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The problem of maximizing the production of good sets of semiconductor chips under random yield is reexamined in this paper. (A
set of semiconductor chips is called a semiconductor kit.) This problem has been considered by Avram and Wein (1992) and Singh
et al. (1988). To solve this problem we show that under certain combinations of assumptions the production process can be replaced
by a black box. The use of the black box model considerably simplifies the analysis and reduces the simulation effort required for
carrying out parametric analysis of the proposed solution procedure. The model includes that of Avram and Wein, and we extend
their results to more general settings and strengthen their conclusions. Using the black box model, it is shown that the strategy of
placing different types of chips on a single wafer gives larger yield of kits in a stochastic sense than the traditional method of placing
single types of chips on a wafer. We compare the production of kits under different chip design and lot release policies and also carry
out a parametric analysis with respect to factors such as set proportions and yield.

In the semiconductor industry customers typically order
sets of different chips called a semiconductor kit. In this
paper we consider the problem of maximizing the produc-
tion of these kits under random yield. The problem is of
practical interest as yields in semiconductor fabrication
can be as low as 20% when making new or custom-built
chips, and random failures of any one type of chip can
disrupt the delivery of complete sets. The chips that make
up the kit are manufactured in three steps, namely wafer
preparation, wafer fabrication, and assembly and testing.
We model the second step of this production process, be-
cause the lead time, the complexity of processes, as well as
the investment in facilities are the greatest in wafer fabri-
cation. Wafers containing anywhere from 20 to several
hundred chips are manufactured in a semiconductor fab.
While in the past only a single type of chip could be pro-
duced on a wafer, due to technological advances in the
area of semiconductor fabrication it has now become pos-
sible to design and produce the different chips required in
a kit on the same wafer. The design in which only a single
type of chip is made on a wafer will be called a single type
design, and the one in which several types of chips are
made on the same wafer will be called a multitype design.
Avram and Wein and Singh et al. showed that the multi-
type design can help counter the randomness due to yield
variations in the fab by making chips of different types fail
together—thus increasing the production of complete kits
in a stochastic sense. This was a valuable contribution be-
cause any improvement in the time to execute an order for
sets can lead to significant competitive advantage in this
industry.

The timing and sequence of release of lots of wafers
into the fab are termed the release or input control policy.
When the different types of chips required for the kit are
produced in the same fab using the single type design, the
yield of kits will be influenced by the release control policy.
Avram and Wein, using a quasi-reversible queueing net-
work as the model of the fab, showed for a particular
release control policy that the expected number of kits
produced by a fixed time ¢ is larger for the multitype de-
sign than the expected yield from the single type design.
One of the objectives of this paper was to understand how
the single type design would compare with the multitype
design, when produced using different release control pol-
icies. To study the effect on kit yield due to different re-
lease control policies it is important to understand how a
given stream of inputs to the fab gets transformed into
streams of outputs from the fab. In Section 1, we show that
the input streams get almost exactly transformed into out-
put streams from the fab, i.e., the fab can be treated as a
black box under some generally valid assumptions. In Sec-
tion 2 we provide definitions and summary of the modeling
assumptions. In Section 3, using the black box model of
the fab, we extend Avram and Wein’s results to more
general settings and strengthen their conclusions by ob-
taining stochastic relationships between the outputs of kits
under the two designs and different release control
policies.

A recent use of the black box model can be found in
Connors and Yao (1996). While Connors and Yao’s objec-
tive is different, namely to minimize the input of wafers
into the fab subject to meeting a given demand either with
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a specified probability or to exceeding a given number of
kits in expectation, the fab is modeled by them as a black
box in a manner similar to ours, and they use the notion of
associativity to lower bound the probability of obtaining
kits as done in Claim 4 of this paper. The black box mod-
eling approach not only simplifies the task of analyzing
different release policies but also reduces the simulation
effort needed for quantifying the value of the multitype de-
sign. Based on our results, we conclude that a multitype
design is especially advantageous when the yields are low
and the set proportions are more uneven.

1. PROCESS AND YIELD MODELS EXPLAINED
AND COMPARED

In this section we briefly describe the yield models used in
this paper, the modeling of the production processes as a
black box, and the release controls investigated by us and
compare our approach to the modeling methods used in
Avram and Wein. For a more detailed description of the
production process and the modeling issues, the reader is
referred to Avram and Wein’s paper and the references
cited in this section. The major modeling assumptions
along with the notation and the release controls are sum-
marized in the next section.

Yield Models

The yield of good chips from the fab depends on lot fail-
ures, wafer failures, and chip failures. In this paper we
model the lot and wafer failures as Bernoulli processes and
assume that these failures are independent of the type of
chips, as done in Avram and Wein. The latter assumption
is valid if the lot and wafer failures are due to factors such
as mishandling, intrusion of dirt, or machine failures, but
also see the remark following Claim 5. When a lot or wafer
fails, all the chips in the lot or wafer are assumed to be
defective. A wafer has several chip sites. There is consensus
that chip failures will depend both on the type of chip and
the site (see, for example, Chapter 14 in Sze 1988, Ferris-
Prabhu et al. 1987, Michalka et al. 1990, and Stapper
1985). Avram and Wein use a multiplicative yield model in
their analysis to capture this twofold effect. In their model
the expected yield is expressed as the product of two fac-
tors, one due to the site and the other due to chip type.
We allow both a random yield model as well as the multi-
plicative yield model in our analysis (see A0 below for more
details about the two yield models). In the random yield
model, the yield per wafer of chip type i is a random
variable Y; and is assumed to be independent of the yields
of other types of chips placed on the same wafer. However
as explained in Claim 4, the stochastic order relations can
be extended when the yields of different types of chips on
the same wafer are positively correlated. It should be
noted that defect clustering on a wafer is still not fully
understood and is the subject of ongoing investigation.
The basic problem in developing a realistic defect model
lies in correctly capturing the dependency between failures

at different chip sites. By using a site factor only part of the
effect of location on chip failure gets modeled. This has
implication for determining “good” multitype designs.

Release Control

The first dimension of release control is deciding what
should be the long run (time) average of the different
types of chips released to the fab. Avram and Wein assume
that the fractions of different types of chips released into
the fab are such that the expected numbers of different
types of good chips produced will be in the proportion
required for making up the kit. Such an input policy is said
to be failure proportioned. The failure proportioned input
policy is adopted by us, too; see A/ in the summary of
assumptions. Singh et al. (1988) show that adopting the
failure proportioned policy need not be optimal for
the static problem of producing a single semiconductor Kkit.
In the dynamic setting, when say several hundred kits are
required, it is still an open question what should be the
right mix entering the fab, especially when feedback re-
garding yields can be obtained in a timely manner. In what
follows, a site is usually a row of the wafer and fractional
allocation of a chip type to a site is allowed for analytical
ease and is not too unrealistic.

The timing of inputs into a wafer fab has two dimen-
sions: (i) deciding when to release a lot and (ii) deciding
which type of wafer will be released next. For the first part
Avram and Wein assume that the arrival stream of work to
the fab can be represented by a Poisson process. For the
second part, they assume that in the case of the single type
design the arrival processes of different chip types to the
fab are independent Poisson processes. This is termed a
random release policy in our paper. In contrast, firstly, we
do not assume anything about the composite arrival stream
of work into the fab and instead work with a given distri-
bution of output from the fab. Secondly, when dealing with
the single type design, in addition to the random release
policy, we permit cyclic release where wafers containing the
different types of chips are released cyclically in sequence
and in the proportion required to form a set. Another
aspect of release control is deciding whether the control
will be at the level of lots or at the level of wafers. When
the control is at the level of lots, the lot will consist of
the same type of wafers, whereas when the control is at the
level of wafers the lot can be made up of different types of
wafers. For the single type design, wafers usually consisting
of the same type of chip are made into lots for input into
the fab. In the first four claims in Section 3, we assume
that the release control is at the level of wafers. In Claim 5
we examine the case when the control is exercised at the
level of lots.

Model of the Production Process

A motivation for this paper was to understand how the
multitype designs would perform when compared to
the single type design produced using cyclic release. In order
to study the impact of cycling the inputs, we had to model



how a given stream of inputs gets transformed into a stream
of outputs from the fab. It turns out that under certain com-
binations of assumptions, it is possible to assume that the
input stream of wafers gets mapped almost exactly into the
output stream of wafers from the fab. We now describe two
alternate sets of assumptions regarding the production pro-
cess that are used in this paper to justify this mapping. First
assume that the processing sequence and processing times
for all designs are identical. (Avram and Wein, too, as-
sume that the multitype design can be produced in a man-
ner similar to the one used to produce the single type
design; i.e., in comparison to the single type design it is
assumed that the multitype wafer can be produced in
about the same time, using similar production facilities,
and the production processes will give similar yields.) Un-
der this assumption, if the lots were processed as one unit
at all stations then the stream of outputs under different
designs will be the same. If the lots are not processed as
one unit, but if there are single machines at each work
center (or multiple machines with deterministic processing
times), and the first in first out (FIFO) sequencing policy is
used at all work centers, then it can be shown that the
input stream gets mapped exactly into the output stream.
The assumption of single machines at work centers, or of
deterministic processing times with multiple machines, is
made to prevent overtaking of a lot by a lot that was
injected later into the fab. Excepting the assumption on
sequencing, these assumptions are almost always met in
practice. The assumptions are summarized in 43, A4, and
A5 (i) & (ii).

A second set of assumptions is that (a) we are con-
cerned about the yield of complete kits over a long period
of time and (b) the number of wafers (or lots) in the fab at
any point in time is negligible compared to what is pro-
duced over a long period of time; see A5 (iii). It then
follows that the inputs of wafers are mapped into outputs
until some point of time ¢, with an error equal to the
number of wafers in the fab at the time ¢. (As the kit size is
fixed, the error when measured in terms of kits will also be
small; see Claim 2 for an application of this reasoning.)
This set of assumptions dovetails with a requirement in
Claim 4 that the number of chips produced is large enough
for the normal approximation to hold good; see A2. Under
the second set of assumptions, excepting process yields we
need not be concerned whether the production processes
are the same for making the two designs. These assump-
tions are seen to include the situation when the fab pro-
cesses are modeled using a quasi-reversible queueing
network, like in Avram and Wein. Either of these sets of
assumptions allows us to assume that the inputs are almost
exactly mapped into outputs and thus the fab itself appears
to be a black box. The quasi-reversible network is also a
black box in this sense but with restrictions placed on the
input and fab production processes. Connors and Yao,
using an approach similar to ours, work directly with the
yield model, bypassing the fab production processes.
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2. DEFINITIONS AND DESCRIPTION OF THE
MODELING ASSUMPTIONS

Definitions and Notation

L = Lot size,

P(Lot is good) = p, independent of all else,

W = Number of chips per wafer,

P(Wafer is good | Lot is good) = py,

Y; = Random yield of chips from a wafer containing chip
Number of chip types = k,

Set requirement proportions = {f;: f5: ..
integers,

M(¢) = Number of lots produced by time ¢,

N(#) = Number of wafers produced by time ¢,

N,(t) = Number of good wafers produced by time ¢,
N,(t) = Number of good wafers of type i produced by
time ¢,

N (t) = Number of chips produced by time ¢,

N, (t) = Number of chips of type i produced by time ¢,
S$%(¢¥) = Number of complete kits produced by time ¢ under
policy a,

pi: = EY/W is the yield of chip type i expressed as a
fraction,

w; = Yield factor of row j on a wafer,

t; = Yield factor of a type i chip, and

nrow = Number of rows in a wafer

. : fi} and f; are

The semiconductor kit required by the customer is the

We assume that inspection is done after all processing has
been completed in the fab. N(¢) is the number of wafers,
good or bad, produced until time ¢, and Ny(¢) is the num-
ber of wafers out of N(¢) that are not completely defective.
N () and N,(t) denote the number of good chips pro-
duced from good wafers. When necessary we use N_,(¢) to
denote the total number of type i chips, whether good or
bad, obtained from the N(¢) good wafers.

Summary of Modeling Assumptions
Six assumptions are used as stated below:

A0. Either the random yield model or the multiplicative Ber-
noulli yield model is assumed to hold (also see the references
cited in Section 1 and Avram and Wein for a more detailed
description of the yield models and the modeling implica-
tions).

(a) Random yield model: (i) The yield per wafer of chip
type i is a random variable Y;. It is assumed that the yields
of chip type i from different wafers are independent and
identically distributed. (ii) When a proportion r; of the
chip sites in each row is allotted to chip type i, the yield of
type i chips from the wafer is independent of the yields
of other types of chips placed on the same wafer, and has
mean r; E(Y;) and variance r;Var(Y)).

(b) Multiplicative Bernoulli yield model: Given that a
wafer is good, the probability that a chip of type i located
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in row j will be good is given by wt;. The w;s are termed
the site factor and t;s the type factors. For carrying out the
failure proportioned allocation, p;, the average yield per
wafer of chip type i, expressed as a fraction is given by
the average of the ws times the type factor, ie., p; =
2 (wt;)Inrow.

Al. In all policies, the relative fractions of chip types input
into the fab are maintained as:

i B g

P D2 Lk——(r . )
fi, fi,..., fl 1 2,..., k.

2= 2 > =

i Pi i Pi i Pi

This allocation scheme is said to be failure proportioned.
For the random release policy the fractions are maintained
in the expected sense, for the cyclic release policy the
ratios are maintained in each lot if wafers are cycled into
the fab, or over one or more cycles of release if lots of
single type wafers are cycled into the fab. For the multi-
type wafer, we attempt to maintain the ratio in each wafer.

A2. The number of lots produced by time t, M(t) 1 o with t.
A3. The lot size, L is such that Lr; is an integer for all i.

A4, The internal control policies in the fab are of open loop
type, and do not use information on the type of chip or type
of wafer. The processing sequence and times of all wafer
types, including a multitype design, are identical (have identi-
cal distributions when the processing times are random
variables).

AS. (i) Lots are processed as one unit, i.e., lot by lot. or

(ii) The fab consists of single machines at each work center
(or multiple machines with deterministic processing times),
and the FIFO sequencing policy is used at all work centers. or

(iii) We are concerned with the yield of kits over a long
period of time t, and if R%(t) were the number of lots still in
the fab at time t, a = I, 11, 111, then:

|[R%(t) — Ro(¢)|/M“(t) >0 asttw,a,b=1I1II,III.
Policies Compared

Three different policies denoted as I, II, and III are com-
pared in the analysis and the simulations. These policies
combine the wafer design and input control decision and
are described below:

I. STRR or Single type random release policy, where the
probability that the n™® wafer released into the fab has type
i chipsis givenbyr,i=1,2,...,k.

II. STCR or Single type cyclic release policy, where the
k types of wafers are released in sequence in the propor-
tion {ry:ry: ... i1}

III. MTFP or Multitype failure proportioned policy, in
which the fraction of chip type i allocated to site s on the
wafer is given by 7;. In this policy the allocation is the same
for all rows.

3. ANALYSIS

The policy numbers I, II, and III will be used as super-
scripts to indicate which policy is being examined. As ex-
plained in the previous section, we shall be working with a
given distribution of lots produced by time #, M(t). The
first observation is that:

Claim 1. Under A3, A4, and A5 we can “ignore” the lot
failures and work only with wafer failures for computing the
output of kits produced using the three policies.

Proof. First we note that wafers of different types are as-
sumed to make up a lot under the release policies de-
scribed above. Further release control determines the
composition of a lot by A3. (However, the assumption that
wafers of different types and not lots of different types are
sequenced into the fab is made for ease of exposition and
can be eliminated as explained in Claim 5.) By 44 and 45
(i) or (ii) we can assume that the input sequence of wafers
is almost exactly mapped into the output sequence of wa-
fers. This mapping is by assumption under 44 and A45(i)
and follows from A5(ii) because no overtaking is possible
at any of the work centers. A5(iii) states that for large ¢,
the fraction of lots still left in the fab will be very small
compared to those already produced; which allows us to
assume with very little error that the input stream has been
exactly mapped into the output stream of wafers. Coming
to the claim:

For policy 111 ignoring lot failures and working with only
good lots for computing the output of kits introduces no
errors. For policy I, as the input stream is mapped into the
output stream, the random release policy ensures that
working with good lots is as good (in the stochastic sense)
as working with all lots for calculating the yield of good
chips of different types. For policy I, the integrality of Lz,
guarantees that working with good lots is permissible if the
processing is done lot by lot. If the lots are broken up
while processing, we shall still assume that they get recon-
stituted at each step of processing, and also that the lot
failure probability is applicable to the original lot of wafers
input to the fab. 45(ii) or A45(iii) can then be used to
justify the claim for policy II. []

The assumption that Lr; is an integer is quite critical to
the proof of the above claim and is made because it sim-
plifies the subsequent proofs. The more practical case, in
which lots made up of the same type of wafer are cycled
into the fab, is examined in Claim 5. In the remainder of
the claims we shall be assuming that N,(¢) is the same
under all policies because the wafer failures do not depend
on the type of chip and as inputs are almost exactly
mapped into outputs. An example of the use of A45(iii) is
given below which makes the mapping argument more
precise.

Claim 2. If p; = 1 for all chip types, i.e., when there are no
chip failures, then S™(t) =, S'(t), where =, stands for
larger in the usual stochastic order.



Proof. This follows from the definition of =, (see Stoyan
for example) and:

P(ST(t) = x) = P(Ng”(t) > ( ) f,»)x)
~ P(N;(t) > ( E fi>x> = P(S(t) = x).

The proof under 45(iii) can be modified as follows:

P(S™ (1) = x)
= P(Ng”(t) > ( 2 f,-)x)
> P(N;(t) > ( 2 f,.>x + INI(6) - N;"(t)|>
> P( SI(t) = x + [NX(t) — Ng”(t)|/( > f,~>>, and

-0

‘P(S’(t) =x + [NL(e) — NH(p) / (2 f>> — P(S(t) = x)

ast T o byA2 and A5(iii). []

Separate proof will not be given under A5(iii) in the
remaining claims, as the ideas are similar to the ones used
in the above example.

Claim 3. If p; = 1 for all chip types, i.e., when there are no
chip failures, then S™(t) =, S"(?).

Proof. This follows from observing that if we first allocate
n wafers to the k types in the proportions {r;} and get x
kits out of the good wafers of each type, then we will also
get x kits by selecting the same number .of good wafers
from n and then allocating them to chip types. To see this,
let x; be the number of type i chips produced under policy
II. As there are no chip failures, the total number of good
chips produced under IIT will be 2, x;. Then, kits produced
under II = min{x,/f;} < 2, x,/Z; f; = kits produced under
policy I1I. []

The stochastic order relations we could establish in the
presence of chip failures are weaker.

Claim 4. For large t, S™(t) =,., S“(t) =, S'(t), where the
relationship =, denotes stochastically larger in the increas-
ing concave sense.

Proof. The basic idea of the proof is to reduce the prob-
lem to one of comparing two multivariate normal distribu-
tions with independent components and equal means, but
with one having larger variances than the other. The result
will then follow from an application of the generalized
Slepian inequality used by Avram and Wein, Proposition 4.
We will assume throughout that the normal approximation
to the distribution of the number of chips produced by
time ¢ holds due to A2 and the finiteness of the second
moment of the corresponding random variables because of
AOQ. Therefore we assume that there exists a constant c(t)
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such that the distribution of N(t)/c(¢) is very nearly nor-

mal for all policies. Let Z%(¢),a = L I III;i = 1,2, ...,

k be normally distributed random variables such that:
ifa=1orll: Z(t),i=1,2,...,k are independent
with mean and variance given by

E(N%())/e() and Var(Ne(0)/c(r)
Z"!(t), have the multinormal distribution
with means E(NY(t))/c(t), and product
moments E(NL () NI (£))/c(t).

First consider policies II and III. Fix the number of
wafers produced as n/W. Then Z¥(¢),i = 1,2, ..., k are
associated random variables. To prove this assume without
loss of generality, T = x/r; = y/r;. Let N#(t) be the number
of chips, good or bad, of type i produced by time ¢. Then,

P(NUI(t) > x; NH(t) > y|WN(t) = n)
=2 (Z)p"ﬁy(l —-pw)"?

z>T

=[ = (2)pitt —pwr 7]

z>T

[ 2 (7)pitt—pm ]

z>ylr
= P(NI'(t) > x|WN(1) = n)
X P(NHI(t) > y|WN(t) = n).

ifa = III.

Therefore the covariance between N'Z(¢)’s is nonnega-
tive. Using the theorem due to Pitt (see 5.1.1 in Tong
1990), the normal approximations to the random variables
NMI(£)/c(t)’s are associated. Using the property that in-
creasing functions of associated random variables are asso-
ciated (see, for example, property P; on p. 30 of Barlow
and Proschan 1981) and also the fact that under both the
yield models the yield of good chips is an increasing func-
tion of the total number of chips (good or bad), we obtain
that the random variables Z(¢), i = 1, 2, ..., k, are
associated for fixed n.

The means of ZZ/(¢) and Zl(¢) are the same (because of
the use of the failure proportioned input policy), but the
latter has a larger variance due to the lot sizing effect on a
wafer, i.e.,

Var(N'(t)) = r?E(Y;)*Var(N;" (1))
+r,E(NJ! (1)) Var(Y;)
~ rfE(Y;)*Var(N{(t))
+ r,E(N () Var(Y;)
< r;E(Y;)*Var(N} (1))
+rE(NJ(#) Var(Y;) = Var(NX(1)).

The associatedness permits us to work with independent
ZM(£), because the minimum of associated random vari-
ables is stochastically larger compared to the minimum of
independent random variables with the same marginal dis-
tributions; for example, see Theorem 3.2 of Barlow and
Proschan. Next we use the fact that any increasing concave
function of the number of kits is a concave function of the
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Table 1
Variance of Good Type i Chips Given N Lots are Produced

Policy Variance

I Np (r;LpyVar(Y;) + r?E(Yi);LpW(I - pw)) + Np,(1 - pL)(rinVVE(Yi))ZZ
I Np (r.LpyVar(Y;) + rE(Y) Lpy(1 — py)) + Np (1 — p,)(r:.LpyE(Y))) )
I Np,(riLpwVar(Yy) + E(Y,) Lripy(1 — rpw)) + Np (1 — pr)(r:LpyE(Y))
- riNpL(LpwVar(Y,) + E(Y))'Lpy(1l — py)) + Nrip (1 = pr)(LpwE(Y))) )
I-L r:Np (LpyVar(Y;) + E(Y,)"Lpy (1 — py)) + Nripp(1 — rip ) (LpwE(Y)))

number of good chips of different types, i.e., f(-) is con-
cave and increasing and g( - ) is concave implies:

flg(Axy + (1 = M)x3)) = f(Ag(xy) + (1 — M) g(x,))
= M(g(x1)) + (1 — M) f(g(x2)).

The first inequality follows by concavity of ¢g( ) and
because f( -) is increasing. The second inequality follows
from the concavity of f(+). So an application of the
Slepian inequality shows that the expected value of any
increasing concave function of the number of kits is larger
under policy III compared to policy II. The increasing
concave ordering now follows from the definition of <, ,;
see Stoyan for example. A similar proof can be given when
there is positive dependence between the yields of differ-
ent types of chips placed on the same wafer. The proof can
be shown to extend to the case when lots and not wafers
are sequenced cyclically into the fab.

To compare policies I and II, observe that given n wa-
fers are produced, the probability of getting x kits under
policy I is smaller than when the good wafer of different
types are generated independently using binomial trials
with success probabilities 7;py. These independent pro-
cesses generating the good wafers have the same means
but larger variances compared to the processes that gener-
ate the good wafers under policy II. This leads to the
desired conclusion just as in the previous case. []

The arguments are similar when lots and not wafers are
randomly injected into the fab. Consider two more poli-
cies: (i) STRRL: A single type random release policy, un-
der which the probability that the n™ lot released into the
fab has type i chips is given by r;,i = 1,2, ..., k; and (ii)
STCRL: A single type cyclic release policy, where each lot
is to be made up of only a single type of wafer and the &
types of lots are released in sequence in the proportion
{ry:ry: ... ri}. These two policies will be denoted by the
superscripts I-L and II-L.

Claim 5.

(1) (1) =icy S™(1) Zico STE(W) Zic0 STH(),
(2) 8™(t) Zey ST(O) i ST(O) 20 STH(),
and if (1 — p,)L < 1 then

(3) SIH(t) 2icw SH(t) Zicy SH‘L(t) >icu Sl(t) Zicy SI_LO)-

Proof. Consider (1) and (2) first. Because of Claim 4, we
need to prove only the last two relationships in (1) and the

last relationship in (2). The variances of good chips under
the different policies are given in Table 1. From the table
we see that the variance of good chips increases as we
move from policy II to policy II-L to policy I-L. As done in
Claim 4, we argue that the probability of obtaining a given
number of kits under I-L is smaller than when the good
lots of different types are generated independently using
binomial trials with success probabilities 7; p;. The use of
these two facts and of a multinormal approximation as well
as an application of the Slepian inequality leads to (1). The
arguments for proving (2) are similar. The comparison of
policies I and II-L is difficult because the direction of the
stochastic inequality will depend on the magnitudes of
the two lot sizing effects, one due to lot failures and the
other due to wafer failures. However by comparing
the variances in Table I, we see that if (1 — p,)L is
smaller than one, then the variance of good chips under
II-L is smaller than the variance under I. This observation
leads to (3). [

Remark. The formulae given in Table I may be used to
compare the different designs and release control policies
even when the lot and wafer failure probabilities are dif-
ferent for different designs and/or depend on the chip type.
The restriction in their use is that if the variance under the
multitype design exceeds that under the single type design,
we cannot directly conclude that the single type design is
better.

Parametric Analysis

We can carry out a parametric analysis based on the re-
sults shown in Table I to determine the factors that favor
the use of a multitype design. We carry out the analysis
with respect to lot and wafer failure probabilities as well as
the set proportions. Wafers are usually released in lots;
therefore we restrict the analysis to policies IIT and II-L.
Denote the variance under these policies to be o%; and
03,1, respectively. From Table I, we obtain:

2 2
ol oL

_ var(Y;))/E(Y))? + r;(1 = py) + r;(1 = p;)pwL
var(Y;)/E(Y:)2+ (1 —pw) + (1 — pr)pwL

In practice the lot size is around 20 wafers per lot; there-
fore the last term in the numerator as well as the denom-
inator of this expression will tend to dominate. This shows
that in practice, the higher the lot failure probability, the
greater will be the improvement in kit yield from using a




multitype design. A similar analysis shows that if one type
of chip is predominantly required in making up the set,
then too the multitype design will be favored. The wafer
failure probability is possibly the least important of the
three variables.

Claim 6. In the absence of wafer failures and when site
failures are independent of one another, S™(t) £ S"(r) Xv
SX(t); where 2 stands for equality in distribution.

Proof. Only the first assertion needs to be proved. But
when there are no wafer failures, we are concerned only
with chip failures at the sites. Given N wafers are pro-
duced, the number of type i chip allocated to site j is the
same under policies /I and III for all (i, j). The indepen-
dence assumption is then used to justify the claim. [7]

Remarks. (1) The cases when there are no chip failures
and the one in which there are no wafer failures in some
sense are at the extreme ends of a spectrum. Claims 3 and
6 show that the multitype design is better than the single
type design for these cases. Claim 4 shows that the result
holds for some in-between cases as well.

(2) Assumptions 43 and A4 are restrictive. An open
question (based on A4) is whether closed loop control will
improve the performance of the cyclic release policy?

(3) Assumption A0 is convenient for making compari-
sons, but maintaining the proportions r; may not be possi-
ble due to the integer number of locations per site.
Secondly, the proportional allocation scheme need not re-
sult in the best multitype chip design. We reason that chip
types required in relatively smaller proportions will need
better protection against failures when the number of wa-
fers produced is small. This can be justified for example
when only one set is required, consisting of one chip of
type 1 and 100 of type 2. Determining the optimal alloca-
tion scheme for a multitype design is difficult as the opti-
mal proportions will depend on the number of Kkits
required, and thus will be related to the distribution of the
wafers put out by the fab (cf: Singh et al.’s results). The
paper by Connors and Yao deals with some of these issues.

(4) We have not discussed different multitype designs in
this paper. Avram and Wein in their paper conclude that
the scope for improving the yield from a wafer through
allocation of chip types to sites may be marginal unless
specific clusters of defects can be identified to group the
location of chip types. Our experience, which is based on
simulating the black box model of the fab and using the
multiplicative yield model, is similar. Details of the simu-
lations and the analysis can be had by writing to the
authors.

4. CONCLUSIONS

The result from the analysis in Section 3 is that the multi-
type designs are better than the single type design. How-
ever the parametric analysis indicates that:
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e For a stabilized design and process, implying low lot
and wafer failure rates, the cyclic release model may
perform well enough to offset the advantage of multi-
type design due to additional costs involved in produc-
ing the multitype wafers.

e When the set proportions are more uneven, the multi-
type design offers greater scope for improving the
yield.
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