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In a model with heterogeneous-risk-aversion agents facing margin constraints, we show
how securities’ required returns increase in both their betas and their margin require-
ments. Negative shocks to fundamentals make margin constraints bind, lowering risk-free
rates and raising Sharpe ratios of risky securities, especially for high-margin securities.
Such a funding-liquidity crisis gives rise to “bases,” that is, price gaps between securities
with identical cash-flows but different margins. In the time series, bases depend on the
shadow cost of capital, which can be captured through the interest-rate spread between
collateralized and uncollateralized loans and, in the cross-section, they depend on rela-
tive margins. We test the model empirically using the credit default swap–bond bases and
other deviations from the Law of One Price, and use it to evaluate central banks’ lending
facilities. (JEL G01, G12, G13, E44, E50)

The paramount role of funding constraints becomes particularly salient dur-
ing liquidity crises, with the one that started in 2007 being an excellent case
in point. Banks unable to fund their operations closed down, and the fund-
ing problems spread to other investors, such as hedge funds, that relied on
bank funding. Therefore, traditional liquidity providers became forced sellers,
interest-rate spreads increased dramatically, Treasury rates dropped sharply,
and central banks stretched their balance sheets to facilitate funding. These
funding problems had significant asset-pricing effects, the most extreme exam-
ple being the failure of the Law of One Price (LoOP): Securities with (nearly)
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identical cash flows traded at different prices, giving rise to so-called “bases”
(i.e., price gaps).

We attempt to explain these effects using a dynamic general-equilibrium
model with realistic margin constraints, and to test empirically the model’s
time-series and cross-sectional predictions of how funding problems affect risk
and return.

Our model shows that (i) the consumption capital asset-pricing model
(CCAPM) is augmented by a security’s margin times the general funding cost;
(ii) a basis between a security and a derivative with identical cash flows arises
as the difference in their margin requirements times the funding cost, plus
their endogenous difference in beta; (iii) securities with higher margins have
larger betas and volatilities during crises, since they have larger funding liquid-
ity risk; (iv) the funding cost can be captured by the interest-rate differential
between collateralized and uncollateralized borrowing; (v) the margin effect
strengthens nonlinearly in “bad times” as margin requirements are hit, leading
to sharp drops in the risk-free collateralized and Treasury rates, to a rise in the
spread between collateralized and uncollateralized interest rates, and to a rise
in risk premia and especially margin premia. We also (vi) calculate the equi-
librium and calibrate the magnitude and dynamics of the bases using macro
parameters.

In our applications, we (vii) find statistically significant empirical evidence
consistent with the model’s predictions for the time series of the credit default
swap (CDS)–bond basis, for the cross-sectional difference between investment-
grade and high-yield bases, and for the levels and time variation of CDS and
bonds risks; (viii) find consistent evidence from the failure of the covered
interest-rate parity; (ix) compute the asset-pricing effect of the Fed’s lending
facilities; and (x) quantify a bank’s incentive to perform regulatory arbitrage
to loosen capital requirements.

Our model considers a group of (relatively) risk-averse agents and a group
of (relatively) risk-tolerant agents. Each risk-tolerant investor uses leverage,
but is subject to margin requirements. He must fund all the margins on his
positions with his equity capital and, possibly, uncollateralized loans. One
can think of these leveraged investors as banks or the financial sector more
broadly, including hedge funds. The risk-averse investors may be constrained
in their trading of derivatives and cannot lend uncollateralized, so the un-
collateralized loan market is a pure “inter-bank market” for the risk-tolerant
investors.

We first show how margin requirements affect the required returns for both
underlying assets and derivatives.1 For a typical asset in which the risk-tolerant

1 If there were no redundant securities and margins were constant over time, the result for the underlying assets
would specialize a result fromCuoco(1997) for general convex portfolio constraints, and it is also closely related
to results fromAiyagari and Gertler(1999) andHindy and Huang(1995).
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agents hold long positions in equilibrium, the required excess returnE(r i ) is

E(r i )= r risk-free + β i × covariance risk premium

+ mi × margin premium, (1)

wheremi is the margin requirement (and all quantities may be time varying).
The first two terms in this “margin CAPM” are the same as in the standard
(consumption) CAPM, namely, the risk-free interest rate and the covariance
risk premium. Hence, if the margin requirements are zero, our model natu-
rally nests the standard model. With positive margin requirements—as in the
real world—the higher a security’s margin requirement, the higher its required
returns. The margin premium is the shadow cost of funding for the risk-tolerant
agents multiplied by the relative importance of these agents. Consequently, it
is positive when margin constraints are binding, and zero otherwise. For in-
stance, supposing that in a crisis the risk-tolerant investors have a shadow cost
of capital of 10% (consistent with our estimates during the height of the Global
Financial Crisis and with our calibration) and the risk-tolerant investors ac-
count for 40% of the aggregate risk tolerance, the margin premium is 4%.
Therefore, if a security has a margin requirement of 50%, then its required
return is 4%× 50% = 2% higher than the level predicted by the standard
CCAPM, a significant effect.

Our model suggests that constrained investors would evaluate securities
based on a ratio that we callalpha per margin(AM):

AMi =
E(r i )− r risk-free− β i × covariance riskpremium

mi
. (2)

This is the abnormal return (in excess of the risk-free rate and the standard
risk adjustment) on a strategy of investing a maximally leveraged dollar in the
asset. Hence, the margin CAPM in (1) can be stated equivalently by saying
that, in equilibrium, all assets have the same AM,AMi = margin premium.
While, in the classical CAPM, alpha is zero for all assets, in our model, alphas
can be non-zero when capital constraints bind, and AM ratios are equalized as
investors seek to maximize their leveraged return.

We show that “bad times” with binding margin constraints naturally occur
after negative shocks to fundamentals. This phenomenon leads to several in-
triguing effects. First, risk-free interest rates for collateralized loans and Trea-
suries spike down. This happens because the risk-tolerant agents cannot borrow
as much as they would like due to margin constraints and, therefore, in equilib-
rium the risk-averse agents must lend less than they otherwise would. In order
to induce the risk-averse agents not to lend, the interest rate must drop.

Further, in bad times the spread between the interbank uncollateralized loans
and the collateralized loans (or Treasuries) increases, even abstracting from
credit risk. This liquidity-driven interest-rate premium arises from the fact that
the risk-averse investors do not participate in the uncollateralized inter-bank
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market. Since the risk-tolerant banks are constrained, the inter-bank interest
rate must be greater than the Treasury rate to reflect the banks’ positive shadow
cost of capital. While this pure liquidity-driven interest-rate spread is zero in
“normal” times when margin requirements do not bind, it increases nonlinearly
following negative shocks as when the crisis hit in 2007, as well as in previous
liquidity crises.

Hence, the deviation from the standard CAPM is most apparent in bad times,
when the funding-liquidity effects are the strongest. A stark illustration of
this margin-based asset-pricing effect is the price difference between secu-
rities with the same cash flows but different margin requirements. We show
that the required return on a high-margin security—e.g., a corporate bond—is
greater than that of a low-margin security with the same cash flows—e.g., prox-
ied by a CDS. This is because of the high shadow cost of capital of the risk-
tolerant investor. When the risk-tolerant investor’s margin constraint binds, he
is willing to accept a lower yield spread on a CDS, since it uses less margin
capital.

As empirical evidence of this prediction, we find that the time-series vari-
ation of the CDS-bond basis has a statistically significant co-movement with
the LIBOR–general collateral (GC) repo interest-rate spread (i.e., the spread
between uncollateralized and collateralized loans), as well as the tightness of
credit standards as estimated by the Federal Reserve Board’s “Senior Loan
Officer Opinion Survey on Bank Lending Practices.”

The model predicts that the magnitude of the basis is the shadow cost of
capital times the margin difference plus the difference in betas. To understand
this predicted magnitude, consider the CDS–bond basis, that is, the yield dif-
ference between a corporate bond and a comparable derivative. With a shadow
cost of capital of 10% during the crisis, a margin on investment-grade bonds
of 25%, and a margin on the corresponding CDS of 5%, the direct effect of
the margin difference on the basis is 10%× (25%− 5%) = 2%, close to what
was observed empirically. Additionally, the model predicts that the corporate
bond’s higher margin makes it riskier, since it is more sensitive to further fund-
ing crises, leading to an additional, albeit smaller, effect on the basis.

When there are several pairs of underlying/derivative securities, each of
which has an associated basis, our model predicts that these bases are cor-
related in the time series due to their common dependence on the shadow cost
of capital and, cross-sectionally, the bases should be proportional to each pair’s
difference in margin requirements.

To test these cross-sectional predictions empirically, we compare the basis
of investment-grade (IG) bonds with the basis for high-yield (HY) bonds and
find that they move closely together and that the difference in their magnitudes
corresponds to the difference in their margins, consistent with our model’s
prediction. Indeed, the margin difference between HY bonds and CDS is about
twice that of IG bonds/CDS, so the model predicts an HY basis that is about
twice the IG basis, consistent with the data.
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Interestingly, the model also implies that securities with identical cash flows
but different margins have different risk characteristics due to their different
exposures to funding-liquidity risk. The low-margin CDS has less systematic
risk since its price drops less in liquidity crisis and, therefore, its required
return is lower even before the margin constraint binds. Consistent with the
model, we find empirically that bonds and CDSs have similar betas and volatil-
ities during “normal” times when constraints are not near binding, but that be-
tas and volatilities of high-margin bonds rose above those of CDSs during the
2007–2009 liquidity crisis.

Further consistent evidence arises from the related time-series variation of
the interest-rate spread and that of the deviation from the covered interest par-
ity (CIP). Indeed, during the funding crises of 1998 and 2007–2009, when
margins are likely to have been binding, interest-rate spreads were wide and
the CIP deviation was substantial, since agents did not have enough capital to
eliminate it.

As another application of the model, we show how the Fed’s lending facili-
ties affect asset prices, providing new insights into the monetary transmission
mechanism during liquidity. We discuss how the lending facilities lower mar-
gin requirements, and show that the model-implied increase in asset prices is of
the same order of magnitude as the increase attributable to lowered margins in
the banks’ bid prices, according to surveys conducted by the Federal Reserve
Bank of New York.

Further, we derive the shadow cost of banks’ regulatory-capital require-
ments, which gives an estimate of their incentive to perform regulatory ar-
bitrage by placing assets off the balance sheet or tilting toward AAA securities
with low capital requirements.

This article is related to a number of strands of literature. Borrowing con-
straints confer assets a collateral value (Bernanke and Gertler 1989; Hindy
1995; Detemple and Murthy 1997; Geanakoplos 1997; Kiyotaki and Moore
1997; Caballero and Krishnamurthy 2001; Lustig and Van Nieuwerburgh 2005;
Coen-Pirani 2005; Fostel and Geanakoplos 2008), and constraints open the
possibility of arbitrage in equilibrium (Basak and Croitoru 2000, 2006;
Geanakoplos 2003). We focus on margin requirements, which are linked to
market liquidity and volatility (Gromb and Vayanos 2002; Brunnermeier and
Pedersen 2009; Adrian and Shin 2010; Danielsson, Shin, and Zigrand 2009;
Rytchkov 2009), and provide analytic asset-pricing effects. Asset prices also
depend on market liquidity (Amihud and Mendelson 1986; Longstaff 2004;
Duffie, Gârleanu, and Pedersen 2007; Gârleanu, Pedersen, and Poteshman
2009), market liquidity risk (Acharya and Pedersen 2005; Mitchell, Pedersen,
and Pulvino 2007; He and Krishnamurthy 2008), limits to arbitrage (Shleifer
and Vishny 1997), banking frictions (Allen and Gale 1998, 2004, 2005;
Acharya and Viswanathan 2011), and related corporate-finance issues
(Holmstr̈om and Tirole 1998, 2001). We use the methods for analyzing equilib-
ria in continuous-time models with constraints ofCuoco (1997); other
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related applications are provided byLi (2008), Rytchkov(2009), Chabakauri
(2010), andPrieto(2010).2

The specification of the margin requirement is key to our results. First, we
make the realistic assumption that both long and short positions use capi-
tal; in contrast, a linear constraint, as often assumed in the literature, implies
that shorting frees up capital. While bases with natural properties arise in our
model, we show that no basis can obtain in a world in which all agents face
only the same linear constraint. Second, we consider assets with identical cash
flows and different margin requirements, while margins for such assets would
be the same if margins arose solely from limited commitment (Geanakoplos
1997). In the real world, securities with (almost) identical cash flows can have
substantially different margins, since margins depend on the market liquidity
of the securities (Brunnermeier and Pedersen 2009) and because of various
institutional frictions. For instance, corporate bonds have low market liquid-
ity in over-the-counter search markets (Duffie, Gârleanu, and Pedersen 2005,
2007;Vayanos and Weill 2008), and this makes them less attractive as collat-
eral because they can be difficult to sell. Further, to get credit exposure through
a corporate bond, one must actually buy the bond for cash and try to fund it
using a repo, which uses a broker’s balance sheet, while a CDS is an “un-
funded” derivative with zero net present value, so the margin is necessary only
to limit counterparty risk; the CDS does not inherently use cash. Our model
further allows for time-varying margins, given that margins tend to increase
during crises due to a margin spiral, as explained byBrunnermeier and
Pedersen(2009) and documented empirically byGorton and Metrick(2009).

We complement the literature by providing a tractable model with explicit
pricing equations that provide testable time-series and cross-sectional implica-
tions, deriving the basis (i.e., price gap) between securities with identical cash
flows depending on their different margins, showing how the shadow cost of
funding can be captured using interest-rate spreads, calibrating the magnitude
and dynamics of the predicted deviations from the LoOP using realistic param-
eters, testing the theory empirically using the CDS–bond basis and the failure
of the CIP, and applying the theory to the Federal Reserve’s lending facilities
and the incentive to perform regulatory arbitrage.

The rest of the article is organized as follows. Section1 lays out the model,
Section2 derives our main theoretical results and calibrates the model, and
Section3 applies the model empirically to the CDS–bond basis, the failure of
the covered interest-rate parity, and the pricing of the Fed’s lending facilities,
and quantifies the cost of banks’ regulatory capital requirements. Section4
concludes.

2 Numerous papers study frictionless heterogeneous-agent economies, e.g.,Dumas(1989), Wang(1996), Chan
and Kogan(2002), Bhamra and Uppal(2009), Weinbaum(2009), Gârleanu and Panageas(2008), andLongstaff
and Wang(2009).
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1. Model

We consider a continuous-time economy in which several risky assets are
traded. Each asseti pays a dividendδi

t at time t and is available in a supply
normalized to 1. The dividend of each securityi is a continuous It̂o process
driven by a multidimensional standard Brownian motionw:3

dδi
t = δi

t

(
μδ

i

t dt + σ δ
i

t dwt

)
, (3)

whereμδ
i

t is the dividend growth, and the dividend volatility is given by the

vectorσ δ
i

t of loadings on the Brownian motion.
Each security is further characterized by its margin (also called a haircut)

mi
t ∈ [0, 1], an It̂o process, measured as a fraction of the investment that must

be financed by an agent’s own capital, as discussed below. For instance, the
margin on a corporate bond could bembond

t = 50%, meaning that an agent can
borrow half of the value and must pay the other half using his own capital.

In addition to these “underlying assets” in positive supply, the economy has
a number of “derivatives” in zero net supply. Each derivativei ′ has the same
cash flowsδi

t as some underlying securityi , but with a lower margin require-
ment:mi ′

t < mi
t .

We assume that the prices of underlying assets and derivatives are Itô pro-
cesses with expected return (including dividends) denotedμi

t and volatility
vectorsσ i

t , which are linearly independent across the underlying assets:

d Pi
t = (μi

t Pi
t − δi

t )dt + Pi
t σ

i
t dwt . (4)

Finally, the set of securities includes two riskless money-market assets, one
for collateralized loans and one for uncollateralized loans, as explained fur-
ther below. The equilibrium interest rate for collateralized loans isr c

t , and for
uncollateralized loans isr u

t .
The economy is populated by two agents: Agenta is averse to risk, whereas

b isbraver. Specifically, agentg ∈ {a, b} maximizes his utility for consumption
given by

Et

∫ ∞

0
e−ρsug(Cs) ds, (5)

whereua(C) = 1
1−γ a C1−γ a

with relative risk aversionγ a > 1, andub(C) =

log(C) with relative risk aversionγ b = 1. We can think of agenta as a rep-
resentative pension fund or risk-averse private (retail) investor, and of agentb

3 All random variables are defined on a probability space(Ω,F) and all processes are measurable with respect to
the augmented filtrationFwt generated byw.
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as representing more risk-tolerant investors using leverage, such as banks or
hedge funds.

At any timet , each agentg ∈ {a, b} must choose his consumption,Cg
t (we

omit the superscriptg when there is little risk of confusion), the proportion
θ i

t of his wealthWt that he invests in risky asseti , and the proportionηu
t in-

vested in the uncollateralized loans; the rest is invested in collateralized loans.
The agent must keep his wealth positive,Wt ≥ 0, and the wealth evolves
according to

dWt =

(

Wt

(

r c
t + ηu

t (r
u
t − r c

t )+
∑

i

θ i
t (μ

i
t − r c

t )

)

− Ct

)

dt

+ Wt

∑

i

θ i
t σ

i
t dwt , (6)

where the summation is done over all risky underlying and derivative
securities.

Each agent faces a margin constraint that depends on the securities’
marginsmi

t :

∑

i

mi
t |θ

i | + ηu ≤ 1. (7)

In words, an agent can tie up his capital in margin for long or short positions
in risky assets and invest in uncollateralized loans (or borrow uncollateralized
if ηu < 0), and these capital uses, measured in proportion of wealth, must be
less than 100% of the wealth. The rest of the wealth, as well as the money in
margin accounts, earns the collateralized interest rate.4 This key constraint is
a main driver of our results. The literature often assumes a linear margin con-
straint (i.e., without the absolute-value operator), but AppendixA shows that
deviations from the LoOP cannot arise in this case. Our constraint captures
well the problem facing any real-world investor (e.g., real-world investors can-
not finance unlimited long positions by short ones, as is implied by the linear

4 Alternatively, the constraint can be written as

∑

i

|θ i | + ηu ≤ 1 +
∑

i

|θ i |l i .

For a long position,l i is the proportion of the security value that can be borrowed in the collateralized lending
market (e.g., the repo market). Hence, the left-hand side of the equation is the fraction of wealthθ i used to buy
the security, and the right-hand side is the total wealth 1 plus the borrowed amountθ i l i . Naturally, the margin
mi = 1 − l i is the fraction of the security value that cannot be borrowed against.

For a short position, one must first borrow the security and post cash collateral of(1 + mi )θ i and, since the
short sale raisesθ i , the net capital use ismi θ i . Derivatives with zero net present value have margin requirements,
too. SeeBrunnermeier and Pedersen(2009) for details.
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constraint), and it gives rise to deviations from the LoOP that match those
observed empirically.

In addition, the risk-averse agenta does not participate in the markets for un-
collateralized loans and may be allowed only limited positions in derivatives.
That is, he must chooseηu = 0 andθ i ′ ∈ Ai ′ for every derivativei ′, where the
admissible setAi ′ can, for instance, be specified asAi ′ = {0}, meaning that he
cannot trade derivatives, or asAi ′ = [A,A], meaning that he can trade only a
limited amount. This captures the fact that certain agents are often limited by
risk aversion, by a lack of willingness to participate in some transactions, e.g.,
those with apparent operational risk—i.e., the risk that something unspecified
can go wrong—and by a lack of expertise. Also, this means that the uncollat-
eralized market may capture an interbank loan market.

Our notion of equilibrium is standard. It is a collection of prices, consump-
tion plans, and positions such that (i) each agent maximizes his utility given
the prices and subject to his investment constraints; and (ii) the markets for
risky and risk-free assets clear.

2. Margin-based Asset Prices

We are interested in the properties of the equilibrium and consider first the
optimization problem of the brave agentb using dynamic programming. The
logarithmic utility for consumption implies that the Hamilton–Jacobi–Bellman
(HJB) equation reduces to the myopic mean-variance maximization

max
θ i

t ,η
u
t

{
r c
t + ηu

t

(
r u
t − r c

t

)
+
∑

i

θ i
t (μ

i
t − r c

t )−
1

2

∑

i, j

θ i
t θ

j
t σ

i
t (σ

j
t )

>
}
, (8)

subject to the margin constraints
∑

i mi
t |θ

i
t | + ηu

t ≤ 1.
Attaching a Lagrange multiplierψ to the margin constraint, the first-order

condition with respect to the uncollateralized investment or loanηu yields the
following result.

Proposition 1 (Interest-Rate Spread). The interest-rate differential between
uncollateralized and collateralized loans captures the risk-tolerant agent’s
shadow cost of an extra dollar of funding,r u

t − r c
t = ψt .

The proposition identifies the shadow cost of capital, central to our asset-
pricing analysis, as the interest-rate differential between uncollateralized loans,
which do not use up a borrower’s potentially scarce collateral, and collateral-
ized loans, which do. In addition to having intuitive appeal, this relationship is
valuable for linking the unobserved shadow cost of capitalψ to quantities in
principle observable; we use it in our empirical analysis.
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Agentb’s first-order condition with respect to the risky-asset positionθ i is

μi
t − r c

t = βCb,i
t + ψtmi

t if θ i > 0

μi
t − r c

t = βCb,i
t − ψtmi

t if θ i < 0

μi
t − r c

t = βCb,i
t + yi

tψtmi
t with yi

t ∈ [−1, 1] if θ i = 0,

(9)

where we simplify notation by letting

βCb,i
t = covt

(
dCb

Cb
,

d Pi

Pi

)
(10)

denote the conditional covariance between agentb’s consumption growth and
the return on securityi . These first-order conditions mean that a security’s
expected excess returnμi

t − r c
t depends on its marginmi

t , the risk-tolerant
agent’s shadow cost of fundingψt , and the security’s covariance with the risk-
tolerant agent’s consumption growth.

To characterize the way in which returns depend on aggregate consumption
(which is easier to observe empirically), we also need to consider agenta’s
optimal policy and aggregate across agents.5 If a’s margin requirement does
not bind, standard arguments show that the underlying securities are priced by
his consumption,μi − r c = γ aβCa,i , but the general problem with margin
constraints and spanned securities is more complex. In the general case, we
derive a consumption CAPM depending on aggregate consumption in the ap-
pendix. For this, we first introduce some notation:βC,i

t is the covariance of the
growth in the aggregate consumptionC = Ca + Cb and the return of security
i ,

βC,i
t = covt

(
dC

C
,

d Pi

Pi

)
, (11)

andγt is the “representative” agent’s risk aversion, i.e.,

1

γt
=

1

γ a

Ca
t

Ca
t + Cb

t
+

1

γ b

Cb
t

Ca
t + Cb

t
. (12)

The fractionxt of the economy’s risk-bearing capacity due to agentb is

xt =

Cb
t
γ b

Ca
t
γ a + Cb

t
γ b

. (13)

We recall thatψ is agentb’s shadow cost of funding. With these definitions, we
are ready to state the margin-adjusted CCAPM and CAPM. For simplicity, we

5 See Proposition 3 inCuoco(1997) for a CAPM relation for general time-invariant convex portfolio constraints
in the absence of redundant securities.
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do it under the natural assumption that the margin constraint of the risk-averse
agenta does not bind.6

Proposition 2 (Margin CCAPM). The expected excess returnμi
t − r c

t on
an underlying asset that agentb is long is given by the standard consumption
CAPM adjusted for funding costs:

μi
t − r c

t = γtβ
C,i
t + xtψt mi

t. (14)

If agentb is short the asset, then the funding-liquidity term is negative, i.e.,
μi

t − r c
t = γtβ

C,i
t − xtψt mi

t , while if b has a zero position, the required return
lies between the two values.

This proposition relates excess returns to the covariance between aggregate
consumption growth and a security’s returns, as well as to the funding con-
straints. The covariance term is the same as in the classic CCAPM model of
Breeden(1979). The difference is the funding term, which is the product of the
security-specific marginmi

t and the general coefficientsψt andxt that measure
the tightness of the margin constraints. Naturally, the tightness of the margin
constraint depends on the leveraged risk-tolerant agent’s shadow cost of fund-
ing,ψ , and the relative importance of this agent,x.

The margin CCAPM’s economic foundation dictates the magnitude of the
coefficients. Sinceγ b = 1 andγ a is a number between 1 and 10, say, the
aggregate risk aversionγt is somewhere between 1 and 10, and varies over
time depending on the agents’ relative wealths. The relative importancex of
agentb is a number between 0 and 1. While this risk-tolerant agent might be
a small part of the economy in terms of total consumption or wealth, his risk
tolerance is larger, which raises his importance. For instance, even if we think
that he accounts for only as little as 2% of the aggregate consumption, and
if agenta has a risk aversion of 10, thenx is around 17%, close to 10 times
the consumption share. The shadow costψ can be as much as 10% in our
calibration and empirical analysis. Hence, for a security with a 50% margin,
the funding term would raise the required return by 17%× 10%× 50%≈ 1%
in this case.

For a different way to interpret the relationship in Equation (14), consider
the “alpha” of asseti , that is, the expected excess return adjusted for risk,
αi

t = μi
t − r c

t − γtβ
C,i
t . The margin CCAPM says that alphas are proportional

to margin requirements,ψxtmi
t , or, in terms of the ratioalpha per margin

(AM), it says thatAMi is constant across securitiesi ,

AMi
t = xtψt .

6 We state and prove the propositions without this assumption in the appendix, but focus on this case because it is
natural and simpler to state and obtains in our calibrated equilibrium in Section2.1. In the general case, Equation
(B.1) contains the additional term that capturesa’s margin constraint,+(1− xt )ψ̄t , whereψ̄t is a’s shadow cost
of capital, and similarly for Equation (16).
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For instance, if a security has a margin requirement of 10%, it can be leveraged
10 to 1. In this case,AMi = 10× α must equal the aggregate shadow cost of
capitalxtψt to make it worthwhile for the agents to use margin equity to hold
this security.

The CAPM can also be written in terms of a mimicking portfolio in place of
the aggregate consumption. Specifically, letq be the portfolio whose return has
the highest possible (instantaneous) correlation with aggregate consumption
growth andqi

t be the weight of asseti in this portfolio. Further, the return beta
of any asseti to portfolioq is denoted byβ i

t , i.e.,

β i
t =

covt

(
d Pq

Pq ,
d Pi

Pi

)

vart
(d Pq

Pq

) . (15)

Proposition 3 (Margin CAPM). Suppose that the margin constraint of agent
a does not bind. The expected excess returnμi

t −r c
t on an underlying asset that

b is long is

μi
t − r c

t = λtβ
i
t + xtψt mi

t , (16)

whereλt is a covariance risk premium. Ifb is short, then the margin term is
negative, i.e.,μi

t − r c
t = λtβ

i
t − xtψt mi

t , and otherwise the required return lies
between the two values.

We next turn to the basis between underlying securities and derivatives. The
optimization problem of the brave agentb implies the following relation for
the basis.

Proposition 4 (Basis). A basis arises whenb’s margin constraint binds and
a’s derivative-trading constraint or margin constraint binds. Depending on the
constraints, the basis is influenced by the difference or sum of margins:

(A. Levered Investor Causing Basis)Suppose that agentb is long security
i and long derivativei ′. Then the required return spreadμi

t − μi ′
t between

securityi and derivativei ′ (the “basis”) depends on the shadow cost of capital
ψ , the securities’ difference in margins,mi

t − mi ′
t , and the difference in their

covariance with the consumption of the brave agentb through

μi
t − μi ′

t =ψt

(
mi

t − mi ′
t

)
+
(
βCb,i

t − βCb,i ′
t

)
. (17)

(B. Levered Investor Reducing Basis)If agentb is longi and short derivative
i ′, then the basis equals

μi
t − μi ′

t =ψt

(
mi

t + mi ′
t

)
+
(
βCb,i

t − βCb,i ′
t

)
. (18)
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This proposition provides useful intuition about the drivers of a basis. Since
a non-zero basis constitutes a failure of the LoOP, all agents must be con-
strained for this to happen in equilibrium. Such a situation obtains when the
risk-tolerant agentb is constrained by his leverage and agenta is constrained
by his limited ability to hold derivatives.

If the risk-averse investor can short only a limited amount of derivatives,
then case A in the proposition arises. In this case, the risk-tolerant investorb
wants to go long both the underlying and the derivative to earn the associated
risk premium. He can get exposure to the derivative with less use of margin
and, therefore, he is willing to accept a smaller return premium on the deriva-
tive. In fact, the basis as measured by the return spread is thedifferencein mar-
gins multiplied by the shadow cost of capital, adjusted for the beta difference.

The second case obtains, for instance, if agenta has a structural need—
for some institutional reason—to hold a long position in the derivative, i.e.,
Ai ′ = {Ai ′ }, whereAi ′ > 0. This creates a demand pressure on the derivative
and, in equilibrium, agentb will do a basis trade, that is, short sell the derivative
and go long the underlying. The basis trade uses margins on both the long
and the short side, and therefore the basis depends on thesumof the margins
mi

t + mi ′
t times the shadow cost of capital.

Proposition4 provides natural empirical predictions that we consider in Sec-
tion 3: First, the basis varies in the time series with the scarcity of funding
ψ , which is related to the interest-rate spread (Proposition1). Second, the
basis varies with margins in the cross-section of bases for the various secu-
rity/derivative pairs.

It is interesting that the returns of the underlying security and its derivative
may have different sensitivities to underlying shocks and, therefore, can have
different covariances with the brave agent’s consumption. The different sen-
sitivities to funding shocks are due to their different margin requirements. In
particular, if a security has a lower margin requirement, then it is less sensitive
to a funding crisis where margin constraints become binding, and it therefore
has a lowerβCb,i ′ , as our calibrated example in Section2.2 illustrates.

Since margins do affect betas in general, however, it is not immediate from
Proposition4 that higher margins increase the required return and, hence,
lower prices. It is nevertheless the case that higher margin requirements trans-
late into lower prices under certain conditions, as we show next.

Proposition 5. If assetsi and j have identical cash flows,i always has a
higher margin requirementmi

t > mj
t , and agentb is long both assets a.e., then

i has a lower pricePi
t ≤ P j

t . The inequality is strict if the margin constraint
binds with positive probability after timet .

This result follows from the fact that the price of a security can be expressed
as the sum of its cash flows discounted using an agent’s marginal utility, and
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its collateral value, which depends monotonically onm. Another way to see
this result is to express the price as the discounted sum of all future cash flows,
where the discount factor depends both on the marginal utility and on mar-
gins (times the shadow cost of capital), so that higher margins imply a larger
discount rate.

2.1 Calculating the equilibrium with many assets
We next consider a simplified economy in which we can compute the equi-
librium directly. This provides further intuition and allows us to calibrate the
economy using realistic macro-economic parameters. The economy has a con-
tinuum of assets, each available in an infinitesimal net supply of 1. The divi-
dend paid by asseti is given by a sharesi of the aggregate dividend,δi = si C,
with

dCt =μCCt dt + σCCt dwt

dsi
t = σ si

si
t dwi

t ,

where the standard Brownian motionsw andwi are independent. The dividend
share is initiated atsi

0 = 1 and is a martingale, since its drift is zero. We appeal
informally to the Law of Large Numbers (LLN) to state Et [si

v | i ∈ I ] = 1,
∀v ≥ t ≥ 0 and for any intervalI ⊆ [0, 1]. In particular, the aggregate
dividend naturally equals E[δi

t |Ct ] = Ct . All the underlying assets have the
same margin requirementmi = m, and there are derivatives in zero net supply
with different marginsmi ′ ≤ m as before. The risk-averse agenta’s derivative-
trading constraint is simple: He cannot participate in any derivative market.

The LLN implies that the idiosyncratic factorssi are not priced and, there-
fore, the price of any underlying securityi is Pi = si P, whereP is the price
of the market, which is the same as in an economy with a single asset pay-
ing dividendC and having marginm. We therefore concentrate on pricing this
market asset.

To calculate an equilibrium, we use the fact that agentb’s consumption is
his discount rateρ times his wealth,Cb = ρWb (as is well known for log-
utility agents). This means that agentb’s consumption as a fraction of the total
consumption,cb = Cb/C, characterizes the wealth distribution and becomes
a convenient state variable to keep track of. Further, “level” variables are linear
in the aggregate consumptionC, since it is a geometric Brownian motion and
utilities are isoelastic. Hence, we are looking for an equilibrium in which the
state is summarized by(C, cb), where stock prices and wealth scale linearly
with C for fixed cb, while interest rates, Sharpe ratios, and volatilities depend
only oncb, and assume throughout that such an equilibrium exists.

The market price is of the formPt = ζ(cb
t )Ct , where the price-dividend ratio

ζ( ∙ ) is a function that we need to determine as the solution to a differential
equation. We provide the details of the analysis in the appendix, and collect the
main results in the following proposition, including the differential equation
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for ζ . To state the proposition, we use the representative agent’s risk aversion
γt and agentb’s relative importancext given above in (12)–(13), as well as the
additional definitions

κ̄ = γ σC (19)

σ̄ = σC +
ζ ′cb

ζ
(κ̄ − σC). (20)

As is clear from the proposition,̄κ is the market Sharpe ratio without margin
constraints and̄σ is the return volatility without margin constraints for the
same values ofcb andζ(∙).7

Proposition 6 (Calculating Equilibrium). The margin constraint binds if
and only if κ̄σ̄ >

1
m or, equivalently, if and only ifκσ >

1
m. The market Sharpe

ratio,κ ≡ μ−r c

σ , and the return volatility,σ , are given by

κ = κ̄ +
x

1 − x

σ̄

1 − ζ ′cb

mζ

(
κ̄

σ̄
−

1

m

)+

(21)

σ = σ̄ −
ζ ′cb

ζ

σ̄

1 − ζ ′cb

mζ

(
κ̄

σ̄
−

1

m

)+

. (22)

The optimal risky-asset allocation of the risk-tolerant agentb is

θb =
κ̄

σ̄
−
(
κ̄

σ̄
−

1

m

)+

, (23)

and his shadow cost of capital,ψ , is

ψ =
σ 2

m

(
κ

σ
−

1

m

)+

. (24)

Finally, the price-to-dividend ratioζ(cb) solves the ordinary differential
equation

0= 1 + ζ
(
μC − r c − γ aσC(1 − cb)−1(σC − cbσθb)

)

+ ζ ′cb
(
r c − ρ + σθbκ − μC − γ a(σθb − σC)

× (1 − cb)−1(σC − cbσθb)
)

+
1

2
ζ ′′(cb)2(σθb − σC)2. (25)

7 Note, however, that in an economy without margins,cb
t has a different distribution for given time-0 endowments

and the functionζ is different.
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This proposition offers a number of interesting insights in addition to illus-
trating the derivation of the equilibrium. First, to understand when the margin
constraint binds, consider the brave agent’s optimal position without margin
constraints: He wants to investμ−r c

σ2 = κ
σ in the risky asset but, since he faces

a margin ofm, he can at most lever up to1m. Hence, he is constrained ifκσ >
1
m.

The margin constraint changes the equilibrium Sharpe ratioκ and volatilityσ
but, nevertheless, the states of nature with binding margin constraints can be
determined simply by looking at whether the agent would be constrained when
the Sharpe ratiōκ and volatilityσ̄ are computed without margins (given the ac-
tual statecb and equilibrium valuation ratioζ ), i.e., κ̄σ̄ >

1
m.

Importantly, Equation (21) shows that, for a given valuecb, the market
Sharpe ratioκ is higher when the constraint binds. This is intuitive because
the constraint prevents the optimal sharing of risk, meaning that the risk-averse
agenta has to be induced, via a higher reward for risk, to take on more risk
than he would absent constraints.

Equation (22), on the other hand, suggests that the volatility decreases with
the introduction of constraints, as long as the price-to-dividend ratio increases
with the importance of agentb.8 The explanation of the result lies in the fact
that, when the constraint binds, agentb takes less risk than he would otherwise,
which makescb, and consequently the P/D ratioζ , less volatile.

Finally, Equation (24) gives the shadow cost of capital,ψ . On one hand, this

shadow cost depends on the distance
(
κ
σ − 1

m

)+
between the unconstrained

and the constrained optima, which increases with the severitym of the margin
constraint. On the other hand, a higherm means that each dollar can be lever-
aged less, reducing the shadow cost of capital. The overall effect ofm onψ is
non-monotonic.

In our calibration, we solve for the functionζ numerically, using as bound-
ary conditions the price-to-dividend ratios that obtain in one-agent models with
cb = 0 andcb = 1. Once the equilibrium price dynamics for the market and
the collateralized-loan rate are thus computed, we calculate the value of the
Lagrange multiplierψ from Equation (24) and the uncollateralized interest
rater u then follows immediately from Proposition1, r u = r c + ψ . The price
of a derivativei ′, Pi ′

t = ζ i ′(cb
t )Ct , is calculated by solving a linear ordinary

differential equation (ODE) for its price-dividend ratioζ i ′ :

Proposition 7. The price-to-dividend ratioζ i ′(cb) for derivativei ′ solves the
differential equation

0= 1 + ζ i ′
(

μC − r c − σθbσC −
mi ′

m
(μ− r c − σθbσ)

)

(26)

8 Since agentb is the less risk averse, this property is intuitively appealing, but it does not obtain generally because
of the non-monotonic effect of aggregate risk aversion (in a constant-relative-risk-aversion world) on the interest
rate.
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+ ζ i ′ ′cb
(
r c − ρ + σθbκ − μC − σθb(σθb − σC)

)

+
1

2
ζ i ′ ′′

(
cb
)2 (

σθb − σC
)2
.

While the general case can be solved only numerically, explicit expressions
for the prices of the underlying assets and agentb’s shadow cost of capitalψ
are available in a particular limit case.

Proposition 8 (Limit Prices and Shadow Cost of Capital). In the limit as
the relative wealth of agentb approaches 0, the price of underlying asseti
approaches

Pi =
Ct

ρ + (γ a − 1)μC − 1
2γ

a(γ a − 1)
(
σC
)2 , (27)

and agentb’s shadow cost of capital approaches

ψ =

(
σC
)2

m

(
γ a −

1

m

)+

. (28)

We can further characterize the basis in the limit:

Proposition 9 (Limit Basis). In the limit as the relative wealth of agentb
approaches 0, the required return spread between the underlying securityi and
a derivativei ′ approaches

μi − μi ′ =ψ(mi − mi ′) (29)

if agentb is long both securities, and

|μi − μi ′ | =ψ(mi + mi ′) (30)

if he is long/short the underlying and the derivative.

This proposition provides a natural benchmark for the basis, namely, a prod-
uct of the shadow cost of capital—which is common for all basis trades—and
the margin use, which is either the difference or the sum of margins. In the
real world, pairs of underlying and derivative securities with large margins
mi +mi ′ also tend to have large margin spreadsmi −mi ′ , so testing the propo-
sition does not rely heavily on knowing whether Equation (29) or (30) applies.
In the empirical section, we compare the basis per margin use for investment-
grade CDS–bond basis with the high-yield CDS–bond basis, relying on the
prediction

μi − μi ′

mi − mi ′
=
μ j − μ j ′

mj − mj ′
. (31)
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Table 1
Parameters used in calibration

μC σC γ a ρ m mmedium mlow

0.03 0.08 8 0.02 0.4 0.3 0.1

2.2 Calibration
We present here a set of quantitative results based on the solution of the model
described above and the parameters in Table1. An advantage of our model is
that all the parameters are easy to relate to real-world quantities, so the inter-
pretation of our assumptions and results is clear.

The aggregate-consumption mean growthμC and its volatilityσC are cho-
sen between those of actual consumption growth and those of actual dividend
growth, since the literature uses these benchmarks. The risk aversionγ a = 8
of agenta is chosen at the high end of what the literature typically views as
the “reasonable” range between 1 and 10, since agenta is the more risk-averse
agent, and the discount rateρ is also at a conventional level. The margin of
each underlying assetm is 40%, and we consider a low-margin derivative with
marginmlow = 10%, a medium-margin derivative withmmedium= 30%, and
a derivative with a margin that varies randomly between 10% and 30% depend-
ing on the state of the economy as described below.

Figures1–4 show different key properties of the model as functions of the
economy’s state variable, namely, the proportion of consumption accruing to
agentb. Since agentb is less risk averse, he is more heavily invested in the
risky asset and therefore loses more following a series of bad shocks. Thus,
the states in whichcb is small are states with “bad” fundamentals.

It is apparent in all three figures that the margin constraint binds if and only
if cb is low enough, more precisely whencb is lower than 0.22. The property
is natural: When agentb is poor, his margin constraint is more binding and his
shadow cost of capital is larger. This is because agenta becomes a larger part
of the market, which increases the market price of risk and therefore increases
the desired leverage of agentb.

Figure 1 shows three interest rates: the interest rate obtaining in the ab-
sence of constraints, and the collateralized and uncollateralized rates obtaining
with constraints. As is seen in the figure, the collateralized interest rate (solid
line) can be substantially lower than the complete-market rate in the bad states,
while the uncollateralized rate can be extremely high, indicating the high value
of capital to agentb. The difference between these rates is the shadow cost of
capital, which can get close to 10%, as in the data that we present in the next
section.

Figure2 plots the return spreads between the underlying security and two
derivatives. The derivatives are distinguished by their different margin require-
ments: One has an intermediate margin requirementmmedium= 30%—lower
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Figure 1
Collateralized and uncollateralized interest rates
This figure shows how interest rates depend on the state of the economy as measured bycb, the fraction of
consumption accruing to the risk-tolerant investor. Low values ofcb correspond to bad states of the economy, and
margin requirements bind forcb ≤ 0.22. The solid line represents the collateralized interest rater c (or Treasury
rate), which drops sharply in bad times. The dashed line represents the uncollateralized inter-bank interest rate
r u. As a frictionless benchmark, the dash-dot line represents the interest rate obtaining in an economy without
any constraints.

than the margin requirement of the underlying asset,m = 40%, but not as
low as the margin requirement on the other derivative, which ismlow = 10%.
We see that the required return spread (or basis) can be up to 1% and 3% for
the two derivatives, respectively, a similar magnitude to the empirically ob-
served bases, and vary depending on the severity of the crisis as captured by a
low cb.

As predicted by the limit result in Equation (29), which can be viewed as
an approximation, the return spread is roughly three times higher for the low-
margin derivative than for the intermediate-margin derivative due to its three-
times-larger margin spread,(m − mlow)/(m − mmedium) = 3.

Another interesting feature of this figure is that the return spread is signif-
icantly above zero even in states where the constraint does not bind (cb >
0.22). The explanation for this outcome lies with the securities’ different be-
tas. Indeed, low-margin securities have a lower loading on the aggregate risk,
βCb,low < βCb,medium < βCb,high. This is because negative fundamental
shocks lead to tightening of margin requirements, thus increasing the margin-
based return premium, which leads to larger price drops for high-margin se-
curities. It is noteworthy that this phenomenon amplifies the return spread and
kicks in even before margin constraints bind.
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Figure 2
Deviations from the law of one price (Basis)
This figure shows the difference between the expected return of an underlying security and a derivative with the
same cash flows and a lower margin. This return spread is depicted as a function of the state of the economy
as measured bycb (where a lowcb is a bad state of the economy). The dotted line represents the return spread
for a low-margin derivativemlow with a high margin spreadmunderlying− mlow = 30%, and the dashed line
represents a medium-margin derivative with a smaller margin spread ofmunderlying− mmedium= 10%.

Similarly, lower-margin securities have lower volatilities9 because they are
less exposed to changes in the shadow cost of capital, i.e., they have less liq-
uidity risk. The ratio of the risk (beta or volatility) of low-margin securities
to high-margin securities is U-shaped. When constraints are far from binding
(largecb), margins have little effect on returns, and the risks of high- and low-
margin securities are similar. For lower values ofcb where constraints become
binding, the risk difference becomes significant, but it eventually goes down
asb-agents are wiped out (cb close to zero).

In addition, the dependence of the sensitivity to aggregate risk on the mar-
gin size also implies that, once the idiosyncratic componentssi are taken into
account, the returns on low-margin securities are less highly correlated than
those on high-margin securities, all else equal. Furthermore, the bases between
underlying-derivative pairs, driven largely by the common shadow cost of cap-
ital, are more correlated with each other than the underlying securities are.

Figure 3 plots the Sharpe ratios (SR) of the underlying in an alternative
economy with no margin constraints, the underlying when there exist margin

9 In various calibrations, we found that higher-margin securities have larger betas and volatilities. We can show
this result in general using Malliavin-calculus techniques, provided that the ratioψ/cb decreases withcb. While
this ratio clearly decreases at bothcb = 0 andcb = sup{c

∣
∣ ψ(c) > 0}, i.e., where the constraint just binds, we

could not prove that it does everywhere.
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Figure 3
Sharpe ratios (SR)
The figure shows how the required SR depends on the state of the economy as measured bycb (where a lowcb

is a bad state of the economy). The solid line represents the SR of the underlying asset with a high margin, the
dashed line represents the SR of a derivative with identical cash flows and a medium margin, and the dotted line
that of a derivative with a low margin. As a frictionless benchmark, the dash-dot line represents the SR obtaining
in an economy without any constraints.

constraints, and of the two derivatives. We see that the SR of the underlying is
higher with the constraint than without it to compensate for the cost of margin
use. The SR of the derivatives is lower than that of the underlying due to their
lower margins.

Finally, Figure4 shows the price premium of derivatives above the price of
the underlying,Pderivative/Phigh − 1. We consider this quantity both for the
low- and medium-margin derivatives as well as for a varying-margin deriva-
tive. The margin of the latter is 10% in “good states,” wherecb ≥ 0.15, and
increases to 30% in “bad states,” wherecb < 0.15. The price premia can be
very large, especially for low-margin securities in bad states of the economy.
Interestingly, the price premia are significant even when the margin constraints
are not binding or even close to being binding. This is because the price reflects
the possibility of future binding margin constraints, and puts a premium on se-
curities with low margins in such states of nature. Since the random-margin
security has a high margin in the worst states, it is priced similarly to the high-
margin security even when its margin is low.

Another way of looking at the price level is to consider how the price-
dividend ratio depends on the state of the economycb. Our calibration yields
the natural outcome, also discussed above in footnote8, that the price-dividend
ratioζ is increasing incb, i.e., higher valuation ratios obtain in good times. (We
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Figure 4
Price premium
The figure shows how the price premium above the price of the underlying depends on the state of the econ-
omy as measured bycb (where a lowcb is a bad state of the economy). Each derivative has the same cash
flows as the underlying, but a lower margin requirement and, therefore, a larger price. The price premium,
Pderivative/Punderlying − 1, is illustrated for a derivative with a low constant margin of 10%, one with a
margin of 30%, and one that has a margin that increases from 10% to 30% in a bad state of the economy with
cb < 0.15. The price premium is especially large for low-margin securities during bad economic times, but is
non-trivial even before margin requirements bind (cb > 0.22) due to the risk of future binding constraints.

omit the graph for brevity.) Conversely, the dividend yield (the reciprocal of the
price-dividend ratio) is lower in good times. In the empirical Section3.1below,
we show that the dividend yield in the stock market is linked to the CDS–bond
basis, consistent with both depending on how constrained the economy is.

3. Empirical Applications

This section applies our model to the CDS–bond basis, the failure of the
covered interest-rate parity, the pricing of the Fed’s lending facilities, and to
quantify the cost of capital requirements.

3.1 The CDS–bond basis
The CDS–bond basis is a measure of the price discrepancy between securities
with nearly identical economic exposures, namely corporate bonds and CDS.
Said simply, the CDS–bond basis is what one can earn by buying a corporate
bond and a CDS that protects against default on the bond.10 Since this package
in principle has no risk if one can hold to maturity (though there are certain

10 Sometimes the CDS–bond basis is reported with the opposite sign. For simplicity, we use a convention that
implies a positive basis during the crisis that started in 2007.

2001



The Review of Financial Studies / v 24 n 6 2011

risks in the real world), the basis reflects a deviation from the LoOP. However,
to earn an arbitrage profit, one must use capital, and during a funding crisis
capital is required to earn excess returns for constrained investors, so this is
consistent with our margin-based asset pricing.

Another way of stating the apparent puzzle is to note that the yield spread
on a corporate bond is higher than the CDS spread. According to our model,
this is because agents can get credit exposure with less use of margin capital
through CDS and, therefore, they are willing to earn a smaller expected return
per notional, but a similar return per use of margin capital.

To understand the difference in margin requirements of corporate bonds and
CDSs, consider a hedge fund that buys a corporate bond. It must naturally use
capital to pay the bond’s price. The hedge fund can borrow using the bond
as collateral, but this uses the hedge fund’s broker’s balance sheet. In light of
our model, all capital use by risk-tolerant agents is costly, so the question is
whether the broker can in turn borrow against the bond from an unconstrained
agent such a cash-rich commercial bank. This can be done only to a limited
extent if the commercial bank does not have experience trading such bonds,
since corporate bonds are illiquid, making the evaluation of their value and
risk potentially difficult. Importantly, the bond’s market illiquidity also means
that it can be difficult, time consuming, and costly to sell the bond during times
of stress.

A CDS, on the other hand, is a derivative with zero present value so it does
not inherently use capital. A hedge fund entering into a CDS must nevertheless
post margin to limit the counterparty risk of the contract. Since the CDS margin
reflects mostly the economic counterparty risk, whereas the corporate-bond
margin additionally reflects its inherent cash usage and market illiquidity, the
corporate-bond margin is larger than the CDS margin. In short, margins on
“funded” underlying assets such as corporate bonds are larger than those of
“unfunded” derivatives.

We test the model’s predictions for (i) the time series of the deviation from
the LoOP; (ii) the cross-section of the LoOP deviations for different pairs of
CDS/bond; and (iii) the time series and cross-section of the risk (measured as
volatility and beta) of the CDSs and bonds. We first describe the data.

Data
We use data on the returns of the CDX index and S&P500 from Bloomberg,
the Merrill Lynch intermediate corporate return indices in excess of the same-
maturity swaps from Merrill Lynch, the average investment grade (IG) and
high-yield (HY) CDS-bond bases from a major broker-dealer, LIBOR and GC
repo rates from Bloomberg, and the average dividend yield of U.S. stocks from
MSCI. Further, we use the Federal Reserve Board’s survey, “Senior Loan Of-
ficer Opinion Survey on Bank Lending Practices,” focusing on the net percent
of respondents tightening their credit standards.
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Figure 5
The CDS–bond basis, the LIBOR-GC repo spread, and credit standards
This figure shows the CDS–bond basis, computed as the yield spread for corporate bonds minus the CDS spread
(adjusted to account for certain differences between CDS and bonds), averaged across high-grade bonds, as well
as the spread between the 3-month uncollateralized LIBOR loans and 3-month general collateral (GC) repo rate,
and the net percent of respondents tightening their credit standards in the Federal Reserve Board’s “Senior Loan
Officer Opinion Survey on Bank Lending Practices.” Consistent with our model’s predictions, tighter credit is
associated with higher interest-rate spreads and a widening of the basis.

Testing the model’s time-series loOP predictions
To consider our model’s time-series predictions, Figure5 shows the average
CDS–bond basis for high-grade bonds, the spread between the three-month
uncollateralized LIBOR loans and three-month GC repo rate, and the Fed’s
survey measure of tightening credit standards.

We see that tighter credit standards (possibly reflecting more binding margin
constraints) are associated with higher interest-rate spreads and a widening
of the basis, consistent with our model’s predictions. The link between the
interest-rate spread and the basis, in particular, is related to Propositions4 and
9, which describe the dependence of the basis on the shadow cost of capital,
and Proposition1, linking the cost of capital to the interest-rate spread.

We test these predictions more formally in Table2. In particular, Panel A
reports time-series regressions of the CDS–bond basis on, respectively, the T-
bill–Eurodollar (TED) spread, the credit standards, and the average dividend
yield of U.S. stocks. The dividend yield is the dividend of stocks, divided by
their price, and it can be viewed as a measure of required returns. Specifically,
in our calibration in Section2.2, a high dividend is associated with a poor
state of the economy where constraints are binding and deviations of the LoOP
occur. We include the dividend yield to address an additional prediction of
the model, namely that the funding frictions affect required returns broadly,
including in the stock markets.

We run these univariate regressions for the average basis both among IG
securities and among HY securities. We see that both the IG and HY bases
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Table 2
Time–series relation between CDS–bond basis and measures on liquidity and risk premia

Panel A: Regressions inLevels. Dependent Variable: CDS-Bond Basis.
Investment Grade High Yield

coefficient t-statistic R2 coefficient t-statistic R2

TED spread 0.54 4.62 26% 0.86 3.78 19%
Credit standards 0.02 13.60 75% 0.03 11.11 67%
Dividend yield 1.62 21.03 88% 2.95 17.34 83%

Panel B: Regressions inChanges.Dependent Variable: CDS-Bond Basis.
Investment Grade High Yield

coefficient t-statistic R2 coefficient t-statistic R2

TED spread 0.42 4.35 42% 0.72 4.32 33%
Credit standards 0.02 4.12 47% 0.03 3.17 35%
Dividend yield 1.06 3.83 23% 2.37 5.99 39%

The table reports univariate regressions of the CDS–bond basis on, respectively, the TED-spread (proxying
for funding illiquidity) and the dividend yield of U.S. stocks as reported by MSCI (proxying for risk premia),
monthly from 2005 to 2009, and the tightening credit standards from Federal Reserve Board’s survey, which
is available quarterly. We run these regressions separately for the average basis among investment-grade and
high-yield bonds, and separately for the levels of these variables (Panel A) and the monthly changes of the
variables (Panel B), except the credit standards, which is run quarterly. To account for the potential bias due to
stale prices in the monthly regression of changes, we include a lagged value of the explanatory variable (Dimson
1979),basist = α+ β1xt + β2xt−1 + εt . We report the bias-corrected estimate,β1 + β2. The coefficient of the
intercept is not reported.

load significantly on the first two measures of funding illiquidity as well as on
the dividend yield, as predicted by the model. The credit standard has anR2

as high as 75% for IG and 67% for HY, and the dividend yield has the highest
R2, in excess of 80% for both IG and HY. While consistent with the model, it
is surprising that the deviations from the LoOP in the credit markets appear so
closely linked not only to the funding markets, but even to the stock market.

While these results formalize the connection between the bases and the fund-
ing measures that is visually clear in Figure5, there can be severe biases in
connection with regressions of persistence variables such as these. Running
the regression in changes has better small-sample properties, as changes are
more stationary and, effectively, the sample has more independent observa-
tions. Panel B of Table2 reports the regressions in changes. To account for the
potential bias due to non-synchronous trading (i.e., stale prices) in the monthly
regression of changes,11 we include a lagged value of the explanatory variable
(following Dimson 1979and many others),

basist = α + β1xt + β2xt−1 + εt .

We then report the biased-adjusted slope coefficientβ1 + β2 and itst-statistic,
estimated using the asymptotic variance-covariance matrix of (β1, β2). We see
that the coefficients remain highly significant for all the explanatory variables

11 As is standard, we do not add a lagged variable in regressions in levels, since this introduces colinearity problems,
and non-synchronous trading has little effect on the regression in levels.
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and for both the IG and HY bases. The changes of the explanatory variables
continue to have a high degree of explanatory power, withR2 values ranging
from 23% to 47%.

The model’s prediction regarding the relation between the magnitude of the
interest-rate spread and the magnitude of the basis is rejected in the data, if
LIBOR is the true uncollateralized interest rate. Proposition9 predicts that
the basis is the shadow cost of capital multiplied by a number less than 1, and
Proposition1 that the shadow cost of capital is equal to the interest-rate spread.
However, the basis is in fact higher than the interest-rate spread at the end of the
sample. This happens, most likely, because the financial institutions’ shadow
cost of capital is larger than the LIBOR spread, for a couple of reasons: The
Fed keeps the LIBOR down (see next section), many arbitrageurs (e.g., hedge
funds) cannot borrow at LIBOR, and even those that can borrow at LIBOR
cannot use a LIBOR loan to increase their trading, as they must limit their
leverage.

Testing the model’s cross-sectional loOP predictions
We next test the model’s cross-sectional predictions for the deviation from the
LoOP. For this, we compare the basis of IG bonds with that of HY bonds,
as seen in Figure6. To facilitate the comparison in light of our model, we

Figure 6
Investment grade (IG) and high yield (HY) CDS–bond bases, adjusted for their margins
This figure shows the CDS–bond basis, computed as the yield spread for corporate bonds minus the CDS spread
(adjusted to account for certain differences between CDS and bonds), averaged across IG and HY bonds, respec-
tively. Our model predicts that the basis should line up in the cross-section according to the margin differences.
Since IG corporate bonds have a margin around 25% and IG CDS have margins around 5%, the IG margin
differential is 20%. Hence, the adjusted IG basis is basis/0.20. Similarly, we estimate that the HY margin dif-
ferential is around 50% so the HY adjusted basis is basis/0.50. We adjust the level of each series by subtracting
the average during the first two years, 2005–2006, when credit was easy so margin effects played a small role.
Consistent with the idea that the expected profit per margin use is constant in the cross-section, we see that the
adjusted bases track each other.
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adjust the bases for their relative margin spreads. Since IG corporate bonds
have a margin around 25% and IG CDSs have margins around 5%, the IG
margin differential is 20%. Hence, the adjusted IG basis is basis/0.20. Similarly,
we estimate that the HY margin differential is around 50%, so the HY ad-
justed basis is basis/0.50. These margin rates are based on a broker’s estimates,
which are subject to a substantial amount of uncertainty, since margins are
opaque and vary between brokers and clients and over time. Propositions4
and9 predict that the bases adjusted for margins in this way should line up
in the cross-section so that the expected profit per margin use is constant in
the cross-section. Figure6 shows that the adjusted bases track each other quite
closely.

We test the statistical significance of this cross-sectional relation in Table3.
Panel A shows the regression of the HY basis on the IG basis, both in levels and
in changes. For the change regression, we adjust for nonsynchronous prices as
described above and have the IG basis on the right-hand side, as it is based on
the more liquid instruments. We see that the close connection between IG and
HY bases is highly statistically significant.

To further test the model’s cross-sectional predictions, Panel B reports the
following. First, we estimate the slope of the cross-sectional required return-
margin curve at each point in time. Specifically, each month, we regress the
two bases on the IG and HY margin differences (0.2, 0.5):

basisi = slope× (mi,bond − mi,C DS)+ εi . (32)

Table 3
Cross-sectional relation between IG and HY bases

Panel A: Regressing the high-yield basis on the investment-grade basis.
coefficient t-statistic R2

Levels
IG basis, levels 1.79 25.53 91%

Changes
IG basis, changes 1.42 8.27 64%

Panel B: Regressing the slope of the margin-return curve on explanatory variables.
coefficient t-statistic R2

Levels
TED spread 1.86 3.95 20%
Credit standards 0.07 11.71 69%
Dividend yield 6.19 18.61 85%

Changes
TED spread 1.53 4.54 37%
Credit standards 0.07 3.39 38%
Dividend yield 4.81 5.78 38%

Panel A reports the regression of the high-yield (HY) CDS–bond basis on the investment-grade (IG) CDS–bond
basis. We note that the IG securities are more liquid and, to account for the potential effect of stale prices in the
regression of changes, we include a lagged value of the explanatory variable (Dimson 1979),basisHY

t = α +

β1basisI G
t + β2basisI G

t−1 + εt . We report the bias-corrected estimate,β1 + β2. In Panel B, we first estimate the
slope of the cross-sectional required return-margin relation at any time. We do this by regressing the two bases
on the two corresponding margin differences (0.20, 0.50). We then regress this slope (which measures funding
illiquidity according to the model) on the three explanatory variables described in Table 2.
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Table 4
Volatility of CDS vs. bonds

Investment Grade High Yield

CDS Bonds CDS Bonds

Early sample 0.57% 0.51% 3.73% 2.76%
Crisis 3.92% 10.26% 17.19% 20.87%

Full sample 3.02% 7.83% 13.31% 16.01%

The table shows the annualized return volatility of CDSs and bonds estimated over, respectively, the early pre-
crisis sample (9/2005–6/2007), the crisis sample (7/2007–12/2009), and the full sample. The table reports this
separately for investment-grade and high-yield securities. In both cases, CDSs and bonds are about equally
volatile in the early sample, but bonds are more volatile during the crisis, consistent with the model’s predictions
that high-margin bonds have more funding liquidity risk.

This produces an estimate of theslopeat each time, that is, the return com-
pensation per unit of margin capital. (We get similar results if we include a
constant term.) According to the model, this margin-returnslopecaptures the
shadow cost of capitalψ (Propositions4 and9). Since the model also links
ψ to interest-rate spreads, credit tightness, and risk premia, we regress the es-
timated return-margin slope on such measures in Panel B. We see that all the
variables are statistically significant both in levels and in changes and that their
explanatory power is large.

Testing the model’s predictions for liquidity risk
The model predicts that when margin constraints are not binding, securities
with similar fundamental risk should have similar volatilities and market be-
tas, even if their margin requirements are different. In times of (near-)binding
constraints, however, securities with high margins should have larger volatili-
ties and betas, as seen in Section2.2. Indeed, high-margin securities have more
funding-liquidity risk because their large use of capital makes them sensitive
to changes in the tightness of capital constraints.

To test these model predictions on how margin requirements affect liquidity
risk, Tables4 and5 consider the volatilities and market betas of CDSs and
corporate bonds, in the early sample before the crisis (9/2005–6/2007), the
crisis sample (7/2007–12/2009), and the full sample. We estimate betas relative
to the U.S. stock market as proxied by the S&P 500 index, and we use the
returns of the CDX and the Merrill Lynch intermediate corporate return index
in excess of the same-maturity swaps.

The model’s predictions are borne out in the data. Tables4 and5 show that
CDSs and bonds indeed have similar volatilities and betas in the pre-crisis
sample. If anything, corporate bonds have slightly lower volatilities and betas.
During the crisis sample, however, the high-margin corporate bonds have much
larger volatilities and betas than the low-margin CDSs. We see that this pattern
is consistent across investment-grade and high-yield securities. The volatilities
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Table 5
Betas of CDS vs. bonds

Panel A: Betas estimated separately for CDS on Bonds
Investment Grade High Yield

CDS Bonds CDS Bonds

Early sample 0.05 −0.01 0.35 0.22
(stand, err.) (0.01) (0.02) (0.09) (0.08)

Crisis 0.13 0.29 0.56 0.73
(stand, err.) (0.02) (0.07) (0.10) (0.12)

Full sample 0.12 0.26 0.54 0.69
(stand, err.) (0.02) (0.05) (0.08) (0.09)

Panel B: Panel regression with CDS and bonds
r i
t = α + ᾱ ∙ 1[i =bond] + βr M K T

t + β̄r M K T
t ∙ 1[i =bond] + εi

t

Investment Grade High Yield

MKT 0.12 0.54
(t-statistic) (3.17) (6.48)

MKT* 1 (Bond) 0.14 0.15
(t-statistic) (2.60) (1.28)

Panel A shows the market betas of CDS and bond returns estimated over, respectively, the early pre-crisis sample
(9/2005–6/2007), the crisis sample (7/2007–12/2009), and the full sample. The table reports this separately for
investment-grade and high-yield securities. In both cases, bonds have slightly lower betas in the early sample,
but bonds have larger betas during the crisis, consistent with the model’s predictions that high-margin bonds
have more funding liquidity risk. Panel B shows the statistical significance of the difference between CDSs and
bonds using a panel regression.

are estimated with precision (the standard errors of these numbers are a few
percentage points), and the difference between bonds and CDSs is significant
(not reported for brevity). The difference between the bond and CDS betas is
tested in Panel B of Table5, and we see that the difference is significant for IG
securities.

3.2 Effects of monetary policy and lending facilities
The Federal Reserve has tried to alleviate the financial sector’s funding cri-
sis by instituting various lending facilities. These programs include the Term
Auction Facility (TAF), the Term Securities Lending Facility (TSLF), the Term
Asset-Backed Securities Loan Facility (TALF), and several other programs.12

The TAF was instituted in December 2007 in response to the “pressures in
short-term funding markets.” With the TAF, the Fed auctions collateralized
loans to depository institutions at favorable margin requirements with 28-day
or 84-day maturity.

As the crisis escalated, the Fed announced on March 11, 2008, the TSLF,
which offers Treasury collateral to primary dealers in exchange for other
program-eligible collateral, such as mortgage bonds and other IG securities for
28 days. Since this is an exchange of low-margin securities for higher-margin
securities, it also improves the participating financial institutions’

12 We thank Adam Ashcraft, Tobias Adrian, and participants in the Liquidity Working Group at the New York Fed
for helpful discussions on these programs.
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funding condition. By exchanging a mortgage bond for a Treasury and then
borrowing against the Treasury, the dealer effectively has its margin on mort-
gage bonds reduced.

The Federal Reserve announced the additional creation of the TALF on
November 25, 2008. The TALF issues nonrecourse loans with terms up to
three years of eligible asset-backed securities (ABS) backed by such things
as student loans, auto loans, credit card loans, and loans relating to business
equipment. The TALF is offered to a wide set of borrowers, not just banks (but
the borrowers must sign up with a primary dealer, which creates an additional
layer of frictions).

These programs share the feature that the Fed offers lower margins than are
otherwise available in order to improve the funding of owners or buyers of
various securities. This improves the funding condition of the financial sector
and, importantly, makes the affected securities more attractive than they would
be otherwise. Indeed, the goal of the TALF is to “help market participants meet
the credit needs of households and small businesses by supporting the issuance
of asset-backed securities.”13

In terms of our model, this can be understood as follows. The Fed offers a
marginmi,Fed for securityi , say, a student-loan ABS, which is lower than the
prevailing margin,mFed,i < mi . This lowers the required return of a derivative
security:

E(r i,Fed)− E(r i,no Fed)= (mFed,i − mi )ψ Fed + (ψ Fed − ψnoFed)mi

+ (β i,Fed − β i,noFed) < 0. (33)

Said differently, the Fed program increases the affected security’s price (Propo-
sition5). Hence, this ABS can be issued at an increased price, which makes the
market more viable, given the inability of, say, students, to pay a high interest
rate.

Ashcraft, Ĝarleanu, and Pedersen(2010) provide survey evidence from
financial institutions to see how their bid prices for various securities depend on
the financing that the Fed would offer. The surveyed bid price increases as the
Fed reduces its offered margin, consistent with our model. For instance, the
surveyed bid price of a super senior collateralized mortgage-backed security
(CMBS) tranche with an expected life of seven years with no Fed financing is
$57, but increases to $92.5 with maturity matched financing with a low margin,
a very large asset-pricing effect. Similarly, the bid price of a tranche with 2.5
years of expected life increases from $84 with no financing to $92 with financ-
ing with a low margin. This corresponds roughly to an annualized decrease in
expected return of 3.5%.

Let us consider this number in the context of our model. If the shadow cost
of capital is around 10%, as implied by the IG and HY CDS–bond bases at the

13 See http://www.newyorkfed.org/markets/talf operations.html.
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height of the liquidity crisis, and CMBS tranches are derivatives only held by
the risk-tolerant investor, then the key first term in Equation (33) implies an
effect of 3.5% if the Fed improves the margin terms by 35 percentage points,
so the model-implied effect is in the right neighborhood.

Ashcraft, Ĝarleanu, and Pedersen(2010) also provide evidence that the
TALF lending facility had an impact on the market prices of CMBS bonds
in a way that is consistent with our model.

3.3 Failure of the covered interest-rate parity and the fed’s liquidity
swap lines

While textbooks on international finance acknowledge the failure of the un-
covered interest-rate parity, the covered interest-rate parity is often taken to
hold by definition, since arbitrage should enforce the LoOP. The CIP says that
if the local interest rate isr , the foreign interest rate isr ∗, the spot exchange
rate ise, and the forward exchange rate that can be locked in now isf , then
1+ r = f/e(1+ r ∗). That is, putting the money in the local bank earns 1+ r ,
which should be the same as exchanging a dollar for 1/e units of foreign cur-
rency, earning 1+ r ∗ abroad, and guaranteeing to exchange the money back at
the rate off to get f/e(1 + r ∗).

This parity has nevertheless failed due to supply and demand imbalances in
the forward market and because it requires capital (margin) to trade to profit
from deviations from parity. To understand the background of this surprising
effect, recall first that the funding problems of financial institutions in the crisis
of 2007–2009 quickly spread globally. Banks in many countries had funding
problems both in their local currency and in U.S. dollars, perhaps because
many transactions are done in dollars.

To facilitate dollar funding for foreign banks, the Fed authorized temporary
reciprocal currency arrangements called “central bank liquidity swap lines” on
December 12, 2007 (Coffey, Hrung, Nguyen, and Sarkar 2009). Through these
swap lines, the Fed lent dollars to foreign central banks, which in turn lent
these dollars to their local banks.

Despite this effort, parity has been violated as a clear sign that the currency
arbitrageurs’ margin requirements are binding, as seen in Figure7. The fig-
ure further shows that the time-series pattern of the deviation tracks the TED
spread in the 2007–2009 crisis and in the liquidity crisis of 1998 (involving
Long-Term Capital Management, among other events). This co-movement is
highly statistically significant both in levels and in monthly changes (regres-
sions are not shown for brevity).

3.4 Quantifying the cost of capital requirements: Incentives for
regulatory arbitrage

We can also use our model to quantify the shadow cost of Basel capital require-
ments in order to help understand the banks’ incentives to perform “regulatory
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Figure 7
Average deviation from covered interest-rate parity and the TED spread
This figure shows the average absolute deviation from the covered interest-rate parity for the Euro, Yen, and
British Pound, as well as the TED spread, which is the 3-month uncollateralized LIBOR rate minus the 3-month
T-bill rate. The magnitude of the deviation from the CIP tracks the TED spread in the time series consistent with
the model’s prediction that the shadow cost of funding liquidity due to binding margins drives both effects.

arbitrage” by moving assets off their balance sheets and tilting their portfolios
toward AAA securities with low regulatory capital requirements.

For this, we note that the Basel requirement has a similar form to the margin
requirement. It can loosely be captured by a similar equation to our model’s
margin requirement (seeBrunnermeier and Pedersen 2009):

∑

i

mReg,i |θ i | ≤ 1, (34)

whereθ i is the fraction of wealth in securityi as before andmReg,i is the
regulatory capital requirement (8% times a risk weight under some rules).

When the prevailing margins are low, the regulatory requirement may be
more binding than the funding-based margin requirement. In this case, the
marginmi in our pricing formula is replaced by the regulatory requirement
in Equation (34). Hence, a bank’s required return increases in the regulatory
capital requirement multiplied by the shadow cost of capital,ψmReg,i . If the
shadow cost of regulatory capital is 1% and a bank can move off balance sheet
an asset with risk weight of 100%, then its required return for that asset is
reduced by 1%× 8%× 100%= 80 basis points.

4. Conclusion

We derive a tractable general-equilibrium asset-pricing model that accounts
explicitly for the pricing of margins. The model captures several of the salient

2011



The Review of Financial Studies / v 24 n 6 2011

features of the recent and past liquidity crises: A negative fundamental shock
leads to losses for leveraged agents, including the financial sector; these agents
face funding problems as they hit margin constraints; and the binding con-
straints lead to drops in Treasury rates and GC interest rates, to spikes in
interest-rate spreads, risk premia, and the pricing of margins, and to bases (or
price gaps) between securities with identical cash flows but different margins.

We illustrate the model through a calibration, test it empirically using the
CDS–bond basis and the failure of the covered interest-rate parity, and show
how the model-implied cost of capital requirements quantifies the banks’ in-
centives to use off-balance-sheet vehicles. Finally, we estimate the effect of
the Fed’s lending facilities, which is helpful in evaluating the unconventional
monetary policy tools used during liquidity crises.

Appendix

A Linear and nonlinear margin constraints
We consider a nonlinear margin requirement, given in Equation (7), that depends on the absolute
value of the position|θ i |. Hence, both long (θ i > 0) and short (θ i < 0) positions make the
constraint tighter, i.e., both long and short positions use capital. It is interesting to compare this
with a linear constraint sometimes assumed in the literature:

∑

i

mi
t θ

i + ηu ≤ 1. (A.1)

While such a linear constraint is simpler to handle mathematically, it precludes the bases that are
central to our study:

Proposition 10. If agents face only linear margin requirements (A.1) and at least one deriva-

tive exists withmi ′ < mi , then any equilibrium is as if there were no margin constraints at all and
there can be no deviations from the Law of One Price in equilibrium; that is, the basis is always
zero.

Proof of Proposition 10. For any asset allocations of the two agents, the linear margin constraint
is slack “in the aggregate”:

Wa
t

∑

j

mj
t θ

j,a
t + Wb

t

∑

j

mj
t θ

j,b
t < Wa

t + Wb
t . (A.2)

This means that the linear margin constraint must be slack for at least one of the agents, who is
therefore not constrained at timet .

Suppose now that on a non-zero-measure set there fails to exist a market-price-of-risk process,

i.e., a processκ taking values inRN such thatσ j
t κt = μ

j
t − r c

t for all securitiesj . Then one of
the two agents can trade on a non-zero-measure set to make riskless strictly positive (although
bounded) profits—i.e., a zero-value portfolioη exists whose volatility is zero and that has strictly
positive drift. This contradicts the notion of equilibrium. Consequently, a market-price-of-risk
process exists. It follows, under technical integrability conditions, that an equivalent martingale
measure, defined by the stochastic exponential of this process, also exists, so that assets with
identical cash flows have identical payoffs. (SeeDuffie 2001, Chapter 6, Section G.)
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Finally, consider two securities,i and j , with identical cash flows and prices but different

margin constraints:mi
t > mj

t on some set. If any agent is constrained whenmi
t > mj

t , then
she can relax her constraint by going longn shares of assetj and shortn shares of asseti : The
trade has no cash-flow implications and makes the constraint slack. Forn low enough, the other
agent’s margin constraints remain slack due to (A.2), and therefore both agents are unconstrained,
while their consumption processes remain the same. (Alternatively, we can note that the CAPM
relationshipμi

t − r c
t = βg, j + ψ

g
t mi

t impliesψg
t = 0 for both agentsg ∈ {a, b}.) �

B Proofs
Proof of Propositions1 and 4. These proofs are in the body of the article. �

Rather than offering a proof to the special Proposition2, we state and prove its general ver-
sion. To this end, we define the risk-tolerance fraction due to agenta by x̄t = 1−xt . We recall that
ψ is agentb’s shadow cost of funding, and we denotea’s shadow cost of funding bȳψ . Finally,
yi indicates whetherb is long (yi

t = 1), is short (yi
t = −1), or has no position (yi

t ∈ [−1, 1]) in
an asset, and similarlȳyi indicates the sign ofa’s position.
Proposition 2′ (Margin CCAPM). The expected excess returnμi

t − r c
t on an underlying asset

is given by the standard consumption CAPM adjusted for funding costs:

μi
t − r c

t = γtβ
C,i
t + λm,i

t mi
t , (B.1)

where the funding cost is the product of the margin requirement and the margin premium:

λm,i
t = x̄t ψ̄t ȳi

t + xtψt yi
t . (B.2)

�
Proof of Proposition 2′. To understand the idea of the proof, suppose first that agenta’s margin
constraint never binds, so that he is (locally) unconstrained in his investment in the underlying
assets. Consequently, deflating the gains process of any of these securities using his marginal
utility process yields a local martingale. Specifically, agenta’s marginal utility, which we denote
by ξt , is given by

ξt = e−ρt (Ca)−γ
a
. (B.3)

Further, we denote its drift and volatility byμξt andσξt :

dξt = ξt

(
μ
ξ
t dt + σ

ξ
t dwt

)
, (B.4)

and It̂o’s Lemma shows that
σξ = −γ aσCa

. (B.5)

The discounted value of the price and accumulated dividends,

Pt ξt +
∫ t

0
Csξs ds, (B.6)

is a local martingale, so it has zero drift:

0 = δit + Pi
t μ

ξ
t + Pi

t μ
i
t − δit + Pi

t σ
i
t

(
σ
ξ
t

)>
. (B.7)

Sinceξ prices the risk-free collateralized lending, it holds that

μ
ξ
t = −r c

t . (B.8)

Combining Equations (B.5), (B.7), and (B.8) gives agenta’s key pricing equation:

μi − r c = γ aβCa,i . (B.9)
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Recall also agentb’s pricing equation:

μi − r c = βCb,i + yiψmi . (B.10)

Multiplying Equations (B.9) and (B.10) by (γ a)−1Ca andCb, respectively, and adding the results
gives

(μi − r c)

(
Ca

γ a + Cb
)

= CβC,i + Cbyiψmi ,

which is equivalent to (14).
The general proof of this proposition involves characterizing the optimal portfolio choice of

an arbitrary agent with utility functionu who faces convex portfolio constraints and redundant
assets. The steps are the following:

Step 1.Construct a family of fictitious economies in which there are no redundant securities
(derivatives) and where the drifts of asset prices and the (collateralized) interest rate are given, for
ν ∈ RN , by

μi,ν = μi + νi + h(ν)

r c,ν = r c + h(ν),

which are to be explained shortly. For ease of exposition, define alsoκν = σ−1(μ+ ν− r c) to be
the market price of risk for the underlying securities in the fictitious market and let

νi ′,ν = σ i ′κν + r c − μi ′

for all derivativesi ′. Definingμi ′,ν analogously toμi,ν would mean that there would be no arbi-
trage opportunity in the fictitious market even if the redundant securities were traded.

For anyν ∈ RN , the functionh is defined as

h(ν) = sup





−




∑

i

θ i νi +
∑

i ′
θ i ′νi ′,ν




∣
∣ θ ∈ K






= sup





−




∑

i

θ i νi +
∑

i ′
θ i ′σ i ′σ−1ν



+

∑

i ′
θ i ′
(
(μi ′ − r c)− σ i ′κ0

) ∣
∣ θ ∈ K





.

The functionh(ν) captures both the shadow value of capital and the increase in the interest rate
that an agent would have to be offered in a world without redundant securities in order to achieve
the same utility as when arbitrage opportunities are available to him. The first term in the last
expression above represents the total additional return due to the higher drifts in the fictitious
economy, while the second represents the arbitrage gains. Note that, sinceK is bounded,h takes
finite values onRN .

The fictitious economies are constructed so that any consumption feasible in the original,
constrained economy starting with a certain wealth is also feasible in each of these economies—
because available returns are at least as high. By including all such economies, it also follows
that there is one among them in which the optimal portfolio and consumption choices satisfy the
original constraints.

Step 2.For any consumption plan, the trading strategy{φi }i that attains it at the highest cost
(initial wealth) among the optimal strategies in all fictitious economies is equivalent, in terms
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of risk exposure, to a strategy
(
{θ i }i , {θ i ′ }i

′
)

that finances the consumption plan at the same

cost and satisfies the constraints in the original economy. This is the new step relative to the
literature.

To prove this statement, followCvitaníc and Karatzas(1993) to define the maximum cost of
(super-)replicating the consumption plan among all fictitious economies, from any timeτ onward:

Vτ ≡ sup
ν

Eν
[∫ T

τ
e−

∫ T
t r c,ν

s dsct dt

]

,

whereEν is the equivalent martingale measure in the market defined byν, given by the state-price
deflatorξν , which is defined byξν(0) = 1 and

dξνt = −ξνt
(
r c,νdt +

(
κν
)> d Bt

)
.

It follows that

Mν
t ≡ Vt e

∫ t
0 r c,ν

s ds

is a supermartingale, so that it can be decomposed as

Mν
t = V0 +

∫ t

0
φνs dwνs − Bνt , (B.11)

with Bνt an increasing process andwν a Brownian motion. ComparingMν with M0 identifiesφν

as being independent ofν—let’s denote it byφ—and it also implies

∫ t

0
e
∫ s
0 r c,ν
v dvd Bνs −

∫ t

0
e
∫ s
0 r c,ν
v dvVs

(
h(νs)+ ν>

s φ
)

ds=
∫ t

0
e
∫ s
0 r c
v dvd B0

s . (B.12)

We claim that, since the right-hand side of (B.12) is increasing,φ is equivalent to a strategy
θ ∈ K . Indeed, suppose that this is not the case. The strategies in the original market that are risk
equivalent toφ areθ = (θ̂ , θ̃ ), such that

φ = θ̂ +
(
σ−1

)>
σ̃>θ̃ ,

where σ̃ is the matrix of volatility vectors of the redundant securities. If the affine spaceΘφ

consisting of all suchθ does not intersect the compact convex setK , then it is separated from it
by a hyperplane, i.e., there exist a vectorv andε > 0 such that

v>θ − v>θK ≥ ε

for all θ ∈ Θφ andθK ∈ K . Note thatv is orthogonal toΘφ , i.e., v>(θ1 − θ2) = 0 for all
θ1, θ2 ∈ Θφ . In fact, v>θ = v>(φ, 0) onΘφ , andv> is a linear combination of the rows of

(IN ,
(
σ−1

)>
σ̃>):

v> = v̂>(IN ,
(
σ−1

)>
σ̃>)

for somev̂ ∈ RN .
Note now that

h(ν) = sup





−ν>

(
θ̂ +

(
σ−1

)>
σ̃>θ̃

)
+
∑

i ′
θ i ′
((
σ i ′
)>

κ0 − (μi ′ − r c)

) ∣
∣
(
θ̂ , θ̃

)
∈ K





.
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Let ν = Rv̂ for some (large) scalarR, and note also that

h(ν)+ ν>φ ≥ sup

{
−ν>

(
θ̂ +

(
σ−1

)>
σ̃>θ̃

) ∣
∣
(
θ̂ , θ̃

)
∈ K

}
+ ν>φ +

sup






∑

i ′
θ i ′
(
(μi ′ − r c)− σ i ′κ0

) ∣
∣
(
θ̂ , θ̃

)
∈ K






≥ sup

{
−Rv̂>

(
I ,
(
σ−1

)>
σ̃>

)
θ
∣
∣ θ ∈ K

}
+ Rv>(φ, 0)+ D

≥ Rε + D,

where|D| < ∞ becauseK is bounded.
Thus, ifΘφ ∩ K = ∅, thenh(ν) + ν>φ can be made arbitrarily large, and consequently

the left-, and therefore right-hand, side of (B.12) can be made decreasing, which would be a
contradiction.

Step 3.The optimal consumption in the original economy is therefore optimal in one of the
fictitious, unconstrained economies. Consequently, the marginal utility of the agent is proportional
to ξν , giving

u′′(Cg)

u′(Cg)
CgσCg

= σ−1(μ− r c + ν),

or

μi − r c = γβCg,i − νi . (B.13)

Step 4.Forν that defines the constrained optimum, the optimalθ attains the supremum in the
definition ofh(ν). The characterization ofν then comes down to a simple linear optimization over
a convex set.

Suppose, for instance, thatθ1 > 0, which impliesν1 ≤ 0, and letψ = − ν1

m1 .14 If θ2 > 0

and, say,ν
2

m2 > −ψ , decreasingθ2 by m1ε and increasingθ1 by m2ε preserves the constraints

but increases the objective by
(
ν2

m2 + ψ
)

m1ε > 0. Thus, ν
i

mi = −ψ wheneverθ i > 0, so that

(B.13) becomes

μi − r c = γβCg,i + ψmi . (B.14)

All other cases are treated similarly. Note also thath(ν) = ψ .

As for the derivatives, from the definition ofνi ′ we have the relationship

μi ′ − r c = σ i ′σ−1(μ+ ν − r c)− νi ′

= γβCg,i ′ − νi ′ .

Therefore, the treatment of the derivative is the same as that of any underlying asset as long
as the derivative position is not bound by a different constraint, which is entirely natural. If the

derivative positions are constrained by other constraints, then the form of the “shadow returns”νi ′

is different. �
The next result is the general form of Proposition3.

Proposition 3′ [Margin CAPM]. The expected excess returnμi
t − r c

t on an underlying asset is

given by the standard CAPM adjusted for funding costs based on the margins mi
t :

μi
t − r c

t = λ
β
t β

i
t + λm,i

t mi
t , (B.15)

14 RememberK = {θ |
∑

i |θ i |mi ≤ 1}.
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whereλβt = μ
q
t − r c

t −
∑

j q j
t λ

m, j
t mj

t is a covariance risk premium and the margin premium

λm,i is defined in Proposition2′. �
Proof of Proposition 3′. The definition of the portfolioq implies that

dCt

Ct
= Qt

d Pq
t

Pq
t

+ dzt

for some processQ and Brownian motionz with covt (d Pi , dz) = 0 for all i . Proposition2
therefore implies that

μi
t − r c

t − λm,i
t mi

t = Qt covt

(
d Pq

t

Pq
t
,

d Pi
t

Pi
t

)

. (B.16)

Multiplying this equation byqi
t and summing over alli yields

μ
q
t − r c

t −
∑

i

qi
t λ

m,i
t mi

t = Qt vart

(
d Pq

t

Pq
t

)

. (B.17)

Equations (B.16) and (B.17) immediately give the proposition. �
Proof of Proposition 5. Write the agent’s objective as

E
∫ ∞

t
e−ρs



u(Cg
s )− λs




∑

j

|Wsθ
j

s |mj
s + Wsη

u
s − Ws







 ds,

whereλ is a Lagrange multiplier. (In the case of agentb, the HJB equation showsλ to equal
(ρW)−1ψ .) The agent acts as if unconstrained, provided thatλ is chosen appropriately.

Suppose that the agent invests inε more shares of asseti , borrowing at the collateralized rate
to do so. The agent adjusts consumption to absorb both the dividends and the interest expense.
Note that the only terms entering the constraint affected by this deviation are|Wsθ

i
s| and Ws.

Letting ε tend to zero, the gain in utility is proportional to

sign(ε)Et

∫ ∞

t
e−ρs

(
u

′
(Cg

s )(δ
i
s − r c

s Pi
t )− λs

(
ỹsPi

smi
s − (Pi

s − Pi
t )
))

ds

= sign(ε)Et

∫ ∞

t
e−ρs

(
u

′
(Cg

s )(δ
i
s − r c

s Pi
t )− λsPi

t + Pi
sλs

(
1 − ỹsmi

s

))
ds,

whereỹs = 1 if θ i
s > 0, ỹs = −1 if θ i

s < 0, andỹs = sign(ε) if θ i = 0. Since the deviation must
(weakly) reduce utility regardless of the sign ofε, it follows that

Pi
t Et

∫ ∞

t
e−ρs

(
u

′
(Cg

s )r
c
s + λs

)
ds = Et

∫ ∞

t
e−ρs

(
u

′
(Cg

s )δ
i
s + Pi

sλs

(
1 − ysmi

s

))
ds,

(B.18)
whereys = 1 if θ i

s > 0, ys = −1 if θ i
s < 0, andys ∈ [−1, 1] if θ i

s = 0. Equation (B.18) implies

Pi
t Et

∫ ∞

t
e−ρ(s−t)

(
u

′
(Cg

s )r
c
s + λs

)
ds = Et

∫ ∞

t
e−ρ(s−t)+

∫ s
t e−ρvλv(1−yvmi

v) dvu
′
(Cg

s )δ
i
s ds.

(B.19)
Alternatively,u

′
(Cg

s )r
c
s+λs in the previous two equations can be replaced withu

′
(Cg

s )r
u
s . Further,

under mild regularity conditions, the left-hand sides of these equations equalPi
t u

′
(Cg

t ).
The proposition follows from the fact that the right-hand side of Equation (B.19) is a mono-

tonic function ofyvmi
v for all v ≥ t . �
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Proof of Proposition 6. We first derive the dynamics of the state variablecb and the consumption
dynamics more generally. Then we derive the dependence of the endogenous variables on the state
variables and the exogenous variables.

The dynamics of agentb’s consumptionCb follow from Cb = ρWb and the dynamics for
Wb given in (6):

dCb = Cb((r c − ρ + φκ) dt + φ dwt ), (B.20)

whereφ ≡ σθb is the notation for the equilibrium volatility of agentb’s wealth. Using this, the
dynamics of the consumption ratiocb = Cb/C are seen to be

dcb = cb((r c − ρ + φκ − μC − σCφ + (σC)2) dt + (φ − σC) dwt ), (B.21)

while agenta’s consumption dynamicsCa = C − Cb are

dCa = (CμC − Cb(r c − ρ + φκ)) dt + (CσC − Cbφ) dwt (B.22)

= C(μC − cb(r c − ρ + φκ)) dt + C(σC − cbφ) dwt . (B.23)

The interest rate isr c
t = −μξt (as seen in (B.8)), and thus applying It̂o’s Lemma to the

marginal utilityξ from (B.3) implies

r c = ρ +



γ a μ
C − cbφκ

1 − cb
−

1

2
γ a(γ a + 1)

(
σC − cbφ

1 − cb

)2


 1 − cb

1 + (γ a − 1)cb
.

The ordinary differential equation (ODE) that characterizes the price-dividend ratioζ(cb)

follows from the fact that (B.6) is a local martingale with zero drift:

0 = 1 + ζ
(
μC − rc − γ aσC(1 − cb)−1(σC − cbφ)

)
+ (B.24)

ζ ′
(
rc − ρ + φκ − μC − γ a(φ − σC)(1 − cb)−1(σC − cbφ)

)
+

1

2
ζ ′′(cb)2(φ − σC)2.

It remains to determine the values ofκ, σ , andφ as functions ofζ and its derivatives. For
this, we identify three equations for these three unknowns. First, the log-utility investor’s optimal
positionθb maximizes

(μ− r )θb −
1

2
σ2(θb)2,

subject toθb < m−1. Or, expressed in terms of volatilityφ = σθb, he maximizes

κφ −
1

2
φ2,

so that the optimal position is

φ = min(κ,m−1σ) = κ − (κ − m−1σ)+. (B.25)

Next, since agenta is unconstrained with respect to the market asset and general-collateral
lending and borrowing, (B.9) gives

κ = γ aσCa

= γ a σ
C − cbφ

ca

= γ a σ
C − cbκ + cb(κ − m−1σ)+

1 − cb
,
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where the second equality is due to the expression for the volatility ofCa in (B.23) and the third
to (B.25). It follows that

κ =
γ a

1 + (γ a − 1)cb

(
σC + cb(κ − m−1σ)+

)

= κ̄ + γ cb
(
κ −

σ

m

)+
, (B.26)

with γ−1 = ca (γ a)−1 + cb as per (12) and κ̄ = γ σC . Equation (B.26) provides a second
restriction on the three parameters that need to be calculated. The third restriction comes from the
fact that the volatilityσ of the pricePt = Ct ζ(cb

t ) is given by It̂o’s Lemma and the dynamics of
cb
t in (B.21):

σ = σC +
ζ ′cb

ζ
(φ − σC). (B.27)

To solve the system of three equations (B.25)–(B.27), φ can be eliminated right away to give

κ − m−1σ = (κ̄ − m−1σ)+ γ cb(κ − m−1σ)+

σ = σC +
ζ ′cb

ζ
(κ − σC)−

ζ ′cb

ζ
(κ − m−1σ)+,

and note that the solution(κ, σ ) given in the proposition is trivially true ifκ ≤ m−1σ , which
requires that̄κ ≤ m−1σ̄ . Suppose therefore thatκ − m−1σ > 0, leaving a linear system of
equations. This system can be written as

κ − κ̄ =
1

1 − γ cb
(κ̄ − m−1σ)+ m−1σ − κ̄

=
γ cb

1 − γ cb
(κ̄ − m−1σ)

σ − σ̄ = −
ζ ′cb

ζ
(κ̄ − m−1σ),

which gives (21) and (22) easily.
The boundary values forζ(cb) are its values atcb = 0 andcb = 1. These are the price-

dividend ratios in the single-agent economies in which either agenta or agentb has all the wealth.
The explicit expressions are well known:

ζ(0) =
(
ρ + (γ a − 1)μC −

1

2
γ a(γ a − 1)

(
σC
)2
)−1

(B.28)

ζ(1) = ρ−1. (B.29)

Finally, the value of the Lagrange multiplierψ follows from the first-order condition (9),

given the optimal choiceσCb
= φ:

ψ =
1

m
(μ− r c − βCb

) =
1

m
(μ− r c − σCb

σ)

=
σ

m
(κ − σCb

) =
σ

m
(κ − φ)

=
σ

m

(
κ −

σ

m

)+
. (B.30)

�
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Proof of Proposition 7. From Proposition4,

μi ′ = μ+ σC(σ i ′ − σ)+ ψ(mi ′ − m),

and applying It̂o’s Lemma toPi ′ = Cζ i ′ (cb) gives

μi ′ =
ζ i ′ ′cb

ζ i ′

(
r c − ρ + φκ − μC

)
+ μC +

1

2

ζ i ′ ′′(cb)2

ζ i ′
(φ − σC)2 +

1

ζ i ′

σ i ′ =
ζ i ′ ′cb

ζ i ′
(φ − σC)+ σC .

Together, these three equations and (B.30) yield the ODE (26). The boundary conditions are

ζ i ′ (0) =
(

yi ′
)−1

ζ i ′ (1) = ρ−1,

where the dividend yieldyi ′ = y +μi ′ −μ = y +ψ(mi ′ − m) andy is the market dividend yield
atcb = 0, i.e.,y = ζ(0)−1 from Equation (B.28). �

Proof of Proposition 8. The limit price follows directly from Equation (B.28). The limit value
of ψ follows from (24), given thatσ = σC (because the market price isC times a constant
price-dividend ratio in the limit) andκ = γ aσC , which is seen from (21) with x = 0 and
γ = γ a. �

Proof of Proposition 9. Only the risk inC is priced. In the limit ascb → 0, all valuation ratios
are constant, and therefore all covariances with the market equal(σC)2, so the result follows from
Proposition4 with equal betas. �
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