� 	
:
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NOTES

1. The acronym Car has to be distinguished from CAR which stands for
continuous autoregressive process in the time series literature (Hyndman,
1993; Brockwell, 1994).
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