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This is a design-science paper about methods for explaining data-driven classifications of text documents.

Document classification has widespread applications, such as with web pages for advertising, emails for

legal discovery, blog entries for sentiment analysis, and many more. Document data are characterized by

very high dimensionality, often with tens of thousands to millions of variables (words). Many applications

require human understanding of the reasons for classification decisions: by managers, client-facing employees,

and the technical team. Unfortunately, due to the high dimensionality, understanding the decisions made

by the document classifiers is very difficult. Previous approaches to gain insight into black-box models do

not deal well with high-dimensional data. Our main theoretical contribution is to define a new sort of

explanation, tailored to the business needs of document classification and able to cope with the associated

technical constraints. Specifically, an explanation is defined as a set of words (terms, more generally) such that

removing all words within this set from the document changes the predicted class from the class of interest.

We present an algorithm to find such explanations, as well as a framework to assess such an algorithm’s

performance. We demonstrate the value of the new approach with a case study from a real-world document

classification task: classifying web pages as containing adult content, with the goal of allowing advertisers

to choose not to have their ads appear there. We present a further empirical demonstration on news-story

topic classification using the 20 Newsgroups benchmark dataset. The results show the explanations to be

concise and document-specific, and to provide insight into the exact reasons for the classification decisions,

into the workings of the classification models, and into the business application itself. We also illustrate how

explaining documents’ classifications can help to improve data quality and model performance.
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1. Introduction

Document classification aims to classify textual documents automatically, based on the words,

phrases, and word combinations therein (hereafter, “words”). Business applications of document

classification have seen increasing interest, especially with the introduction of low-cost micro-

outsourcing systems for annotating training corpora. Prevalent applications include sentiment anal-

ysis (Pang and Lee 2008), spam identification (Attenberg et al. 2009), and web page classification

(Qi and Davison 2009), just to cite a few. Classification models are built from labeled data sets that

1
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encode the frequencies of the words in the documents. Importantly for this paper, and different

from many data mining applications, the document classification data representation has very high

dimensionality, with the number of words and phrases typically ranging from tens of thousands to

millions.

The main contribution of this design-science paper is to extend substantially our understanding

and capability with respect to an important aspect of the business application of document clas-

sification, an aspect that has received little attention in the research literature. Specifically, orga-

nizations often need explanations for the exact reasons why classification models make particular

decisions. The need comes from various perspectives, including those of managers, customer-facing

employees, and the technical team. Customer-facing employees need to deal with customer queries

regarding the decisions that are made; it often is insufficient to answer that the magic box said

so. Managers need to “sign off” on models being placed into production, and want to understand

how the model makes its decisions, rather than just to trust the technical team or data science

team.1 Managers also need to understand specific decisions when they are called into question by

customers or other managers.

Finally, the technical/data science team itself needs to understand the reasons for decisions in

order to be able to debug and improve the models. Wholistic views of a model and aggregate

statistics across a “test set” may not give sufficient guidance as to how the model can be improved.

The instance-level explanation methods introduced in this paper can have a substantial impact

in improving the process of building document classification models. Despite the stated goals of

early research on data mining and knowledge discovery (Fayyad et al. 1996), very little work has

addressed support for the process of building acceptable models, especially in business situations

where various parties must be satisfied with the results.

As a concrete illustration, consider an application currently receiving substantial interest in on-

line advertising: keeping ads off of objectionable web content (eMarketer April 27, 2010). Having

invested substantially in their brands, firms cite the potential to appear adjacent to nasty content

as the primary reason they do not spend more on on-line advertising. To help reduce the risk,

document classifiers are applied to web pages along various dimensions of objectionability, includ-

ing adult content, hate speech, violence, drugs, bomb-making, and many others. However, because

the on-line advertising ecosystem supports the economic interests of both advertisers and content

publishers, black-box models are insufficient. Managers cannot put models into production that

1 Different applications have different degrees of need for explanations to customers, with denying credit or blocking
advertisements being at one extreme. However, even in applications for which black-box systems are deployed rou-
tinely, such as fraud detection (Fawcett and Provost 1997), managers still need to have confidence in the operation
of the system and may need to understand the reasons for particular classifications when errors are made.
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might block advertising from substantial numbers of non-objectionable pages, without understand-

ing the risks and incorporating them into the product offering. Customer-facing employees need to

explain why particular pages were deemed objectionable by the models. And the technical team

needs to understand the exact reasons for the classifications made, so that they can address errors

and continuously improve the models.

Popular techniques to build document classification models include naive Bayes, linear and non-

linear support vector machines (SVMs), classification-tree based methods (often used in ensembles,

such as with boosting (Schapire and Singer 2000)), and many others (Hotho et al. 2005). Because of

the massive dimensionality, even for linear and tree-based models, it is very difficult to understand

exactly how a given model classifies documents. It is essentially impossible for a non-linear SVM

or an ensemble of trees.

Understanding particular classifications also provides important secondary benefits. Not only

do we get insight into the classification model, the explanations can provide a novel lens into the

complexity of the business domain. For example, in Explanation 1 (shown below; described fully

in Section 2.3), the word ‘welcome’ as an indication of adult content initially seems strange. Upon

reflection/investigation we understand that in some cases an adult website’s first page contains a

phrase similar to ‘Welcome to ... By continuing you confirm you are an adult and agree with our

policy’. The explanation brings this complexity to light. We also learn about the various different

sub-topics that comprise the class of interest. For example, we find (curious) foreign language adult

pages—whose infrequent presence can be lost in the massive dimensionality.

On the theory side, this paper provides a new problem definition and describes the specific char-

acteristics of the problem that differentiate it from those addressed in prior research. Specifically,

we focus on explaining why a document is classified as a specific class of interest (e.g., “objection-

able content” or “hate speech”). We also discuss what are the important dimensions for evaluating

such an explanation-producing system. Based on this framework, we then introduce the first (to

our knowledge) technique that directly addresses the explanation of the decisions made by docu-

ment classifiers. We demonstrate the method empirically, conducting a case study on data from a

real application to the business problem of safe advertising discussed above. We augment the case

study with an empirical follow-up study on benchmark data sets (news classification). These stud-

ies demonstrate that the methods can be fast and effective. The studies also flush out additional

important issues in explaining document classifications, such as the need for hyper-explanations

(defined below).
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Explanation 1: An example explanation why a web page is classified as having adult content.

If words (welcome fiction erotic enter bdsm adult) are removed then class changes from adult to
non-adult.

2. Explaining Documents’ Classifications

Prior research has examined two different sorts of “explanation” procedures for understanding

predictive models: global explanation and instance-level explanation. Global explanations provide

insight into the complete model, and its performance over the entire space of possible instances.

Instance-level explanations provide explanations for the model’s classification of an individual

instance—which is our focus here. We now will describe why existing methods are not ideal (or not

suitable) for explaining document classification, and then present a new approach that addresses

the drawbacks. First, let’s discuss the relevant aspects of document classification.

2.1. Key Aspects of Document Classification

As digital text document repositories proliferate and grow, the automated analysis of text docu-

ments becomes both an opportunity and a requirement—with our safe advertising example illus-

trating both. Text mining has been defined as the “application of algorithms and methods from

the fields machine learning and statistics to texts with the goal of finding useful patterns” (Hotho

et al. 2005). We specifically focus on textual document classification, where the value of a discrete

target variable is predicted based on the values of a number of independent variables representing

the words.2

There are several ways in which document classification differs from traditional data mining for

common applications such as credit scoring, medical diagnosis, fraud detection, churn prediction

and response modeling. Firstly, the data instances have less structure. Specifically, an instance is

simply a sequence of words and for most document classification applications the sequential struc-

ture is ignored, resulting in simply a bag (multiset) of words. In contrast, traditionally classifier

induction has been applied to structured data sets, where each instance for classification is rep-

resented as a feature vector: a row from a database table with the values for a fixed number of

variables. Technically, one can engineer a feature representation from the sequence or bag of words,

but this leads us to our second main difference. In a feature-vector representation of a document

data set, the number of variables is the number of words (phrases, n-grams, etc.), which is orders

of magnitude larger than in the “standard” classification problems presented above. Thirdly, the

2 Technically, text document classification applications generally use “terms” that include not only individual words,
but phrases, n-grams, etc. For this paper, we call all these “words.” Cases where the terms actually are not compre-
hensible to a human present a limitation of our approach.
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values of the variables in a text mining data set denote the presence, frequency of occurrence, or

some positively weighted frequency of occurrence of the corresponding word (see below).

These three aspects of document classification all are critical for the explanation of classifier

decisions. The first two combine to render existing explanation approaches relatively useless (as

we discuss in detail next). The third, however, presents the basis for the design of the solution we

propose. Specifically, with all such document classification representations, removing words always

corresponds to reducing the value of the corresponding variable or setting it to zero.

A few technical details of document classification are important to understand the techniques

we introduce. As preprocessing, all non-textual symbols, such as punctuations, spaces or tabs, are

removed from each document. The set of the different words present in any of the documents,

constitutes the dictionary. For a set of n documents and a vocabulary of m words, a data set

of n×m is created with the value on row i and column j denoting the frequency of word j in

document i. As such, each document is described by a numerical row vector. As most of the words

available in the vocabulary will not be present in any given document, most values will be zero,

and a sparse representation is used. Often a weighting scheme is applied to the frequencies, where

the weights reflect the importance of the word for the specific application (Hotho et al. 2005). A

commonly used data-driven weighting scheme is tfidf : xij = tfij × idfj where the weight of a word is

the “inverse document frequency,” which describes how uncommon the word is: idf(wj) = log(n/nj)

with nj the number of documents that contain word wj.

Classification models are built using a training set of labeled documents, where “labeled” means

that for the training set we know the value of the “target” variable (the dependent variable being

predicted/estimated). The resultant classification model, or classifier, maps any document to one of

the predefined classes, and more specifically generally maps it to a score representing the likelihood

of belonging to the class, and this score is compared to a threshold for classification. Based on an

independent test set, the performance of the model can be assessed by comparing the true label

with the predicted label.

2.2. Global explanations

The most common approach to understanding a predictive model is to examine the coefficients

of a linear model. Unfortunately such an approach is impracticable for a model with 104 to 106

variables. For such applications, the most common approach for a linear model is to list the

variables (words in our case) with the highest weights. To understand more complex models such

as neural networks (Bishop 1996) and non-linear support-vector machines (SVMs) (Vapnik 1995),

the principle approach is rule extraction: rules or trees are extracted that mimic the black box

as closely as possible (Craven and Shavlik 1996, Martens et al. 2009). The motivation for using
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rule extraction is to combine the desirable predictive behavior of non-linear techniques with the

comprehensibility of decision trees and rules. Previous benchmarking studies have revealed that

when it comes to predictive accuracy, non-linear methods often outperform traditional statistical

methods such as multiple regression, logistic regression, naive Bayesian and linear discriminant

analysis (see e.g. Baesens et al. (2003), Lessmann et al. (2008)). For some applications however,

e.g., medical diagnosis and credit scoring, a clear explanation of how the decision is reached by

models obtained by these techniques is a crucial business requirement and sometimes a regulatory

requirement.

The baseline rule extraction approach is to replace the given class labels of all data instances

with those provided (predicted) by the black box model. By applying a rule or tree induction

technique on this new data set, the resulting model will be a comprehensible tree or rule set that

explains the functioning of the black box model. Generally the complexity of the tree or rule set

increases with its fidelity—the proportion of instances for which the extracted rules make the same

prediction as the black box model.

These rule extraction approaches are not suitable for our present problem for several reasons. Not

all classifications are explained by these rule extraction approaches (as we will demonstrate for the

most common approach). Additionally, for some instances that seem to be explained by the rules,

more refined explanations exist. In addition, often one is only interested in the explanation of the

classification of a single data instance—for example, because it has been brought to a manager’s

attention because it has been misclassified or simply because additional information is required for

this case.

In addition, global explanations do not provide much insight for document classification anyway,

because of the massive dimensionality. For a classification tree to remain readable it can not include

thousands of variables (or nodes). Similarly, listing all these thousands of words with their corre-

sponding weights for a linear model will not provide much insight into individual decisions. Clearly

an explanation approach focusing on individual classifications would be preferred. Considering our

running example of web page classification for safe advertising, what we want to know is ‘Why did

the model classify this web page as containing objectionable content?’

2.3. Instance-level explanations

Over the past few years, instance explanation methods have been introduced that explain the

predictions for individual instances3 (Robnik-Šikonja and Kononenko 2008, Štrumbelj et al. 2009,

Štrumbelj and Kononenko 2010, Baehrens et al. 2010). Generally, these methods provide a real-

valued score to each of the variables that indicates to what extent it contributes to the data

3 The technical details of the prior approaches are described in the Appendix.
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instance’s classification. This definition of an explanation as a vector with a real-valued contribution

for each of the variables makes sense for many classification problems, which often have relatively

few variables (e.g. the median number of variables for the popular UCI benchmark datasets is 18.5

(Hettich and Bay 1996)). For document classification, however, due to the high-dimensionality of

the data, this sort of explanation is not ideal—and possibly not useful at all. Considering our

safe-advertising data set, an explanation for a web page’s classification as a vector with thou-

sands of non-zero values can hardly be considered comprehensible. Although the words with the

highest contributions will have the biggest impact on the classification, we still don’t know which

(combination of) words actually led to any given classification.

Aside from the unsuitable format of these previous explanations, previous instance-based expla-

nation approaches are unable to handle high dimensional data computationally. The sample-based

approximation method of Štrumbelj and Kononenko (2010) is reported to be able to handle up to

about 200 variables—even there requiring hours of computation time. The authors acknowledge

that for such data sets other approaches should be introduced:

Arguably, providing a comprehensible explanation involving a hundred or more features is a

problem in its own right and even inherently transparent models become less comprehensible

with such a large number of features (Štrumbelj and Kononenko 2010).

Because of this inability to deal with the high-dimensionality of text mining data sets, as well

as the explanation format as a real-valued vector, these methods are not applicable for explaining

documents’ classifications.

In focusing on document classification, we take advantage of three main observations to define

a slightly different problem from that addressed by prior work, that will address the motivating

business needs and that we will be able to solve efficiently. The first observation is that in many

document classification problems there really are two quite different explanation problems. We

often are interested specifically in one of them: why documents were classified as a particular focal

class (a “class of interest”). Considering our web page classification setting, we will focus primarily

on explaining why a page has received (rightly or wrongly) a “positive” classification of containing

objectionable content. The asymmetry is due to the negative class being a default class: if there

is no evidence of the class of interest (or of any of the classes of interest), then the document

is classified as the default class. In this paper we will not treat in detail the other explanation

problem. The question of why a particular page has not received a positive classification can be

important as well, but reflection tells us that it is indeed a very different problem. Often the answer

is “the page did not exhibit any of the countless possible combinations of evidence that would have

led the model to deem it objectionable.” The problem here generally is “how do I fix the model

given that I believe it has made an error on this document.” This is a fundamentally different
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problem and thereby should require a very different solution—for example, an interactive solution

where users try to explain to the system why the page should be a positive, for example using dual

supervision (Sindhwani and Melville 2008), or a relevance feedback/active learning systems where

chosen cases are labeled and then the system is retrained. These are important problems, but are

beyond the scope of this paper.

The second important observation is that in contrast to the individual variables in many pre-

dictive modeling tasks, individual words can be quite comprehensible. Thus for us an explanation

will be a set of words present in the document such that removing all occurrences of these words

results in a different classification (defined precisely below). The innate comprehensibility of the

words often will immediately give deep intuitive understanding of the explanation. As we will see,

when it does not it can indicate problems with the model. Under this definition, we see that we

may be interested in the minimal explanation or the set of minimal explanations for a document.

We will return to this below.

The third observation is that in document classification, removing all occurrences of a word

always sets the corresponding variable’s value to zero. This will allow us to formulate an optimiza-

tion problem for which we can find solutions fast.

2.4. Explaining the Classification of Documents

As discussed above, the question we address is ‘Why is this document classified as the non-default

(here adult content) class?’ To answer this question we provide an explanation as a set of words

present in the document such that removing these words causes a change in the class. Only when

all the words in the explanation are removed does the class change, and as such the set is minimal.

To define an explanation formally (see Definition 1) we need to recall that a document D ∈D is a

bag (multiset) of words. Let WD be the corresponding set of words. We presume that classifications

are based on a classifier CM , which is a function from documents to classes. Later, our heuristic

algorithm will presume that CM incorporates at least one scoring function fCM
; classifications

will be based on scores exceeding thresholds (in the binary case), or choosing the class with the

highest score (in the multiclass case). The majority of classification algorithms operate in this way,

including all that we discuss in this paper.

Definition 1. Given a document D consisting of mD unique words WD from the vocabulary

of m words: WD = {wi, i= 1,2, . . . ,mD}, which is classified by classifier CM :D→ {1,2, . . . , k} as

class c. We define an explanation for document D’s classification as a set E of words such that

removing all words in E from the document leads CM to produce a different classification. Further,

an explanation E is minimal in the sense that removing any subset of E does not yield a change

in class. Specifically:
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E is an explanation for CM(D) ⇐⇒

1. E ⊆WD (the words are in the document),

2. CM(D\E) 6= c (the class changes), and

3. ∄E′ ⊂E|CM(D\E′) 6= c (E is minimal).

D\E denotes the result of removing the words in E from document D.

Definition 1 is specifically tailored to document classification. It provides intuitive explanations

in terms of words present in the document, and we will be able to produce such explanations even

in the massively dimensional input spaces typical of document classification. More specifically,

Definition 1 differs from those of prior approaches in that the explanation is a set of words rather

than a vector. Define the size of the explanation as the cardinality of E. Our empirical analysis

will reveal that explanations typically are quite small (often about a dozen words) and as such the

technique is able to effectively transform the high-dimensional input space to a low-dimensional

explanation. As stated before, this is of crucial importance in order to provide insightful explana-

tions that address the business problems at hand, i.e. managers’ needs to understand classifiers’

behavior, explaining the decisions made to the manager or customer, obtaining insights into the

specific domain, or improving the document classification model’s performance.

The goal of the present approach seems to align with that of inverse classification (Mannino and

Koushik 2000). However, the explanation format, the specific optimization problem, and the search

algorithms are quite different. Firstly, for document classification, we only need to consider reducing

the values for the corresponding variables. Increasing the value of variables does not make sense

in this setting. For example, in the case of classifying web pages as having adult content or not,

simply adding words as ‘xxx’ would likely increase the probability of being classified as adult. This

is valid for all documents and does not really explain the document’s classification. Secondly, we

don’t need to decide on step sizes for changes in the values, as removing the occurrences of a word

corresponds to setting the value to zero. In the optimization routine of inverse classification, the

search is exactly finding the minimal distance for each dimension. The optimization is completely

different for explanations of documents’ classification, as we will discuss next. Thirdly, applying

inverse classification approaches to document classification generally is not feasible, due to the huge

dimensionality of these data sets. Our approach takes advantage of the sparseness of document

representations, and only needs to consider those words actually present in the document. Finally,

we provide a general framework to obtain explanations independent of the classification technique

used.

The desire to be model-independent is important and worth discussing further. For document

classification, non-linear, black-box models are often used, such as non-linear SVMs (Joachims



Martens and Provost: Explaining Documents’ Classifications

10 Working paper CeDER-11-01

1998) or boosted trees (Schapire and Singer 2000). These models are often incomprehensible.

Explaining the decisions made by such techniques to a client, manager, or subject-matter expert

is of great value and a natural application of our framework. When a linear model is being used,

one could argue simply to list the top k words that appear in the document with the highest

positive weights as an explanation for the class (assuming we are explaining class 1 versus class 0).

The choice of k can be set to 10 for example. A more suitable choice for k would be the minimal

number of top words such that removing these k words leads to a class change. This is exactly

what our approach would provide with a linear model. Finally, although they are often cited as

producing comprehensible models, classification trees for document classification do not provide

the sort of explanations we need (as in Definition 1): they do not explain what words actually are

responsible for the classification. All words from the root to the specific leaf for this document may

be important for the classification, but some of these words are likely not present in the document

(the path branched on the absence of the word) and we do not know which (minimal) set of words

actually is responsible for the given classification.

3. Finding Document Classification Explanations

The discussion above allows us to understand the problem more precisely from an optimization

perspective. Unlike the settings in prior work, here we are looking for the shortest paths in the space

defined by word presence, based on the effect on the surface defined by the document classification

model—which is in a space defined by more sophisticated word-based features (e.g., frequency or

tfidf, as described above). Conceptually, given a document vocabulary with m words, consider a

mask vector µ to be a binary vector of length m, with each element of the vector corresponding to

one word in the vocabulary. An explanation E can be represented by a mask vector µE with µE(i) =

1 ⇐⇒ wi ∈ E (otherwise, µE(i) = 0). Recall that the size of the explanation is the cardinality

of E, which becomes the L1-norm of µE. Then D\E is the Hadamard product of the feature

vector of document D (which may comprise frequencies or tfidf values) with the one’s complement

of µE.
4 Thus, finding a minimal explanation corresponds to finding a mask vector µE such that

CM(D\E) 6=CM(D) but if any bit of µE is set to zero to form E′, CM(D\E′) =CM(D).

To our knowledge, this sort of explanation for document classification has not previously been

formalized or examined carefully, so before presenting algorithms for producing document expla-

nations, we should discuss the possible objectives precisely.

4 In the case of a binary D, this simply becomes a bitwise NAND of D and µE .
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3.1. Objectives and Performance Metrics

Although Definition 1 is quite concise, the objectives for an algorithm searching for such explana-

tions can vary greatly. A user may want to: (1) Find a minimum-size explanation: an explanation

such that no other explanation of smaller size exists. (2) Find all minimal explanations. (3) Find

all explanations of size smaller than a given k. (4) Find l explanations, as quickly as possible (l= 1

may be a common objective). (5) Find as many explanations as possible within a fixed time period.

Combinations of such objectives may also be of interest. To allow the evaluation of different expla-

nation procedures for these objectives, we must define a set of performance metrics5:

Search effectiveness:

1. PE: Percentage of test instances explained (%)

2. ANE: Average number of explanations given (number)

Explanation complexity :

3 AWS: Average number of words in the smallest explanation (number)

Computational complexity :

4 ADF: Average duration to find first explanation (seconds)

5 ADA: Average duration to find all explanations (seconds)

These performance metrics describe the behavior of a document explanation algorithm. In a

separate analysis, one can also employ a domain expert to verify the explanations. An interesting

question that is beyond the scope of this paper is: if the explanations are counterintuitive, does that

reflect on the explanation-finding method? Or only on the underlying classification model that is

being explained? We will show that some explanations reveal the overfitting of the training data by

the modeling procedure—which often is not revealed by traditional machine learning evaluations

that examine summary statistics (error rate, area under the ROC curve, etc.).

3.2. Complete Enumeration of Explanations of Increasing Size

A naive approach to producing explanations completely enumerates all word combinations, starting

with one word, and increasing the number of words until an explanation is found. This approach

starts by checking whether removing one word w from the document would cause a change in the

class label. If so, we add the explaining rule ‘if word w is removed then the class changes’. We

check this for all of the words that are present in the document. For a document with mD words,

this requires mD evaluations of the classifier. If the class does not change based on one word only,

the case of several words being removed simultaneously will be considered. First, the algorithm

5 Note that explanation accuracy is not a major concern: as an explanation by definition should change the predicted
class, it is straightforward to ensure that explanations produced always are correct. What is important with regards
to the usefulness of an explanation (or set of explanations) is how complex the explanation is, and how long it took
for the algorithm to find the explanation.
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considers all word combinations of size 2, then 3 and so on. For combinations of 2 words, the

algorithm makes mD× (mD−1) evaluations, for all combination of 3 words mD× (mD−1)× (mD−

2) evaluations, and more generally for combinations of k words we need mD!/(mD − k)! =O(mk
D)

evaluations. This scales exponentially with the number of words in the document, and becomes

infeasible for real-world problems.

3.3. Explaining Documents’ Classifications: A Hill-Climbing Approach

As the number of potential explanations scales exponentially with the number of features, the naive

approach cannot be applied to realistic problems. We now introduce a straightforward, heuristic

approach, formally described in Algorithm 1. It is designed specifically to find a solution in reason-

able time, even though solution might not be the optimal, in the sense that smaller explanations

could exist. (We will see that it indeed is optimal in a certain, important setting.) The approach

is based on two notions:

1. Hill-climbing search: We assume that the underlying classification model will always be

able to provide a probability estimate or score6 in addition to a categorical class assignment.

We will denote this score function for classifier CM by fCM
(·). The algorithm starts by listing

all potential explanations of one word, and calculating the class and score change for each. The

algorithm proceeds as a straightforward hill-climbing search. Specifically, at each step in the search,

given the current set of word combinations denoting partial explanations, the algorithm next will

expand the partial explanation for which the output score changes the most in the direction of class

change. Expanding the partial explanation entails creating a set of new, candidate explanations,

comprising all combinations with one additional word from the document (that is not yet included

in the partial explanation).

2. Pruning: For each explanation with l words that is found, we do not need to check com-

binations of size l + 1 with these same words, hence we can prune these branches of the search

tree. For example if the words ‘hate’ and ‘furious’ provide an explanation, we are not interested in

explanations of three words that include these two words, such as ‘hate’, ‘furious’ and ‘never’.

For the case of a linear classifier with a binary feature representation, we might explain the

classification by looking at the words with the highest weights that appear in the document.

However, we would still want to know which words exactly are responsible for the classification.

The proposed SEDC produces optimal (minimum-size) explanations for linear models, which we

discuss further next. Assuming again a class 1 versus class 0 prediction for document j, SEDC

6 No explicit mapping to [0, 1] is necessary; a score that ranks by likelihood of class membership is sufficient. The
scores for different classes must be comparable in the multiclass case, so in practice scores often are scaled to [0,1]. For
example, support-vector machines’ output scores are often scaled to (0,1) by passing them through a simple logistic
regression (Platt 1999).
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Algorithm 1 SEDC: Search for Explanations for Document Classification (via Hill Climbing with

Pruning)

Inputs:
WD = {wi, i= 1,2, . . . ,mD} % Document D to classify, with mD words

CM :D→{1,2, . . . , k} % Trained classifier CM with scoring function fCM

max iteration % Maximum number of iterations

Output:
Explanatory list of rule R
1: c=CM(D) % The class predicted by the trained classifier
2: p= fCM

(D) % Corresponding probability or score
3: R= {} % The explanatory list that is gradually constructed

4: combinations to expand on= set of all words
5: P combinations to expand on
6: for all words w in combinations to expand on do
7: Vw = 0 ; % As if the word did not appear in the document
8: cnew =CM(D∪VW ) % The class predicted by the trained classifier if the word w did not appear in

the document
9: pnew = fCM

(D ∪VW ) % The probability or score predicted by the trained classifier if the word w did
not appear in the document

P combinations to expand on = P combinations to expand on∪ pnew
10: if cnew 6= c then
11: R=R ∪ ‘if word w is removed then class changes’
12: combinations to expand on = remove word w from combinations to expand on
13: end if
14: end for
15: for iteration= 1 to max iteration do
16: combo = word combination in combinations to expand on for which p −

p combinations to expand on is maximal
17: combo set = create all expansions of combo with one word
18: combo set2 = remove explanations from combo set
19: p combo set2 = {}
20: for all combos Co in combo set2 do
21: for all words wj in Co do
22: Vwj

= 0 ; % As if the word did not appear in the document

23: end for
24: cnew =CM(D∪VW ) % The class predicted by the trained classifier if the words W did not appear

in the document
25: pnew = fCM

(D∪VW ) % The probability or score predicted by the trained classifier if the words W
did not appear in the document

26: p combo set2 = p combo set2∪ pnew
27: if cnew 6= c then
28: R=R ∪ ‘if words W are removed then class changes’
29: combo set3 = remove explanation in R from combo set2
30: end if
31: end for
32: combinations to expand on = combinations to expand on∪ combo set3
33: P combinations to expand on = P combinations to expand on∪ p combo set2
34: end for
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ranks all words appearing in the document according to the product wjxij . An explanation of

smallest size is the one with the top-ranked words, as chosen by SEDC’s hill-climbing search.

Lemma 1. For document representations based on linear binary-classification models fCM
(D) =

β0+
∑

βjxij with binary (presence/absence) features, the smallest explanation found by SEDC will

be a minimum-size explanation. More specifically, for E1,E2 explanations, if E1 is the smallest

explanation found by SEDC, |E1|= k⇒ ∄E2 : |E2|<k. Furthermore, the first explanation found by

SEDC will be of size k.

Proof (by contradiction): If no explanation exists, then the theorem holds vacuously. Assume

there exists at least one explanation. In the linear model, let the (additive) contribution wij to

the output score for word j of document i be the linear model weight βj corresponding to binary

word-presence feature xb
ij for those words that are present in document i (and zero otherwise).

Assume w.l.o.g. that the classification threshold is placed at fCM
(D) = 0. SEDC will compose

the first candidate explanation E∗ by first selecting the largest wij such that the word is present

in the document, xb
ij = 1, and adding word j to the explanation. SEDC will then add to E∗ the

word with the next-largest such wij , and so on until fCM
(E∗)≤ 0. Thus, the first explanation E1

by construction will consist of the k highest-weight words that are present in the document.

Now assume that there exists another explanation E2 such that |E2|< k; being an explanation,

fCM
(E2)≤ 0. Recall that explanations are minimal, so ∄S (E1 : fCM

(S)≤ 0. Thus E2 must have at

least one element e 6∈E1. Let
∑

E
denote the sum of the weights corresponding to the words in an

explanation E. For a linear model based on the (binary) presence/absence of words, fCM
(X\Y ) =

fCM
(X)−

∑
Y
. As noted above, E1 comprises by construction the k words with the largest wij ,

so ∀wij ∈ E1,∀we /∈ E1 : wij ≥ we. Therefore, ∃S (: E1,
∑

S
>

∑
E2
, which means that ∃S ( E1 :

fCM
(D\S)≤ fCM

(D\E2). But ∀S (E1 : fCM
(D\S)> 0 and thus fCM

(D\E2)> 0. Therefore, E2 is

not an explanation, a contradiction. �

This optimality applies as well to monotonic transformations over the output of the linear model,

as with the common logistic transform used to turn linear output scores into probability estimates.

The optimality also applies more generally for linear models based on numeric word-based features,

such as frequencies, tfidf scores, etc., as detailed in the following theorem.

Theorem 1. For document representations based on linear models fCM
(D) = β0+

∑
βjxij with

numeric word-based features, such as frequencies or tfidf scores, that take on positive values when

the word is present and zero when the word is absent, the smallest explanation found by SEDC

will be a minimum-size explanation. More specifically, for E1,E2 explanations, if E1 is the smallest

explanation found by SEDC, |E1|= k⇒ ∄E2 : |E2|<k. Furthermore, the first explanation found by

SEDC will be of size k.
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Proof: Decompose each non-negative word feature xij into the product xb
ijdij of a binary word

presence/absence feature xb
ij and a document-specific non-negative weight dij. The corresponding

term in the linear model βjxij then becomes βjdijx
b
ij. The proof then follows the previous proof

directly, except with the additive contribution of each word being wij = βjdij. �

For non-linear models no such optimal solutions are guaranteed, in the sense that smaller expla-

nations could exist. However, as our empirical work will show, still very good results are obtained,

both in search effectiveness, and explanation and computational cost. For multiclass classifica-

tion problems optimal solutions are also not guaranteed if one decomposes the problem in several

binary classification problems (as in a one-versus-rest or one-versus-one approach) since the final

classification of data instances now depends on several models with their own weights.

4. Empirical Analysis

We now will demonstrate the value of the approach to explaining document classifications through

two, related empirical analyses (Hevner et al. 2004): classifying web pages as containing adult con-

tent and news-story topic classification. First we will examine in detail a case study application of

the method to a data set drawn from a real application in need of exactly this sort of evaluation. The

empirical results show that the method indeed can produce explanations effectively, and that alter-

native, global explanation techniques do not. Possibly more interestingly, the case study highlights

various sorts of practical value that can be obtained from producing model-and-document-specific

explanations. We follow-up the case study with a shallower but broader experimental analysis based

on a suite of text classification problems (the 20 Newsgroups) widely used in the research literature.

The followup analysis highlights how document-specific explanations can help to understand the

behavior (and confusion) of a classification model that distinguishes between multiple classes, and

more deeply, shows that different sub-categories receive very different explanations. In retrospect,

that is not surprising; however, it would be very difficult to ascertain from prior explanation pro-

cedures (in particular, global ones). In all, the empirical analysis is intended to demonstrate that

explaining document classification with SEDC is capable of (1) providing important insights into

the model for the manager and the customer, (2) providing insight into the business domain, and

(3) identifying opportunities for model improvement.

4.1. Explaining Web Pages’ Classifications for Safe Advertising

The case study is based on data obtained from a firm that focuses on helping advertisers to

avoid inappropriate adjacencies between on-line advertisements and web content, similar to our

motivational example above. Specifically, the analysis is based on a data set of 25,706 web pages,

labeled as either having adult content or not. The web pages are described by tfidf scores over a

vocabulary chosen by the firm, including a total of 73,730 unique words. The data set is balanced
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by class, with half of the pages containing adult content and half non-adult content. For this data

set, the class labels were obtained from a variety of sources used in practice, including Amazon’s

Mechanical Turk.7 Given the variety of labeling sources, the quality of the labeling might be

questioned (Sheng et al. 2008). Interestingly, the explanations indeed reveal that certain web pages

are wrongly classified. No meta-data, links, or information on images is being used for this study;

the inclusion of such data could improve the model further, but the focus of this paper is on textual

document classification.8

For this analysis, we built an SVM document classification model with a linear kernel function

using the LIBLINEAR package (Fan et al. 2008), with 90% of the data used as training data, the

remaining 10% as test data. Experiments were run on an Intel Core 2 Quad (3 GHz) PC with

8GB RAM. The model is correct on 96.2% of the test instances, with a sensitivity (percentage of

non-adult web pages correctly classified) of 97.0%, and a specificity (percentage of adult web pages

correctly classified) of 95.6%. The resulting model is a linear function with 73,730 weights (and an

intercept term), one for each of the words, clearly calling into question the potential for gaining

deep insight into the model’s behavior simply by examining it. Some technique is necessary for

helping to explain the model.

4.1.1. Global explanations As discussed above, rule extraction is the most researched and

applied model explanation methodology. Trying to comprehend the SVM model, a tree can be

extracted by applying the C4.5 tree induction technique (Quinlan 1993) on the aforementioned safe

advertising data set with class labels changed to SVM predicted labels. Unfortunately, we could

not get C4.5 to generate a tree that models the SVM with high-fidelity. The best extracted tree

has a fidelity of only 87%. On top of that, the tree is too large to be comprehensbile, having 327

nodes. Pruning the tree further reduces the size, but further decreases fidelity.

As discussed above, an alternative method for comprehending the function of a linear document

classifier is to examine the weights on the word features, as these indicate the effect that each

word has on the final output score. As with the distinction between Lemma 1 and Theorem 1, we

need to keep in mind that in a preprocessing step the data set is encoded in tfidf format. Hence

for actual document explanations, the frequency is vital.9 Figure 1 shows the weight sizes of all

the words in the vocabulary; the weights are ranked smallest-to-largest, left-to-right. Clearly many

words show a high indication of adult content, while many others show a clear counter-indication

7 www.mturk.com

8 This particular data set was not necessarily used in the development of any production model used for safe adver-
tising.

9 The inverse document frequency is constant across documents, and could be incorporated in the model weights to
facilitate global explanation.
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of adult content. Looking deeper, Table 1 shows the highest (positive) weight words, as well as the

words that give the highest mutual information (with the positive class) and information gain. We

additionally list the top words when taking into account the idf weights, viz., based on the weights

of the words multiplied with the corresponding idf values. The final column shows the words most

frequently occurring in the explanations, which will be elaborated on below. Table 2 shows the

ranks of some adult-indicative words provided independently by a domain expert.

From Table 1 we see that most indicative words for adult content ranked highly using the

mutual information criterion are very rare, unintuitive words. It may be possible to engineer a

better information-based criterion, for example countering this overfitting behavior by requiring a

minimal frequency of the top ranked words, but later results will show why such efforts ultimately

are destined to fail to provide a comprehensive explanation. The top words provided by the other

rankings on the other hand are quite intuitive. As stated before, even initially not-so-obvious words

as ‘welcome’, ‘enter’ or ‘age’ make sense once we realize that many positive examples are entrance

pages of adult sites, which inform a visitor about the content of the website and require verification

of age. Nevertheless, as we will see next, explanation of individual decisions simply requires too

many individual words. Consider that we would have to produce a list of over 700 of the highest-

weight words just to include ‘porn’ and over 10,000 to include ‘xxx’—two of the short-list of words

chosen by the domain expert.

Given the intuitiveness of the top-weighted words, we should consider how well a short list of

such words really explains the behavior of the model. Does the explanation of a web page typically

consist of (some of) the top-100 or so words? It turns out that the content of web pages varies

tremendously, even within individual categories. For “adult content”, even though some strongly

discriminative words exist, the model classifies most web pages as being adult content for other

reasons. This is demonstrated by Figure 2, which plots the percentage of the classifications of

the test instances that would be explained by considering the top-k words (horizontal axis) by

weight (with and without idf correction), mutual information and information gain. Specifically, if

a definition in the sense of Definition 1 can be formed by any subset of the set of top-k words, then

the document is explained. So for example, if an explanation would be ‘if words (welcome enter)

are removed then class changes’, that explanation would be counted when k≥ 2.

We see from Figure 2 that we would need thousands of these top words before being able to

explain a large percentage of the individual documents, as shown by the line with words ranked on

the weight. More precisely, more than two thousand top-weight words are needed before even half

of the documents are explained. Using the ranking based on mutual information requires even more

words. This suggests either (i) that many, many words are necessary for individual explanations,

or (ii) the words in the individual explanations vary tremendously. This motivates the use of an
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Figure 1 The size of the weights for all 73,730 words, ranked left-to-right according to increasing weights.
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Figure 2 Percentage of 100 adult-classified test instances explained when considering only the top k words,

ranked according to the frequency of occurrence in the explanations, the weights (w), the weights with idf

correction, mutual information (MI) and information gain (IG).
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Ranking based on

Mutual Information Information Gain Size of weight
Size of weight Frequency of word occurring
with idf correction in the explanations

primarykey privacy welcome permanently adult
sessionid policy enter fw age
youtubeid home adult welcome enter
webplayerrequiredgeos us permanently compuserve site
vnesfrsgphplitgrmxnlkrause advertise site copyrightc sex
videocategoryids about age prostitution years
usergeo adult usc acronym material
latestwebplayerversion search searches tribenet are
isyoutubepermalink comments over amateurbasecom sites
isyoutube contact erotic gorean hardcore

Table 1 Global explanation of the model by listing the top words providing evidence for the adult class. Five

rankings are considered: based on mutual information, information gain, weights of the words, weights of the

words with idf correction (weight multiplied with idf of word), and the frequency of the word occurring in the

explanations.

Ranking of some chosen intuitive words

Word Mutual Information Information Gain Size of weight
Size of weight Frequency of word occurring

with idf correction in the explanations
sex 2633 51 65 1675 5
porn 1544 86 712 4951 32
xxx 1327 143 10582 19813 558
adult 3034 7 3 48 1
prostitution 5370 5067 20 6 368
girls 916 3997 760 6135 117

Table 2 The rankings of some expert-chosen class-indicative words. When listing only the top k words, a very

large k is needed before these words are included.

instance-level explanation algorithm not only for obtaining insights into the individual decisions,

but also for understanding the model overall.

When we rank the words according to how often they occur in explanations, we obtain the line

with the maximal area underneath. For the 100 classified instances, a total of 810 unique words

are used in all the explanations (where we consider maximum 10 explanations for a single data

instance). This already suggests the wide variety of words that are present in the explanations.

The instance-based explanations can be aggregated to a global explanation by listing the words

that occur most frequently in the explanations, as shown in the final column of Table 1—which

provides yet another benefit of the instance-level explanations. We will not explore this further, as

it is peripheral to the main focus of this paper.

4.1.2. Instance-level explanations None of the previously published instance-level expla-

nation methods are able to handle many thousands of variables, so they can not be applied to this

domain. We’ll show now that SEDC is effective, and fast as well.

Explanation 2 shows several typical explanations for classifications of test documents. We show

the first three explanations of test instances with explanations that are appropriate for publication.

These explanations demonstrate several things. First, they directly address suggestion (i) just
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above: in fact, documents generally do not need many, many words to be explained. They also

provide evidence supporting suggestion (ii): the words in the individual explanations are quite

different, including explanations in different languages.

Explanation 2: Some explanations why a web page is classified as having adult content for

web pages of the test set.

Explaining document 13 (class 1) with 61 features and class 1 ...
Iteration 7 (from score 0.228905 to -0.00155753): If words (submissive pass hardcore check bondage
adult ac) are removed then class changes from 1 to -1 (1 sec)
Iteration 7 (from score 0.228905 to -0.00329069): If words (submissive pass hardcore check bondage
adult access) are removed then class changes from 1 to -1 (1 sec)
Iteration 7 (from score 0.228905 to -0.00182021): If words (submissive pass hardcore check bondage
all adult) are removed then class changes from 1 to -1 (1 sec)

Explaining document 30 (class 1) with 89 features and class 1 ...
Iteration 4 (from score 0.894514 to -0.0108126): If words (searches nude domain adult) are removed
then class changes from 1 to -1 (1 sec)
Iteration 6 (from score 0.894514 to -0.000234276): If words (searches men lesbian domain and
adult) are removed then class changes from 1 to -1 (1 sec)
Iteration 6 (from score 0.894514 to -0.00225592): If words (searches men lesbian domain appraisal
adult) are removed then class changes from 1 to -1 (1 sec)

Explaining document 32 (class 1) with 51 features and class 1 ...
Iteration 8 (from score 0.803053 to -0.0153803): If words (viejas sitios sexo mujeres maduras gratis
desnudas de) are removed then class changes from 1 to -1 (1 sec)
Translation: old mature women sex sites free naked of

Iteration 9 (from score 0.803053 to -7.04005e-005): If words (viejas sitios mujeres maduras gratis
desnudas de contiene abuelas) are removed then class changes from 1 to -1 (1 sec)
Translation: old mature women free sites containing nude grandmothers

Iteration 9 (from score 0.803053 to -0.00304367): If words (viejas sitios mujeres maduras gratis
desnudas de contiene adicto) are removed then class changes from 1 to -1 (1 sec)
Translation: old sites free naked mature women contains addict

Explaining document 35 (class 1) with 36 features and class 1 ...
Iteration 6 (from score 1.04836 to -0.00848977): If words (welcome fiction erotic enter bdsm adult)
are removed then class changes from 1 to -1 (0 sec)
Iteration 6 (from score 1.04836 to -0.10084): If words (welcome fiction erotica erotic bdsm adult)
are removed then class changes from 1 to -1 (1 sec)
Iteration 6 (from score 1.04836 to -0.0649064): If words (welcome kinky fiction erotic bdsm adult)
are removed then class changes from 1 to -1 (1 sec)

We can examine the size of explanations more systematically by referring to the explanation

performance metrics introduced in Section 3.1. The top-left plot in Figure 3 shows the percentage

of the test cases explained (PE) when an explanation is limited to a maximum number of words (on

the horizontal axis). We see that almost all the documents have an explanation comprising fewer

than three dozen words, and more than half have an explanation with fewer than two dozen words.

Figure 3 also shows that, not too surprisingly, the number of words in the smallest explanation
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Figure 3 Explanation performance metrics in terms of maximal number of words allowed in an explanation.

Both the performance and the complexity increase with the number of words. Shown are percentage explained

(PE), average number of explanations given (ANE), average number of words in the smallest explanation (AWS),

average duration to find the first explanation (ADF) and average duration to find all explanations (ADA). Next to

the average metrics, the 10th and 90th percentiles are also shown (dashed lines).

(AWS plot) and the number of explanations (ANE plot) both grow as we allow larger and larger

explanations.10

More interestingly, examining these performance metrics gives insight into how the classifica-

tion model is functioning in this application domain. Specifically, the plots show that document

explanation sizes vary quite smoothly and that there seem to be many different explanations for

documents. The former observation suggests that the strength of the individual evidence varies

widely: some cases are classified by aggregating many weak pieces of evidence, others by a few

strong pieces of evidence (and some, presumably by a combination of strong and weak). The lat-

ter observation suggests substantial redundancy in the evidence available for classification in this

application. Figure 3 also shows that for this particular problem, explanations can be produced

fairly quickly using SEDC. This problem is of moderate size; real-world document classification

problems can be much larger, in terms of documents for training, documents to be classified, and

the vocabulary. Therefore, a word about scaling up is in order.

10 In the experiments, we limit ourselves to searching for 10 explanations: if 10 or more explanations have been found,
no further word expansions/iterations are attempted.
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Let us first consider a linear model. For a document with mD unique words, SEDC evaluates

sequentially mD “documents” (each the original document with 1 word removed), then iteratively

works on the best of these leading to the evaluation of mD − 1 documents (each the original with

2 words removed); next mD − 2 documents are evaluated, and so on. When an explanation of

size s is found a total of O(s ×mD) evaluations have occurred. The computational complexity

depends therefore on (1) the time needed for a model evaluation, and text classifiers can be very

fast, (2) the number of words needed for an explanation s, which in our case study went to

about 40, and (3) the number of unique words in the document mD, which is generally very

small as compared to the overall vocabulary. Most importantly, the computational complexity

is independent of the overall size of the vocabulary, unlike previous instance-level explanation

approaches. This complexity could be lowered further for linear models to O(s) by incrementally

evaluating the word combinations with the next-most-highly-ranked word removed (recall Lemma 1

and Theorem 1). Our implementation does not include this speed-up mechanism as we wish to

present a technique applicable to all models and not just to linear ones.

For a non-linear model, some backtracking will likely also occur, when a local minimum has been

found, and thus removing any other word leads the score to increase again. The extent to which

this occurs depends on the shape of the model’s decision boundary. Considering word combinations

of two words, backtracking once will lead to mD +2×mD evaluations instead of mD +mD. Worst

case scenario, backtracking over all words occurs, leading to mD +mmD
D evaluations. Thus, the

worst case complexity grows exponentially with the depth of the search tree. However, as we will

show in the subsequent experiments, the heuristic approach is quite fast for the tasks to which we

have applied it, and is able to provide explanations in a matter of seconds for the non-linear SVM

technique with a radial basis function (RBF) kernel (a popular non-linear model). Importantly,

once again, the complexity is independent on the size of the vocabulary.

Finally, recall that these experiments were conducted on a desktop PC. Further speed improve-

ments could easily be obtained with the high-performance computing systems typically used by

organizations that build text classifiers from massive data.

4.2. Hyper-explanations

Conducting this case study brought to the fore some additional issues regarding explaining doc-

uments classifications—issues that (at least for us) needed to be clarified carefully. Specifically,

a procedure for producing explanations of document classifications may provide no explanation

at all. Why not? A document’s explanation may be non-intuitive. Then what? There are several

classes of reasons for these behaviors, which we group into hyper-explanations.
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4.2.1. Hyper-explanations for the lack of an explanation We distinguish between cases

where the predicted class is the default class (hyper-explanations 1), and those where the predicted

class is the non-default class (hyper-explanation 2).

Hyper-explanation 1a: no evidence present. The default class is predicted and no evidence

for either class is present. For example, this would be the case when all words in the document

have zero weights in the model or no words present are actually used in the model.

Technically, this case falls outside the scope of this paper’s development, since we are specifically

considering explaining why a document is classified as a non-default class. Nevertheless, this may

be a practically important situation that cannot simply be ignored. For example, this case may

have been brought to a manager’s or developer’s attention as a “false negative error”—i.e., it should

have been classified as a positive example. In this case the hyper-explanation explains exactly why

the case was classified as being negative—there was no model-relevant evidence—and can be a solid

starting point for a management/technical discussion about what to do about it. For example, it

may be clear that the model’s vocabulary needs to be extended.

Hyper-explanation 1b: no evidence of non-default class present. The default class is

predicted and only evidence in support of the default class is present. This is a minor variation to

Hyper-explanation 1a, and the discussion above applies regarding explaining false negatives and

providing a starting point for discussions of corrective actions.

Hyper-explanation 1c: evidence for default class outweighs evidence for the non-

default class. A more interesting and complex situation is when, in weighing evidence, the model’s

decision simply comes out on the side of the default class. In this case an immediate reaction may

be to apply the explanation procedure to generate explanations of why the case was classified as

being default (i.e., if these words were removed, the class would change to positive). However,

when the case truly is of the “uninteresting” class, the explanations returned would likely be fairly

meaningless, e.g., “if you remove all the content words on the page except the bad words, the

classifier would classify the page as a bad page.” However, applying the procedure may be very

helpful for explaining false negatives, because it would show the words that the model feels trump

the positive-class-indicative words on the page (e.g., if you remove the medical terminology on the

page, the classifier would rate the page as being adult). This again could provide a solid foundation

for the process of improving the classifiers.

Within our safe advertizing application, an explanation for all 46 false negatives is found, indi-

cating that indeed adult words are present but these are outweighed by the non-adult, negative

words. Example explanations of such false negatives are given in Explanation 3. For some words

like ‘blog’ it seems logical to have received a large non-adult/negative weight. The word ‘bikini’
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seemingly ought to receive a non-adult weight as well, as swimsuit sites are generally not con-

sidered to be adult content by raters. However, some pages mix nudes with celebrities in bikinis

(for example). If not enough of these are in the training set, it potentially would cause ‘bikini’

to lead to a false negative. Many other words however can be found in the explanations that do

seem to be adult-related (such as ‘handjobs’), and as such should receive a positive weight. All

the words are great candidates for human feedback to indicate which of these words actually are

adult related and potentially update the model’s weights (a mechanism known as active feature

labeling (Sindhwani and Melville 2008)) or review the labeling quality of the web pages with the

word. The words occurring most in these explanations of false negatives (when considering only

the first explanation) are ‘found’, ‘blog’ and ‘policy’. The seemingly-adult related words are not

found when examining the words with most negative weights, again supporting the need to look

at explanations separately, on an instance level.

Explanation 3: Explanations of web pages misclassified as non-adult (false negatives), which

indicate which words the model feels trump the positive-class-indicative words.

Explaining document 10 (class 1) with 31 features and class -1 (score -0.126867)...
Iteration 4 (from score -0.126867 to 0.00460739): If words (policy gear found blog) are removed
then class changes from -1 to 1 (0 sec)

Explaining document 13 (class 1) with 50 features and class -1 (score -0.123585)...
Iteration 4 (from score -0.123585 to 0.000689515): If words (sorry miscellaneous found about) are
removed then class changes from -1 to 1 (0 sec)

Explaining document 11 (class 1) with 198 features and class -1 (score -0.142504)...
Iteration 2 (from score -0.142504 to 0.00313354): If words (watch bikini) are removed then class
changes from -1 to 1 (1 sec)

Explaining document 31 (class 1) with 22 features and class -1 (score -0.0507037)...
Iteration 4 (from score -0.0507037 to 0.00396628): If words (search handjobs bonus big) are
removed then class changes from -1 to 1 (0 sec)

Hyper-explanation 2: too much evidence of non-default class present. No explanation

is provided because, although a non-default class is predicted, there are so many words in support

of this class that one needs to remove almost all of them before the class will change. The situations

when this will occur fall along a spectrum between two fundamentally different reasons:

1. There are very many words each providing weak evidence in support of the class. Thus, the

explanation exceeds the bound given to the algorithm, or the algorithm does not return a result in

a timely fashion. In Figure 4, the (middle) line for the explanation with the most words shows that

if the number of allowed words is below 40, no explanation is found. This lack of explanation can

be explained by this hyper-explanation, as too many adult-related words are present for a short

explanation to be found.
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Figure 4 Score evolution when removing words from the three selected documents: the one with highest

starting score, the one with the most words in an explanation and a document with average number of words in

an explanation. The class changes to non-adult when the score falls below zero.

2. There are very many words each providing strong evidence. In this case, the procedure may

not be able to get the score below the threshold with a small explanation—because there is just so

much evidence for the class. The full upper line with the highest starting score in Figure 4 shows

such an example: when allowing fewer than 15 words in an explanation, the score remains above

the threshold and no explanation can be given.

This lack of base-level explanation can be mitigated (partially) by presenting “the best” partial

explanation as the search advances.

4.2.2. Hyper-explanations for non-intuitive explanations Explanations are always cor-

rect in the technical sense—removing the words by definition changes the class. However, it is

possible that the explanation clashes with the user’s intuition. Several reasons exist for this:

The data instance is misclassified.

The explanations of some of the web pages that are misclassified by the SVM model are listed

in Explanation 4 (only the first explanation is shown). For these pages the predicted class is adult,
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while the human-provided class label is non-adult (false positives). These three explanations indi-

cate strongly that the web pages actually contain adult content and the human-provided label seems

wrong. On the other hand, in other cases, explanations indicate that their web pages seem to be

non-adult and hence are probably misclassified. Examples are given in Explanation 5.11 Such expla-

nations provide very useful support for interactive model development, as the technical/business

team can fix training data or incorporate background knowledge to counter the misclassification.

The data instance is correctly classified, but the explanation just does not make

sense to the business users/developers.

This case is particularly problematic for any automated explanation procedure, since providing

explanations that “make sense” requires somehow codifying in an operationally useful way the

background knowledge of the domain, as well as common sense, which to our knowledge is (far)

beyond current capabilities (and certainly beyond the scope of this paper). Nevertheless, we still can

provide a quite useful hyper-explanation in the specific and common setting where the document

classification model had been built from a training set of labeled instances (as in our case study).

Specifically:

Hyper-explanation 3: Show similar training instance. For a case with a counter-intuitive

explanation, we can show “similar” training instances with the same class. The similarity metric in

principle should roughly match that used by the induction technique that produced the classifier.

Such a nearest-neighbor approach can provide insight in two ways. (1) If the training classifications

of the similar examples do make sense, then the user can understand why the focal example was

classified as it was. (2) If the training classifications do not make sense (e.g., they are wrong),

then this hyper-explanation provides precise guidance to the data science team for improving the

training,12 and thereby the model.

Consider for example document 8. Explanation 5 suggests strongly that it contains non-adult

content, even though the model classifies it as adult. The web page most similar to document

8 is also classified as adult and has 44 (out of 57) words which are the same, which are listed

in Explanation 6. This is a web page with a variety of topics, and probably a listing of links to

other websites. This sort of web page needs further, expert investigation for use in training (and

evaluating) models for safe advertising. It could be that labelers have not properly examined the

11 Our models are limited by the data set obtained for the case study. By our understanding, models built for this
application from orders-of-magnitude larger data sets are considerably more accurate; nonetheless, they still make
both false-positive and false-negative errors, and the general principles illustrated here apply.

12 Data cleaning is a very important aspect of the data mining process that has received relatively little treatment in
the research literature. One of the main data cleaning activities in classifier induction is “fixing” labels on mislabeled
training data.
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entire web site; it may be that there indeed is adult content in images that our text-based analysis

does not consider; it may be that these sites simply are misclassified, or it may be that in order to

classify such pages correctly, the data science team needs to construct specifically tailored feature

to deal with the ambiguity.

Explanation 4: Explanations of web pages misclassified as adult (false positives), which

indicate that the model is right and the class should have been adult (class 1).

Explaining document 1 (class -1) with 180 features and class 1 (score 1.50123)...
Iteration 35 (from score 1.50123 to -0.00308141): If words (you years web warning usc these
sites site sexual sex section porn over offended nudity nude models material male links if hosting
hardcore gay free explicit exit enter contains comic club are age adults adult) are removed then
class changes from 1 to -1 (53 sec)

Explaining document 2 (class -1) with 106 features and class 1 (score 0.811327)...
Iteration 24 (from score 0.811327 to -0.00127533): If words (you web warning under und these
site porn over offended nude nature material links illegal if here exit enter blonde are age adults
adult) are removed then class changes from 1 to -1 (15 sec)

Explaining document 3 (class -1) with 281 features and class 1 (score 0.644614)...
Iteration 15 (from score 0.644614 to -0.00131314): If words (you sex prostitution over massage
inside hundreds here girls click breasts bar) are removed then class changes from 1 to -1 (29 sec)

Explanation 5: Explanations of truly misclassified web pages (false positives).

Explaining document 8 (class -1) with 57 features and class 1 (score 0.467374)...
Iteration 7 (from score 0.467374 to -0.0021664): If words (welcome searches jpg investments index
fund domain) are removed then class changes from 1 to -1 (3 sec)

Explaining document 16 (class -1) with 101 features and class 1 (score 0.409314)...
Iteration 8 (from score 0.409314 to -0.000867436): If words (welcome und sites searches domain de
b airline) are removed then class changes from 1 to -1 (5 sec)

Explaining document 32 (class -1) with 66 features and class 1 (score 0.124456)...
Iteration 2 (from score 0.124456 to -0.00837441): If words (searches airline) are removed then class
changes from 1 to -1 (0 sec)

Explanation 6: Hyper-explanation 3 showing the words of the web page most similar to

document 8. This most similar web page is classified as adult, providing a hyper-explanation

of why document 8 is also classified (incorrectly) as adult.

and, articles, at, buy, capital, check, china, commitment, dat, file, files, for, free, fund, funds, high,
hot, in, index, instructionalwwwehowcom, international, internet, investing, investment, invest-
ments, jpg, listings, mutual, out, performance, project, related, results, return, searches, social,
sponsored, temporary, tiff, to, trading, vietnam, web, welcome.
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4.3. News Item Categorization

To demonstrate generality and to illustrate some additional properties of the method we now apply

the explanation method to a second domain: classifying news stories. The 20 Newsgroups data set

is a benchmark data set used in document classification research. It contains about 20,000 news

items partitioned evenly over 20 newsgroups of different topics, and has a vocabulary of 26,214

different words (Lang 1995). The 20 topics can be categorized into seven top-level usenet categories

with related news items: alternative (alt), computers (comp), miscellaneous (misc), recreation (rec),

science (sci), society (soc) and talk (talk). One typical problem addressed with this data set is

to build classifiers to identify stories from these seven high-level news categories—which for our

purposes gives a wide variety of different topics across which to provide document classification

explanations. Looking at the seven high-level categories also provides realistic richness to the task:

in many real document classification tasks, the class of interest is actually a collection (disjunction)

of related concepts (consider, for example, “hate speech” in the safe-advertising domain).

We build a classifier system to distinguish the seven top-level categories using all words in the

vocabulary. This permits us to examine a wide variety of explanations of different combinations of

true class and predicted class, in a complicated domain—but one where we have at least a high-level

intuitive understanding of the classes. The examination shows that even for news items grouped

within the same top-level category, the explanations for their classifications can vary greatly and

are intuitively related to their true lower-level newsgroup.

4.4. Results

The classifier system for distinguishing the seven top-level newsgroups (alt, comp, misc, rec, sci,

soc, talk) operates in a one-versus-others setup—i.e., seven classifiers are built, each distinguishing

one newsgroup from the rest. For training (on 60% of the data) and for prediction (remaining 40%

as test data), if a news item is (predicted to be) from the given newsgroup, the class variable is set

to one; if not the class variable is set to zero. To demonstrate the method with different types of

model, here we build both linear and non-linear SVM classifiers. The non-linear SVM is built with

the LIBSVM package (Chang and Lin 2001) and uses a radial basis function (RBF) kernel with

hyperparameters tuned using a grid search.

In Table 3, each cell shows at least one explanation (where possible) of an example from one

of the 20 low-level categories (specified in the row header) being classified into one of the top-

level categories (specified in the column header). If no explanation is given in a cell, either no

misclassified instances exist, which occurs most, or no explanation was found with maximum 10

words. The shaded cells on the diagonal are the explanations for correct classifications; the rest

are explanations for errors. For example, the first explanation in the upper-left cell (excluding the



Martens and Provost: Explaining Documents’ Classifications

Working paper CeDER-11-01 29

header rows) shows that this correct classification of a news story in the alt.atheism category is

explained by the inclusion of the terms ‘ico’, ‘bibl’, ‘moral’, ‘god’ and ‘believ’–if these words alone

are removed, the classifier would no longer place this story correctly into the alt category.

Several cells below we see explanations for why a sci.med story was misclassified as belonging

to alt: because of the occurrence of the word ‘atheist’ (first explanation), or the words ‘god’ and

‘believe’ (second explanation). Further investigation of this news story reveals it concerns organ

donation. More generally, the explanations shown in Table 3—the correctly classified test instances

(grayed cells on the diagonal)—usually are indeed intuitively related to the topic.

The categories themselves often occur as words in the explanations, such as ‘hardwar’, ‘microsoft’,

‘mac’ and ‘space’. Importantly, the different subcategories of the newsgroups show different expla-

nations, which motivates using instance- rather than global-level explanations. For example, for

the computer newsgroup (shown in the second column), the terms used to explain classifications

from the different subgroups are quite different and intuitively related to the specific subgroups.

The misclassified explanations (outside of the shaded cells) often show the ambiguity of certain

words as reason for the misclassification. For example ‘window’ is a word that can be related

to computer, but also can be seen as words related to automobiles. The explanations for the

misc.forsale news items indicate they are most often misclassified because the item that is being

sold comes from or is related to the category it is misclassified in. With this individual-instance

approach, similar ambiguities as well as intuitive explanations for each of the subgroups also can

be found for the other categories. The results also demonstrate how the explanations can hone in

on possible overfitting, such as with ‘unm’ and ‘umd’ in the cells adjacent to the upper-left cell we

discussed above.

The explainability metrics when allowing a maximum of 10 words in an explanation are shown

in Table 4. Although a high percentage of the test instances is explained (PE around 90-95% for

all models) still some instances remain unexplained. If we allow up to 30 words in an explanation,

all instances are explained for each of the models. Of particular note is that for this widely used

benchmark with a vocabulary of 26,214 words, on average only a small fraction of a second (ADF

of 0.02-0.08 seconds) is needed to find a first explanation. As previously mentioned, this is because

our SEDC explanation algorithm is independent of the vocabulary size. Explaining the non-linear

model requires more time, since backtracking occurs and the model evaluation takes longer than

for a linear model. Nevertheless, on average still less than a second is needed to find an explanation.
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Classification models in one-versus-others setup: ‘newsgroup’ versus not ‘newsgroup’
Explanations why news items are classified as ‘newsgroup’

alt vs not alt comp vs not comp misc vs not misc rec vs not rec
alt.atheism ico bibl moral god believ unm wustl distribut com

ico bibl moral god read carina screen wustl 5 univers
ico bibl moral accept god carina join wustl origin distribut

comp.graphics umd quicktim 3do centris resolut card program bigwpi wpi distribut nb canada ca
wam quicktim 3do centris resolut ac card bigwpi wpi pleas nb luck canada
mistak cant quicktim 3do centris resolut fax card bigwpi wpi email nb archiv canada

comp.os.ms-windows.misc mous microsoft cant distribut 6
mous microsoft solution look tom
mous microsoft switch pleas archiv com

comp.sys.ibm.pc.hardware hardwar thank distribut cornel buffalo
hardwar appreci repli buffalo cc wonder
adam hardwar call ubvmsb buffalo cc

comp.sys.mac.hardware kmr4po read vga monitor mac advenc card am offer sale distribut univers
kmr4po follow vga monitor mac advenc card repli offer sale card recent
kmr4po note vga monitor mac advenc card thank jame offer sale price

comp.windows.x enterpoop lcs fax pleas street final list
enterpoop lcs mit includ 2154 street final com
enterpoop xpertexpo lcs inc send 2154 street final pleas

misc.forsale driver program sale insur
driver card 2190 gasket massachusett ser
pc driver pc mention gasket jacket massachusett

rec.autos window call distribut geico insur distribut
window email 3 geico insur ca
window 4 compani geico insur usa

rec.motorcycles greyscal color mile dod
greyscal pictur pad ottawa ca
greyscal directori rosevil deal ottawa canada

rec.sport.baseball offer miller brave gatech nl seri team technologi game
game 3 miller brave gatech nl seri team institut game
game 5 miller brave gatech nl seri team plai game

rec.sport.hockey michel comput susan buffalo ny team
michel 4 game call bruin buffalo team
co michel buffalo game sabr buffalo team

sci.crypt mathew 42 print messag ohio usa
rusnew mantis umd consult couldnt agre 42 print seen cincinnati list
rusnew mantis umd consult couldnt stop 42 print net victor free

sci.electronics softwar sell price email pleas univers
prefer sell price game email distribut
appl ncsu sell price email ca

sci.med atheist lcs mit address thank nyx canada cc bad pleas univers
god believ lcs laboratori mit address denver du canada cc bad pleas thank
god start lcs mit address email am denver dept distribut canada cc bad i’v pleas

sci.space michel help internet riversid due
site help servic riversid ucr
help thank am institut riversid prbaccess com

soc.religion.christian atheist wrote call chanc
technologi person dave
9 includ princeton

talk.politics.guns richard drive holonet norton internet sfasu
richard fax holonet norton modem arlen thank
bryan richard holonet norton pete arlen pleas

talk.politics.mideast wrote ai repli hous cc
evid ai mit amherst columbia
religion ai cant 3 pl7 lion

talk.politics.misc religi god cwru ohio car
religi religion jone jone watch
islam religi cleveland western hela ins cleveland reserv western usa 2 jm

talk.religion.misc bill site institut refer
explain ca system gold mike
cration usa system polytechn univ
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Classification models in one-versus-others setup: ‘newsgroup’ versus not ‘newsgroup’

Explanations why news items are classified as ‘newsgroup’

sci vs not sci soc vs not soc talk vs not talk
alt.atheism latech translat ha atom 2000 moral object evid

scisur familiar ha overwhelm atom 2000 moral object
rayengr help translat god microscop ha atom 2000 moral object

comp.graphics map scott pleas david
pub inc scott read happen
pub ftp scott answer list

comp.os.ms-windows.misc public book speak
date pa limit
std steven stand

comp.sys.ibm.pc.hardware nz mark address
nz 1.1 student
nz network utexa

comp.sys.mac.hardware bounc suppli purdu
bounc circuit cc center
sync bounc happen pure cc

comp.windows.x nz scienc re
aukuni time sorc time
aukuni scienc upenn name

misc.forsale tube pa usa
catalog sex accept 21
umb etc sex hell gun

rec.autos max low fone chuck utexa call
max cycl fone discuss pleas utexa center
max pl9 effect fone discuss read utexa care

rec.motorcycles ibm righteous racist stupid mean
week fone righteous racist stupid own
rochest fone 10 righteous racist stupid opinion

rec.sport.baseball list 10 dt buffalo love cc
list scienc nswc buffalo stand cc
std list carderock buffalo stori cc

rec.sport.hockey ericsson inc oppos john
ericsson commun csd boulder center
ericsson user chuck boulder depart

sci.crypt inform congress law john
commun preced congress john
offic nagl congress john

sci.electronics adcom god re
preamp chip sound accept david
preamp network chip recent citi

sci.med handed rsilverworld sight domin eye commun sex perot
handed rsilverworld sight domin eye indic grade fysic 16 happen
handed rsilverworld sight domin guest eye look fysic speak reason edward happen

sci.space space book terror moral govern
nasa follow discuss terror moral law
nasa scienc fysic terror moral major

soc.religion.christian greet marie angel religion pleas homosexu
gabriel greet mari 12 religion question abus behavior love
gabriel greet mari various religion follow abus sexual love peopl

talk.politics.guns chip marri christ life batf waco clinton question
explode marri christ view batf waco clinton law
medic understand marri christ religion batf waco clinton evid

talk.politics.mideast ai ab4zvirginia beyer holocaust arab militari plan evid kill
amend lab ab4zvirginia beyer andi holocaust arab militari attack evid kill
amend messag 10 blanket ab4zvirginia beyer andi holocaust arab militari reach evid kill

talk.politics.misc acid scienc serbian homosexu moral law
acid commun bomb york 2 homosexu moral stop
acid sorc bomb york position homosexu moral pass

talk.religion.misc messag pa christian malcolm weapon jew christian
institut mormon faith christian 2 malcolm weapon jew kill
apr mormon faith hous christian malcolm weapon jew hous

Table 3 Explanations are shown why documents from the newsgroup shown at the beginning of the row are classified in the newsgroup shown at the top

of the column.
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Model
Linear SVM Non-linear RBF SVM

PCC PE ANE AWS ADF ADA PCC PE ANE AWS ADF ADA

alt 81.5% 96.1% 18.5 2.7 0.05 0.16 76.8% 95.7% 30.1 2.5 0.62 1.35
comp 93.7% 89.1% 13.3 3.1 0.05 0.12 94.9% 81.7% 12.4 3.3 0.54 0.88
misc 92.8% 98.1% 12.9 1.9 0.02 0.12 90.5% 96.6% 17.0 1.8 0.14 0.38
rec 94.2% 94.8% 13.7 2.4 0.04 0.11 93.6% 92.9% 16.7 2.4 0.40 0.79
sci 85.4% 93.5% 19.6 2.7 0.06 0.15 83.1% 90.4% 23.16 2.7 1.01 1.62
soc 94.2% 94.4% 16.9 1.8 0.03 0.15 90.2% 91.5% 29.5 2.4 0.39 0.79
talk 88.5% 92.1% 23.8 2.5 0.08 0.21 86.8% 90.0% 28.5 2.0 1.3 2.9

Table 4 Explanation performance metrics on the test set of the 20 newsgroups data set for a linear (left) and

non-linear (right) SVM model and explanations of maximum 10 words.

These results in a second domain, with a wide range of document topics, provide support that our

general notion of instance-level document classification can provide important insight into the func-

tioning of text classifiers, and that the SEDC method is generally effective and pretty fast as well.

Further, this second study provides a further demonstration of the futility of global explanations in

domains such as this: there are so many different reasons for different classifications. At best they

would be muddled in any global explanation, and likely they would simply be incomprehensible.

5. Discussion, Limitations and Conclusions

In this paper, we followed the guidelines set forth by Hevner et al. (2004) for designing, exe-

cuting and evaluating research within design science to explain documents’ classifications. The

business problem we address is obtaining insight into a document classification model such that

(1) the manager using it understands how decisions are being made, (2) the customers affected

by the decisions can be advised why a certain action regarding them is taken, and (3) the data

science/development team can improve the model iteratively. Further, (4) document classification

explanations can provide insight into the business domain.

We found that global explanations in the form of a decision tree or a list of the most indicative

words do not provide a satisfactory solution. Moreover, previously proposed explanation methods

on the data-instance level all define explanations as real-valued vectors of the same size as the

input space. Given the huge dimensionality of document classification problems, these techniques

also do not provide a solution to the business problems. Thus, a new approach is needed. With

the technical constraints of high-dimensional data in mind, we addressed this business problem by

creating an explanation as a “necessary” set of words—a minimal set such that after removal the

current classification would no longer be made. We presented a search algorithm (SEDC) for finding

such explanations—the algorithm is optimal for linear binary-classification models, and heuristic

for non-linear models. We introduced important aspects of the evaluation of such a system, and

then provided empirical evaluations of the performance of the algorithm on two different document
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classification domains. The evaluations show that SEDC is able to provide these explanations in a

matter of seconds.

In terms of effectiveness, the results show that the explanations are quite comprehensible, com-

prising a few to a few dozen words. The words in the explanations vary greatly across the expla-

nations, even with words in different languages, which supports the claim that existing global

explanations are inadequate for such document classification domains. We see very different expla-

nations for different cases. These results suggest a different route for producing global explanation

models for document classification. Rather than trying to produce a small, high-fidelity replica (as

with prior approaches), instead produce a large high-fidelity replica, that captures all the different

sorts of classifications the model is making. This may sound counter-intuitive, since in prior work

model size often is equated with comprehensibility. However, a model that comprises a large num-

ber of individually comprehensible subcomponents (e.g., a large set of small rules) may provide

useful insight. Nevertheless, it would not substitute for instance-level explanations for the business

problems we address.

An unexpected (to us) result of the case study was the need for various sorts of hyper-

explanations. Several of these are the result of the document classification models being statistical

models learned from data, and thus are subject to the main challenges of machine learning: over-

fitting, underfitting, and errors in the data. When classification errors are introduced due to these

pathologies, even instance-level explanations may be inadequate (e.g., missing) or unintuitive.

Hyperexplanations are needed for deep understanding—for example, showing training cases that

likely led to the current model behavior.

As discussed in the introduction, we believe that instance-level explanation methods such as

SEDC can have a substantial impact in improving the process of building document classification

models. The field needs more research addressing support for the process of building acceptable

models, especially in business situations where various parties must be satisfied with the results.

Indeed, recent developments in machine learning and data mining arguably have moved us further

away from the needed transparency, with the strong research emphasis on and seeming success of

techniques resulting in complex models, such as boosting, non-linear SVMs, feature hashing (see

below), etc. Managers and developers need to be able to interact to agree that a classification

system is behaving appropriately.

More specifically, systems like SEDC may become a critical component of the iterative process

for improving document classification models. As the case study and the news-group study showed,

SEDC can identify data quality issues and model deficiencies. These deficiencies can be resolved

via various mechanisms, leading to improved models directly or, alternatively, to improved data

quality, which ultimately should lead to better model performance and decision making.
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We hope that this new sort of instance-level explanation for document classification will provide

an immediately useful method across a wide variety of business (and scientific, medical, and legal)

applications where document classifications are critical. We also hope we have made the case

that thinking about explanations in this way opens up a large number of new research problems

and opportunities for improving the state of the art in building and using data-driven document

classification systems.
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Appendix

This appendix describes in detail existing methods for explaining individual classifications, and

discusses why they are not ideal or suitable for explaining document classifications. To our knowl-

edge, the first approach to explain classifications of individual instances that is applicable to any

classification model was presented by Robnik-Šikonja and Kononenko (2008). The authors present

a methodology to assign scores to each of the variables that indicate to what extent they influence

the data instance’s classification. As such, they define an explanation as a real-valued vector e that

denotes the contribution of each variable to the classification of the considered data instance x0

by classification model M (see Definition 2). The effect of each attribute of a test instance x0 is

measured by comparing the predicted output f(x0) with f(x0\Ai), where x0\Ai stands for the

instance without any knowledge about attribute Ai. This is implemented by replacing the actual

value of Ai with all possible values for Ai and weighting each prediction by the prior probability of

that value. For continuous variables, a discretization method is applied to the variable. The larger

the change in predicted output, the larger the contribution of the attribute. This change in output

can be measured in various ways, using simply the difference in probabilities, the information dif-

ference or the weight of evidence. The contributions provided by the previously discussed technique

are very similar to the weights in a linear model, which also denote the relative importance of each

variable.

Definition 2. Robnik-Šikonja and Kononenko (2008) define an explanation of the classification

of model M for data instance x0 as an m dimensional real-valued vector:

ERS (M,x0) = e∈Rm, with ei = f(x0)− f(x0\Ai)

The explanation of each attribute can easily be visualized, graphically showing the magnitude

and direction of the contribution of each variable. A very simple example is given for the Titanic

data set where the aim is to predict whether a Titanic passenger survived. The instance with a

female, adult, third-class passenger that is classified as surviving is explained by the contributions

below. The fact that the passenger is female is the main contributor for the prediction, as the

contributions for age and class are very small and even in the opposite direction.
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• class=third, contribution = -0.344

• age=adult, contribution = -0.034

• gender=female, contribution = 1.194

This basic approach is not able to detect the case where a change in more than one variable

is needed in order to obtain a change in predicted value. Štrumbelj et al. (2009) build further on

this and proposes an Interactions-based Method for Explanation (IME) that is able to detect the

contribution of combinations of feature values. The explanation once again is defined as a real-

valued m-dimensional vector denoting variable contributions. First, a real value number is assigned

to each subset of the power set of feature values. These changes are subsequently combined to

form a contribution for each of the individual feature values. In order to assess the output of the

model with a subset of variables, instead of weighting over all permutations of the features values,

a model is built using only the variables in the subset. Although the results are interesting, they

only use data sets of dimensions maximal 13.

There are two major drawbacks of this method. Firstly, the time complexity scales exponentially

with the number of variables. They report that 241 seconds are needed to explain the classification

of 100 test instances for the random forests model for the highest dimensional data sets (breast

cancer ljubljana which has 13 features). The authors recognize the need for an approximation

method. Secondly, the explanation is not very humanly understandable, as the explanation is once

again a real-valued number for each feature which denotes to what extend it contributes to the

class. They verify their explanations with an expert, where an expert needs to assess whether he

or she agrees with the magnitude and direction of the contribution of each feature value.

A game-theoretical perspective of their method is provided by Štrumbelj and Kononenko (2010),

as well as a sampling-based approximation that does not require retraining the model. On low

dimensional data sets they provide results very quickly (in the order of seconds). For the data

set with most features, arrhythmia (279 features), they report that it takes more than an hour to

generate an explanation for a prediction of the linear Naive Bayes model. They state:

The explanation method is therefore less appropriate for explaining models which are built on

several hundred features or more. Arguably, providing a comprehensible explanation involving a

hundred or more features is a problem in its own right and even inherently transparent models

become less comprehensible with such a large number of features.

Stated within our safe advertizing application: a vector of thousands of values does not provide an

answer to the question ‘Why is this web page classified as containing adult content?’ This approach

is therefore not suitable for document classification, and motivates the specific focus within this

paper.
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Baehrens et al. (2010) also define an instance level explanation as a real-valued vectors. In this

case however, the vector denotes the gradient of the classification probability output in the test

instance to explain, and as such defines a vector field indicating where the other classification can

be found.

Definition 3. Baehrens et al. (2010) define an explanation of the classification of model M

for data instance x0 as an m dimensional real-valued vector, obtained as the gradient of the class

probability in the instance:

EB (M,x0) = e∈Rm, with ei =∇p(x)|x=x0

For SVMs it uses an approximation function (through Parzen windowing) in order to calculate

the gradient. In our document classification setup, this methodology in itself does not provide

an explanation in the form that is wanted as it simply will give the direction of steepest descent

towards the other class. It could however serve as a basis for a heuristic explanation algorithm to

guide the search towards those regions where the change in class output is the largest. The exact

stepsize and the minimal set of explaining dimensions (words) still need to be determined within

such an approach.

Inverse Classification. Sensitivity analysis is the study of how input changes influence the

change in the output, and can be summarized by Eq. (1).

f(x+∆x) = f(x)+∆f (1)

Inverse classification is closely related to sensitivity analysis and involves “determining the mini-

mum required change to a data point in order to reclassify it as a member of a (different) preferred

class” (Mannino and Koushik 2000). This problem is called the inverse classification problem, since

the usual mapping is from a data point to a class, while here it is the other way around. Such

information can be very helpful in a variety of domains: companies, and even countries, can deter-

mine what macro-economic variables should change so as to obtain a better bond, competitiveness

or terrorism rating. Similarly, a financial institution can provide (more) specific reasons why a

customer’s application was rejected, by simply stating how the customer can change to the good

class, e.g. by increasing income by a certain amount. A heuristic, genetic-algorithm based approach

is used in Mannino and Koushik (2000) that uses a nearest neighbor model.

Classifications made by a SVM model are explained in Barbella et al. (2009) by determining

the minimal change in all variables needed in order to achieve a point on the decision boundary.

Their approach solves an optimization problem with SVM-specific constraints. A slightly different

definition of inverse classification is given in Aggarwal et al. (2010), which provides values for
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the undefined variables of a test instance that result in a desired class. Barbella et al. (2009)

search for explanations by determining the point on the decision boundary (hence named border

classification) for which the Euclidean distance to the data instance to be explained is minimal.

Definition 4. Barbella et al. (2009) implicitly define an explanation of the classification of

model M for data instance x0 as the m dimensional real-valued input vector closest to x0, for

which the predicted class is different from the predicted class of x0:

EIC (M,x0) = e ∈Rm = argmine

∑n

j=1
(ej −x0j)

2 and f(e) = 0

Since finding the global optimal solution is not feasible, a locally optimal solution is sought. The

approach is applied on a medical data set with eight variables. The explanation provided shows a

change in all variables. Applying this to document classification is therefore again not useful. The

authors describe the appropriateness for low dimensional data only as follows:

our approach in the current form is most usable when the number of features of the data set

is of a size that the user can eyeball all at once (perhaps 25-30 or so) (Barbella et al. 2009).


