The Idea: Social Targeting for Online Advertising
Current ad spending seems disproportionate...

Share of Time in a Typical Week that US Adults Spend with Select Media* vs. Share of US Advertising Spending by Media, 2007

<table>
<thead>
<tr>
<th>Media Type</th>
<th>% of Time</th>
<th>% of Spending</th>
</tr>
</thead>
<tbody>
<tr>
<td>TV</td>
<td>37%</td>
<td>32%</td>
</tr>
<tr>
<td>Internet (personal and work)</td>
<td>29%</td>
<td></td>
</tr>
<tr>
<td>Radio</td>
<td>6%</td>
<td>19%</td>
</tr>
<tr>
<td>Newspapers</td>
<td>8%</td>
<td>20%</td>
</tr>
<tr>
<td>Magazines</td>
<td>7%</td>
<td>6%</td>
</tr>
</tbody>
</table>

Note: *consumer media time excludes time spent using a mobile phone, watching DVDs or playing video games

Online Advertising Spending Breakdown (2009)

% of 2009 Full Year Revenues

- Total – $22.7 Billion
- Search: 47%
- Display/Banner Ads: 22%
- Sponsorship: 2%
- Classifieds: 10%
- E-mail: 1%
- Lead Generation: 6%
- Rich Media: 7%
- Digital Video: 4%
- Other: 10%

Source: IAB Internet Advertising Revenue Report
Conducted by PricewaterhouseCoopers and
Sponsored by the Interactive Advertising Bureau (IAB)
April 2010
Two different goals for display advertising

- Drive conversions (short term)
- Brand advertising (longer term)

Online Brand Advertising

- goal: to deliver brand message to selected audience
- contrast with “direct marketing” online advertising
 - for brand advertising, goal is not necessarily clicks or online conversions
- key: selecting audience
 - example strategy (traditional): find audience based on published content (tv shows, magazines) or location (billboards, etc.)
- traditional brand advertising strategy applies on line:
 - premium display slots or remnants (e.g., on espn.com, etc.)
 - contextual targeting (e.g., Google AdSense)
- alternative strategy: identify members of the target audience and target them anywhere on the web (e.g., bid for them on ad exchanges – the non-premium display market)
• Non-premium display ad market predicted to grow significantly faster than the rest of online advertising (e.g., sponsored search, premium display, contextual)
 – (Coolbrith 2007)
 – largely due to the stabilization of the technical ad-serving infrastructure based on the consolidation into a small number of ad exchanges (e.g., DoubleClick, Right Media)

• There is evidence that display brand advertising increases purchases (online and offline), and improves search advertising as well (Manchanda et al. 2006, Comscore 2008, Atlas Institute 2007, Fayyad personal communication, Klaassen 2009, Lewis & Reiley 2009)
 – other (older) work shows display ads lead to increased ad awareness, brand awareness, purchase intention, and site visits (see cites in Manchanda)

Two different goals for display advertising

• **Drive conversions** (short term)
• **Brand** advertising (longer term)

• Both are important
 – (in the off-line world most ad spending is on brand ads)
 – Our KDD-2009 paper focused on online brand advertising
 – Today I’ll meld the two together

• What I’m **not** interested in is clicks on display ads
 – we’ll return to that later
Main points for this morning

1. Machine learning can be used as the basis for effective, privacy friendly targeting for online advertising

2. Important to consider carefully the target variable used for training

3. Question: should machine learning researchers be spending more time considering the effectiveness of advertising?

Prior work:
Social network targeting

• Defined Social Network Targeting
 --> cross between viral marketing and traditional
 • target “network neighbors” of existing customers
 • based on direct communication between consumers
 • this could expand “virally” through the network without any word-of-mouth advocacy, or could take advantage of it.

• Example application:
 – Product: new communications service
 – Firm with long experience with targeted marketing
 – Sophisticated segmentation models based on data, experience, and intuition
 • e.g., demographic, geographic, loyalty data
 • e.g., intuition regarding the types of customers known or thought to have affinity for this type of service

• Results: tremendous lift in response rate (2-5x)

Sales rates are substantially higher for network neighbors

Relative Sales Rates for Network Neighbors (NN) and others

1-21 are targeted marketing segments;
22 comprises NNs not deemed good targets by traditional model

Is such “guilt-by-association” targeting justified theoretically?

Thanks to (McPherson, et al., 2001)

- **Birds of a feather, flock together**
 -- attributed to Robert Burton (1577-1640)

- **(People) love those who are like themselves**
 -- Aristotle, Rhetoric and Nichomachean Ethics

- **Similarity begets friendship**
 -- Plato, Phaedrus

- **Hanging out with a bad crowd will get you into trouble**
 -- Foster’s Mom
December 6, 2007

Apologetic, Facebook Changes Ad Program

By LOUISE STORY

Mark Zuckerberg, founder and chief executive of the social networking site Facebook, apologized to the site's users yesterday about the way it introduced a controversial new advertising feature last month.

Facebook also introduced a way for members to avoid the feature, known as Beacon, which tracks the actions of friends of members when they use other sites around the Internet.

Mr. Zuckerberg’s apology — in the form of a blog post on Facebook — followed weeks of criticism from members, groups and advertisers:

“I’m not proud of the way we’ve handled this situation, and I know we can do better,” Mr. Zuckerberg wrote.

Facebook has also been meeting with advertising agencies in recent days and discussing their concerns about Beacon, according to one executive who was invited.

Facebook originally presented Beacon to the advertising community as an opt-in program that its members could choose to use. It planned to sell ads alongside the messages sent to people’s friends about their purchases and actions on other sites. Some advertisers like Coca-Cola have expressed surprise that Beacon then required users to take action if they did not want the messages sent out.

“Privacy” online?

Where would we like firms to operate on the spectrum between the two unacceptable extremes:

“You can’t do anything with MY data!”

“We can do whatever we want with whatever data we can get our hands on.”

➔ Are there points between the extremes that give us acceptable tradeoffs between “privacy” and efficacy?

I’ll discuss an attractive one. ML provides many possibilities. Room for more research...
Seeming adoption influence between network neighbors can be largely explained by homophily from (Aral et al. PNAS 2009)

Social connections reveal deep similarity - profiles, interests, attitudes,…

privacy-friendly social targeting is different...
Doubly-anonymized bipartite content-affinity network
From doubly-anonymized bipartite content-affinity network to quasi-social network

Some brand proximity measures

- **POSCNT**
 - number of unique content pieces connecting browser to B*
- **MATL**
 - maximum number of content pieces through which paths connect browser to some particular action taker (i.e., seed node in B*)
- **minEUD**
 - minimum Euclidean distance of normalized content vector to a seed node
- **maxCos**
 - maximum cosine similarity to a seed node
- **ATODD**
 - “odds” of a neighbor being an action taker (i.e., seed node in B*).

Multivariate model

- For each browser \(b_i \), a feature vector \(\varphi_{bi} \) can be composed of the various brand proximity measures
- The different evidence can be combined via a ranking function \(f(\varphi_{bi}) \)
- We let \(f(.) \) be a multivariate logistic function, trained via standard MLE logistic regression (not regularized)
- Training is based on a held-out training set

Initial Study: Data

- a sample of about 10 million anonymized browsers
- all of their observed visits to social media content over 90 days (here: from several of the largest SN sites)
- bipartite graph:
 - \(10^7 \times 10^8 \) with \(-2.5 \times 10^8\) non-zero entries
- quasi-social network:
 - \(10^7 \) nodes with 20-40 neighbors each (on average)
- more than a dozen well-known brands:
 - on average \(~100K\) seed nodes per brand
Example result from initial study: Lift for top 10% of NNs

Based on study of about 10^7 browsers
10^8 social network pages
15 (mostly) well-known brands

Network neighbors often show similar demographics

For one campaign (Cell Phone) we asked Quantcast.com for
demographic profiles of the seed browsers and their close
network neighbors:

<table>
<thead>
<tr>
<th>Demographic</th>
<th>Seeds</th>
<th>Neighbors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gender</td>
<td>Female</td>
<td>Female</td>
</tr>
<tr>
<td>Ethnicity</td>
<td>Hispanic</td>
<td>Hispanic</td>
</tr>
<tr>
<td>Age</td>
<td>Young</td>
<td>Young</td>
</tr>
<tr>
<td>Income</td>
<td>Low</td>
<td>Low</td>
</tr>
<tr>
<td>Education</td>
<td>No College</td>
<td>No College</td>
</tr>
</tbody>
</table>
Social vs. Quasi-Social

The content-affinity network embeds a friendship network?

- estimate each browser’s home page based on techniques analogous to author id based on citations (Hill & Provost, 2003)
- estimate “friends” to be those who visit each other’s home page
- Ask: do brand proximity measures rank brand actors’ friends highly?

- F-AUC measures probability that a known-friend is ranked higher than a browser not-known-to-be-friend

<table>
<thead>
<tr>
<th>Brand</th>
<th>F-AUC on all B</th>
<th>F-AUC on N only</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hotel A</td>
<td>0.96</td>
<td>0.79</td>
</tr>
<tr>
<td>Modeling Agency</td>
<td>0.98</td>
<td>0.84</td>
</tr>
<tr>
<td>Credit Report</td>
<td>0.93</td>
<td>0.79</td>
</tr>
<tr>
<td>Parenting</td>
<td>0.94</td>
<td>0.80</td>
</tr>
<tr>
<td>Auto Insurance</td>
<td>0.97</td>
<td>0.81</td>
</tr>
<tr>
<td>...</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15 Brand Average</td>
<td>0.96</td>
<td>0.81</td>
</tr>
</tbody>
</table>

Example result from initial study: Lift for top 10% of NNs

Based on study of about 10^7 browsers
10^8 social network pages
15 (mostly) well-known brands
Fast forward 1.5 years… “In vivo” performance

Lift for strong network neighbors across sample of campaigns

Each Bar = Lift for one client during the month of December

Lift = freq. that targeted browsers visit site / freq. that baseline browsers visit site

- Median lift = 5x

Performance improves substantially with more data..

Month-by-month performance for one large client

- Shows lift for a particular size targeted population (%)
- Left-to-right decreases targeting threshold

© Provost 2009, 2010
Performance improves substantially with more data..

- The orange horizontal line intersects the curves at the % of the population we can reach to get a 2x lift.
- The maroon vertical line intersects the curves at the lift multiple for the best 10% of each population.

Potential stumbling block:
... what do those red circles represent again?

If there are not very many conversions, how can we build effective predictive models?
What not to do: use clicks as a surrogate for conversions

But there is a good, easy-to-obtain surrogate: site visits
Generally, site visits is better than conversions when there are relatively few conversions

![Diagram: Bubble Size represents #SV/#Purchasers](image)

How could that be?

Summary of main points

1. Machine learning can be the basis for effective privacy friendly targeting for online advertising – effective from several different angles, clearly improves with more data

2. Important to consider carefully the target used for training – conversions are good if you can get them; site visits can be a surprisingly good surrogate; clicks generally are not a good surrogate

3. Question: should machine learning researchers be spending more time considering the effectiveness of advertising? – initial evidence shows surprisingly strong influence of seeing an online advertising impression. This deserves more study.