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This paper is concerned with the problem of assigning r jobs with known processing
times to m machines to minimize makespan. Each machine has a fixed capacity
expressed as the maximum number of jobs that can be assigned to it. We investigate
the worst-case behavior of the longest processing time heuristic for this problem.
For the case of two machines with equal capacity, it is shown that the worst case
error bound is ZT © 1995 Academic Press. Inc.

1. INTRODUCTION

We consider a parallel multi-processor scheduling problem, denoted
CMP, defined as follows. There is a set of n independent jobs, each with
a known processing time, that must be processed on m machines, each with
a fixed capacity. The problem is to allocate jobs to machines subject to the
following assumptions:

(i) a job can be processed on any machine,
(ii) each job must be processed on one and only one machine,
(iii) the number of jobs assigned to each machine may not exceed
its capacity,
(iv) no job preemption is allowed,
(v) the processing time of a job is independent of the machine.
The scheduling objective is to minimize the makespan, the time required

for the completion of all jobs. The importance of this problem is reflected
by the wide range of its applications which include assembly of printed
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circuit boards [10, 1, 2], design of flexible manufacturing systems [9, 12],
configuration of multi-aisle automated storage and retrieval systems [13],
and the optimal assembly of systems [3]. In all these applications, the
machine capacity is often expressed in terms of the maximum number of
jobs that can be processed instead of the total processing time available
on a machine. For instance, in the context of the assembly of printed circuit
boards, the problem under consideration can be described as follows. A
set of components is to be inserted on printed circuit boards using a flexible
manufacturing system (FMS). The FMS contains a number of robotic inser-
tion machines which insert the components. The components have to be
staged on a machine before they can be inserted into circuit boards, and
there is a limit on the number of components which can be staged on any
machine, called the staging capacity. The insertion of each component has
an associated processing time. The problem is then to make an assignment
of components to machines so that the maximum total processing time
assigned to a machine is minimized while satisfying the staging capacity.
Unfortunately, the CMP problem is well known to be NP-hard. Therefore,
previous work on this problem has typically been devoted to developing
heuristic approaches [4, 14, 10]. Recently, some efforts have been made to
obtain a deeper understanding of the mathematical structure underlying
the CMP [8].

By far the largest body of research work has been done on the special
case of the CMP problem when all machines have unlimited capacity. Much
of the research work has centered on developing bounds on the worst-case
behavior of heuristic algorithms. Worst-case analyses of several heuristics
can be found in [5-7, 11]. Among these heuristics, particular attention has
been paid to the longest processing time (LPT) heuristic. The LPT heuristic
begins by sorting the n jobs in order of nonincreasing processing time. It
then sequentially assigns the next job to the machine for which the current
total processing time is least. A basic result due to Graham [7] states that
the LPT heuristic gives a worst case ratio of (§# — 1/3m). Surprisingly, the
worst case behavior of the LPT heuristic for the CMP is still an open
problem. The purpose of this study is to bridge this gap.

2. WoORST-CASE ANALYSIS

In this section, we prove a key result concerning the worst-case perfor-
mance of the LPT heuristic in the case when m = 2 and the machines have
identical capacity. We first introduce some notation.

Let I = {1, .., 21 + 2} denote the set of jobs to be processed. For each
i € I, w; denotes the processing time of job i. Assume that m = 2 and that
machine capacity is set equal to / + 1. It is henceforth assumed that the
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jobs are labeled such that w = wy = -+ = wy,,. Let W = {w, wy, ...,

W2[+2}. Denote by I, = {i], i3y oy 1.1*1} and 12 = {j], jz, ey j[¢]} the sets of
jobs assigned by the LPT rule to machine 1 and machine 2, respectively.

For a given set W and machine capacity (= / +1), let v(2! + 2, W, CAP)
be the value of the makespan obtained by the LPT rule, and d(2/ + 2, W,
CAP) be the optimal value of the makespan. Similarly, let v(2/ + 2, W,
UNCAP)(©@(2! + 2, W, UNCAP)) be the value of makespan obtained by
the LPT (optimal) rule when all machines have unlimited capacity.

Now we are ready to state the main result of the paper.

THEOREM 1. For the two-machine case and any set W of job processing
times and any integer [, we have

v(2l + 2, W,CAP) _7
sup — ==,
w 02+ 2, W,CAP) 6

(1)

Proof. By contradiction. Suppose that the theorem is false. Then there
exists an example with the smallest value of / that does not satisfy inequality
(1). Consider an LPT assignment of jobs to machines for this example. We
may assume without loss of generality that the last unscheduled job is
allocated to machine 2, i.e., j,.; = 2/ + 2. We consider two cases.

Case 1. 2L=1 w;, =< 2::1 Wi

Note that job i;,, must have started processing on machine 1 before job
ji+1 was assigned to machine 2; see Fig. 1. Therefore the capacity constraint
did not play a role in the LPT assignment. It follows that v(2/ + 2, W,
UNCAP) = v(2! + 2, W, CAP). Moreover, it is not difficult to see that
the inequality 5(2/ + 2, W, CAP) = 5(2[ + 2, W, UNCAP) always holds.
Now, Graham [7] has shown that v(2/ + 2, W, UNCAP)/5(2! + 2, W,
UNCAP) = & We then obtain
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6 5(21+ 2, W,UNCAP) ~_ 0(2] + 2, W,CAP) "

7 _v(20+2,W,UNCAP) _ v(2! +2,, W,CAP)

implying that the theorem holds.

Case 2. 3., w; > P wi.

Let k > 0. Suppose that job i,., starts processing on machine 1 when job
Ji-x+1 wWas being processed in machine 2; this situation is depicted in Fig. 2.
Consider any pair of jobs (ij.,, j,) where re {{ — k + 2,1 — k + 3, ..,
! + 1}. Assume that in the optimal assignment this pair is allocated to two
different machines. Then removing this pair of jobs will give an example
having a smaller value of / for which inequality (1) does not hold. To sece
this let us assume that the pair (i)., j,) is scheduled on different machines
in the optimal assignment. Then the removal of this pair from the set of
jobs I will reduce the optimal makespan by at least w; and will decrease
the makespan obtained by the LPT rule by w; . Hence

7_v(+2,W.CAP) V@I+2.W.CAP)—w,
6 0(21+2,W,CAP)~ 6(2/ +2,W,CAP) — w;’

forr=1—-k+2,..,01+1.

It follows that all jobs i, and j,,/ — k + 2 =< r <[ + 1, must have been
scheduled on the same machine in the optimal assignment. Now we may
assume that the jobs just described have equal processing times. If this is
not the case, then set

Wi, T B ke W
Wi, =W, = k+1 ’

wherer=/—-k+2,.., [+ 1.

As a result, the value of the makespan obtained by LPT may increase
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whereas the value of the optimal makespan may either decrease or remain
unchanged. Note that

I+1
it 2ot ko2 W -0 5
k+1 ’ (2)

' w

Forif not, i.e., if the equality holds in (2), it may be verified that the capacity
constraint did not play a role in the LPT assignment. Then, as in the proof
of Case 1, we have a contradiction. So assume without loss of generality
that w;, = w; = l,forr=1-k+2,..,1+ 1

Denote ¢ = I w;, — 2:: Wi .
Note that 5(2/ + 2, W, CAP) = (S, w; + S w;)/2.
Now, in view of our assumption that

Hel

5(2 + 2, W, CAP) < v(2l + 2, W, CAP)

N

it follows that

141 i+1
o(21 + 2, W, CAP) = (2) (E wi + w,-‘)/Z
s=1 s=1 ‘

= BN

v(2l+2,W,CAP) =
and since

i+1] i+1 i+1
v(2l+2,W,CAP) = 3w, = (2 wi + w,‘)/z +§
s=1 ’ :

s=1 s=1

we therefore have
I+1 +1
{= (2 wi + w,»‘)/(). (3)
5=] s=1 ’

In what follows, we need to distinguish between two subcases.

Subcase 2.1, Ji o < ipgey-
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(~k+1 t+1 . T
(i) First assume 2, w; = 2;] w; ; see Fig. 3. This implies that

i+1

!
(= z WI',‘—S Z w‘_w11k+1’

s=l-k+2 s=1-k+1

and so

20+2

> ow, =30 +2( - k)¢
s=1

By virtue of (3), and our assumption that (1) is not satisfied, we deduce
that/ — k = 1. When / — k = 0, then j, has to be equal to 1 and the value
of the makespan generated by LPT is equal to w; + k (recall that we set
the smallest & + 1 processing times equal to 1). But since the optimal value
of the makespan cannot be smaller than w, + k, [ — k # 0. Now if [ —
k = 1 then j, = 2 (because i;-4+1 = iz > jp) and j4. = j» = 3. It follows
at once that the value of the makespan generated by LPT is equal to
w, + wy + k. But in the optimal assignment, we must have one pair of
jobs (1, 2) or (1, 3) or (2, 3) allocated to the same machine. This implies
that the value of the optimal makespan could not be smaller than w, +
wy + k &eadmg to a contradiction. Consequently, we can write Eg 1
; —Es 1w+ 6, where § > 0.

(ii) Now assume that

k + w, = (. (4)
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By reference to Fig. 4, we obtain
/41
=5+ w,Z5+k:§ (5)

and considering (4) we obtain that

20+2

> we =20+ 2(1 - k)L
s=1

Similar to (i) above, it can be deduced that (/ — k) > 1. But then

20+2
> wy =6,

s=1

a contradiction. Thus & + E!.:,l,k*l w, <.

Next we wish to show that / — k = k + 1. Inequality (5) still holds. It
might be useful to the reader to refer to Fig. 4. Using the inequality (5)
one can also show that

1~

1+

[

w; =+ 2(l - k){. (6)

5=1

The same argument as that used in the beginning of Case 2 can be used
to show that in the optimal assignment all jobs i,, forr =/ -k + 1, ..,
{+ 1 andj, forp=1—k+ 2 .,I+ 1, must be allocated to the same
machine, say machine 2. (Observe that if jobs i, and j, were allocated to
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different machines in the optimal schedule, then their removal can at most
reduce the value of the LPT makespan by Wi .) Since these 2k + 1 jobs
have the smallest processing times among the set of all jobs, there must be
at least one additional job allocated to machine 2 in the optimal assignment.
Therefore, I + 1 = (2k + 1) + 1, showing that | — k = k + 1. Next we
consider two subcases according to whether £k = 1 or k > 1.

If K > 1 then / — k > 2. Therefore, combining inequalities (3) and (6)
leads to a contradiction.

Now consider the case when k = 1. For ! — k > 2 we obtain a contradiction
as before. Suppose now that [ — k& = 2. Then this reduces to an example
having 2/ + 2 = 8 jobs. Moreover, by the nature of the LPT rule, we must
have jy =land j, =4 orj, =2and j, =3, j4s1 = 3 = 5, and j., =
ja = 8. As before assume that, in the optimal assignment, the 24 + 1 = 3
smallest jobs 6, 7, and 8 are allocated to the same machine, say machine
2. Suppose that j; = 1 and j, = 4 implying w; + wy < w, + w;. Then it
can be checked that the value of the makespan {obtained by LPT) v(8, W,
CAP) = w; + wy + ws + wy. If in the optimal assignment job 1 is allocated
to machine 2 (together with jobs 6, 7, and 8), we then have the optimal
makespan

G(8, W,CAP) = wr + wy+ wy + ws=w, + wy + wy + ws =0(8, W, CAP),

a contradiction. Similar arguments can be used to obtain a contradiction
when jobs 2, 6, 7, and 8, or jobs 3, 6, 7, and 8, or jobs 4, 6, 7, and 8 are
allocated to machine 2 in the optimal assignment.

Assume now that j, = 2 and j, = 3. In this case, v(8, W, CAP) = w, +
w; + ws + wy. If job 1 is allocated to machine 2 in the optimal assignment,
we then have

0(8, W,CAP) = w, + w3 + w, + ws = v(8, W, CAP),

a contradiction. The cases where jobs 2, 3, 4, respectively, one assigned to
machine 2 in the optimal assignment (together with jobs 6, 7, and 8) can
be analyzed in a similar fashion to obtain a contradiction. This concludes
the analysis of Case 2.1.

Case 2.2, Jijor > [jga-

Let x = 1, and assume that j,_x.| > i, 4., but ji g1 < kyogiosg as depicted
in Fig. 5 above. Exactly the same argument as in the previous cases allows
us to suppose, without loss of generality, that / — k > O and w, , =

l k+
Wik 5 iy = W, = " =w; =1 Denoting § = 2.
w; — 2o w,,wethenhaveEl,kHw, to-w,,  Zx-1+8= g
Considering that job j,, was under process when job ;4. started its

= .. o= W
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processing and that & is the elapsed time between the completion of jobs
i;-g+¢ and j;_xy; as indicated in Fig. 5, we then have

{-k+x
> , —
Wi, = Z wi +é—w
s=1-k+1

g =X -1+ 8=

By reference to Fig. 5, it then follows that 255.2 w, = 2(1 — k) { + 24

Next we claim that / — k > 1. Note that / — k = ( is not possible. So,
assume that / — k > 0. It is sufficient to show that the case where [/ — k =
1 leads to a contradiction. If / — & = I, then j; = 1. By the same reasoning
as in the preceding cases we may assume that the 2k — x + 1 smallest jobs
2/ — k) +x +2,2(1 — k) + x + 3, ..., 2] + 2) are allocated to the same
machine, say machine 1, in the optimal assignment. Also, there must be at
least one more job together with these 2k — x + 1 jobs assigned to machine
1 in the optimal assignment. It must then be true that 2k — x + 2 </ +
lork —x=<1{—k — 1. Since /] — k = 1 we then have k¥ = x. But by
assumption k£ — x + 1 > 0. This follows from the fact thatif k —x + 1 =
0 then the job that was under process in machine 2 when job i;,; started
processing in machine 1 will not be job j,_;.;. Hence x = k. Before proceed-
ing to the rest of the proof, it might be useful to describe the partial
assignments thus far. Specifically, the sets of jobs {2, 3, ..., k + 2, k + 4}
and {1, kK + 3,k + 5, ..., 2k + 4} are assigned by the LPT rule to machines
1 and 2, respectively. However, in the optimal assignment, the sets of jobs
{2,3...,k+ 2, k+3tand {1, k + 4, ..., 2k + 4} are allocated to machines
1 and 2, respectively.

Let b > 0. First note that we may assume, without loss of generality,
that w,> = --- = w,, = b, as all these jobs are assigned to machine 1 in
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FiG. 6. Assignments of jobs in Case 2.2.

the optimal assignment. Moreover, if w;,; = b' < b, thenlet §=b — b',
and set w; = w, — (k + 1) §and w, = -+ - = wy,» = b — 6. This will not
affect the LPT assignment. However, the value of the optimal assignment
will decrease by at least (k + 1)6. We may therefore assume without loss
of generality that w, = w3 = --- = w,,; = b, as this does not affect the
optimal value of the makespan and may only increase the value of the
makespan generated by LPT. This is depicted in Fig. 6. In what follows,
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we seek to show that it can be assumed, without loss of generality, that
w, = (k + 1)b. Consider now the following rescaling procedure.

1. Compute e = ((k + 2)/(k + 1)) ((k + 1}b ~ w,). Go to 2. (¢ has
to non-negative because job (k + 2) is in progress when job (k + 3) is
assigned to machine 2 in the LPT schedule.)

2. If e is equal to zero, stop. Else go to 3.

3. Compute g; = Wioqg + Wyys + - + Wy —e=k+1— e If

£ = O, SEt Wiiq = Wiis = * = Wapg = 0 and Wi = Wya = " Wiz =
w> — 1 and stop. Else go to 4.
4, Set Wiig = Wiis = 200 = Wopg — 1 - E/(k + 1) and Wi = Wy =

- =wit3 =w, = b — (1/(k + 2))e. Rescale the length of all jobs till
Woksg = 1. StOp

The above procedure will terminate at step 2 or 3 or 4. First, we need
to show that the strict inequality

76(21 + 2, W, CAP) < 6v(2l + 2, W, CAP) (7

is satisfied after performing the rescaling procedure. This is easily seen if
the procedure stops at step 2 with ¢ = 0 as shown in Fig. 7. Suppose now
that the procedure stops at step 3, as indicated in Fig. 8. First note that
pI- w;, = (k+1)b— k. We need to check that for the LPT assignment
shown in Fig. 8 we have > yw; > w,. Now

_k1
+ — —_
(k+1)b—k—w = 5e—k

k+1

Sle—k—1)
= (.

The last inequality follows from the fact that instep3 e, = kK + 1 —
e = 0. The effect of the modifications in Step 3 is to reduce the value of
the LPT makespan as well as the optimal makespan by & + 1. Therefore,
inequality (7) is satisfied.

Assume next that the procedure stops at step 4, and consider the values
of the makespan produced before rescaling all jobs in step 4, as shown in
Fig. 9. It can be verified that the value of the makespan generated by LPT
may be reduced by ((k/(k + 1) + 1/(k + 2))e. But, in the optimal assign-
ment, the sum of the processing times of jobs allocated to machines 1 and
2 will both reduce by . Therefore, inequality (6) is satisfied.

Next, we shall show that applying the rescaling procedure will lead to
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Fic. 7. Assignments of jobs in Case 2.2, &£ = 0.

contradictions. In the case where the procedure terminates at step 3, it
follows that the capacity constraint did not play a role in the LPT assign-
ment. Therefore, the same argument as in the beginning of Case 1 can be
used to derive a contradiction. As for the case where the procedure termi-
nates at either step 2 or step 4, let w3 = wy = -+ = w3 = wp, = b. Then
w, = (k + 1)b. Moreover, by virtue of inequality (6), we have that w, +
b+ k>7w +k+ 1)6 and w, + b+ k > 7((k + 2)b)/6. It follows
from the above that
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FiG. 8.  Assignments of jobs in Case 2.2. Procedure stops at Step 3.

6k +2) =Tk +1)b>k +7

and
k> (k + 2)b’
6
implying
Tk* — 21k + 14 <0, (8)

Since inequality (7) can never hold for ail values of kK = 1, 2, ..., we have
a contradiction. This concludes the analysis of Case 2.2, and thus of Case 2.
Since both Cases 1 and 2 lead to contradictions, inequality (1) must hold.
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FiG. 9. Assignments of jobs in Case 2.2, Step 4.
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