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We model an isolated portion of a competitive supply chain as a M/M/1 make-to-
stock queue. The retailer carries finished goods inventory to service a Poisson demand

process, and specifies a policy for replenishing his inventory from an upstream supplier.
The supplier chooses the service rate, i.e., the capacity of his manufacturing facility, which
behaves as a single-server queue with exponential service times. Demand is backlogged
and both agents share the backorder cost. In addition, a linear inventory holding cost is
charged to the retailer, and a linear cost for building production capacity is incurred by the
supplier. The inventory level, demand rate, and cost parameters are common knowledge
to both agents. Under the continuous-state approximation where the M/M/1 queue has
an exponential rather than geometric steady-state distribution, we characterize the optimal
centralized and Nash solutions, and show that a contract with linear transfer payments
replicates a cost-sharing agreement and coordinates the system. We also compare the total
system costs, the agents’ decision variables, and the customer service levels of the centralized
versus Nash versus Stackelberg solutions.
(Make-to-Stock Queue; Game Theory )

1. Introduction
Within many supply chains, a devoted upstream
agent, referred to here as the supplier, produces goods
for a downstream agent, called the retailer, in a make-
to-stock manner. Broadly speaking, the performance
(e.g., service levels, cost to produce and hold items)
of this isolated portion of the supply chain is dictated
by three factors: (i) retailer demand, which is largely
exogenous but can in some cases be manipulated
via pricing and advertising, (ii) the effectiveness of
the supplier’s production process and the subsequent
transportation of goods, and (iii) the inventory replen-
ishment policy, by which retailer demand is mapped
into orders placed with the supplier. If the supplier
and retailer are under different ownership or are
independent entities within the same firm, then their
competing objectives can lead to severe coordination
problems: The supplier typically wants the retailer to

hold as much inventory as possible, while the retailer
prefers to hold very little inventory and desires rapid
response from the supplier. These tensions may dete-
riorate overall system performance.
The recent explosion in the academic supply chain
management literature is aimed at this type of multi-
agent problem. Almost without exception, the papers
that incorporate stochastic demand employ variants
of one of two prototypical operations management
models: the newsvendor model, or the Clark-Scarf
(1960) multiechelon inventory model. One-period and
two-period versions of newsvendor supply chain
models have been studied intensively to address the
three factors above; see Agrawal et al. (1999), Cachon
(1999), and Lariviere (1999), for recent reviews.
Although many valuable insights have been gener-
ated by this work, these models are primarily use-
ful for style goods and products with very short
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life cycles. More complex (multiperiod, and pos-
sibly multiechelon and positive lead time) supply
chain models have been used to analyze the case
where a product experiences ongoing production and
demand. Of the three factors in the last paragraph,
these multiperiod supply chain models successfully
capture the replenishment policy and have addressed
some aspects of retailer demand, for example, infor-
mation lead times in the Clark-Scarf model (Chen
1999), pricing in multiechelon models with determin-
istic demand and ordering costs (Chen et al. 2001),
and forecast updates (Anupindi and Bassok (1999) in
a multiperiod newsvendor model, and Tsay and Love-
joy (1999) in a multistage model). However, the Clark-
Scarf model simplifies the supplier’s production pro-
cess by assuming that lead times are independent of
the ordering process, or equivalently, that the produc-
tion process is an infinite-server queue.
In this paper, we use an alternative prototypi-
cal model, an M/M/1 make-to-stock queue, to ana-
lyze a supply chain. Here, the supplier is modeled
as a single-server queue, rather than an infinite-
server queue, and the retailer’s optimal inventory
replenishment strategy is a base-stock policy. Because
the production system is explicitly incorporated,
these make-to-stock queues are also referred to as
production-inventory systems. The M/M/1 make-to-
stock queue was introduced by Morse (1958), but lay
mysteriously dormant for the next three decades, per-
haps because the multiechelon version of it lacked the
attractive decomposition property of the Clark-Scarf
model and traditional (i.e., make-to-order) queueing
networks, except under some restrictive inventory
policies (Rubio and Wein 1996). Make-to-stock queue-
ing systems have experienced a revival in the 1990s,
including multiproduct queues with (e.g., Federgruen
and Katalan 1996, Markowitz et al. 2000) and with-
out (e.g., Zheng and Zipkin 1990, Wein 1992) setups,
and single-product, multistage systems in continu-
ous time (e.g., Buzacott et al. 1992, Lee and Zip-
kin 1992) and discrete time (e.g., Glasserman and
Tayur 1995 and Gavirneni et al. 1996, building on ear-
lier work by Federgruen and Zipkin 1986). Although
these papers either undertake a performance analysis
or consider a centralized decision maker (Gaverneni

et al. (1996) analyze their system under various infor-
mational structures, but not in a game-theoretic set-
ting), the make-to-stock queue is amenable to a com-
petitive analysis because it explicitly captures the
trade-off between the supplier’s capacity choice and
the retailer’s choice of base-stock level. However, the
model treats the third key factor in a naive way,
by assuming that retailer demand is an exogenous
Poisson process. Moreover, we assume that the sys-
tem state, the demand rate and the cost parame-
ters are known by each agent. While this assumption
is admittedly crude, we believe it is an appropriate
starting point for exploring competitive make-to-stock
queues. In the only other contemporaneous multi-
agent production-inventory study that we are aware
of, Plambeck and Zenios (1999) take a significant
step forward by analyzing a dynamic system with
information asymmetry. Subsequent work includes
Cachon (1999b), where both agents choose base-stock
levels in a single-stage lost sales model, and Duenyas
and Tsai (2001), where two profit-maximizing agents
manage each stage of a tandem system that incurs
demand for intermediate and end products.
In an attempt to isolate—and hence understand—
the impact of incorporating capacity into a supply
chain model, we intentionally mimic Cachon and
Zipkin (1999). Their two-stage Clark-Scarf model is
quite similar to our M/M/1 make-to-stock queue:
Both models have two players, assume linear backo-
rder and holding costs for retailer inventory (where
the backorder costs are shared by both agents),
employ steady-state analysis, and ignore fixed order-
ing costs. The key distinction between the two mod-
els is that the production stage is an infinite-server
queue and the supplier controls his (local or echelon)
inventory level in Cachon and Zipkin (1999), whereas
in our paper, the production stage is modeled as
a single-server queue and the supplier controls the
capacity level, which in turn dictates a steady-state
lead-time distribution. While Cachon and Zipkin’s
supplier incurs a linear inventory holding cost, our
supplier is subjected to a linear capacity cost. A minor
difference is that our queueing model is in continu-
ous time, while Cachon and Zipkin’s inventory model
is in discrete time. In fact, to make our results more
transparent and to maintain a closer match of the
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two models, we use a continuous-state approxima-
tion, essentially replacing the geometric steady-state
distribution of the M/M/1 queue by an exponential
distribution with the same mean.
After defining the model in §2, we derive the cen-
tralized solution in §3, where a single decision maker
optimizes system performance, and the unique Nash
equilibrium in §4, where the supplier and retailer
minimize their own cost. The two solutions are com-
pared in §5. We show that the Nash solution is always
inefficient and that the magnitude of the inefficiency
tends to be minimized when backorder costs are
evenly split between the supplier and the retailer. We
also analyze the Nash equilibrium in terms of ser-
vice performance that is measured by the fraction
of customers that are backlogged. The Nash solu-
tion provides a poorer service than the centralized
one and the difference is minimized when the retailer
absorbs most of the backorder costs. In this respect,
we conclude that customers prefer that the penalty
for shortages be absorbed primarily by the agent in
direct contact with them. In §6, we describe a fam-
ily of contracts based on transfer payments between
the two players that coordinate the system; for exam-
ple, it allows the decentralized system to achieve the
same cost as the centralized system. The payments
are selected in such a way that each player transfers
a fixed fraction of its own cost to the other player.
The resulting cost structure mimics a cost-sharing
agreement and thus coordinates the system. In §7, we
analyze the Stackelberg games, where one agent has
all the bargaining power. In terms of efficiency, the
retailer’s Stackelberg game dominates the supplier’s
Stackelberg game. However, from a customer service
perspective, the supplier’s Stackelberg game is prefer-
able. Concluding remarks, including a comparison of
our results to those of Cachon and Zipkin (1999), are
presented in §8.

2. The Model
Our idealized supply chain consists of a supplier pro-
viding a single product to a retailer. Retailer demand
is modeled as a homogeneous Poisson process with
rate �. The retailer carries inventory to service this
demand, and unsatisfied demand is backordered.

Because we assume that there are no fixed order-
ing costs, the retailer’s optimal replenishment pol-
icy (given the supplier’s irreversible capacity deci-
sion, described below) is characterized by a (s− 1� s)
base-stock policy. That is, the inventory initially con-
tains s units, and the retailer places an order for one
unit with the supplier at each epoch of the Poisson
demand process.
The supplier’s production facility is modeled as a
single-server queue with service times that are expo-
nentially distributed with rate �. The supplier is
responsible for choosing the parameter �, which will
also be referred to as the capacity. The server is only
busy when retailer orders are present in the queue.
The supplier’s facility behaves as a M/M/1 queue
because the demand process is Poisson and a base-
stock policy is used. This setting, in which the sup-
plier does not store finished goods, often holds when
both agents are within the same company, or the sup-
plier’s sole customer is the retailer.
In our model, the selling price that the retailer
charges the customer, the wholesale price that the
retailer pays to the supplier, and the supplier’s vari-
able production cost, are assumed to be given and
constant. These conditions hold, for example, if we
assume that the retailer and supplier operate in
competitive markets. Because demand is exogenous,
unsatisfied demand is backordered, and we use a
long-run average cost criterion, it follows that the
agents’ revenues are independent of their actions, as
long as their utilities are nonnegative. Hence, profit
maximization and cost minimization lead to the same
solution, and we employ a cost-minimization frame-
work.
Each backordered unit generates a cost b per unit

of time for the production-inventory system. As in
Cachon and Zipkin (1999), this backorder cost is split
between the two agents, with a fraction � ∈ 	0�1

incurred by the retailer. The parameter �, which we
refer to as the retailer’s backorder share, is exogenously
specified in our model. Because much of the academic
literature assumes � = 1, this assumption requires
some discussion. The value of � depends on a variety
of factors, such as the structures of the market and
distribution channel, and the customers’ expectations
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(e.g., Stern et al. 1996). At one extreme, if the sup-
plier has a monopolistic (or well established) position
in the market and uses an intensive distribution strat-
egy with many competing retailers, then customers
facing an inventory shortage at one retailer may buy
the product from a different retailer. In this case, �
will be near 1 and the retailer will bear the brunt of
the backorder costs. At the other extreme, suppose
the supplier is in a competitive market and either the
retailer has a monopoly at the distribution level or the
supplier uses an exclusive distribution strategy with a
single retailer. In this situation, poor customer service
at the retailer level will mostly harm the supplier; for
example, � will be near 0. Of course, various interme-
diate situations generate less extreme values of �.
In addition, the retailer incurs a cost for holding
units in inventory. The retailer’s holding cost includes
both physical and financial components, and is, in
general, not the same in the centralized and decen-
tralized systems. More specifically, the financial hold-
ing cost is proportional to the retailer’s purchase cost,
which is the supplier’s production cost in the cen-
tralized system and the sum of the production cost
and the supplier’s profit margin in the decentralized
system. Therefore, we expect the holding cost to be
larger in the decentralized case, which is a source of
inefficiency with respect to the centralized chain (e.g.,
Gallego and Boyaci 2002). For simplicity, however, we
do not make this distinction here. That is, we assume
that there is single holding cost h per unit of inven-
tory per unit of time paid by the retailer independent
of the supply chain configuration. This assumption
is reasonable if the supplier’s margin is small, which
may hold if the supplier and retailer belong to the
same company or are in industries in which physical
holding costs dominate financial holding costs and/or
there is a competitive market of low-margin suppli-
ers.
On the other hand, the supplier pays the fixed
cost of building production capacity. The capacity cost
parameter c is per unit of product, so that c� rep-
resents the amortized cost per unit of time that the
supplier incurs for having the capacity �; this fixed
cost rate is independent of the demand level.
To make our results more transparent, we normal-
ize the expected variable cost per unit time by divid-

ing it by the holding cost rate h. Toward this end, we
normalize the cost parameters as follows:

h̃= h

h
= 1� b̃ = b

h
� c̃ = �c

h
 (1)

To ease the notation, we hereafter omit the tildes from
these cost parameters.
Let N be the steady-state number of orders at the

supplier’s manufacturing facility. If we assume for
now that � > � (this point is revisited later), then N
is geometrically distributed with mean �−1, where

� = �−�

�
 (2)

This parameter, which represents the normalized
excess capacity, is the supplier’s decision variable in
our analysis, and we often refer to it simply as capac-
ity. To simplify our analysis, we assume that N is a
continuous random variable, and replace the geomet-
ric distribution by an exponential distribution with
parameter �. This continuous-state approximation can
be justified by a heavy traffic approximation (e.g., §10
of Harrison 1988), and generates mean queue lengths
that coincide with M/M/1 results for all server uti-
lization levels. The heavy traffic approximation allows
the incorporation of general interarrival time and ser-
vice time distributions; in the nonexponential case,
� in Equation (2) would be divided by one-half of
the sum of the squared coefficients of variation of the
interarrival and service time distributions, �c2a + c2s �/2,
but we do not pursue this avenue here. Although this
continuous-state approximation leads to slightly dif-
ferent quantitative results (the approximation tends to
underestimate the optimal discrete base-stock level),
it has no effect on the qualitative system behavior,
which is the object of our study.
The steady-state expected normalized variable cost
per unit time for the risk-neutral retailer (CR) and sup-
plier �CS) in terms of the two decision variables are
given by

CR�s� �� = E	�s−N�+
+�b E	�N − s�+


= s− 1− e−�s

�
+�b

e−�s

�
� (3)

and

CS�s� �� = �1−��b E	�N − s�+
+ c�

= �1−��b
e−�s

�
+ c� (4)
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3. The Centralized Solution
As a reference point for the efficiency of the two-agent
system, we start by finding the optimal solution to
the centralized version of the problem, where there
is a single decision maker that simultaneously opti-
mizes the base-stock level s and the normalized excess
capacity �. The steady-state expected normalized cost
per unit time C for this decision maker is

C�s��� = CR�s� ��+CS�s� ��

= c�+ s− 1− �b+1�e−�s

�
 (5)

The centralized solution is given in Proposition 1; see
the Appendix for the proof.

Proposition 1. The optimal centralized solution is the
unique solution to the first-order conditions

�C�s� ��

�s
= 0⇐⇒ �s = ln�1+ b�� (6)

�C�s� ��

��
= 0⇐⇒−�b+1���s+1�e

−�s

�2
+ 1

�2
+ c

= 0� (7)

and is given by

�∗ =
√
ln�1+ b�

c
and s∗ =√

c ln�1+ b� (8)

The resulting cost is

C�s∗� �∗�= 2√c ln�1+ b� (9)

By relation (6), the ratio of the base-stock level,
s, to the supplier’s mean queue length, �−1, satisfies
�s = ln�1+ b� at optimality. (The corresponding first-
order conditions for the discrete inventory problem is
ln��+ 1�s = ln�1+ b�, and so our continuous approx-
imation can be viewed as using the Taylor series
approximation ln�� + 1� ≈ �.) Although this ratio is
independent of the capacity cost c, the optimal solu-
tion depends on c via s= �c according to Equation (8).
As expected, the optimal capacity level decreases
with the capacity cost and increases with the
backorder-to-holding cost ratio b. Similarly, because
capacity and safety stock provide alternative means
to avoid backorders, the optimal base-stock level
increases with the capacity cost and with the normal-
ized backorder cost b. Finally, as expected, � plays no

role in this single-agent optimization, because trans-
fer payments between the retailer and the supplier do
not affect the centralized cost.

4. The Nash Solution
Under the Nash equilibrium concept, the retailer
chooses s to minimize CR�s� ��, assuming that the
supplier chooses � to minimize CS�s� ��; likewise,
the supplier simultaneously chooses � to minimize
CS�s� ��, assuming the retailer chooses s to mini-
mize CR�s� ��. Because each agent’s strategy is a best
response to the other’s, neither agent is motivated to
depart from this equilibrium.
In anticipation of subsequent analysis, we express
the Nash equilibrium in terms of the retailer’s back-
order share �. Let us also define the auxiliary function

f��b�=
√
�1−��b�ln�1+�b�+1�

�1+�b� ln�1+ b�
� (10)

which plays a prominent role in our analysis.

Proposition 2. The unique Nash equilibrium is

�∗
� = f��b��

∗� (11)

s∗� =
(
ln�1+�b�

ln�1+ b�f��b�

)
s∗ (12)

The resulting costs, C∗
R��� and C∗

S ���, are

C∗
R���= CR�s

∗
�� �

∗
�� = s∗�� (13)

C∗
S ���= CS�s

∗
�� �

∗
�� =

(
ln�1+�b�+2
ln�1+�b�+1

)
c�∗

� (14)

Proof. Let s∗��� be the retailer’s reaction curve, for
example, the optimal base-stock level given a capacity
� installed by the supplier. Because Equation (3) is
concave in s, s∗��� is characterized by the first-order
condition

�s∗���= ln�1+�b� (15)

Using a similar argument, we find that the supplier’s
reaction curve �∗�s� satisfies

e−�∗�s�s
(
�∗�s�s+1
��∗�s�s�2

)
= c

�1−��bs2
 (16)
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The unique solution to Equations (15)–(16) is Equa-
tions (11)–(12), and substituting this solution into
Equations (3)–(4) yields Equations (13)–(14). �

Because f��b� is decreasing in � and ln�1+�b� is
increasing in � for b > 0, it follows that as � increases,
the retailer becomes more concerned with backorders
and increases his base-stock level, while the supplier
cares less about backorders and builds less excess
capacity.
The supplier’s variable cost C∗

S ��� is a monotoni-
cally decreasing function of � that satisfies C∗

S �0� =
2
√
bc and C∗

S �1� = 0� and C∗
R��� is a monotonically

increasing function of � that satisfies

C∗
R�0�= 0� lim

�→1
C∗
R���→+�� (17)

as shown in Figure 1. (Many of the limits taken in this
paper, for example, �→ 1, are implicitly taken to be
one-sided.)
To understand the unbounded retailer losses in
Equation (17), note that for the extreme case �= 1, the
supplier does not face any backorder cost and conse-
quently has no incentive to build excess capacity, for
instance, �∗

1 = 0. This corresponds to the null recurrent
case of a queueing system with an arrival rate equal
to its service rate. Consequently, the retailer is unable
to maintain finite inventory (backorder plus holding)
costs, and the supply chain is not operational in the
Nash equilibrium.

Figure 1 The Retailer’s �CR� and Supplier’s �CS� Costs in the Nash
Equilibrium as a Function of the Retailer’s Backorder Share �

0

5

0 0.25 0.5 0.75 1

bc2

CR*(α)

CS*(α)

�

5. Comparison of Solutions
In this section, we compare the centralized solution
and the Nash equilibrium with respect to the total
system cost, the agents’ decisions, and the customer
service level.

The Nash Equilibrium Is Inefficient. The central-
ized solution is not achievable as a Nash equilibrium.
By Equations (6) and (15), the first-order conditions
are �s = ln�1+ b� in the centralized solution and �s =
ln�1+�b� in the Nash solution. Hence, the two solu-
tions are not equal when � < 1, and the Nash equi-
librium in the � = 1 case is an unstable system, as
discussed earlier. The source of this inefficiency is the
inability of the agents to fully replicate the centralized
cost structure.
The magnitude of the inefficiency of a Nash equi-
librium is typically quantified by comparing the costs
under the centralized and Nash solutions. We fol-
low Cachon and Zipkin (1999) and compute the com-
petition penalty, which is defined as the percentage
increase in variable cost of the Nash equilibrium over
the centralized solution. By Equations (5) and (8), the
variable cost for the centralized solution is

C�s∗� �∗� =
(
s∗ − 1− e−�∗s∗

�∗

)
+ b

e−�∗s∗

�∗ + c�∗

= 2√c ln�1+ b��

and the variable cost C∗
� associated with the Nash

equilibrium is, by Equations (3)–(4) and Proposition 2,

C∗
� = CS�s

∗
�� �

∗
��+CR�s

∗
�� �

∗
��

=
[
f��b�

(
ln�1+�b�+2
ln�1+�b�+1

)
+ ln�1+�b�

ln�1+ b�f��b�

]
s∗

Hence, the competition penalty is

C∗
�−C�s∗� �∗�
C�s∗� �∗�

×100%�

where

P��b�
�= C∗

�−C�s∗� �∗�
C�s∗� �∗�

= 1
2

[
f��b�

(
ln�1+�b�+2
ln�1+�b�+1

)

+ ln�1+�b�

ln�1+ b�f��b�

]
−1 (18)
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Surprisingly, the competition penalty in Equation (18)
is independent of the supplier’s cost of capacity. This
occurs because the centralized variable cost and the
Nash variable cost are both proportional to

√
c at

optimality, which is a consequence of the particular
functional form arising from the make-to-stock for-
mulation. This penalty is a function of � and b, and
we can simplify Equation (18) for the limiting val-
ues of these two parameters. The function f��b� is
decreasing in � and f1�b�= 0. Hence, the competition
penalty goes to � as �→ 1. This inefficiency occurs
because, as the retailer bears more of the backorder
cost, the supplier builds less excess capacity, and in
the limit the lack of excess capacity causes instability
of the queueing system. At the other extreme, f��b�→√
b/�ln�1+ b�� as �→ 0, and the competition penalty
in this case is given by√

b

ln�1+ b�
−1 for b > 0 (19)

This function is increasing in b, approaches zero as
b → 0 and grows to � as b → �. Hence, when
the supplier incurs most of the backorder cost, the
retailer holds very little inventory and the competi-
tion penalty depends primarily on the backorder cost;
if this cost is low then the supplier has little incen-
tive to build excess capacity, which leads to a small
competition penalty because the centralized planner
holds neither safety stock nor excess capacity in this
case. In contrast, if the backorder cost is very high, the
supplier cannot overcome the retailer’s lack of safety
stock, and his backorders get out of control, leading
to high inefficiency.
Turning to the backorder cost asymptotics, f��b�→√
�1−��/� as b → �, and the competition penalty
approaches

1

2
√
��1−��

−1 (20)

This quantity vanishes at �= 05, is symmetric about
�= 05, and approaches � as �→ 0 and �→ 1. Thus,
when backorders are very expensive, this cost compo-
nent dominates both agents’ objective functions when
they care equally about backorders (�= 05), and their
cost functions—and hence decisions—coincide with

the centralized solution. However, when there is a
severe imbalance in the backorder allocation (� is near
0 or 1), one of the agents does not build enough of
his buffer resource, and the other agent cannot pre-
vent many costly backorders, which is highly ineffi-
cient from the viewpoint of the entire supply chain.
Finally, for the case b → 0, the competition penalty is
given by

2−�

2
√
1−�

−1� (21)

which is an increasing function of �. Consistent with
the previous analysis, this penalty function vanishes
as �→ 0 and approaches � as �→ 1.
In summary, there are two regimes, (�= 05� b→�)

and �� → 0� b → 0), where the Nash equilibrium is
asymptotically efficient, and two regimes, �→ 1 and
(� → 0� b → �), where the inefficiency of the Nash
solution is arbitrarily large. However, because Equa-
tion (18) does not consider the agents’ participation
constraints, some of the large inefficiencies in the lat-
ter regimes may not be attainable by the supply chain
(see Caldentey and Wein 1999).
To complement these asymptotic results, we plot in
Figure 2 the competition penalty in Equation (18) for
various values of b as a function of �. A new insight
emerges from Figure 2. The competition penalty is
minimized by � near 0.5 (i.e., the backorder cost is
split evenly) when the backorder-to-holding cost ratio
b ≥ 1.
Comparison of Decision Variables. Figure 3 de-
picts the optimal Nash production capacity �∗

� and the
optimal Nash base-stock level s∗� as a function of �,
and allows us to compare these functions to the cen-
tralized solutions, �∗ and s∗. Excess capacity and the
base-stock level are alternative ways for the supplier
and retailer, respectively, to buffer against demand
uncertainty, and Figure 3 shows that the inefficiency
of the Nash solution does not necessarily imply that
these agents have less buffer resources in the Nash
solution than in the centralized solution. For both
decision variables, there exist thresholds on the value
of �, denoted by �s and �� in Figure 3, that divide
the regions where the agents have more or less buffer
resources than the optimal centralized solution. How-
ever, as shown in the next proposition, at least one
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Figure 2 The Competition Penalty in Equation (18) in the Absence of Participation Constraints for Different Values of the Backorder-to-Holding Cost
Ratio b as a Function of �
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agent in the Nash equilibrium possesses less of his
buffer resource than the central planner.

Proposition 3. For �s and �� defined in Figure 3, we
have �s > �� .

Proof. By Figure 3, if �s ≤ ��� then there exists �̂ ∈
	�s���
 such that �∗

�̂s
∗
�̂ ≥ �∗s∗ However, this inequal-

ity together with Equations (6) and (15) implies that
f�̂�b� = ln�1+ b�, for example, �̂ = 1. But for � = 1
the supply chain is unstable and does not operate.
Hence, �∗

�s
∗
� < �∗s∗ for � ∈ 	0�1�, and consequently

�s > �� . �

The parameters �s and �� can be used in the fol-
lowing way. Let �∗ be the value of the retailer’s back-
order share that minimizes the competition penalty in
Equation (18). Then computational experiments show
that for b ≥ 1, the approximation �∗ ≈ ��s +���/2 has
an absolute error bounded by 0.02. Thus, in the case
where the backorder cost is well quantified (e.g., a
price discount for waiting, or the financial cost of
delayed payments), knowledge of �s and �� can be

used to negotiate a contract that shifts the retailer’s
backorder share towards �∗. For instance, if � < �∗

then the contract should include a fee of ��∗−��b that
the retailer pays to the supplier per unit of backorder
per unit time, which would change the retailer’s back-
order share to �∗. Similarly, if �>�∗ then the supplier

Figure 3 The Optimal Nash Production Capacity ��∗�� and the Optimal
Nash Base-Stock Level �s∗�� as a Function of the Retailer’s
Backorder Share �—The Centralized Solutions Are �∗ and s∗.

0 1 0 1α ν α s

s∗

s∗α

(a) (b)

ν∗

να∗
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should pay the retailer a fee of ��−�∗�b per unit of
backorder per unit time. This contract, while subop-
timal, is conceptually simpler than the linear transfer
payment in §6.
We cannot solve for �s and �� in closed form,

except when b takes on a limiting value. By Equa-
tion (12), �s satisfies

ln�1+�b�

ln�1+ b�f��b�
= 1 (22)

As b→0, we have f��b�→
√
1−� and ln�1+�b�/

ln�1 + b� → �. Therefore, as b → 0, �s satisfies
��/

√
1−��= 1� or �s = ��

√
5−1�/2�≈ 0618, which is

the inverse of the golden-section number that arises in
a variety of disciplines (e.g., Vajda 1989). As b → �,
we have f��b�→

√
�1−��/�, and ln�1+�b�/ ln�1+ b�.

In this case, �s satisfies
√
��/�1−��� = 1, or �s =

05. Numerical computations reveal that �s is uni-
modal in b, achieving a maximum of 0.627 at b= 148,
and is rather insensitive to moderate values of the
backorder-to-holding cost ratio b (e.g., �s ≥ 061 for
b ∈ 	1�10
). In other words, for moderate values of
the normalized backorder cost, the Nash retailer holds
more inventory than optimal when his share of the
backorder cost is more than about 61%.
By Equation (11), �� solves f��b� = 1; for exam-

ple, when the normalized backorder cost is small,
the Nash supplier holds a less-than-optimal level of
capacity. As b→ 0, this condition becomes √1−�= 1,
which gives �� = 0. As b→�, the condition becomes√
��1−��/�� = 1, which is solved by �� = 05. Note
that �s = �� = 05 as b → � is consistent with our
previous claim that the Nash equilibrium is asymp-
totically efficient in the regime (� = 05� b → �). A
numerical study reveals that �� is more sensitive than
�s to the value of b. As the backorder-to-holding cost
ratio b varies from 1 to 10, �� ranges from 028 to 049.

Customer Service Level. The exponential distribu-
tion of the queue length implies that the steady-state
probability that a customer is forced to wait because
of retailer shortages is equal to Pr�N ≥ s�= e−�s ; con-
sequently, we refer to �1− e−�s�× 100% as the service
level. By Equations (6) and (15), the stockout proba-
bility e−�s equals �1+ b�−1 in the centralized solution
and �1+�b�−1 in the Nash solution. Hence, customers

receive better service in the centralized solution than
in the Nash equilibrium. This is because (see Figure 3)
the product of the two buffer resources (normal-
ized excess capacity and base-stock level) is always
smaller in the Nash equilibrium than in the central-
ized solution, and the customers suffer from this less-
than-optimal level of collective buffer resource; this
degradation in customer service in decentralized sys-
tems also occurs in the traditional bilateral monopoly
model (e.g., Tirole 1997), where double marginaliza-
tion leads to a higher price charged to the customer
and less goods sold. Finally, even though the system
is not stable for � = 1, customers generally desire a
larger value of �; for example, they prefer that the
penalty for shortages be absorbed primarily by the
agent in direct contact with them.

6. Contracts
We showed in §5 that the Nash equilibrium is always
inefficient when the supply chain operates. In this sec-
tion, we analyze a coordinating mechanism based on
static transfer payments between the agents. Specif-
ically, we assume that the supplier (or the retailer)
agrees to transfer a fixed amount � per unit time to
the retailer (supplier) in order to improve his opera-
tions and eventually the operation of the whole chain.
In its most general form, this transfer � depends on
both s and �. As in our earlier analysis, this informa-
tion is assumed to be common knowledge. Cachon
and Zipkin (1999) also use a linear transfer payment
based on inventory levels to coordinate their sup-
ply chain, and readers are referred to §1.5 of Cachon
(1999a) for a survey of alternative types of contracts in
the multiechelon inventory setting. We do not impose
an explicit constraint that forces either agent to build
a predefined level of its buffer resource. Using Cachon
and Lariviere’s (2001) terminology, we assume a vol-
untary compliance regime, where both the retailer and
the supplier choose their buffer resource levels to
maximize their own profits.
The transfer payment ��s� �� modifies the cost func-

tions in Equations (3) and (4) for the retailer and sup-
plier, respectively, to

C̃R�s� ��
�= CR�s� ��− ��s� �� and

C̃S�s� ��
�= CS�s� ��+ ��s� �� (23)
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The choice of ��s� �� that coordinates the system is
not unique. One possibility is to define the transfer in
such a way that the modified cost functions replicate
a cost-sharing situation. That is, we can set ��s� �� such
that C̃S�s� �� = � C�s� �� and C̃R�s� �� = �1−��C�s� ��,
where � ∈ 	0�1
 is a splitting factor and C�s��� is the
centralized cost function defined in Equation (5). This
cost sharing forces the transfer payment to satisfy

��s� ��= � CR�s� ��− �1−��CS�s� �� (24)

In this situation, both agents have an objective that
is a scaled version of the centralized one. There-
fore, supplier and retailer have aligned objectives and
the centralized solution �s∗� �∗� is the unique Nash
equilibrium. We notice that the transfer payment has
two components. First, � CR�s� �� is a payment made
by the supplier to the retailer proportional to the
retailer’s cost. Similarly, −�1−��CS�s� �� corresponds
to a payment made by the retailer to the supplier pro-
portional to the supplier’s cost. In other words, each
agent transfers a fraction of its own cost to the other
player.
Although we appear to have a degree of freedom
in splitting the costs via �, both agents must be bet-
ter off under the Nash equilibrium with the transfer
payments than under the Nash equilibrium without
the transfer payments, for example,

CR�s
∗
�� �

∗
�� ≥ �1−��C�s∗� �∗��

CS�s
∗
�� �

∗
�� ≥ �C�s∗� �∗� (25)

This condition can be rewritten as � ∈ 	�
�
�b�� �̄��b�
,

where

�
�
�b� = 1− ln�1+�b�

2 ln�1+ b�f��b�
and

�̄��b� =
f��b�

2

(
ln�1+�b�+2
ln�1+�b�+1

)
 (26)

In addition, � has to be in the 	0�1
 range. If not, one
of the players would have a negative cost function. In
such a situation, the optimal strategy for this player is
to increase as much as possible the absolute value of
its cost. For example, if � < 0� then the supplier has a
negative cost function and his/her best strategy is to
pick � as large as possible independently of the value
of s.

To summarize, the centralized solution can be
achieved using the transfer payment (Equation 24) if
and only if � ∈ 	�

�
�b�� �̄��b�
∩ 	0�1
. It is not hard

to show that �
�
�b� ≤ �̄��b�, ��

�b� < 1, and �̄��b� ≥ 0;
hence, coordination is always possible using this type
of contract. This conclusion stems from the fact that
the Nash equilibrium is inefficient and the cost reduc-
tion obtained using the centralized solution can be
split, making both agents better off. After some alge-
bra we get

�
�
�b�= CS�s

∗
�� �

∗
��

C�s∗� �∗�
−P��b� and �̄��b�=

CS�s
∗
�� �

∗
��

C�s∗� �∗�
�

where P��b� is the competition penalty defined in
Equation (18). Notice that the range of admissible �
(those that effectively coordinate the system), and
hence the ease of negotiation, increases with the mag-
nitude of the competition penalty.
Two extreme cases deserve particular attention:

�
�
�b�< 0 and �̄��b�> 1. In these situations, there exists

a coordinating contract having one of the agents fully
subsidizing the other agent’s operation, for example,
� = 0 or � = 1. When �

�
�b� < 0 it is profitable for

the retailer to absorb the supplier’s variable cost (the
reverse is true when �̄��b� > 1)1. This type of behav-
ior, where large manufacturers pay for their supplier’s
capital equipment, has been observed in the automo-
bile industry (e.g., Dyer and Ouchi 1993, Dyer et al.
1998), although for reasons related to maintaining
long-term supplier relationships and bearing the risk
of low future demand.
As b goes to infinity the lower and upper bounds
converge to

lim
b→�

�
�
�b�=1− 1

2

√
�

1−�
and lim

b→�
�̄��b�=

1
2

√
1−�

�


Hence as b→� the conditions �
�
�b�= 0 and �̄��b�= 1

hold for �= 08 and �= 02, respectively. At the other
extreme, as b goes to zero the bounds are

lim
b→0

�
�
�b�= 1− �

2
√
1−�

and lim
b→0

�̄��b�=
√
1−�

1 If an agent is fully subsidized then any strategy is optimal and so
it is not necessarily true that he/she will pick the optimal central-
ized solution. To avoid this technicality, it suffices that the player
that absorbs all the cost offers a small fee to the subsidized player
if he/she picks the optimal centralized solution.
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Figure 4 Solution to 

�
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In this case, the roots for �
�
�0� = 0 and �̄��0� = 1

are �= 2�√2−1�≈ 0828 and �= 0, respectively. Fig-
ure 4 plots the solution to �

�
�b�= 0 (upper curve) and

�̄��b� = 1 (lower curve). Roughly speaking, we can
show that for �≥ 08 the retailer is willing to pay the
supplier’s cost in order to achieve coordination and
the opposite holds for �≤ 02.
As we pointed out, the transfer payment in (24)
replicates a cost-sharing situation in which both
agents agree upfront to split the total cost of the
supply chain. From a practical perspective, however,
a direct cost-sharing negotiation based on total cost
probably dominates the transfer-payment approach
because it does not require any special accounting of
cost (in terms of capacity and backordering costs) and
it is more familiar, transparent, robust (with respect
to model misspecifications), and easier to implement.

7. The Stackelberg Games
We conclude our study of this two-stage supply chain
by considering the case where one agent dominates.

Supplier’s Stackelberg Game. When the supplier
is the Stackelberg leader, he chooses � to optimize
CS�s� �� in Equation (4), given the retailer’s best
response, s∗��� in Equation (15). This straightforward
computation leads to the following proposition.

Proposition 4. In the absence of participation con-
straints, the equilibrium in the supplier’s Stackelberg
game is

s̄� = s∗�
√
1+ ln�1+�b�� �̄� =

�∗
�√

1+ ln�1+�b�


(27)

The agents’ costs are

CS�s̄�� �̄��= 2
√
�1−��bc

1+�b
� CR�s̄�� �̄��= s̄� (28)

Equation (27) implies that �̄�s̄� = �∗
�s

∗
�, and hence the

customer service level is the same under the Stackel-
berg and Nash equilibria. Because the first-order con-
ditions of the centralized problem dictate the service
level, it also follows that the Stackelberg equilibrium
is inefficient relative to the centralized solution. Not
surprisingly, the supplier builds less capacity and the
retailer holds more safety stock in Equation (27) than
in the Nash equilibrium. The discrepancy between the
Stackelberg and Nash solutions increases as � and b
increase.
Now we compare the variable cost of each agent
and the entire system under the Nash and Stackelberg
equilibria. By Equation (14), the supplier’s cost in the
Nash equilibrium can be written as

CS�s
∗
�� �

∗
��= 2

√
�1−��bc

1+�b

(
ln�1+�b�+2
2
√
ln�1+�b�+1

)
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The function ��x+ 2�/�2√x+1�� is strictly increasing
in 	0���, and is equal to 1 when x = 0. Thus, it is
always the case that CS�s̄�� �̄�� ≤ CS�s

∗
�� �

∗
��; this is to

be expected, because the supplier incorporates the
retailer’s best response when selecting his level of
capacity. However, CS�s̄�� �̄��= CS�s

∗
�� �

∗
�� when �= 0,

� = 1 or b = 0, and so the supplier does not benefit
from being the leader in these extreme cases. When
� = 1 or b = 0, the supplier does not face any back-
order costs and builds no excess capacity (� = 0). On
the other hand, when � = 0 the retailer—incurring
no backorder costs—holds no safety stock (s = 0).
Because these choices (� = 0 and s = 0) are indepen-
dent of the bargaining power of the supplier in these
cases, the Stackelberg and Nash equilibria provide the
same cost to the supplier.
By Equations (13) and (27), the difference in the
retailer’s cost between the Stackelberg equilibrium
and the Nash equilibrium is

CR�s̄�� �̄��−CR�s
∗
�� �

∗
��= s∗�

(√
1+ ln�1+�b�−1

)


(29)

As expected, the retailer is worse off in the supplier’s
Stackelberg equilibrium than in the Nash equilibrium.
By Equations (8), (10), (12), and (29), the increase in
the retailer’s cost from being the follower vanishes as
�→ 0 and b → 0 (similar to the reasons given in the
previous paragraph), and grows with � and b. As �
gets larger, the supplier cares less about backorders
and builds less capacity, leaving the retailer in a vul-
nerable situation.
A comparison of the total system cost shows that

CR�s
∗
�� �

∗
��+ CS�s

∗
�� �

∗
�� ≤ CR�s̄�� �̄��+ CS�s̄�� �̄�� if and

only if

�1+�b� ln�1+�b�

�1−��b
−√1+ ln�1+�b�+1≥ 0 (30)

Condition (30) holds for large values of �, but is not
true in general. Because the left side of condition (30)
equals zero when �= 0, is increasing in �≥ �0 if it is
increasing in � at �0, and has a derivative with respect
to � equal to 1− �b/2� when � = 0, we conclude that
for a backorder-to-holding cost ratio b ≤ 2 the Nash
solution achieves a lower system cost than the Stack-
elberg equilibrium for any value of �. If b > 2, the

Nash solution is more efficient if and only if � > �̄,
where �̄ is the unique positive value of � that solves
condition (30) with equality. Hence, overall system
performance suffers when the retailer incurs most of
the expensive backorder costs, and—as the follower—
has less power than in the Nash equilibrium to control
these costs.

Retailer’s Stackelberg Game. The Stackelberg
problem is less tractable when the retailer is the
leader. The following proposition (see the Appendix
for a proof) characterizes the solution.

Proposition 5. Let ��̂�� ŝ�� be the equilibrium when
the retailer is the Stackelberg leader in the absence of par-
ticipation constraints. Define !̂ ≥ 0 to be the unique non-
negative solution of

!2+ �!+2� (1− e−�!−�∗�s∗��
)= 0 (31)

Then the Stackelberg solution is

�̂� =
√
�1−��b�!̂+1�e−!̂

c
� ŝ� =

!̂

�̂�
 (32)

Although we do not have a closed-form solution to
the retailer’s Stackelberg game, the next proposition
(see the Appendix for a proof) provides a comparison
between this equilibrium and the Nash equilibrium.

Proposition 6. The following five inequalities hold:

�̂�ŝ� ≤ �∗
�s

∗
�� (33)

�̂� ≥ �∗
�� (34)

ŝ� ≤ s∗�� (35)

CR�ŝ�� �̂�� ≤ CR�s
∗
�� �

∗
��� (36)

CS�ŝ�� �̂�� ≥ CS�s
∗
�� �

∗
�� (37)

While inequalities (34)–(37) mirror our results for
the supplier Stackelberg game, inequality (33) states
that the customer service level, �1− e−�s�× 100%, is
lower in the retailer’s Stackelberg equilibrium than in
the supplier’s Stackelberg equilibrium (and the Nash
equilibrium). Inequality (33) also implies that the
retailer Stackelberg equilibrium is inefficient relative
to the centralized solution. Analytical approximations
(using e−x ≈ 1−x in Equation 31) and numerical com-
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putations reveal that when the service level is close
to 0 or 100%, both Stackelberg games have asymptoti-
cally the same service level. The maximum difference
is approximately 9.5%, and is achieved when the ser-
vice level is 76.0% for the supplier’s Stackelberg game
and 66.5% for the retailer’s Stackelberg game. In a
more practical example, if the supplier’s Stackelberg
service level is 90.0% then the retailer’s Stackelberg
service level is approximately 82%. Hence, the deteri-
oration in customer service is not trivial, and if there
is a leader the customers prefer that it is the supplier.
This is because the base-stock level is more effective
than the capacity level at controlling the customer ser-
vice level, and the retailer chooses a small base-stock
level when he is the leader.
Figure 5 shows the competition penalty P for the
Nash and Stackelberg games. The left graph plots
P as a function of the backorder cost b for � = 05.
Consistent with our discussion in §5, for � = 05 the
competition penalty decreases with b for the Nash
game. In contrast, for both Stackelberg games the
competition penalty increases with the backorder rate.
The other plot in Figure 5 displays the competition

Figure 5 Competition Penalty for the Nash Game �N�, the Supplier’s Stackelberg Game �S�, and the Retailer’s Stackelberg Game �R�
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penalty as a function of � for b = 2. The inefficiency
for the three games is U-shaped, and is minimized
near �= 05. Moreover, all three games have a similar
level of inefficiency as �→ 0 and �→ 1. Finally, Fig-
ure 5 also suggests that the retailer’s Stackelberg game
achieves a lower total system cost than the supplier’s
Stackelberg game. Evidently, the supplier, by own-
ing the cost-driving resource, wreaks more havoc on
his opponent as the leader than does the retailer. He
holds less capacity, leading the retailer to incur con-
siderable holding costs. The retailer holds less inven-
tory (which is the customer-service-driving resource)
when he leads, and the supplier’s increase in capac-
ity is not enough to compensate for the retailer’s
lower base-stock level; consequently, customer service
suffers.

8. Concluding Remarks
The distinguishing feature of our simple supply chain
model is that congestion at the supplier’s manufac-
turing facility is explicitly captured via a single-server
queue. Each agent has a resource at his disposal (the
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Table 1 A Summary of the Asymptotic Results

b → 0 b →� 0< b <�
0 if �→ 0 � if �→ 0 U-shaped as � ranges

Competition Penalty 0 if �= 05 from 0 to 1
(Nash Inefficiency) � if �→ 1 � if �→ 1

Customer Service Level Centr.= Nash Centr.= Nash Centr.� Nash if �→ 0
�1− exp�−�s�� Centr.= Nash if �→ 1

s∗� ≥ s∗ �≥ 0618 �≥ 05 �≥ �s = root of (22)
�∗� ≥ �∗ �= 0 �≤ 05 �≤ �� = root of f��b�= 1

Contract:
Supplier Pays Retailer’s Cost If �= 0 �≤ 02 �≤ 
�b� see condition (30)
Retailer Pays Supplier’s Cost If �≥ 0828 �≥ 08 �≥ 
̄�b� see condition (30)

supplier chooses the capacity level and the retailer
chooses the base-stock level) that buffers against back-
orders. When the inventory backorder cost is incurred
entirely by the retailer (i.e., the retailer’s backorder
share � = 1), the supplier has no incentive to build
any excess capacity, which leads to system instabil-
ity. When the supplier incurs some backorder cost
(� ∈ 	0�1�), there is a unique Nash equilibrium that
is always inefficient: The agents’ selfish behavior
degrades overall system performance. However, the
Nash equilibrium is asymptotically efficient (a sum-
mary of all our asymptotic results is provided in
Table 1) in two cases: (i) The backorder cost goes
to zero and the supplier incurs all of the backorder
cost, and (ii) the backorder cost goes to infinity and
is split evenly between the two agents. The Nash
equilibrium has an arbitrarily high inefficiency in two
cases: (i) The backorder cost goes to infinity and the
supplier incurs all of the backorder cost, and (ii) the
retailer incurs all of the backorder cost. For most
practical cases (i.e., backorder-to-holding cost ratio is
greater than 2), the inefficiency of the Nash solution is
smallest when the backorder costs are split relatively
evenly between the two agents. This is likely to occur,
for example, if the propensity of customers to switch
brands (suppliers) or switch retailers is similar. Rela-
tive to the centralized solution, the agents in the Nash
equilibrium have more buffer resources when they
care sufficiently about backorders: The supplier builds
more capacity than optimal when � < �� (and �� ≥
028 if backorders are more expensive than holding
inventory) and the retailer has a larger than optimal

base-stock level when � > 063 (and, in some cases,
an even smaller threshold). However, at least one of
the agents in the Nash equilibrium holds a lower-
than-optimal level of his buffer resource. Finally, cus-
tomers receive better service in the centralized solu-
tion than in the Nash equilibrium, and customer
service improves in the Nash setting when the retailer
incurs most—but not all—of the backorder cost.
A linear transfer payment that induces cost shar-
ing between the players coordinates the system. In the
absence of participation constraints, coordination is
always possible. A coordinating contract requires the
parties to negotiate on the value of a single parame-
ter (�) that defines the split of the total system cost.
The range of admissible values for � increases with
the magnitude of the inefficiency of the Nash equilib-
rium. Hence, negotiations should be easier when the
backorder costs are not split too evenly. However, if
an agent absorbs 80% or more of the system back-
order cost then this agent is willing to sign a con-
tract that fully subsidizes the other agent’s operation.
Consequently, our model predicts that vertical inte-
gration would preclude the widespread prevalence of
decentralized supply chains with extreme values of �.
Although we did not incorporate participation con-
straints in the model, a straightforward analysis (see
Caldentey and Wein (1999)) in a profit-maximization
framework shows that there are values of � (in the
proximity of 0 and 1) for which the contract will lead
to the operation of an otherwise inoperative supply
chain, for example, the extra system profit generated
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by the contract is sufficient to entice the nonpartici-
pating agent into playing.
Finally, when one of the agents is the Stackelberg
leader, he builds less of his buffer resource and faces
a lower cost than in the Nash equilibrium, and the
other agent builds more of his buffer resource and
pays a higher cost. The total system cost is less in
the retailer Stackelberg game than in the supplier
Stackelberg game. Because scarce capacity causes a
nonlinear increase in delay, the supplier’s leadership
power causes more harm to the supply chain than the
retailer’s leadership power. Customer service is the
same in the Nash equilibrium as when the supplier is
the Stackelberg leader, but customers fare worse when
the retailer is the leader. This latter effect is because
the retailer holds less inventory when he is the leader,
and the base-stock level has a more direct impact on
customer service than the supplier’s capacity. Taken
together, these results provide operations managers
with a comprehensive understanding of the compet-
itive interactions in this system, and offer guidelines
for when (i.e., for which sets of problem parameters)
and how to negotiate contracts to induce participation
and increase profits.
Recall that our model is quite similar to the two-
stage inventory model of Cachon and Zipkin (1999):
The main difference is the single-server vs. infinite-
server model (i.e., queueing vs. inventory model) for
the manufacturing process. Indeed, these two models
can be viewed as the simplest prototypes for single-
product, steady-state supply chains with no fixed
ordering costs. In the extreme case when the supplier
does not care about backorders (� = 1), he builds no
excess capacity in our queueing model, whereas he
holds no inventory in Cachon and Zipkin’s inventory
model. The effect of the former is an unstable system,
while the effect of the latter is to turn the supply
chain into a stable—albeit ineffective—make-to-order
system. In Cachon and Zipkin’s echelon inventory
game, the Nash solution is indeed highly inefficient
when � = 1, but in the local inventory game the
median inefficiency in their computational study is
only 1%. When � = 1 in the local inventory game,
the supplier’s base-stock level offers him little con-
trol over the system’s cost, whereas the capacity level
in our model impacts the entire system in a more

profound way. On the other hand, both models pre-
dict that the inefficiency is small when the backorder
costs are shared equally. Another qualitative differ-
ence between the results in these two papers is that
Cachon and Zipkin’s agents typically hold less inven-
tory (for the echelon inventory game) in the Nash
equilibrium than in the centralized solution, whereas
our agents build/hold a higher-than-optimal level of
their buffer resource when their share of the backo-
rder cost is large, as suggested in the management
literature by Buzzell and Ortmeyer (1995) and others.
In our view, the make-to-stock queue is an attrac-
tive operations management model to embed into a
game-theoretic framework. The model complements
the newsvendor model by considering products with
long life cycles, and is about as complex as—but
considerably more tractable than—a two-stage Clark-
Scarf model. It also allows us to capture the nonlin-
ear effect of capacity on the supplier’s lead times.
Of course, none of these models attempt to mimic
the complexities of an actual supply chain. Neverthe-
less, to the extent that queueing effects are present
in manufacturers’ production facilities, the make-to-
stock queue is a parsimonious and tractable model
for deriving new insights into multiagent models for
supply chain management.
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Appendix
Proof of Proposition 1. The function C�s��� defined in Equa-

tion (5) is continuously differentiable and bounded below by 0 in
X = #�s� �� � s ≥ 0� � > 0$. Thus, a global minimum is either a local
interior minimum that satisfies the first-order conditions or an ele-
ment of the boundary of X; alternatively, there could be no global
minimum if the function decreases as s →� or � →�.
However, we have checked that lims→� C�s��� → � for � > 0,

and lim�→� C�s���→� for s ≥ 0, which implies that a global min-
imum exists. From the first-order conditions (6) and (7), the only
interior point that is a candidate for the global minimum is �s∗� �∗�.
In addition, the Hessian of C�s��� at �s∗� �∗� is given by

H�s∗� �∗�=

 �∗ s∗

s∗
c�ln�1+ b�+2�

�∗
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Because ln�1+ b� > 0 for b > 0, the Hessian is positive definite and
�s∗� �∗� is the unique local minimum in the interior of X. The result-
ing cost is C�s∗� �∗� = 2√c ln�1+ b�. Finally, lim�→0 C�s���→� for
s ≥ 0� and

C�0� ��= b

�
− c� ≥ 2√cb > C�s∗� �∗� for � > 0� b > 0

Thus, �s∗� �∗� is the unique global minimum for &�s���. �

Proof of Proposition 5. To derive the Stackelberg equilibrium,
we find it convenient to define

!= �s� (38)

and rewrite the supplier’s reaction curve (Equation 16) as

e−!

(
!+1
!2

)
= c

�1−��bs2
 (39)

The one-to-one correspondence between the base-stock level s and
the service level parameter ! (recall that the service level is e−! ×
100%) allows the retailer in this Stackelberg game to choose ! rather
than s. By Equations (3) and (38), the retailer’s cost is

CR�!���=
(
!−1+ �1+�b�e−!

�

)
 (40)

Solving Equation (39) for s and using Equation (38) gives

��!�=
√
�1−��b�!+1�e−!

c
 (41)

Substituting Equation (41) into Equation (40) yields the retailer’s
cost as the following convex function of !≥ 0:

CR�!�=
√

c

�1−��b

(
!−1+ �1+�b�e−!√

�!+1�e−!

)
 (42)

Therefore, the first-order condition

!2+ �!+2��1− �1+�b�e−!�

2�!+1� 32 e −!
2

= 0 (43)

is sufficient for optimality. Because 1+�b = e�
∗
�s

∗
� and the denomi-

nator of condition (43) is always positive, condition (43) is equiva-
lent to Equation (31). Hence, by Equations (31), (38), and (41), the
Stackelberg equilibrium is given by Equations (31) and (32). �

Proof of Proposition 6. To prove Equation (33), note that the
left side of Equation (31) is positive if ! > �∗

�s
∗
�. Thus, the root !̂ of

Equation (31) must satisfy !̂≤ �∗
�s

∗
�, for example, �̂�ŝ� ≤ �∗

�s
∗
�.

To show that �̂� ≥ �∗
� and ŝ� ≤ s∗�, we first observe that ��s� =

argmin�>0#CR�s� ��$ and ��2CR�s� ���/��s���= �1−��bse−�s ≤ 0 Thus
(e.g., Chapter 2 of Topkis 1998), CR�s� �� satisfies the decreasing
difference property,

d��s�

ds
≤ 0 (44)

In addition, the function e−!�!+1�/!2 is decreasing in !> 0. Hence,
from Equation (39) and inequality (33), we conclude that ŝ� ≤ s∗�.
Finally, Equation (44) and ŝ� ≤ s∗� implies that �̂� ≥ �∗

�.

The retailer’s cost in Equation (42) is an increasing function of
! for !≥ !̂. Hence, inequality (36) follows from inequality (33). To
prove Equation (37), for example, CS�!

∗� �∗
�� ≤ CS�!̂� �̂��, we first

use Equation (4) to rewrite the supplier’s cost as

CS�!���= c�+
(
�1−��be−!

�

)


The function CS�!��� is decreasing in ! for � > 0, and so inequal-
ity (33) implies that CS�!

∗� �̂��≤CS�!̂� �̂��. Hence the proof of Equa-
tion (37) will follow if we can show that CS�!

∗� �∗
�� ≤ CS�!

∗� �̂��.
For any fixed nonnegative !, the function CS�!��� is convex in �,
achieves its only minimum at

��!�=
√
�1−��be−!

c
�

and is increasing for � ∈ 	��!����. In particular, we have

��!∗�=
√

�1−��b

c�1+�b�
≤
√

�1−��b

c�1+�b�

√
1+ ln�1+�b�= �∗

�

This inequality and Equation (34) imply that CS�!
∗� �∗

��≤CS�!
∗� �̂��,

which completes the proof of Equation (37). �
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