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Abstract

We use equity index options to quantify the distribution of consumption growth disas-
ters. The challenge lies in connecting the risk-neutral distribution of equity returns implied
by options to the true distribution of consumption growth estimated from macroeconomic
data. We attack the problem from three perspectives. First, we compare pricing kernels
constructed from macro-finance and option-pricing models. Second, we compare option
prices derived from a macro-finance model to those we observe. Third, we compare the
distribution of consumption growth derived from option prices using a macro-finance model
to estimates based on macroeconomic data. All three perspectives suggest that options im-
ply smaller probabilities of extreme outcomes than have been estimated from international
macroeconomic data. The third comparison yields a viable alternative calibration of the
distribution of consumption growth that matches the equity premium, option prices, and
the sample moments of US consumption growth.
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1 Introduction

The field of macro-finance offers an attractive opportunity to explore links between asset
returns and the real economy. Many of the most influential papers in the field do just that,
most commonly by using macroeconomic data as an input to models designed to account
for asset returns. There is also promise in doing the reverse: in using properties of asset
returns to characterize macroeconomic risk. The growing literature on disaster risk is a clear
example in which macroeconomic research might benefit from greater input from finance.

Barro (2006), Longstaff and Piazzesi (2004), and Rietz (1988) show that macroeconomic
disasters — large declines in aggregate consumption growth — produce dramatic improve-
ment in the ability of representative agent models to reproduce prominent features of US
asset returns, including the equity premium. They disagree, however, about their distri-
bution. Rietz (1988) simply chooses an arbitrary distribution and illustrates its impact.
Longstaff and Piazzesi (2004) argue that a distribution based on US experience can ex-
plain only about one-half of the equity premium. Barro (2006), Barro and Ursua (2008),
and Barro, Nakamura, Steinsson, and Ursua (2009) study broader collections of countries,
which in principle can tell us about alternative histories the US might have experienced. In
their panel of international macroeconomic data, the frequency and magnitude of disasters
are significantly larger than we have seen in US history. Their estimated distribution of
consumption disasters, which we refer to as the international macroeconomic evidence, has
become the industry standard in both macroeconomic and finance research.

The issue, then, is the distribution of extreme negative outcomes: the shape of the left
tail of the probability distribution of consumption growth. In virtually all of this research,
the distribution is modelled by combining a normal component with a jump component. A
jump component, in this context, is simply a mathematical device that produces nonnormal
distributions. The debate in the literature concerns the parameter values of this component.

The range of opinion about jump parameters reflects the nature of the problem: they
are not easily estimated from the relatively short history of US macroeconomic data. We
follow a different but complementary path, estimating them from prices of equity index
options. Equity index options are a useful source of additional information here, because
their prices tell us how market participants value extreme events — whether they happen
in our sample or not. By looking at options with different strike prices, we learn more
about the distribution of equity index returns than we do from returns alone. The cyclical
behavior of equity returns and the range of strike prices make this class of assets a natural
choice. Other cyclical assets, including corporate and government bonds, might be studied
in future work.

The idea is straightforward, but the approaches taken in the macro-finance and option-
pricing literatures are different enough that it takes some work to put them on a comparable
basis. The most salient differences for our purposes are these: (i) The macro-finance litera-
ture is concerned with properties of consumption growth, while the option-pricing literature



is concerned with equity returns. (ii) Macro-finance is concerned with the true or objec-
tive probability distribution, while option prices characterize the risk-neutral distribution.
(iii) The relation between true and risk-neutral probability distributions is different in the
two literatures. In the macro-finance literature, the risk-neutral distribution is derived from
the true distribution of consumption growth and the preferences of a representative agent
(power utility, for example). In the option-pricing literature, the two distributions are spec-
ified separately, which leads to a different structure for the pricing kernel. These differences
pose nontrivial challenges to anyone attempting to use evidence from equity options to
quantify features of consumption growth.

Our objective is to compare models based on consumption and option data, respectively,
but the differences in approach lead us to compare the models from several different per-
spectives. Each comparison uses a different analytical structure and focuses on a different
aspect of the model. In our first comparison, we focus on pricing kernels, which exist in any
arbitrage-free model. In macro-finance models, the properties of pricing kernels are closely
related to those of consumption growth. A natural first step then is to compare the pricing
kernel generated by a representative agent model calibrated to international macroeconomic
data to one implied by an estimated option-pricing model. A second comparison focuses
on option prices. We follow the macro-finance route, using macroeconomic data and the
preferences of a representative agent to value options as well as equity, and compare these
option prices to those of an estimated option-pricing model. Here and elsewhere, we report
option prices as implied volatility smiles, which represent departures from normality in an
intuitive way.

A third comparison delivers on our goal of estimating the distribution of consumption
growth disasters from options: we compare the distribution estimated from international
macroeconomic data with one derived from option prices. Here we reverse the procedure of
the previous comparison, using our estimated implied volatility smile and the preferences
of a representative agent to compute the consumption distribution from option prices. By
construction, the distribution is consistent with both option prices and the equity premium.
This approach differs from the substantial body of work that infers risk aversion from option
prices. See, for example, Ait-Sahalia and Lo (2000), Jackwerth (2000), Rosenberg and Engle
(2002), and Ziegler (2007). In that literature, preferences are defined directly over wealth,
which is proxied by equity, so the distribution of consumption is not studied.

In our comparison of pricing kernels, we find the concept of entropy (a measure of
dispersion) useful. Alvarez and Jermann (2005) and Bansal and Lehmann (1997) show that
the entropy of the pricing kernel of a given model is the maximum risk premium, defined as
the mean excess log return. Entropy can be represented as an infinite sum of the cumulants
(close relatives of moments) of the log of the pricing kernel. If the log of the pricing kernel
is normal, entropy is proportional to its variance. Departures from lognormality, such as
those generated by jumps, can increase cumulants, and hence entropy, thereby improving a
model’s ability to account for observed excess returns. Odd cumulants, in particular, reflect
the asymmetry inherent in disaster research. Despite the difference in functional forms,
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entropy can be computed for both the macro-finance and option-pricing models. We find
that while both consumption- and option-based models generate substantial contributions
to entropy from odd cumulants, the relative contribution is much smaller in the model based
on option prices. We also find that the contribution of the variance is much higher in the
option model, which results in greater entropy overall.

In our comparison of option prices, we start with a consumption distribution based on
macroeconomic assessments of jumps, link dividends to consumption, price assets with a
representative agent with power utility, select risk aversion to match the equity premium,
and use the model to value options on equity. We then compare implied volatility smiles de-
rived this way from consumption data to those from an option model estimated by Broadie,
Chernov, and Johannes (2007). We find that the volatility smile is much steeper in the
consumption-based model.

In our comparison of consumption growth distributions we do the reverse. We take es-
timates of the risk-neutral jump parameters from Broadie, Chernov, and Johannes’s (2007)
study of equity index options. This insures that the model matches the implied volatility
smile. As before, we use a representative agent with power utility and choose risk aversion
to match the equity premium. This allows us to infer the true distribution of consump-
tion growth implied by option prices. The consumption growth distribution implied by
option prices agrees with consumption-based estimates on the probability of modest disas-
ters: consumption growth more than 3 standard deviations to the left of the mean. In this
respect, the distribution is similar to US data. (The Great Depression includes one year
in which consumption declined by slightly more than 3 standard deviations). However, the
distribution differs significantly for more extreme events: the probability of consumption
growth more than 5 standard deviations to the left of its mean is much smaller than esti-
mates based on international macroeconomic evidence. The parameter values derived from
options match not only the equity premium, as in the Barro calibration, but also option
prices and moments of consumption growth. We think these parameter values provide a
more realistic distribution of disasters in US data than the international macroeconomic
evidence used in the literature.

The second and third comparisons are based on a model in which consumption growth
and equity returns are perfectly correlated. There is a long tradition of similar models in
the macro-finance literature, but the correlation in US data is 0.57. We therefore consider
a bivariate model in which the correlation can be set to match the evidence. If we choose
parameters based on international macroeconomic evidence, the volatility smile for option
prices remains much steeper than we see in the model based on option prices. Conversely, if
we choose parameters to match option prices, the probability of large negative realizations
of consumption growth (more than 5 standard deviations to the left of the mean) remains
much smaller than suggested by the macroeconomic evidence. It nevertheless matches basic
features of equity returns and option prices.

We conclude that option prices imply smaller probabilities of macroeconomic disasters
than suggested by Barro and his coauthors. Nevertheless, we would not say we reject “the
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Barro model.” We would say instead that the model makes a useful point about the role
of asymmetries and other departures from normality in asset pricing. Certainly there is
evidence of both in prices of equity index options.

2 Preliminaries

We start with an overview of the evidence we are trying to understand and the tools we
use to shed light on it. The tools allow us to characterize departures from lognormality,
including disasters, in a convenient way.

2.1 Evidence

We provide a quick overview of US evidence on consumption growth, asset returns, and
option prices.

In Table 1 we report evidence on annual consumption growth and equity returns (the
S&P 500 index) for both a long sample (1889-2009) and a shorter one (1986-2009) that
corresponds approximately to the option data used by Broadie, Chernov, and Johannes
(2007). Similar evidence is summarized by Alvarez and Jermann (2005, Tables I-III), Barro
(2006, Table IV), and Mehra and Prescott (1985, Table 1). In both samples, consumption
growth and equity returns exhibit the negative skewness we would expect from occasional
disasters. Our estimates of the equity premium (0.0407 in the long sample, 0.0434 in the
short sample) are somewhat smaller than those reported elsewhere. One reason is that we
measure returns in logs; in levels, the mean excess return on equity is 0.0571 in the long
sample and 0.0613 in the short sample. Another reason is that the 2008 return (−0.38 in
levels) has a significant impact on the estimated mean, particularly in the short sample.

The next issue is option prices. Options are available on the S&P 500 index and on
its futures contracts. Prices are commonly quoted as implied volatilities: the value of the
volatility parameter that equates the price with the Black-Scholes-Merton formula. These
volatilities have two well-documented features that we examine more closely in Section 5.
Similar evidence has been reviewed recently by Bates (2008, Section 1), Drechsler and Yaron
(2008, Section 2), and Wu (2006, Section II). The first feature is that implied volatilities are
greater than sample standard deviations of returns. Since prices are increasing in volatility,
this implies that options are expensive relative to the lognormal benchmark that underlies
Black-Scholes-Merton. As a result, selling options generates high average returns. The
second feature is that implied volatilities are higher for lower strike prices: the well-known
volatility skew. This feature is intriguing from a disaster perspective, because it suggests
market participants value adverse events more than would be implied by a lognormal model.
The question for us whether the extra value assigned to bad outcomes corresponds to the
disasters documented in macroeconomic research.
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In the following sections we use round-number versions of the estimates in Table 1 to
illustrate the quantitative importance of disasters. We report the properties of numerical
examples in which log consumption growth has a mean of 0.0200 (2%) and a standard
deviation of 0.0350 (3.5%). Similarly, the log excess return on equity has a mean of 0.0400
and a standard deviation of 0.1800 and the log return on the one-period bond is 0.0200.
Most of these numbers are similar across the long and short samples. The exception is
the standard deviation of log consumption growth. We use an estimate based on the long
sample because it includes the Great Depression, the one clear disaster in this sample. None
of these numbers are definitive, but they are close to the values in the table and give us a
starting point for considering the quantitative implications of disasters.

2.2 Jumps and disasters

We use a jump model as a way to generate departures from normality and, in particular,
disasters. We follow Barro (2006) in using a two-component structure for consumption
growth gt = ct/ct−1,

log gt+1 = wt+1 + zt+1, (1)

with components (wt, zt) that are independent of each other and over time. The first
component is normal: w ∼ N (µ, σ2). The second component, the “jump,” is a Poisson
mixture of normals. Its central ingredient is a random variable j (the number of jumps)
that takes on nonnegative integer values with probabilities e−ωωj/j!. The parameter ω
(“jump intensity”) is the mean of j. Conditional on j, the jump component is normal:

zt|j ∼ N (jθ, jδ2) for j = 0, 1, 2. . . . . (2)

If ω is small, the jump model is well approximated by a Bernoulli mixture of normals. In
this case, there is at most one jump per unit of time and it occurs with probability ω. But
if ω is large, as it is in the option model of Section 5, there can be a significant probability
of multiple jumps.

This functional form comes with a number of benefits. One is that it is a flexible
functional form that can approximate a wide range of nonnormal behavior. Another is that
it is easily scaled to the different time intervals observed in option markets (it is “infinitely
divisible”). For this reason and others, this specification is commonly used in work on
option pricing, where it is referred to as the Merton (1976) model. In the macro-finance
literature, it has been applied by Bates (1988), Martin (2007), and Naik and Lee (1990).

If the jump model provides a way to represent departures from normality, cumulants
provide a way to quantify their magnitude. Recall that the moment generating function (if
it exists) for a random variable x is defined by

h(s; x) = E (esx) ,
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a function of the real variable s. With enough regularity, the cumulant-generating function,
k(s) = log h(s), has the power series expansion

k(s; x) = log E (esx) =
∞∑

j=1

κj(x)sj/j! (3)

for some suitable range of s. This is a Taylor (Maclaurin) series representation of k(s)
around s = 0 in which the “cumulant” κj is the jth derivative of k at s = 0. Cumulants
are closely related to moments: κ1 is the mean, κ2 is the variance, and so on. Skewness γ1

and excess kurtosis γ2 are scaled versions of the third and fourth cumulants:

γ1 = κ3/κ
3/2
2 , γ2 = κ4/κ2

2. (4)

The normal distribution for w has the quadratic cumulant-generating function µs+σ2s2/2,
which implies zero cumulants after the first two. Nonzero high-order cumulants (κj for
j ≥ 3) therefore summarize departures from normality. We derive the cumulant-generating
function for z is Appendix A.1. Note for future reference that k(s; ax) = k(as; x) [replace
s with as in (3)]. Therefore if x has cumulants κj , ax has cumulants ajκj . This use of the
cumulant-generating function was suggested by Martin (2009) and recurs throughout the
paper.

Since the components are independent, the cumulant-generating function of log g is the
sum of those for w and z. We find cumulants of log g by taking derivatives of k. The first
four are

κ1 = µ + ωθ (5)
κ2 = σ2 + ω(θ2 + δ2) (6)
κ3 = ωθ(θ2 + 3δ2) (7)
κ4 = ω(θ4 + 6θ2δ2 + 3δ4). (8)

Note that cumulants reflect complex combinations of parameters. Negative skewness, for
example, requires θ < 0, but its magnitude depends on ω (governing the probability of
jumps), θ (the mean jump), and δ (the dispersion of jumps).

It is important to distinguish between jumps (a modelling tool) and disasters (the distri-
bution of the left tail of the distribution). To be concrete, we define disasters as negative re-
alizations of consumption growth below a threshold −b, for large b > 0 : Db = {log g ≤ −b}.
The probability of event Db implied by the jump model (1) is

p(Db) =
∞∑

j=0

p(log g ≤ −b|j) · p(j) =
∞∑

j=0

N

(
−b− µ− jθ√

σ2 + jδ2

)
· e−ωωj

j!
, (9)

where N(·) is a cumulative distribution function of a standard normal variable. This expres-
sion tells us that a specific disaster probability can be generated by the model in a number
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of ways. For example, if ω is small, as in Barro (2006), p(Db) is approximately equal to
a sum of the first two terms (j = 0 and 1). Thus, one needs relatively large values of θ
and/or δ to obtain a non-negligible probability value. In contrast, if ω is large, all the terms
in the sum contribute to the p(Db). Therefore, jump sizes need not be large to generate
the same probability value. This discussion should not be taken to imply that ω and jump
sizes are interchangeable. The different values will imply different high-order cumulants of
consumption and different properties of assets that are sensitive to high-order cumulants.
This is why we study options.

2.3 Pricing kernels, entropy, and cumulants

Here we describe a concept of entropy (a measure of dispersion) that we think clarifies how
the risks of departures from lognormality are valued.

In any arbitrage-free environment, there is a positive random variable m (the pricing
kernel) that satisfies the pricing relation,

Et

(
mt+1r

j
t+1

)
= 1, (10)

for (gross) returns rj on all traded assets j. Here Et denotes the expectation conditional
on information available at date t. In stationary ergodic settings, the same relation holds
unconditionally as well; that is, with an expectation E based on the ergodic distribution.
In finance, the pricing kernel is often a statistical construct designed to account for returns
on assets of interest. In macroeconomics, the pricing kernel is tied to macroeconomic
quantities such as consumption growth. In this respect, the pricing kernel is a link between
macroeconomics and finance.

Asset returns alone tell us some of the properties of the pricing kernel, hence indirectly
about macroeconomic fundamentals. A notable example is the Hansen-Jagannathan (1991)
bound. We use a similar “entropy bound” derived by Alvarez and Jermann (2005) and
Bansal and Lehman (1997). Both bounds relate measures of pricing kernel dispersion to
expected differences in returns. With this purpose in mind, we define the entropy of a
positive random variable x as

L(x) = log Ex− E log x. (11)

We account for this use of the term shortly. Entropy has a number of properties that we use
repeatedly. First, entropy is nonnegative and equal to zero only if x is constant (Jensen’s
inequality). In the familiar lognormal case, where log x ∼ N (κ1, κ2), entropy is L(x) = κ2/2
(one-half the variance of log x). We will see shortly that L(x) also depends on features of
the distribution beyond the first two moments. Second, L(ax) = L(x) for any positive
constant a. Third, if x and y are independent, then L(xy) = L(x) + L(y).
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The entropy bound relates the entropy of the pricing kernel to expected differences in
log returns:

L(m) ≥ E
(
log rj − log r1

)
(12)

for any asset j with positive returns. See Appendix A.2. Here r1 is the (gross) return on
a one-period risk-free bond, so the right-hand side is the mean excess return or premium
on asset j over the short rate. Inequality (12) therefore transforms estimates of return
premiums into estimates of the lower bound of the entropy of the pricing kernel.

The beauty of entropy as a dispersion concept for the study of disasters is that it includes
a role for the departures from normality they tend to generate. We can express the entropy
of the pricing kernel in terms of the cumulant-generating function and cumulants of log m:

L(m) = log E
(
elog m

)
− E log m

= k(1; log m)− κ1(log m) =
∞∑

j=2

κj(log m)/j!. (13)

If log m is normal, entropy is one-half the variance (κ2/2), but in general there will be
contributions from skewness (κ3/3!), excess kurtosis (κ4/4!), and so on.

Zin (2002, Section 2) points out that we can use high-order cumulants to account for
properties of returns that are difficult to explain in lognormal settings. We implement his
insight with a three-way decomposition of entropy: one-half the variance (the lognormal
term) and contributions from odd and even high-order cumulants. Although disasters typ-
ically show up in both odd and even high-order cumulants, odd cumulants reflect their
inherent asymmetry. More generally, the contribution of odd high-order cumulants repre-
sents an adaptation and extension of work on skewness preference by Harvey and Siddique
(2000) and Kraus and Litzenberger (1976): adaptation because it refers to properties of
the log of the pricing kernel rather than its level, and extension because it involves all odd
high-order cumulants, not just skewness. We compute odd and even cumulants from the
odd and even components of the cumulant-generating function:

kodd(s) = [k(s)− k(−s)]/2 =
∑

j=1,3,...

κj(x)sj/j!

keven(s) = [k(s) + k(−s)]/2 =
∑

j=2,4,...

κj(x)sj/j!.

Odd and even high-order cumulants follow from subtracting the first and second cumulants,
respectively.

2.4 Risk-neutral probabilities

In option pricing models, there is rarely any mention of a pricing kernel, although theory
tells us one must exist. Option pricers speak instead of true and risk-neutral probabilities.
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We use a finite-state iid (independent and identically distributed) setting to show how
pricing kernels and risk-neutral probabilities are related.

Consider an iid environment with a finite number of states x that occur with (true)
probabilities p(x), positive numbers that represent the frequencies with which different
states occur (the data generating process, in other words). With this notation, the pricing
relation (10) becomes

E
(
mrj

)
=

∑
x

p(x)m(x)rj(x) = 1

for (gross) returns rj on all assets j. A particularly simple example is a one-period bond,
whose price is q1 = Em =

∑
x p(x)m(x) = 1/r1. Risk-neutral (or better, risk-adjusted)

probabilities are

p∗(x) = p(x)m(x)/Em = p(x)m(x)/q1. (14)

The p∗s are probabilities in the sense that they are positive and sum to one, but they are
not the data generating process. The role of q1 is to make sure they sum to one. They lead
to another version of the pricing relation,

q1
∑

x

p∗(x)rj(x) = q1E∗rj = 1, (15)

where E∗ denotes the expectation computed from risk-neutral probabilities. In (10), the
pricing kernel performs two roles: discounting and risk adjustment. In (15) those roles are
divided between q1 and p∗, respectively.

Option pricing is a natural application of this approach. Consider a put option: the
option to sell an arbitrary asset with future price q(x) at strike price b. Puts are bets on
bad events — the purchaser sells prices below the strike, the seller buys them — so their
prices are an indication of how they are valued by the market. If the option’s price is qp (p
for put), its return is rp(x) = [b− q(x)]+/qp where (b− q)+ ≡ max{0, b− q}. Equation (15)
gives us its price in terms of risk-neutral probabilities:

qp = q1E∗(b− q)+. (16)

This highlights the role of risk-neutral probabilities in option pricing: As we vary b, we
trace out the risk-neutral distribution of prices q(x) (Breeden and Litzenberger, 1978).

But what about the pricing kernel and its entropy? Equation (14) gives us the pricing
kernel:

m(x) = q1p∗(x)/p(x). (17)

Since q1 is constant in our iid world, the entropy of the pricing kernel is

L(m) = L(p∗/p) = log E(p∗/p)−E log(p∗/p) = −E log(p∗/p). (18)
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The first equality follows because q1 is constant [recall L(ax) = L(x)]. The second follows
from the definition of entropy [equation (11)]. The last one follows from

E(p∗/p) =
∑

x

[p∗(x)/p(x)]p(x) =
∑

x

p∗(x) = 1.

The expression on the right of (18) is sometimes referred to as the entropy of p∗ relative to
p, which accounts for our earlier use of the term.

As before, entropy can be expressed in terms of cumulants. The cumulants in this case
are those of log(p∗/p), whose cumulant-generating function is

k[s; log(p∗/p)] = log E
(
es log(p∗/p)

)
=

∞∑

j=1

κj [log(p∗/p)]sj/j!. (19)

The definition of entropy (11) contributes the analog to (13) in which entropy is related to
cumulants:

L(p∗/p) = k[1; log(p∗/p)]− κ1[log(p∗/p)]

=
∞∑

j=2

κj [log(p∗/p)]/j! = −κ1[log(p∗/p)]. (20)

The second line follows from k[1; log(p∗/p)] = log E(p∗/p) = 0 (see above). Here we can
compute entropy from the first cumulant, but it is matched by an expansion in terms of
cumulants 2 and above, just as it was in the analogous expression for log m. All of these
cumulants are readily computed from derivatives of the cumulant-generating function (19).

To summarize: we can price assets using either a pricing kernel (m) and true probabilities
(p) or the price of a one-period bond (q1) and risk-neutral probabilities (p∗). The three
objects (m, p∗, p) are interconnected: once we know two (and the one-period bond price),
equation (14) gives us the other. That leaves us with three kinds of cumulants corresponding,
respectively, to the true distribution of the random variable x, the risk-neutral distribution,
and the true distribution of the log of the pricing kernel. We report all three.

3 Disasters in macroeconomic models and data

Representative-agent exchange economies generate larger risk premiums when we include
infrequent large declines in consumption growth. We describe the mechanism with numerical
examples that highlight the role of high-order cumulants. Here and in our study of options
we restrict our attention to iid environments. There are many features of the world that
are not iid, but this simplification allows us to focus without distraction on the distribution
of returns, particularly the possibility of extreme negative outcomes (reported in Table 1).
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We think it is a reasonably good approximation for this purpose, but return to the issue
briefly in Section 6.

The economic environment consists of preferences for a representative agent and a
stochastic process for consumption growth. Preferences are governed by an additive power
utility function,

E0

∞∑

t=0

βtu(ct),

with u(c) = c1−α/(1− α) and α ≥ 0. We refer to α as risk aversion. The pricing kernel is

log mt+1 = log β − α log gt+1. (21)

With power utility, the second derivative is negative (risk aversion), the third positive
(skewness preference), and the fourth negative (kurtosis aversion). The properties of the
pricing kernel follow from those of consumption growth.

Entropy and cumulants follow from the two-component process (1) for consumption
growth and the pricing kernel (21). Entropy is

L(m) = L(e−α log g) = L(e−αw) + L(e−αz). (22)

The entropy of the components follows from its definition (11):

L(e−αw) = (−ασ)2/2 (23)

L(e−αz) = ω[e−αθ+(αδ)2/2 − 1] + αωθ. (24)

See Appendix A.1. The cumulants of log m are related to those of log g by

κj(log m) = κj(log g)(−α)j/j! = (−α)jκj(w)/j! + (−α)jκj(z)/j! (25)

for j ≥ 1. See Section 2.3.

If log consumption growth is normal, then so is the log of the pricing kernel. Entropy
is then one-half the variance of consumption growth times the risk aversion parameter
squared. The impact of high-order cumulants depends on (−α)j/j!. The minus sign tells us
that negative odd cumulants of log consumption growth generate positive odd cumulants
in the log pricing kernel. Negative skewness in consumption growth, for example, generates
positive skewness in the pricing kernel and thus increases the entropy of the pricing kernel.
The contributions of high-order cumulants are controlled by the coefficient αj/j!. Eventually
the denominator grows faster than the numerator, but for moderate values of j risk aversion
can magnify the contributions of high-order cumulants (those with j ≥ 3) relative to the
variance.

We can see the quantitative significance of the jump component with numerical exam-
ples based on international macroeconomic evidence. Its role is evident in Table 3 in the
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difference between column (1), the lognormal case, and column (2), which incorporates a
Poisson jump component. In both cases, the mean and variance of log consumption growth
are κ1(log g) = 0.020 and κ2(log g) = 0.0352. In column (1), we set µ = κ1(log g) and
σ2 = κ2(log g). In column (2), we set ω = 0.01, θ = −0.3 and δ = 0.15: a one percent
chance of a 30 percent fall (on average) in consumption growth relative to its mean. Given
these values, we adjust the parameters of the normal component to maintain the mean and
variance, whose theoretical values are given in (5) and (6).

The parameters of the jump component are derived from studies of international macroe-
conomic data by Barro (2006), Barro and Ursua (2007), and Barro, Nakamura, Steinsson,
and Ursua (2009). Each of these studies looks at aggregate output or consumption over the
last century or more for 20-plus countries. Martin (2009) uses the empirical distribution
reported by Barro (2006) to set ω = 0.017, θ = −0.38 and δ = 0.25. Wachter (2009) uses
exactly the same specification of jump sizes as Barro (2006). Barro, Nakamura, Steinsson,
and Ursua (2009, Section 6.2) estimate a dynamic model, but argue that its asset pric-
ing implications are the same as an iid model with ω = 0.0138 (corresponding to their p)
and θ = −0.357 [corresponding to their log(1 − b)]. We use more modest values to avoid
overstating the role of jumps and to keep the variance of the normal component positive.
These numbers nevertheless suggest what may seem to be an excessively large probability
of an extremely bad outcome given US history, but that is what the international evidence
implies. We return to this issue when we look at the distribution implied by options.

With these numbers, we can explore the ability of the model to satisfy the entropy bound.
The observed equity premium implies that the entropy of the pricing kernel is at least 0.0400.
In the lognormal case, the entropy bound implies α2κ2(log g)/2 = α20.03502/2 ≥ 0.0400
or α ≥ 8.08. We can satisfy the entropy bound for the equity premium, but only with a
risk aversion parameter greater than 8. There is a range of opinion about this, but some
argue that risk aversion this large implies implausible behavior along other dimensions; see,
for example, the discussion in Campanale, Castro, Clementi (2010, Section 4.3) and the
references cited there.

When we add the jump component, a smaller risk aversion parameter suffices. Since the
mean and variance of log consumption growth are the same, the experiment has a partial
derivative flavor: it measures the impact of high-order cumulants, holding constant the
mean and variance. The jump component introduces negative skewness and positive excess
kurtosis into log consumption growth. Both are evident in the first panel of Figure 1, where
we plot cumulants 2 to 8 for log consumption growth. Each cumulant κj(log g) makes a
contribution κj(log g)(−α)j/j! to the entropy of the pricing kernel. The next two panels
of the figure show how the contributions depend on risk aversion. With α = 2, negative
skewness in consumption growth translates into a positive contribution to entropy, but the
contribution of high-order cumulants overall is small relative to the contribution of the
variance. That changes dramatically when we increase α. Even small high-order cumulants
make significant contributions to entropy if α is large enough (see also Table 2).

Figure 2 gives us another perspective on the same issue: the impact of high-order
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cumulants on the entropy of the pricing kernel as a function of the risk aversion parameter
α. The horizontal line is the lower bound, our estimate of the equity premium in US data.
The line labelled “lognormal” is entropy without the jump component. We see, as we noted
earlier, that the entropy of the pricing kernel for the lognormal case is below the lower bound
until α is above 8. The line labelled “disasters” incorporates the jump component. The
difference between the two lines shows that the overall contribution of high-order cumulants
is positive and increases sharply with risk aversion. Table 2 implies that when α = 2 the
extra terms increase entropy by 32%, but when α = 10 the increase is 850%.

It is essential that the jumps be bad outcomes. If we reverse the sign of θ, so that the
mean jump is positive, the result is the line labelled “booms” in Figure 2. We see that for
every value of α, entropy is below even the lognormal case. Table 2 shows us exactly how
this works. With jumps (and α = 10), the entropy of the pricing kernel (0.5837) comes from
the variance (0.0613), odd high-order cumulants (0.2786), and even high-order cumulants
(0.2439). When we switch to booms, the odd cumulants change sign — see equation (25)
— reducing total entropy.

The jump model increases the probability of extreme negative values of consumption
growth Db relative to the lognormal benchmark. We see in Table 3 that the probability
of log consumption growth more than three standard deviations to the left of its mean
[−b = κ1 − 3κ

1/2
2 in (9)] is 0.13% in the lognormal case [column (1)] but 0.9% in the

Poisson cases [columns (2)]. This corresponds to a drop in consumption of more than 8.5%,
something seen only once in US history: in 1931, when consumption fell by 9.9%. Thus a
1% event has occurred once in slightly more than a century of US history. In this respect,
the examples correspond roughly to US experience.

In other respects, the example is more extreme than US history, implying larger depar-
tures from lognormality that we have observed. The model implies, for example, skewness
of log consumption growth of −11.02 [the entry labelled γ1(true) in Table 3]. In US data,
our estimate is a much more modest −0.34 (the entry labelled skewness in Table 1). Excess
kurtosis (γ2) is similar. This is, of course, Barro’s (2006) argument: that what we have
seen in US data may not accurately reflect the distribution of what might have happened.
That leads us to study options, which in principle reflect the distribution used by market
participants.

4 Risk-neutral probabilities in representative-agent models

As a warmup for our study of options, we derive the risk-neutral probabilities implied by
the examples of the previous section and use them to compute the risk-neutral parameters
reported in Table 3. The state spaces have continuous components, but the logic of Section
2.4 follows with integrals replacing sums where appropriate. In representative-agent models,
risk aversion generates risk-neutral distributions that are shifted left (more pessimistic)
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relative to true distributions. The form of this shift depends on the distribution. More
generally, we might think of any such shift as representing something like risk aversion.

Our first example has lognormal consumption growth. Suppose log g = w with w ∼
N (µ, σ2). Then

p(w) = (2πσ2)−1/2 exp[−(w − µ)2/2σ2].

The pricing kernel is m(w) = β exp(−αw) and the one-period bond price is q1 = Em =
β exp[−αµ + (ασ)2/2]. Equation (14) gives us the risk-neutral probabilities:

p∗(w) = p(w)m(w)/q1 = (2πσ2)−1/2 exp[−(w − µ + ασ2)2/2σ2].

Thus the risk-neutral distribution has the same form (normal) with mean µ∗ = µ − ασ2

and standard deviation σ∗ = σ. The former shows us that the distribution shifts to the left
by an amount proportional to risk aversion α and risk σ2. The log probability ratio is

log [p∗(w)/p(w)] = [(w − µ)2 − (w − µ∗)2]/2σ2,

which implies the cumulant-generating function

k[s; log(p∗/p)] = log E
(
es log p∗/p

)
=

(µ− µ∗)2

2σ2
(−s + s2).

The cumulants are (evidently) zero after the first two. Entropy follows from equation (20),

L(p∗/p) =
(µ− µ∗)2

2σ2
= (ασ)2/2,

which is what we reported in equation (23).

In our second example, consumption growth follows the Poisson-normal mixture de-
scribed by equation (2). We derive the risk-neutral distribution from the cumulant-generating
function (cgf). This approach works with the previous example, too, but it is particularly
convenient here. With power utility, the cgf of the risk-neutral distribution is

k∗(s) = k(s− α)− k(−α).

See Appendix A.3. Since k(s) = ω[exp(sθ + (sδ)2/2)− 1] (Appendix A.1), we have

k∗(s) = ωe−αθ+(αδ)2/2
[
es(θ−αδ2)+(sδ)2/2 − 1

]

This has the same form as k(s) and describes a Poisson-normal mixture with parameters

ω∗ = ωe−αθ+(αδ)2/2, θ∗ = θ − αδ2, δ∗ = δ. (26)

Similar expressions are derived by Bates (1988), Martin (2007), and Naik and Lee (1990).
Risk aversion (α > 0) places more weight on bad outcomes in two ways: they occur more
frequently (ω∗ > ω if θ < 0) and are on average worse (θ∗ < θ). Entropy is the same as
equation (24).

Multi-component models combine these ingredients. If log consumption growth is the
sum of independent components, then entropy is the sum of the entropies of the components,
as in equation (22).
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5 Disasters in option models and data

In the macro-finance literature, pricing kernels are typically constructed as in Section 3: we
apply a preference ordering (power utility in our case) to an estimated process for consump-
tion growth (lognormal or otherwise). In the option-pricing literature, pricing kernels are
constructed from asset prices alone: we estimate true probabilities from time series data on
prices or returns, estimate risk-neutral probabilities from the cross-section of option prices,
and compute the pricing kernel from the ratio. The approaches are complementary; they
generate pricing kernels from different data. The question is whether they lead to similar
conclusions. Do options on US equity indexes imply the same kinds of extreme events that
Barro and Rietz suggested? Equity index options are a particularly informative class of
assets for this purpose, because they tell us not only the market price of equity returns
overall, but the prices of specific outcomes.

5.1 The Merton model

We look at option prices through the lens of the Merton (1976) model, a functional form
that has been widely used in the empirical literature on option prices. The starting point
is a stochastic process for asset prices or returns. Since we are interested in the return on
equity, we let

log re
t+1 − log r1 = wt+1 + zt+1. (27)

We use the return, rather than the price, but the logic is the same either way. As before, the
components (wt, zt) are independent of each other and over time. Market pricing of risk is
built into differences between the true and risk-neutral distributions of the components. We
give the distributions the same form, but allow them to have different parameters. The first
component, w, has true distribution N (µ, σ2) and risk-neutral distribution N (µ∗, σ2). By
convention, σ is the same in both distributions, a byproduct of its continuous-time origins.
The second component, z, is a Poisson-normal mixture. The true distribution has jump
intensity ω and the jumps are N (θ, δ2). The risk-neutral distribution has the same form
with parameters (ω∗, θ∗, δ∗). The structure and notation will be familiar from Section 2.2.

The Merton model has been widely used in empirical studies of asset pricing, where
the parameters of the jump component provide flexibility over the form of departures from
normality. It also scales easily to different time intervals, as we show in Appendix A.5.
That is helpful here because it allows us to use the model to price options for a range of
maturities. The simplest way to describe this is with the cumulant-generating function,
which is proportional to the time interval. Entropy and cumulants scale the same way.

Related work supports a return process with these features. Ait-Sahalia, Wang, and
Yared (2001) report a discrepancy between the risk-neutral density of S&P 500 index returns
implied by the cross-section of options and the time series of the underlying asset returns,
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but conclude that the discrepancy can be resolved by introducing a jump component. One
might go on to argue that two jumps are needed: one for macroeconomic disasters and
another for more frequent but less extreme financial crashes. However, Bates (2010) studies
the US stock market over the period 1926-2009 and shows that a second jump component
plays no role in accounting for macroeconomic events like the Depression.

Given this structure, the pricing kernel follows from equation (17). Its entropy is

L(m) = L(p∗/p)

=
(µ− µ∗)2

2σ2
+ (ω∗ − ω) + ω

[
log

ω

ω∗
− log

δ

δ∗
+

(θ − θ∗)2 + (δ2 − δ∗2)
2δ∗2

]
. (28)

This expression and the corresponding cumulant-generating function are derived in Ap-
pendix A.6.

5.2 Parameter values

We use parameter values from Broadie, Chernov, and Johannes (2007), who summarize and
extend the existing literature on equity index options. Their estimates also include stochas-
tic volatility. We make volatility constant, but we think the simplification is innocuous for
our purposes. For one thing, the volatility smile of our iid model is almost the same as the
smile generated by the more general model with the volatility state variable set equal to
its mean. For another, the smile in the iid model is very close to the average smile in the
stochastic volatility model.

The parameters of the true distribution are estimated from the time series of excess
returns on equity. We use the parameters of the Poisson-normal mixture — namely (ω, θ, δ)
— reported in Broadie, Chernov, and Johannes (2007, Table I, the line labelled SVJ EJP).
The estimated jump intensity ω is 1.512, which implies much more frequent jumps than we
used in our consumption-based model. With this value, the probability of 0 jumps per year
is 0.220, 1 jump per year 0.333, 2 jumps 0.25, 3 jumps 0.13, 4 jumps 0.05, and 7 or more
jumps about 0.001. The jumps have mean θ = −0.0259 and standard deviation δ = 0.0407.
Given parameters for the Poisson-normal component, the mean µ and standard deviation
σ of the normal component are chosen to match the mean and variance of excess returns to
their target values (0.0400 and 0.18002, respectively). In the model, the mean excess return
(the equity premium) is µ+ωθ, which determines µ. The variance is σ2 +ω(θ2 + δ2), which
determines σ. All of these numbers are reported in column (4) of Table 3.

The risk-neutral parameters for the Poisson-normal mixture are estimated from the
cross section of option prices: specifically, prices of options on the S&P 500 over the period
1987-2003. The depth of the market varies both over time and by the range of strike
prices and maturities, but there are enough options to allow reasonably precise estimates
of the parameters. The numbers we report in Table 3 are from Broadie, Chernov, and
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Johannes (2007, Table IV, line 5). In practice, option prices identify only the product
ω∗θ∗, so they set ω∗ = ω and choose θ∗ and δ∗ to match the level and shape of the
implied volatility smile. Given values for (ω∗, θ∗, δ∗), we set µ∗ to satisfy (15), which implies
µ∗ + σ2/2 + ω∗[exp(θ∗ + δ∗2/2)− 1] = 0.

Figure 3 shows how the jump mean θ∗ and standard deviation δ∗ affect the cross section
of 3-month option prices. The relevant formulas are reported in Appendices A.4 and A.5.
We express prices as implied volatilities and graph them against “moneyness,” with higher
strike prices to the right. We measure moneyness as the proportional deviation of the strike
from the price: (strike − price)/price. A value of zero is therefore equivalent to an at-
the-money option (strike = price) or an option on the return at a strike of zero. We use
3-month rather than 1-year options because departures from lognormality (flat volatility
smiles) are more obvious at the shorter maturity. In the figure, the solid line represents
the implied volatility smile in the model. Since the model fits extremely well, we can take
this as a reasonable representation of the data. The downward slope and convex shape are
both evidence of departures from lognormality. The second line illustrates the role of the
jump mean θ∗: when we divide it by two, the line is flatter. By making the mean jump size
smaller, we reduce the value of out-of-the-money puts. The third line illustrates the role of
the jump variance δ∗2: when we divide it by two, the smile has less curvature. Both lines
lie below the estimated one, so the estimated parameters evidently help to account for the
observed premium of implied volatilities over the true standard deviation of equity returns
(0.1800 in our model).

5.3 Pricing kernel implied by options

We compute the pricing kernel from the ratio of risk-neutral to true probabilities, as in
equation (17). It therefore incorporates evidence on the time series of returns (the source
of information about p) as well as option prices (the source of information about p∗). Its
properties are reported in Tables 2 and 3 and Figure 4. We compare it with consumption-
based models in the next section, but for now simply note its salient features.

The most striking feature of the pricing kernel is its entropy of 0.7747, more than an
order of magnitude larger than the equity premium (0.0400) [column (3) of Table 3]. This
reflects, in large part, the high price of options. Prices are high in the sense that selling
them generates high average returns; see, for example, the extensive literature review in
Broadie, Chernov, and Johannes (2009, Appendix A). These high average returns imply
high entropy via the entropy bound, even though the model’s parameters are chosen to
match the equity premium exactly. Evidently a bound based on the equity premium is too
loose: other investment strategies generate significantly higher average excess returns and
therefore imply higher entropy.

The primary source of entropy in this case is the variance of the implied log-pricing
kernel: the contribution of the variance is 0.4720, 61% of the total. High-order cumulants
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also make significant contributions: 0.1127 (15%) and 0.1900 (25%) from, respectively, odd
and even high-order cumulants (Table 2). Like the smile itself, these numbers verify that
departures from the lognormal model are quantitatively important.

Figure 4 illustrates the impact of individual cumulants. The top panel shows that
high-order cumulants of equity excess returns are small relative to the variance. We know,
however, that the model generates nonzero skewness and excess kurtosis (Table 3). Contri-
butions of high-order cumulants to entropy are reported in the second panel. As we noted,
the contributions are small relative to the variance but quantitatively important. When we
divide the jump mean θ∗ and variance δ∗2 by two (the third panel of Figure 4), the contribu-
tions decline across the board, much as when we reduce risk aversion in consumption-based
models.

6 Comparing macroeconomic and option models

We have seen that both option prices and international macroeconomic data suggest signif-
icant departures from the lognormal model. Here we explore their differences. As we have
seen, the macro- and option-based modelling approaches have two degrees of separation:
the latter characterizes the risk-neutral distribution of equity returns, while the former is
concerned with the true distribution of consumption growth. The challenge is to link these
two objects. Since there is no standard resolution of this problem, we compare them along
the three dimensions suggested by equation (17): the true distribution, the risk-neutral
distribution, and their ratio, the pricing kernel. Each gives us a different perspective on
the two sources of data and is based on different theoretical structure. First, we compare
the macro-based pricing kernel to one derived from option prices and returns (Section 2.4).
Second, we compare the macro-based risk-neutral distribution of equity returns (Sections
3 and 4) to the same distribution based on option prices (Section 5). Third, we compare
the true distribution of consumption growth evident in international macroeconomic data
to the same distribution derived from option prices.

We need one final piece of theory to connect equity returns to consumption growth.
Equity returns then allow us to calibrate the risk aversion parameter α. We define levered
equity as a claim to the dividend

dt = cλ
t . (29)

This is not, of course, either equity or levered, but it is a convenient functional form that is
widely used in the macro-finance literature to connect consumption growth (the foundation
for the pricing kernel) to returns on equity (the asset of interest). See Abel (1999, Section
2.2). In the iid case, the log excess return is a linear function of log consumption growth:

log re
t+1 − log r1

t+1 = λ log gt+1 + constant. (30)
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See Appendix A.7.1. This tight connection between equity returns and consumption growth
overstates how closely these two variables are related, but it captures in a simple way the
obvious cyclical variation in the stock market. We consider alternatives later in this section,
but for now it serves as a useful simplification. Given these assumptions, the equity premium
has a compact representation in terms of the cumulant-generating function of consumption
growth:

E
(
log re

t+1 − log r1
t+1

)
= λκ1(log g) + k(−α; log g)− k(λ− α; log g). (31)

See Appendix A.7.1.

The leverage parameter λ allows us to control the variance of the equity return separately
from the variance of consumption growth and thus to match both. We use an excess return
variance of 0.18002, so λ is the ratio of the standard deviation of the excess return (0.1800)
to the standard deviation of log consumption growth (0.0350), approximately 5.1.

6.1 Comparing pricing kernels

We start with a direct comparison of the pricing kernels derived in Sections 3 and 5. Their
entropies and the relevant parameter values are reported in columns (2) and (3) of Table
3. In the macro or consumption-based model, we set α = 5.19 to match the target equity
premium of 0.0400, computed from equation (31).

One clear difference in the two models is their total entropy, which is much larger in
the option model. Another is the relative contribution of high-order cumulants, which is
significantly smaller in the option model. High-order cumulants contribute 59% of the en-
tropy in the consumption model (the row of Table 2 labelled “Poisson consumption growth,
α = 5.19”) but only 39% in the option model (the row labelled “Merton equity returns”).
Most relevant to disaster research, the contribution of odd high-order cumulants is 38% in
the consumption model but only 15% in the option model. These numbers indicate signif-
icant departures from lognormality in both models, but they are relatively smaller in the
option model.

This is, too be sure, a somewhat odd result. Options imply lots of entropy, which is,
after all, one of the benefits of introducing disasters into asset-pricing models. But it does
so primarily by increasing the variance of the log pricing kernel. The relative contribution of
odd high-order cumulants remains important but smaller than we see in the consumption-
based model.

6.2 Comparing option prices

Our second comparison involves option prices, which reflect the risk-neutral distribution of
equity returns. We compute option prices for the consumption model in two steps. First, the
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parameters of the risk-neutral distribution of log consumption growth follow from power
utility and the transformations described in equation (26). The results are reported in
column (2) of Table 3. Second, equation (30) implies that equity excess returns are a scaled
version of consumption growth with scale parameter λ. This scaling leads us to replace the
parameters (σ∗, ω∗, θ∗, δ∗) with (λσ∗, ω∗, λθ∗, λδ∗). See Appendix A.5. The result has the
same form as the Merton model but different parameters.

Implied volatility smiles for the consumption- and option-based models are pictured
in Figure 5. Similar consumption-based option prices are reported by Benzoni, Collin-
Dufresne, and Goldstein (2005) and Du (2008). What is new is the explicit comparison to
an estimated option pricing benchmark. As before, we use 3-month options to highlight
departures from the lognormal model. The top line (labelled “option-based model”) refers
to the model based on option prices. It is the same as the top line in Figure 3. The bottom
line (labelled “consumption-based model”) refers to the model derived from consumption
data as described in the previous paragraph. The implications of the two sets of parameter
values are clearly different. The consumption-based calibration has a steeper smile, greater
curvature, and lower at-the-money volatility. This follows, in part, from its greater risk-
neutral skewness and excess kurtosis [columns (3) and (4) of Table 3]. They suggest higher
risk-neutral probabilities of large disasters (the left side of the figure) and lower probabilities
of less extreme outcomes (the middle and right of the figure). These differences in the
underlying distributions result in significantly different option prices.

6.3 Comparing consumption disasters

Now consider the reverse: the true distribution of consumption growth implied by option
prices. How does it compare to the distribution estimated from international macroeconomic
data? For the option model, this involves taking the risk-neutral distribution of returns
implied by option prices and computing the true distribution of consumption growth. We
no longer need an estimate of the true distribution from returns data. Instead, we use
power utility to link true to risk-neutral parameters and equation (30) to link consumption
growth to returns. This imposes different structure than the option model on the connection
between true and risk-neutral parameters. For example, the restriction ω = ω∗ used in the
option model no longer holds.

The calculations are analogous to the previous comparison. First, we use the scale
parameter λ to transform risk-neutral parameters for equity returns into risk-neutral pa-
rameters for consumption growth. This involves replacing (ω∗, θ∗, δ∗) in column (3) of Table
3 with (ω∗, θ∗/λ, δ∗/λ), as outlined in Appendix A.5. Second, equations (26) link the risk-
neutral parameters of the consumption distribution to their counterparts (ω, θ, δ) for the
true distribution. Finally, µ and σ are selected to match our target values for the mean and
standard deviation of log consumption growth; see equations (5) and (6). Risk aversion α is
then chosen to match the equity premium. The jump parameters ω and θ depend on α, the
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two true normal parameters µ and σ depend on the true jump parameters, and α depends
on all the true parameters. Thus we have a system of five equations in five unknowns.

The consumption process derived this way from option prices [column (4) of Table 3]
has the same Poisson-normal distribution as the consumption process estimated from inter-
national macroeconomic data [column (2)]. The parameters, however, are much different.
In the consumption-based model, there is a small chance (governed by the jump intensity
ω = 0.01) of a large jump (the mean jump θ = −0.3 is 8.6 standard deviations of con-
sumption growth). In the option-based model, there is a larger chance (jump intensity is
ω = 1.3987) of a much smaller jump (the mean jump θ = −0.0074 is 0.21 standard devi-
ations). Both models generate disasters in the sense that the probabilities of tail events
are much larger than in the lognormal case [column (1)]. The probability of a 3 standard
deviation drop in consumption [−b = κ1 − 3κ

1/2
2 in (9)], similar to the US in the Great

Depression, is about 1% in each case. However, declines in consumption of more than
5 standard deviations are much more likely in the consumption-based model (probability
0.0079) than in the option-based model (0.0001). Events of this magnitude have not been
observed in US history, so the models disagree on events that have never occurred. The
difference in tail probabilities is reflected in their cumulants. Skewness and excess kurtosis
are −11.01 and 145.06, respectively, in the consumption-based model, but only −0.28 and
0.48 in the option-based model. The latter are much closer to the sample statistics reported
in Table 1 than the former.

This leaves us with an alternative to the popular “Barro” calibration of disasters. The
parameter values in column (4) have three useful properties: they (i) match the equity
premium, (ii) match the implied volatility smile of option prices, and (iii) are consistent
with what US consumption data. Properties (i) and (ii) are true by construction; (iii) is an
implication.

6.4 A bivariate model of consumption and equity returns

Our comparisons of option prices and consumption growth rely on the tight connection
between consumption growth and equity returns imposed by (30). We follow a long tradition
in doing so, but consider an alternative here that is more closely based on the evidence.
Figure 6 shows that consumption growth and equity returns have been strongly correlated,
but the sample correlation is 0.566, not one.

Consider, then, a bivariate model of consumption growth and dividends (we will come
to returns shortly) with arbitrary correlation between the two. Does allowing imperfect
correlation affect our conclusion that option prices imply smaller probabilities of disasters
than international macroeconomic data? The answer is no, but we think it is worth working
through the details.
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Let log g> = (log g1, log g2) be a vector whose elements are log consumption and dividend
growth: g1t+1 = ct+1/ct and g2t+1 = dt+1/dt. A bivariate jump process analogous to (1) is

log gt+1 = µg + wt+1 + zt+1,

where w and z are bivariate and independent of each other and over time. The intercept
µg has elements µg

i . The first component is bivariate normal: wt ∼ N (0, Σ), where Σ has
elements σij . The second component is a Poisson mixture of bivariate normals. Jumps
occur with Poisson intensity ω. Each jump generates a draw from the bivariate normal
distribution N (θ,∆), where θ and ∆ have elements θi and δij . This process is a special
case of one used by Ait-Sahalia, Cacho-Diaz, and Hurd (2009) and similar to consumption-
dividend processes used by Gabaix (2010) and Longstaff and Piazzesi (2004). This bivariate
process is modest generalization of (29). It allows us to maintain the scaling performed by
(29) without imposing a correlation of one. Scaling includes: µg

2 = λµg
1, σ22 = λ2σ11,

θ2 = λθ1, and δ22 = λ2δ11.

With this process for consumption and dividend growth, the joint process for consump-
tion growth and equity returns has a similar structure. If x> = (x1, x2) = (log g1, log re −
log r1), then

xt+1 = µ + wt+1 + zt+1.

Here w and z are the same as above and µ has elements (µ1, µ2) = (µg
1, E

(
log re

t+1 − log r1
t+1

)−
ωλθ1). The equity premium is

E
(
log re

t+1 − log r1
t+1

)
= λ(µg

1 + ωθ1) + k((−α, 0)′; log g)− k((−α, 1)′; log g). (32)

See Appendix A.7.2.

We choose parameter values that reproduce the mean and variance of log consumption
growth, the mean and variance of the log excess return on equity, and the correlation
between them. Consider the components in turn. We use the parameters reported in column
(2) of Table 3 for the (true) consumption process. Here we label them (µ1, σ

1/2
11 , ω, θ1, δ

1/2
11 ).

The parameters of the return process are scaled versions of the same numbers as described
above. The jump intensity ω is, of course, the same. We choose risk aversion α to match
equity premium (32). The correlation depends on the mean jumps and the correlations
ρw = σ12/(σ11σ22)1/2 and ρz = δ12/(δ11δ22)1/2. If ρw = ρz = ρ, the correlation between
consumption and returns is

Corr(x1, x2) =
ρσ11 + ω(θ2

1 + ρδ11)
σ11 + ω(θ2

1 + δ11)
. (33)

See Appendix A.8. We set ρ to match the correlation in the data (0.566).

Option pricing follows directly from the risk-neutral distribution over equity returns.
With power utility,

ω∗ = ωe−αθ1+α2δ11/2, θ∗2 = θ2 − αδ12, δ∗22 = δ22.
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See Appendix A.8. With appropriate redefinition of parameters, option pricing has the
same structure as Section 5 and Appendix A.4.

If consumption growth and equity returns are perfectly correlated, this procedure re-
produces the calculation of consumption-based option prices in Figure 5. For the corre-
lation observed in the data, the result is the middle line in the same figure. We see that
the two consumption-based lines are similar to each other and notably different from the
smile estimated from option prices. It appears, then, that the perfect correlation between
consumption growth and equity returns is not the source of the sharp difference between
volatility smiles based on option prices and consumption data.

Now consider the consumption growth process implied by option prices in this bivari-
ate setting. First, we use the scale parameter λ to transform risk-neutral parameters for
equity returns into risk-neutral parameters for consumption growth. This involves setting
(ω∗, θ∗1, δ

∗
11) = (ω∗, θ∗/λ, δ∗2/λ2) for reasons outlined in Appendix A.5, where (ω∗, θ∗, δ∗) are

parameters estimated from option prices and reported in column (3) of Table 3. Second,
equations

ω∗ = ωe−αθ1+α2δ11/2, θ∗1 = θ1 − αδ11, δ∗11 = δ11

from Appendix A.8 link the risk-neutral parameters of consumption to their counterparts
(ω, θ1, δ11) of the true distribution. The parameters of the normal component of consump-
tion growth, µ1 and σ11, are chosen to match our target values for the mean and standard
deviation of log consumption growth:

0.0200 = κ1(log g1) = µ1 + ωθ1

0.03502 = κ2(log g1) = σ11 + ω(θ2
1 + δ11).

The correlation ρ is chosen to match the sample correlation between consumption growth
and equity returns, as in (33). Risk aversion α is chosen to match the equity premium (32).
The two true jump parameters ω and θ1 depend on α, the two true normal parameters µ1

and σ11 depend on the true jump parameters, ρ depends on true jump parameters and σ11,
and α depends on all the true parameters. Thus, we have to solve a system of six equations
in six unknowns.

As in the univariate case, the consumption process derived this way from option prices
[column (5) of Table 3] has the same Poisson-normal distribution as the consumption process
estimated from international macroeconomic evidence [column (2)]. The parameters are,
however, different. With the exception of risk aversion, the difference between columns
(2) and (5) is similar to the difference between columns (2) and (4), the latter being the
univariate case. The need for higher risk aversion reflects the lower correlation between
dividends and consumption. Again, it seems that allowing a smaller correlation does not
have a large impact on the consumption process derived from option prices.
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6.5 Discussion

One might ask, in the end, whether options reliably identify extreme events (disasters) in
consumption. We think the answer is yes, but let us run through the argument. There
are two degrees of separation between equity options and consumption: options identify
the risk-neutral distribution of returns and we are interested in the true distribution of
consumption growth. The first link is between true and risk-neutral returns. We have seen
that a direct estimate of the true distribution of returns shares with the estimated risk-
neutral distribution modest values of skewness and excess kurtosis [column (3) of Table 3].
The second link is between returns and consumption growth. When the two are perfectly
correlated, as they are in equation (30), their skewness, excess kurtosis, and tail probabilities
(measured in standard deviation units) are the same. The contrast along these dimensions
between distributions based on international consumption data [column (2)] and option
prices [columns (3) – (5)] is striking. So, too, is the difference between implied volatilities
based on option prices and consumption data (Figure 5). Finally, the evidence on the
relation between equity returns and consumption growth (Figure 6) and the limited impact
of imperfect correlation on option prices (Figure 5) and on option-implied consumption
growth [columns (4) and (5) of Table 3] suggest that option prices are a reasonably good
indicator of the likelihood of disasters in consumption growth. It is possible that future
work using other methods will detect a significant difference between the tail behavior of
consumption growth and equity returns. In the meantime, we think the evidence indicates
that equity index options imply smaller probabilities of consumption disasters than the
international macroeconomic evidence.

We have described, in a relatively simple theoretical setting, how option prices can be
used to infer probabilities of extreme outcomes, including the infrequent sharp declines
in consumption growth documented in international macroeconomic data by Barro and
others. We find that the distribution of outcomes implied by option prices is less extreme
than the macroeconomic evidence suggests. Nonetheless, this option-implied distribution
is capable of matching the equity premium, option prices and consumption moments in a
simple setting of iid consumption growth and power utility over aggregate consumption.

Can we make further progress by relaxing these assumptions? In general, the answer
must be yes. The most recent generation of dynamic asset pricing models is capable of
capturing important features of the data by using combining exotic preferences with non-
iid consumption dynamics. However, this work focuses on intertemporal properties of the
asset prices, such as return predictability, volatility persistence and yield curve modelling.
Here we focus on the drivers of the unconditional moments of consumption and asset prices
listed in Table 1. Although this is not the last word on the subject, we think the models we
consider are well suited to the task. They are also relatively transparent, which we think
adds to our understanding of their properties.

Consider the iid assumption. Our objective is to characterize the unconditional distri-
bution of consumption growth, particularly the distribution of large adverse outcomes. The
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question is whether the kinds of time-dependence we see in asset prices are quantitatively
important in assessing the role of extreme events. It is hard to make a definitive statement
without knowing the precise form of time-dependence, but there is good reason to think its
impact could be small. The leading example in this context is stochastic volatility, a central
feature of the option pricing model estimated by Broadie, Chernov, and Johannes (2007).
However, average implied volatility smiles from this model are very close to those from an
iid model in which the variance is set equal to its mean. Furthermore, stochastic volatility
has little impact on the probabilities of tail events, which is our interest here.

Power utility is the workhorse of macroeconomics and finance, but our option model
suggests much higher entropy than implied by macro models with these preferences, even
the ones that were calibrated to match option prices. One possible remedy is to explore al-
ternative preferences, including skewness preference (Harvey and Siddique, 2000), recursive
preferences (Garcia, Luger, and Renault, 2002, and Wachter, 2009), state-dependent pref-
erences (Chabi-Yo, Garcia, and Renault, 2008), ambiguity (Drechsler, 2008, and Liu, Pan,
and Wang, 2005), learning (Shaliastovich, 2008), and habits (Bekaert and Engstrom, 2010,
and Du, 2008). Another promising avenue is heterogeneity across agents. Certainly there is
strong evidence of imperfect risk-sharing across individuals and good reason to suspect that
this affects asset prices. Bates (2008), Chan and Kogan (2002), Guvenen (2009), Longstaff
and Wang (2008), and Lustig and Van Nieuwerburgh (2005) are notable examples. The
question for future work is whether these extensions provide a persuasive explanation for
prices of equity index options.

7 Final remarks

We have used prices of equity index options to infer probabilities of large negative re-
alizations of consumption growth that we can compare to the macroeconomic evidence
summarized by Barro and coauthors. The exercise faces two issues from the start: equity
index options refer to equity, not consumption, and they reflect risk-neutral rather than true
probabilities. We address these issues in a number of ways. All of them indicate that the
probabilities of extreme adverse events implied by option prices are smaller than we see in
international macroeconomic data. On the broader question of the role of disasters in asset
pricing, we find that a pricing kernel constructed from option prices includes substantial
contributions from high-order cumulants. In this sense, the departures from lognormality
suggested by the disaster literature remain quantitatively important in the option pricing
model. Furthermore, the contribution of odd high-order cumulants is suggestive of the
market pricing of return asymmetries noted in research on skewness preference.

This exercise had two useful byproducts. One is the reminder that matching the equity
premium may not be enough. There is growing evidence that other trading strategies can
generate average returns that are substantially higher, so that models designed to account
for the equity premium may not be able to account for higher returns on other assets. The
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other is the value of transform methods, particularly cumulant-generating functions. These
are not new to finance, but they are nevertheless extremely helpful. We find them not
only a source of intuition and compact notation, but a convenient approach to a number of
practical problems.
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Table 1
Properties of US consumption growth and asset returns

Variable Mean Std Dev Skewness Kurtosis

(a) Consumption growth and returns, annual, 1889-2009
Consumption growth 0.0198 0.0350 −0.34 1.11
Return on equity 0.0587 0.1795 −0.61 0.43
Excess return on equity 0.0407 0.1812 −0.72 0.91
(b) Consumption growth and returns, annual, 1986-2009
Consumption growth 0.0178 0.0150 −0.87 0.66
Return on equity 0.0641 0.1845 −1.24 1.56
Excess return on equity 0.0434 0.1808 −1.39 2.01

Notes. Entries are statistics computed from annual observations for the US economy. Mean
is the sample mean, Std Dev is the standard deviation, Skewness is the standard measure
of skewness, Kurtosis is the standard measure of excess kurtosis. Consumption growth is
log(ct/ct−1) where c is real per capita consumption. Returns are logarithms of gross real
returns and the excess return is the difference between the log-returns on equity and the
one-year bond. The one-year bond is the Treasury security of maturity closest to one year.
Equity is the S&P 500. Consumption and return data are from Shiller (2009).
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Table 2
Components of entropy for model economies

High-Order Cumulants

Model Entropy Variance/2 Odd Even

Normal consumption growth
α = 2 0.0025 0.0025 0 0
α = 5 0.0153 0.0153 0 0
α = 10 0.0613 0.0613 0 0
α = 8.92∗ 0.0487 0.0487 0 0
Poisson-normal consumption growth
α = 2 0.0033 0.0025 0.0007 0.0002
α = 5 0.0356 0.0153 0.0132 0.0071
α = 10 0.5837 0.0613 0.2786 0.2439
α = 10, θ = +0.3 (boom) 0.0265 0.0613 –0.2786 0.2439
α = 5.19∗ 0.0400 0.0165 0.0151 0.0084
Models fit to option prices
Merton equity returns 0.7747 0.4720 0.1127 0.1900
Implied consumption growth (univariate) 0.0478 0.0464 0.0013 0.0002
Implied consumption growth (bivariate) 0.1424 0.1368 0.0044 0.0013

Notes. Entries include entropy of the pricing kernel and its components for a variety of
models. Entropy is the sum of contributions from the variance and from odd and even
high-order cumulants (those of order j ≥ 3). An asterisk denotes a value of α that matches
the observed equity premium.
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Table 3
Parameter values and properties of model economies

Bivariate
Lognormal Poisson Merton Implied Implied

Cons Gr Cons Gr Returns Cons Gr Cons Gr
Parameter (1) (2) (3) (4) (5)

Preferences
α 8.92 5.19 — 8.70 14.94
True distribution
µ 0.0200 0.0230 0.0792 0.0303 0.0269
σ 0.0350 0.0100 0.1699 0.0253 0.0265
ω — 0.0100 1.5120 1.3987 1.3452
θ — −0.3000 −0.0259 −0.0074 −0.0051
δ — 0.1500 0.0407 0.0191 0.0191
Risk-neutral distribution
µ∗ 0.0091 0.0225 0.0584 0.0247 0.0233
ω∗ — 0.0642 1.5120 1.5120 1.5120
θ∗ — −0.4168 −0.0542 −0.0105 −0.0105
δ∗ — 0.1500 0.0981 0.0191 0.0191
Skewness, excess kurtosis, and tail probabilities
γ1 (true skewness) 0 −11.02 −0.04 −0.28 −0.19
γ2 (true kurtosis) 0 145.06 0.02 0.48 0.41
γ∗1 (risk-neutral skewness) 0 −4.51 −0.25 −0.38 −0.36
γ∗2 (risk-neutral kurtosis) 0 21.96 0.30 0.53 0.49
γ1 (log m skewness) 0 11.02 −0.12 0.28 0.18
γ2 (log m kurtosis) 0 145.06 2.21 0.48 0.41
p(Db) (tail prob ≤ −3 st dev) 0.0013 0.0090 0.0032 0.0081 0.0056
p(Db) (tail prob ≤ −5 st dev) 0.0000 0.0079 0.0000 0.0001 0.00005
Entropy
L(m) = L(p∗/p) 0.0487 0.0400 0.7747 0.0478 0.1424

Notes. Entries are parameters and properties of examples with different specifications of
jumps. The labels at the top of the columns describe the model used and the variable on
which it is based. Columns (1)-(2) and (4)-(5) are based on consumption growth. In each
one, log consumption growth has a mean of 0.0200 and a standard deviation of 0.0350.
Risk aversion α is chosen to match the mean equity premium (0.0400). Column (3) is the
Merton model parameterized to option prices and equity returns. Columns (4) and (5) take
this model, scale the risk-neutral parameters to fit consumption growth, and set the true
parameters by applying the relations implied by power utility. γ1 and γ2 are the traditional
measures of skewness and excess kurtosis, defined in equation (4). We report versions for
the true distribution of log consumption growth or the log return on equity, the risk-neutral
distribution, and the distribution of the pricing kernel. Tail probabilities refer to p(Db),
defined in equation (9), for −b = κ1 − nκ

1/2
2 , n = 3 or 5.
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Figure 1
Poisson jumps: cumulants of log consumption growth and contributions
to entropy
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Notes. The panels graph terms in the power series expansion of entropy, equation (13), for
the consumption-based asset pricing model with a Poisson-normal jump component. The
top panel plots the jth cumulant of log consumption growth, κj(log g), against its order
j. The next two panels plot the contribution to entropy of the jth term, κj(log m)/j! =
(−α)jκj(log g)/j!, against j for risk aversion α equal to 2 and 10, respectively. The model
and parameter values are reported in Section 3 and in column (2) of Table 3.
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Figure 2
Poisson jumps: entropy of the pricing kernel
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Notes. The lines represent versions of the consumption-based asset pricing model with Pois-
son jumps outlined in Section 3. The middle line is the lognormal model: log consumption
growth is normal and there is no jump component. The top line shows how a jump compo-
nent (infrequent large negative realizations) increase entropy. The bottom line shows how
this changes when the jump is positive (infrequent large positive realizations).
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Figure 3
Option model: implied volatility smiles for 3-month options
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Notes. The lines represent implied “volatility smiles” for the Merton model with estimated
parameters and some alternatives. Moneyness is measured as the proportional difference of
the strike from the price, (strike − price)/price. For the solid line the parameters are those
reported in column (4) of Table 3. For the second line, we have divided the jump mean θ∗

by two. For the bottom line, we have divided the jump variance δ∗2 by two.
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Figure 4
Option model: cumulants of equity returns and contributions to entropy
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Notes. The figure summarizes properties of the estimated Merton model using parameters
reported in column (4) of Table 3. The top panel shows cumulants of the log excess return
on equity based on its (estimated) true distribution. The second panel shows contributions
to entropy of the cumulants of log m. The contribution of order j is κj(log m)/j! where
κj(log m) is the jth cumulant of log m. The third panel is the same with θ∗ and δ∗2 each
divided by two.
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Figure 5
Option models: implied volatility smiles based on option and consumption
data
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Notes. The lines represent implied volatility “smiles” for the Merton model with three
different sets of parameters. The top line is the one we saw in Figure 3 and uses parameters
estimated from option prices. The bottom line uses parameters estimated from consumption
data, extrapolated to equity returns using equation (30). The middle line is based on
a bivariate model of consumption growth and equity returns with correlation chosen to
match US data.
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Figure 6
Equity returns and consumption growth in US data
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Notes. The dots represent annual observations of the log excess return on equity and the log
of per capita consumption growth over the period 1889-2009. The data come from Shiller
(2009), updated as needed.
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A Appendix

A.1 The cumulant-generating function of Poisson-normal mixtures

We’ll look at a Poisson-normal mixture shortly, but it is useful to start with a Poisson
random variable that equals j with probability e−ωωj/j! for j = 0, 1, 2, . . .. Recall that the
power series representation of the exponential function is

eω =
∞∑

j=0

ωj/j!.

From this we see that the probabilities sum to one. The moment-generating function is

h(s) =
∞∑

j=0

e−ωωj/j!esj =
∞∑

j=0

e−ω(ωes)j/j! = exp[ω(es − 1)].

The cumulant-generating function is therefore

k(s) = log h(s) = ω(es − 1).

Cumulants follow by differentiating.

The Poisson-normal mixture has a similar structure. Conditional on j, z is normal with
mean jθ and variance jδ2. The conditional moment-generating function is exp[(sθ +
s2δ2/2)j]. The mgf for the mixture is the probability-weighted average,

h(s) =
∞∑

j=0

e−ωωj/j! exp[(sθ + s2δ2/2)j] = exp
(
ω[esθ+(sδ)2/2 − 1]

)
,

which implies the cgf

k(s) = ω
[
esθ+(sδ)2/2 − 1

]
.

The same approach can be used for jumps with other distributions. If we set θ = 1 and
δ = 0, we get the cgf of the original Poisson.

We find cumulants by taking derivatives of k. The first five are

κ1 = ωθ

κ2 = ω(θ2 + δ2)
κ3 = ωθ(θ2 + 3δ2)
κ4 = ω(θ4 + 6θ2δ2 + 3δ4)
κ5 = ωθ(θ4 + 10θ2δ2 + 15δ4).

Here you can see that the sign of the odd moments is governed by the sign of θ.
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A.2 The entropy bound

The entropy bound (12) is derived by Alvarez and Jermann (2005) as a byproduct of their
Proposition 2. Bansal and Lehmann (1997, Section 2.3) have a similar result that treats
variation in the short rate differently [the term L(q1) in (36) below]. We derive the bound
like this:

• Bound on mean log return. Since log is a concave function, Jensen’s inequality and the
unconditional version of the pricing relation (10) imply that for any positive return r,

E log m + E log r ≤ log(1) = 0,

with equality if and only if mr = 1. Therefore no asset has higher expected (log)
return than the inverse of the pricing kernel:

E log r ≤ −E log m. (34)

The asset with this return is sometimes called the “growth optimal portfolio.” We
call it the “high-return asset.”

• Short rate. A one-period (risk-free) bond has price q1
t = Etmt+1, so its return is

r1
t+1 = 1/Etmt+1.

• Entropy of the one-period bond price. With the bound in mind, our next step is to
express E log r1 in terms of unconditional moments. The entropy of the one-period
bond price does the trick:

L(q1) = log Eq1 − E log q1 = log Em + E log r1. (35)

• Entropy bound. (34) and (35) imply

L(m) ≥ E
(
log rj − log r1

)
+ L(q1). (36)

Inequality (12) follows from L(q1) ≥ 0 (entropy is nonnegative). In practice, L(q1) is
small; in the iid case, it is zero.

We find the loglinear perspective of the entropy bound convenient, but the familiar Hansen-
Jagannathan bound also depends (implicitly) on high-order cumulants of log m. The bound
is

Var(m)1/2/Em ≥ E
(
rj − r1

)
/Var(rj − r1)1/2 = SR,

where SR is the Sharpe ratio. If k(s) is the cumulant generating function for log m, the
bound depends on

Em = E
(
elog m

)
= ek(1)

Var(m) = E(m2)− (Em)2 = ek(2) − e2k(1),
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Since k(1) and k(2) involve high-order cumulants of log m, the bound does, too. The squared
Sharpe ratio is bounded below by

Var(m)/E(m)2 = ek(2)−2k(1) − 1.

If the cumulants are small (true for a small enough time interval), this is approximately
k(2)− 2k(1). Expressed in similar form, entropy is k(1)− k′(0).

A.3 Risk neutral distributions with power utility

A similar approach reveals the connection between true and risk-neutral cumulants of log
consumption growth log g = w (w because it is easier to type). The cumulant generating
function for the true distribution is

k(s) = log E (esw) .

The pricing kernel is m(w) = βe−αw, which implies q1 = βk(−α). Risk-neutral probabilities
are p∗(w) = p(w)m(w)/q1 = p(w)e−αw/k(−α) . The cumulant generating function is
therefore

k∗(s) = k(s− α)− k(−α). (37)

This is a standard math result. We find its cumulants by differentiating:

κ∗n =
∞∑

j=0

κn+j(−α)j/j!.

Thus risk-neutral cumulants depend on higher-order true cumulants. Positive excess kur-
tosis, for example, reduces risk-neutral skewness.

A.4 Risk-neutral option pricing

We review option pricing in the Merton model, starting with its primary ingredient, the
Black-Scholes-Merton formula. For convenience, we define options on returns rather than
prices and drop the time subscripts. All of the parameters in what follows refer to the
risk-neutral distribution.

Let the risk-neutral distribution of the return on an arbitrary asset be lognormal: log r ∼
N (log r1 + κ1, κ2). The pricing relation (15) implies the restriction κ1 + κ2/2 = 0, which
we will hold in reserve. The BSM formula is the solution to

qp = q1E∗(b− r)+.

The implicit integral on the right includes the terms

q1b Prob(r ≤ b) = q1bN(d)

−q1E∗(r|r ≤ b) = −q1

∫ log b

−∞
elog r(2πκ2)−1/2 exp[−(log r − log r1 − κ1)2/2κ2] d log r

= − exp(κ1 + κ2/2)N(d− κ
1/2
2 ),
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where

d = (log b− log r1 − κ1)/κ
1/2
2

and N is the standard normal cdf. We use this to define the function

qp(b) = f(b;κ1, κ2) = q1bN(d)− exp(κ1 + κ2/2)N(d− κ
1/2
2 ). (38)

In the conventional BSM formula, we set κ1 + κ2/2 = 0 and simplify, but this version is
more useful in what follows.

The Merton model with normal jumps is a Poisson-weighted average of BSM option prices.
The model is described in Section 5.1 and has (risk-neutral) parameters (µ, σ, ω, θ, δ). The
first two pertain to the normal component, the remainder to the Poisson-normal mixture.
Option prices in this setting are

qp(b) =
∞∑

j=0

(e−ωωj/j!)f(b; κ1j , κ2j)

with κ1j = µ + jθ and κ2j = σ2 + jδ2.

A.5 Two scaling issues

Two scaling issues come up in the paper. The first is the relation between equity returns
and consumption growth: for most of the paper, log equity returns are a linear function
of log consumption growth. The second is time: option prices for intervals other than one
year depend on the distribution of returns over other time intervals.

Consider the relation between the distributions of x and λx for some scale factor λ. Con-
sumption growth and equity returns have this structure if we ignore intercepts [equation
(30)]. The general result follows from this property of cgfs: k(s; λx) = k(λs;x). If x (think
log consumption growth) has the Poisson-normal structure of Section 2.2, its cgf is

k(s;x) = µs + (σs)2/2 + ω[eθs+(δs)2/2 − 1]. (39)

The cgf for λx (think excess returns) is therefore

k(s; λx) = µλs + (σλs)2/2 + ω[eθλs+(δλs)2/2 − 1].

This has the same form with (µ, σ, ω, θ, δ) replaced by (λµ, λσ, ω, λθ, λδ). A similar result
applies to the relation between the true distribution of x = log g and the risk-neutral
distribution of λx with power utility. Given (37), their cgfs are connected by

k∗(s;λx) = k∗(λs; x) = k(λs− α; x)− k(−α;x).

In words, we compute the cgf of the risk-neutral distribution of λx by, first, computing the
cgf of the risk-neutral distribution of x and, second, scaling by λ. It is important the steps
be done in that order.
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The second issue concerns the time interval. In an iid setting, suppose the cgf (39) applies
to the distribution over a unit time interval. The cgf for an arbitrary time interval τ > 0,
if it exists, is the cgf for a time interval of one multiplied by τ . In the Poisson-normal case,
we have

k(s; τ) = τµs + τ(σs)2/2 + τω[eθs+(δs)2/2 − 1].

The cgf has the same form as (39) with (µ, σ2, ω, θ, δ2) replaced by (τµ, τσ2, τω, θ, δ2).

A.6 Cumulant-generating functions based on true and risk-neutral prob-
abilities

We derive the salient features of models in which the true and risk-neutral distributions are
Poisson mixtures of normals with different parameters.

We start with a normal example that serves as a component of the Poisson mixture. Let the
log return follow (27), where z = 0 and w has true distribution of N (µ, σ2) and risk-neutral
distribution N (µ∗, σ∗2). The density functions are

p(w) = (2πσ2)−1/2 exp[−(w − µ)2/2σ2]
p∗(w) = (2πσ∗2)−1/2 exp[−(w − µ∗)2/2σ∗2].

This differs from the examples in Section 4 in allowing the variance to differ between the
two distributions. In continuous time, σ∗ = σ is needed to assure absolute continuity of
the true and risk-neutral probability measures with respect to each other. In discrete time,
there is no such requirement; see, for example, Buhlmann, Delbaen, Elbrechts, and Shiryaev
(1996). The risk-neutral pricing relation (15) implies µ∗ + σ∗2/2 = 0.

We can derive all of the relevant properties from these inputs. The log probability ratio is

log[p∗(w)/p(w)] = (1/2) log ϕ + [(w − µ)2 − ϕ(w − µ∗)2]/2σ2,

where ϕ = σ2/σ∗2 > 0. The moment-generating function of the log probability ratio is

h(s; log p∗/p) = E
(
es log p∗/p

)

=
∫ ∞

−∞
p∗(w)sp(w)1−sdw

= (2πσ2)−1/2ϕs/2

∫ ∞

−∞
exp{−[(1− s)(w − µ)2 + sϕ2(w − µ∗)2]/2σ2}dw

= ϕs/2[1− s(1− ϕ)]−1/2 exp
(

s(s− 1)(µ∗ − µ)2

2σ∗2[1− s(1− ϕ)]

)

for 1 − s(1 − ϕ) > 0 (automatically satisfied if s = 0 or s = 1). The last line follows from
completing the square. Thus the cumulant-generating function is

k(s; log p∗/p) = (s/2) log ϕ− (1/2) log[1− s(1− ϕ)] +
(

s(s− 1)(µ∗ − µ)2

2σ∗2[1− s(1− ϕ)]

)
.
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Entropy is minus the first derivative evaluated at zero:

− κ1(log p∗/p) = (1/2)[log ϕ + 1− ϕ] + (µ− µ∗)2/2σ∗2. (40)

If ϕ = 1 (σ∗ = σ), we have

k(s; log p∗/p) = s(s− 1)(µ∗ − µ)2/2σ2,

and the only nonzero cumulants are the first two. Otherwise, high-order cumulants are
generally nonzero.

Now let us ignore the normal component and focus on z. Both the true and risk-neutral
distributions have Poisson arrivals and normal jumps, but the parameters differ. Conditional
on a number of jumps j, the density functions are

p(z|j) = e−ωωj/j! · (2πjδ2)−1/2 exp[−(zj − jθ)2/(2jδ2)]

p∗(z|j) = e−ω∗ω∗j/j! · (2πjδ∗2)−1/2 exp[−(zj − jθ∗)2/(2jδ∗2)].

The moment generating function for log p∗/p is

h(s; log p∗/p) =
∞∑

j=0

e−ωωj/j!
[
es(ω−ω∗)+js log(ω∗/ω)h(s; z)j

]
.

Using (40) we have

h(s; z) = ϕs/2[1− s(1− ϕ)]−1/2 exp
(

s(s− 1)(θ∗ − θ)2

2δ∗2[1− s(1− ϕ)]

)
,

where ϕ = δ2/δ∗2. Therefore the cumulant-generating function is

k(s; log p∗/p) = s(ω − ω∗)

+ ω

[
(ω∗/ω)sϕs/2[1− s(1− ϕ)]−1/2 exp

(
s(s− 1)(θ∗ − θ)2

2δ∗2[1− s(1− ϕ)]

)
− 1

]
.

Entropy is minus the first derivative evaluated at zero:

− κ1(log p∗/p) (41)
= (ω∗ − ω) + ω[log(ω/ω∗)− 1/2 · log ϕ + 1/2 · (ϕ− 1)] + ω(θ − θ∗)2/2δ∗2.

Because the normal and Poisson mixture components are independent, their cumulant-
generating functions are additive. Therefore, the entropy for the full model is the sum of
the entropy of the normal case [equation (40) with ϕ = 1] and the entropy of the Poisson
mixture of normals [equation (41)].

A.7 Equity premium

Most of our analysis is loglinear, which allows us to express asset prices and returns as
functions of cumulant-generating functions of (say) the log of consumption growth. The
notation is wonderfully compact. The idea and many of the results follow Martin (2009).
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A.7.1 Perfectly correlated consumption and dividend growth

Let us start with the short rate. A one-period risk-free bond sells at price q1
t = Etmt+1 and

has return r1
t+1 = 1/q1

t = 1/Etmt+1. In the iid case, the short rate is constant and equals

log r1 = − log E(m)

= − log β − log E
(
e−α log g

)
= − log β − k(−α; log g).

The second equality is based on the definition of the pricing kernel, equation (21). The last
one follows from the definition of the cumulant-generating function k, equation (3).

We now turn to equity, defined as a claim to a dividend process dt = cλ
t . If the price-dividend

ratio on this claim is qe, the return is

re
t+1 = gλ

t+1(1 + qe
t+1)/qe

t .

In the iid case, qe is again constant. The pricing relation (10) and our power utility pricing
kernel (21) then imply

qe/(1 + qe) = E
(
βgλ−α

)
= βE

(
e(λ−α) log g

)
.

Thus we have, in compact notation,

log [qe/(1 + qe)] = log β + k(λ− α; log g)
log re

t+1 = λ log gt+1 − log β − k(λ− α; log g)
log r1

t+1 = − log β − k(−α; log g)
log re

t+1 − log r1
t+1 = λ log gt+1 + k(−α; log g)− k(λ− α; log g).

The equity premium is therefore

E
(
log re

t+1 − log r1
t+1

)
= λκ1(log g) + k(−α; log g)− k(λ− α; log g)

= L(e−α log g)− L(e(λ−α) log g)

=
∞∑

j=2

κj(log g)[(−α)j − (λ− α)j ]/j!.

The second line follows because the first-order cumulants cancel. The third is the usual
cumulant expansion of entropy. They tell us that the equity premium is the entropy of
the pricing kernel minus a penalty (entropy must be positive). It hits its maximum when
λ = α, in which case equity is the high return asset.

A.7.2 A bivariate model of consumption and dividend growth

As before, one-period risk-free bond sells at price q1
t = Etmt+1 and has return r1

t+1 = 1/q1
t =

1/Etmt+1. In the iid case, the short rate is constant and equals

log r1 = − log E(m)

= − log β − log E
(
e−α log g1

)
= − log β − k((−α, 0)′; log g).
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The last equality follows from using a cumulant-generating function of a bivariate variable
log g = (log g1, log g2)′ given by

k(s) = log E(es′ log g) = s′µg + s′Σs/2 + ω
[
es′θ+s′∆s/2 − 1

]
.

We now turn to equity, defined as a claim to a dividend process dt If the price-dividend
ratio on this claim is qe, the return is

re
t+1 = elog g2t+1(1 + qe

t+1)/qe
t .

In the iid case, qe is constant. The pricing relation (10) and our power utility pricing kernel
(21) then imply

qe/(1 + qe) = E
(
βe−α log g1+log g2

)
.

Thus we have

log [qe/(1 + qe)] = log β + k((−α, 1)′; log g)
log re

t+1 = log g2t+1 − log β − k((−α, 1)′; log g)
log r1

t+1 = − log β − k((−α, 0)′; log g)
log re

t+1 − log r1
t+1 = log g2t+1 + k((−α, 0)′; log g)− k((−α, 1)′; log g)

and the equity premium is

E
(
log re

t+1 − log r1
t+1

)
= κ1(log g2) + k((−α, 0)′; log g)− k((−α, 1)′; log g).

A.8 Risk-neutral distribution of returns in a bivariate model

Consider a bivariate model in which equity returns are (potentially) less closely tied to
consumption growth. Let x′ = (x1, x2) = (log g, log re − log r1) have the two-component
structure used throughout the paper:

xt+1 = wt+1 + zt+1.

The first component is bivariate normal: wt ∼ N (µ,Σ) where µ and Σ have elements µi

and σij , respectively. The second component is a Poisson mixture of bivariate normals. As
in Section 2.2, jumps occur with Poisson intensity ω so that the probability of j jumps is
e−ωωj/j!. Each jump adds a draw from the bivariate normal distribution N (θ, ∆).

Option pricing (indeed equity pricing) requires us to deal with the bivariate distribution
of equity returns and the pricing kernel. We derive the risk-neutral distribution of returns
from its cumulant-generating function. The (joint) cgf is

k(s) = log E(es′x) = s′µ + s′Σs/2 + ω
[
es′θ+s′∆s/2 − 1

]
.
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The logic here is virtually identical to the univariate case outlined in Appendix A.1. Deriva-
tives of this expression lead to these formulas:

Var(xi) = σii + ω(θ2
i + δii)

Cov(x1, x2) = σ12 + ω(θ1θ2 + δ12).

The correlation is

Corr(x1, x2) =
σ12 + ω(θ1θ2 + δ12)

[σ11 + ω(θ2
1 + δ11)]1/2[σ22 + ω(θ2

2 + δ22)]1/2

=
ρw(σ11σ22)1/2 + ω[θ1θ2 + ρz(δ11δ22)1/2]

[σ11 + ω(θ2
1 + δ11)]1/2[σ22 + ω(θ2

2 + δ22)]1/2

with ρw = σ12/(σ11σ22)1/2 and ρz = δ12/(δ11δ22)1/2.

The remaining step is to find the risk-neutral distribution for returns. With power utility,
the cgf corresponding to the risk-neutral distribution is

k∗(s1, s2) = k(s1 − α, s2)− k(−α, 0).

The logic is analogous to Appendix A.3. The cgfs corresponding to marginal distributions
follow from setting the other elements of s equal to zero. (This follows from the definitions
of the marginal distribution and cgf.) Thus the cgf for x2 is k(0, s2). The risk-neutral cgf
for the log equity excess return is therefore

k∗(0, s2) = s2(µ2 − ασ12) + s2
2σ22/2 + ωe−αθ1+α2δ11/2

[
es2(θ2−αδ12)+s2

2δ22/2 − 1
]

= s2µ
∗
2 + s2

2σ22/2 + ω∗
[
es2θ∗2+s2

2δ22/2 − 1
]

with the implicit definitions

µ∗2 = µ2 − ασ12, θ∗2 = θ2 − αδ12, δ∗22 = δ22

ω∗ = ωe−αθ1+α2δ11/2.

This has the same form as the Merton model with suitably defined parameters. Options
can therefore be priced using the methods of Appendix A.4. Similarly, k∗(s1, 0) implies the
risk-neutral distribution of consumption growth:

µ∗1 = µ1 − ασ11, θ∗1 = θ1 − αδ11, δ∗11 = δ11.
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