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Abstract 

Due to limited buffers and highly unpredictable traffic loads, the design of effective buffer management policies 
that minimize cell loss is critical to ATM networks. We outline the important characteristics of optimal buffer 
control policies for a single node, and using a dynamic programming formulation for a simple two-node network, 
gain insights into the much harder general multi-node problem. The key result we present is that simple non-work- 
conserving policies which use limited feedback from adjacent nodes can reduce cell loss significantly. We construct 
a feedback-based control that uses simple “stop-and-go” rules. This control is then enhanced to react to rapidly 
changing network conditions. This new control is called the Adaptive HILO policy. Simulation studies of complex 
networks with large delay-bandwidth product show that the Adaptive HILO policy performs impressively under 
diverse conditions. Using intuitive arguments, we demonstrate that this policy effectively utilizes unused buffer 
capacity in upstream buffers during periods of heavy load in downstream buffers. 

Keywords: Loss systems: Dynamic programming; Telecommunications; ATM networks; Adaptive control; Buffer control; 
Scheduling 

1. Introduction 

This paper considers the problem of minimizing the impact of cell loss in high speed integrated services 
networks based on the Asynchronous Transfer Mode (ATM). These networks are intended to support a 
diverse set of applications such as voice, interactive video, image and bulk data transfers, and other real- 
time communications. Although these applications are transported over a common network, they have 
very different service requirements and traffic characteristics [ 1,191. The parameters of Quality-of-Service 
(QoS) are usually specified in terms of cell loss, end-to-end delay and delay jitter (the maximum variation 
in delay experienced by cells from a single application). The values of these parameters can vary from 
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application to application. For example, certain voice applications can tolerate some number of lost cells, 
while transfer of medical images may have zero loss tolerance. Cells from some real-time applications 
have to reach their destination within a specified delay bound in order for them to meet their “playback” 
deadline, whereas cells from certain file transfer applications can tolerate significant delays as long as they 
eventually reach their destination. The characteristics of cell arrivals can also differ widely from application 
to application; for example, a voice source is often adequately characterized by an ON-OFF process such 
as the Markov Modulated Poisson Process (MMPP) [20], whereas a video source may generate very bursty 
traffic, requiring a much more complex model. Providing an acceptable grade of service to applications 
with such widely differing QoS requirements is a key network management issue and has attracted much 
attention recently from researchers. 

We focus our attention on cell loss in this paper. Since ATM-based networks use statistical multiplexing, 
the bandwidth allocated to an application may be insufficient to support its peak rate. This makes cell loss 
a more important issue in ATM-based networks than in circuit-switched networks. When several cells are 
destined for the same transmission link in an ATM switch, it is possible that more cells than a finite buffer 
in the switch can accomodate will compete for the limited space in the queue. Thus, cells will have to 
be dropped (rejected from entry into the queue). Another cause of cell loss in ATM networks is due to 
cell insertion within an ATM switch. This occurs when a cell is incorrectly routed to a different logical 
connection by the internal switch hardware. However, this happens relatively infrequently in comparison 
to cell losses due to buffer overflow. 

Methods for regulating the traffic in ATM networks can broadly be classified into schemes designed to 
control the input to the network and those that specify cells to be discarded and select cells for transmission 
at each node in the network (see [ 16-181 for examples). Schemes that control the admission of calls to the 
network and those that regulate the rate of entry of cells to the network such as the leaky bucket mechanism 
[ 151 fall into the category of input control (controls in this category are usually referred to in the literature 
as “call-level” and “burst-level” controls). The second category of schemes commonly referred to as “cell- 
level” controls act on a per cell basis. Any robust network management scheme must exercise control at all 
these levels. In this paper we only address the scheduling and rejection control decisions at the cell-level, 
together called the buffer control problem. The scheduling rule determines the order of transmission of 
cells from the buffer. The rejection rule is used to decide whether to block the admission of a cell to the 
buffer in the event of congestion. 

We address the following questions related to the buffer control problem: (i) given the pattern of cell 
arrivals from different classes of traffic, can buffer control significantly influence the effect of cell loss, (ii) 
given a performance measure in terms of cell loss, how to describe some or all of the characteristics of an 
optimal buffer control policy, and (iii) would an end-to-end buffer control policy (that is, a policy that is 
exercised over the entire network) be significantly different from one meant for controlling a single node. 
Our basic approach to answering these questions is to impute a cost of losing cells which may vary between 
classes of applications and to minimize this cost. 

We briefly review the literature related to our work in Section 2. Section 3 defines the problem that we 
address in this paper. In Section 4 we present important characteristics of optimal buffer control for a single 
node and extend the single node results to a series of ATM switches in the absence of any interfering cross 
traffic streams. Optimal policies for the general end-to-end buffer control problem are partially characterized 
in Section 5. The single node and multiple node results are used in solving a dynamic programming 
formulation of a simple two-node network with cross traffic at both nodes. Numerical solutions of the 
dynamic program for a few examples are provided. The results indicate that buffer control can indeed 
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yield large reductions in the impact and magnitude of cell loss. We also observe that the optimal policy 
for the two-node problem is quite different from that for the single node case. Using insights gained from 
solving the dynamic program, we develop a heuristic that uses a minimal amount of feedback information 
from neighboring nodes. This policy exercises control over cell transmission and rejection using simple 
“stop-and-go” rules. We demonstrate via simulation and analysis that this heuristic performs well under 
different traffic loads and buffer sizes for complex five and six node networks. The reduction in total cell 
loss obtained from employing this heuristic compared to using the optimal single node policy in each 
node is significant, both for Poisson traffic and correlated traffic modeled using the Markov Modulated 
Poisson Process (MMPP). We also design an adaptive version of this heuristic that performs well even in 
the presence of large delay-bandwidth products such as those seen in ATM networks. Some intuition into 
the mechanics of these heuristics is provided in Section 7. The main contributions from this work are that 
limited feedback from adjacent nodes in an ATM network coupled with the use of a non work-conserving 
scheduling policy can significantly reduce cell loss in an ATM environment. Conclusions and suggestions 
for future work are given in Section 8. 

2. Related work 

The problem of minimizing cell loss for the single node case has been widely addressed in the literature. 
For a detailed survey of these papers, please refer to [ 141. 

The end-to-end buffer control problem is very complex and to the best of our knowledge the design of 
buffer control schemes for this problem as yet remains unaddressed [21]. The main complications in solving 
this problem are twofold: (i) by delaying transmission of a “valuable” cell, we may be able to prevent its 
loss in subsequent nodes and (ii) it is difficult, if not impossible, to know the exact instantaneous state of 
other nodes due to propagation delays. These complications can be addressed by providing some form of 
limited feedback about the network status to each node. We solve a simple two-node example for the optimal 
buffer control policy using dynamic programming. Based on insights gained from the numerical results, 
we propose a heuristic that we call the HILO heuristic which uses minimal feedback from the neighboring 
nodes in the network, and also captures what, in our opinion, are the key differences in optimal policies for 
the single node and multiple node cases. 

Control mechanisms such as the HILO heuristic that depend on information propagated back from 
neighboring nodes are loosely referred to in the literature as “hop-by-hop” control methods (see for example 
[7]). In the past, due to the large bandwidth-delay product present in high-speed networks, feedback methods 
such as the the adaptive window mechanisms proposed in [5,1 l] were considered infeasible. Recently, there 
has been a revision of this viewpoint, and results show that such schemes can be implemented [8-lo]. The 
resurgence of interest in feedback-based mechanisms is seen in works such as a threshold-based feedback 
control scheme in the presence of non-negligible propagation delays in [22]. Hop-by-hop flow control 
schemes that incorporate prediction of the states of other nodes have been shown to be very effective in 
[6,12] and other significant papers such as [2,3]. 

3. Problem formulation 

We model a buffer in an ATM multiplexer (switch) as a finite queue with a single server. The queue has 
waiting room for K cells and is serviced by a channel of capacity C. Cells arrive to the multiplexer from M 
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different traffic classes (voice, video, data, etc.), and we denote by at < a2 < . . . the successive cell arrival 
times. We make the assumption that the cell arrival process is independent of the state of the network. We 
denote the service or transmission times of cells as {Sl , S2, . . .}. If a cell arrives to a full buffer, i.e., with 
K cells awaiting transmission, either the newly arriving cells or one of the K cells in the buffer is dropped 
(lost to the system). 

The buffer management or control policies that we consider exercise control over the queue through 
two main actions: the scheduling rule determines the order of transmission of cells from the buffer, and 
the rejection rule is used to decide which cell(s) to discard from the buffer in the event of congestion. A 
buffer control policy is considered admissible if it is non-preemptive and non-anticipative - i.e., it does not 
use information about the future. Specifically it is assumed not to use any information about the service 
times of the cells waiting for transmission or about when cells from different types or classes of traffic 
arrive to the buffer (but it may use information about the number and type of cells that have already been 
serviced/discarded or are awaiting service). The class of all admissible policies will be denoted as A. The 
elements of A will be denoted as u = (s, r) where s is a scheduling rule and r is a rejection rule. The cell 
loss process is described by { Lr (t), i = 1,2, . . . , M} where L:(t) is the number of cells discarded from 
class i until time t under control u E A, starting from time t = 0. 

The objective is to find policies u which minimize: 

(1) 
i=l 

where fi (.) can be any increasing function for all time instants t c co. In this formulation, each class of 
traffic has a costfinction representation of its sensitivity to cell loss. A solution to this problem is said to be 
pathwise least cost (for a discussion of pathwise solutions, see [23]) if the objective function is minimum 
at each point of time on every sample path under the optimal control. It is indeed rare to be able to obtain 
a pathwise least cost solution and the single node case is such a special case. Such solutions need not exist 
in the general end-to-end control case, and in Section 5, we instead consider the objective of minimizing 
the average number of cells lost in one time slot (where a slot is the time required to transmit a single cell 
from the buffer). 

The single node problem treats one buffer in an ATM network, and the objective is to search for policies 
that are optimal in the path-wise least cost sense. We summarize the results for the single node problem in 
Section 4. The multi-node or end-to-end buffer control problem, as we consider it, addresses a route R in an 
ATM network consisting of a sequence of ATM switches, each represented by the queue model previously 
described. Traffic from the main stream passes through each of these switches and exits the network at the 
last switch. Cells from routes that intersect with route R constitute the cross trafJic. These cells compete 
for buffer space with cells from the main traffic stream. The search for optimal policies for the multi-node 
problem is very complex due to the presence of cross traffic. We address this problem in Section 5. 

4. Theoretical results: Single node case 

In this section, we present some of the important characteristics of optimal buffer control policies for a 
single node. We then extend these results to a series of ATM switches in the absence of any interfering cross 
traffic streams. Most of the results are based on [4] and we omit their proofs. We make the assumptions 
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that the cell arrival process is independent of the state of the network, and that the service time of a cell is 
independent of the traffic class from which it originates. 

Rl: Assume that the objective to be minimized is of form 

M 

m;ln~ciL~(t), u E A, 
i=l 

(2) 

and assume that cl > c2 > . . . > CM > 0. Then, n achieves the objective for every instance t, where 
n is the scheduling and rejection rule that gives the highest priority to cells from class 1, the next highest 
priority to cells from class 2 and so on. This means that the next cell to be selected for transmission from 
the pool of waiting cells will be from the class with the smallest index. Similarly, when a cell has to be 
discarded because the buffer is full, it will be chosen from the class with the largest index. A policy such 
as n which assigns absolute priorities to traffic classes is called a static policy. 

R2: If the objective is to minimize the number of lost cells or the sum of increasing functions of the 
losses at a single node (see Eq. (l)), then we may restrict our attention to work-conserving (non-idling) 
policies. 

R3: For the single node case and the same objective as in R2, we may restrict our attention to policies 
that do not reject a cell when the buffer is not full. Such policies are said to be non-expelling. 

R4: Consider a series system of R nodes with finite buffers. The nodes are numbered 1,2, . . . , R. Cells 
from A4 different classes are multiplexed at the first node. This can be viewed as a route in a communication 
network R hops in length. The cells from the M classes proceed from node 1 to the finite buffer at node 2, 
receive service at node 2 and proceed on to node 3, and so on. We assume that no cross traffic interferes 
with the cells at nodes 2, . . . , R. We will further make the assumption that all cells have the same length 
(and hence deterministic, identical service times at nodes 1, 2, . . . , R) as in an ATM environment. We then 
consider the discrete-time version of the system where time is slotted, with the length of a slot equal to 
the service time for a cell. For the series system described above and the same objective as in R2, if work 
conserving policies are used at nodes 1, . . . , R, then all the losses in the system will be incurred at node 1. 
Therefore it is optimal to control only the first node in the series, and all the results for the single node case 
apply to this system, too. 

Further characterizations of optimal control policies when the performance measure is a concave or 
convex cost function are given in [4]. 

5. Multi-node control for the general case 

The multi-node control problem is much more complex due to the presence of cross traffic. Consider 
the discrete-time version of the problem where time is slotted, with the length of a slot equal to the service 
time for a fixed-length cell. We also assume that the cell arrival process is independent of the state of the 
network. Then, the following facts can be inferred through sample path proof techniques. We omit the 
details of these proofs here, and they may be found in [ 141. 

R5: For the multi-node control problem it can be shown that it is still optimal to restrict the choice of 
control policies that reject cells only when the buffer is full. 

R6: If the objective is to minimize linear loss functions, and if there is a choice between rejecting one of 
two cells that travel on the same route through the network, it is always better to reject the cheaper cell. 
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Fig. 1. Model for two-node control problem. 

The above facts give some idea of the type of control to employ for the general case, but our real interest 
is in knowing how to schedule cells for transmission and how to choose cells for rejection. There is also the 
possibility that static control policies that are optimal for a single node could perform as well as optimal 
control policies for multiple nodes (for example, see result R4 in Section 4). To answer these questions we 
formulate and solve the simplest and still interesting model of an end-to-end control problem involving two 
nodes, see Fig. 1. 

We assume that the cell loss functions are linear. We also assume that global information about the exact 
instantaneous state of each node is available to a central controller (the interesting case when only partial 
information is available to each node was found to be extremely complex to model as a dynamic program). 

In Fig. 1, there are four classes of external traffic at node 1 and two classes of external traffic at node 2. 
We denote the external traffic as i/j, where i is the node and j is the class of traffic. l/ 1 is “end-to-end” 
traffic, and cells from this class pass through nodes 1 and 2 before exiting the system. Traffic class l/2 is 
identical to l/l but it is more costly to lose a cell of l/2 compared to l/l. l/3 and l/4 are traffic streams 
that use only node 1 and then exit the system, with l/3 being cheaper than l/4 to lose. Thus, l/3 and 
l/4 constitute the “cross” traffic at node 1. 2/ 1 and 2/2 are streams that use only node 2 and then exit the 
system. There are shared finite buffers at nodes 1 and 2, and the buffer sizes are denoted as Br and B2, 
respectively. The arrival processes are all assumed to be Poisson and the arrival rate of stream i/j will be 
denoted as hii. The cost of losing a cell of type i/j will be denoted Cij . An important assumption that we 
make is that the propagation delay for a cell to travel from node 1 to node 2 is negligible. This assumption is 
somewhat unrealistic in most ATM networks where the propagation delay could constitute a large portion 
of the delay experienced by a cell while traversing the network. We remove this assumption later on in our 
numerical investigations in Section 6. 

The dynamic program will be set in discrete time, t = 0, 1, 2, . . . The time to transmit a cell will be one 
unit of time. The time instants 0, 1,2, . . . will correspond to the time at which a decision has to be made on 
which cells to reject and which to schedule next. These time instants correspond to the start of transmission. 
Rejection decisions are made prior to scheduling decisions. The transmission is assumed to have been 
completed at time instants O- , 1 - , . . . Cells that arrive during [t, t + 1) all arrive at time (t + l)-. We 
assume that there is a temporary bu$%er available for these cells. This is consistent with the model considered 
in [21], which is motivated by an actual switch architecture. We assume that Cl1 = Cl3 = C21 and that 
Cl2 = Cl4 = C22. Because of the cost structure we can simplify the state space for this system as given 
below: 
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6 

{nl,n?,n),nl,ng,ngj,~ni I Bl,Cni 5 B2,ni =0,1,2,..., , 
i=l i=5 

where Hi, i = 1,. . . (4 correspond to the number of cells at node 1 from class l/ 1, l/2, l/3 and l/4, 
respectively; ng corresponds to the total number of class 1 / 1 and 2/ 1 cells at node 2; and ng to the total 
number of cells of class l/2 and 2/2 at node 2. 

The transition probabilities in this controlled Markov Chain will depend on the controls allowed for 
cell scheduling and rejection, which we describe next. We make another simplifying assumption that 
Cl2 = C22 = Cl4 > Cl1 = C21 = Ct3. This assumption implies that there are two kinds of traffic in 
the network - a “costly” kind and a “cheap” kind. By the assumption that cells of one kind are much more 
expensive compared to the other, we simplify the rejection decision as follows. It is clear that cells from class 
l/4 will be preferred to cells from l/2 because l/4 has a shorter route and is just as costly to lose. Similarly, 
l/3 will be preferred over l/l. Cells from l/2 will be preferred over cells from l/3 because Cl2 >> C13. 
So we have a complete ordering at node 1 as far as rejection is concerned: l/4 > l/2 > l/3 > l/ 1. 

We assume by R5 that only non-expelling policies will be used at node 1. For node 2, the optimal single 
node policy discussed in Rl, R2 and R3 in Section 4 will be used. 

The dynamic program is difficult to solve even with all these simplifications. The control is merely to 
decide which cell to schedule for transmission next at node 1, but node 1 is permitted not to transmit any 
cell, even when there are cells waiting in the buffer. The transition probabilities will involve this control, 
the static control at node 2, and the arrival rates as well as the rejection rule. 

We denote the decisions of the control policy as: 

I 

0 if node 1 is idle, 
1 if node 1 begins the transmission of a cell of type l/l, 

d = 2 if node 1 begins the transmission of a cell of type l/2, 
3 if node 1 begins the transmission of a cell of type l/3, 
4 if node 1 begins the transmission of a cell of type l/4. 

Let p(at , ~2, a-3, aq, ~5, Ug) be the probability that at cells of l/l, a2 cells of l/2, a3 cells of type l/3, 
a4 cells of l/4, a5 cells of type 2/l and U6 cells of type 2/2 arrive in one slot (which is equal to the time 
to transmit a cell). Based on our assumptions, 

= (al +a2 +a3 +a4)! 

al !@!uj!u4! 
~~I+a:!+ag+a4 

x (“:5:;f)! (27 (2)“” (u, :ia, + u3 + u4)! (u;y;;)! e-(hl+k:2)9 
where, At = htl +A12 +A13 +hr4, and A2 = A21 +h22. To facilitate writing out the dynamic programming 
equations, we shall denote the state as s and the outcome of using decision d in state s as the state 
s(ut, ~2, ~3, aq, ~5, a& d) withprobabilityp(u1, ~2, a3, aq, a5, ug).Foracontrolpolicyu thatusesdecision 
d as specified above, the state transition can be written as follows. From state s = {nl , n2,123,n4, n5, n6] 

to the state s(ut , . . , afj; d) given by: 

{min(nr + al - Z[d = 11, 

max(bl + Z[d = 2,3, or 41 - n2 - n3 - n4 - a:! - a3 - u4,0)), 
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min(n2 + a2 - Z[d = 21, max(bt + Z[d = 41 - n4 - aq, 0)), 

min(n3 + a3 - Z[d = 31, max(bl + Z[d = 2 or 41 - n2 - n4 - a2 - a4,0)), 

min(n4 + a4 - Z[d = 41, bl), 

r&(ns •k Ug - z[n(j = 0,125 > o] + z[d = 11, b2 - z[d = 21 + I[& > o] - ng - Ug), 

min(ng + Ufj •k z[d = 21 - z[nfj > 01, b2)} 

with probability p (a 1, a2, ~3, ~4, a5, 4). 

The one step cost of control u using decision d in state s can be written as 

Z?(s; d) = Ctt max[nt + al - Z[d = l] - max(bl + Z[d = 2,3, or 41 

- 122 - n3 - 124 - a2 - a3 - a4, O), O] 

+ Cl2 max [n2 + a2 - Z[d = 21 - max(bt + Z[d = 41 - 124 - a4,0), 0] 

+ Cl3 max [123 + a3 - Z[d = 31 - max(bt + Z[d = 2 or 41 - 122 - n4 - a2 - a4,0), 0] 

+ Cl4 max [nq + a4 - Z[d = 41 - bl, 0] 

•k c21 m&n5 + U5 - z[n6 = 0, n5 > o] + z[d = 11 

- (b2 - z[d = 21 + z[n6 > o] - 126 - U6), o] 

+ c22 ITMX [n6 + U6 + z[d = 21 - Z[ng > 0] - b2, 01. 

The objective is to minimize the average cost of lost cells over the infinite time horizon. Define V(s) 

as the optimal value function. Then the optimal value function should satisfy the following (for example, 
refer to [ 131): 

z + V(s) = min 
d=0,1,2,3,4 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ , 
ai I 

where z is the optimal average cost. The recursive computation of the value function is carried out by 
initializing V’(s) = 0 and setting: 

@l(S) = mdn 
[ 

R(s, d) + c P(al, a21 a3, a4, a5, a6)(vn(s(al, U2, U3, U4, U5, U6; d)) 
ai 

- Vn(O, 0, 0, 0, 0, 0))) - 1 
To facilitate numerical computations we truncate the Poisson distribution by allowing only up to eight 

arrivals during one time slot. The state space of the dynamic program can be extremely large for large 
buffer sizes and given time constraints on our computing facilities, we worked with the small buffer sizes 
given in Table 2. We solved for the optimal average cost and compared with the average cost when the 
optimal single node static priority policy (modified slightly as described below) was used at both nodes. 
The dynamic program was solved by successive iterations to determine the value function. The number of 
iterations were chosen to be 100, to meet the time constraint of solving a program within 24 h of running 
time on a DEC Alpha 3000 Model 500 workstation and obtaining at least convergence to the third decimal 
place in the average cost. 

The optimal static priority policy for a single node will not distinguish between l/ 1 and l/3 at node 1, but 
due of the nature of the routing, we modified the static policy to prefer l/3 over l/ 1 at node 1. The optimal 
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Table 1 

Parameters for the dynamic program 

Traffic type i/j 

l/l 

l/2 
113 
114 
211 
212 

COSt Cij Arrival rate &; 

1 0.08 

2 0.16 
1 0.32 
2 0.24 
1 0.32 
2 0.48 

- 

Table 2 
Comparison of static policy to optimal policy from dynamic program 

Buffer sizes (bl, b2) Static cost Optimal cost Percent improvement Deviations 

c&2) 0.390 0.377 3.4 11.11% 
(5>5) 0.133 0.114 6.7 24.34% 

(7,7) 0.095 0.077 23.4 23.25% 
- 

static policy was used for node 2. We set the parameters for the dynamic program as in Table 1. With the 
arrival rates shown in Table 1 the load will be 80% at node 1 and 104% at node 2. The buffer sizes were 
varied by setting (B1 , B2) = (2,2), (5,5) and (7,7), and the results from solving the dynamic program are 
shown in Table 2. The column under optimal cost gives the average cost estimate after 100 iterations, the 
costs under the static policy were also obtained similarly using dynamic programming. The column labeled 
deviations gives the percentage of the total possible states in which the optimal policy deviated from the 
static policy. 

The two interesting points to note from this example are: 
(1) The improvement from using the optimal policy over the static policy increases with the buffer size. 
(2) The percentage of the cases in which the optimal policy deviates from the static policy is not too large 

(< 25%). 
The first point is really noteworthy because it implies that when losses are very small then using the 

optimal control could be very beneficial. The practical case is exactly when losses are small, say a cell 
loss probability of 10ee7. The second point is worth noting because it implies that we can cleverly modify 
the static policy by adding some information about the state of node 2 to the information already available 
to node 1 and possibly obtain improvements. Variations in the problem parameters other than the buffer 
size gave very similar results to those shown in Table 2. Based on these findings we were led to ask two 
questions: 

(1) What differentiates the optimal policy from the static policy? 
(2) How does the optimal policy minimize losses and in what sense? 

Apart from some nuances that seem to be applicable only to networks with small buffers, the optimal 
policy changes the scheduling rule at node 1 by using information about node 2’s overall load. The rule 
changes as follows: 
l when the buffer at node 2 is relatively empty, say only 15-20% of the buffer is occupied, then the optimal 

policy schedules l/2 in preference to l/4 and l/ 1 in preference to l/3, and the overall scheduling priority 
at node 1 canbedescribedby l/2 > l/4 > l/l > l/3; 
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l when the buffer at node 2 is relatively full, say 60-70% occupied, then the optimal policy does not 
schedule l/l or l/2 and schedules only l/3 and l/4, with l/4 preferred to l/3; 

l when the buffer in both nodes are close to full, and there are only cells of type l/l and l/2 in the buffer 
at node 1, then the policy transmits cells preferring l/l to l/2. 
The rules above refer to instantaneous levels of buffer occupancy rather than long-term average values. 

The first rule allows the control to take advantage of light load in the downstream node, thus making 
it “opportunistic” in nature in the transmission of expensive of cells. The second rule implies that the 
scheduling policy at node 1 is no longer work conserving. The third rule suggests that if the buffer is nearly 
full at the first node, it is advantageous to transmit cells from the first node and risk their loss at the second 
node. In the Section 6, we present extensive evaluations of the performance of these rules under different 
network configurations. 

6. Numerical investigations 

We use the control policy determined by the rules specified in Section 5 to measure the improvements 
possible when the buffer sizes are large and losses very small, as may be typical in a real ATM network. 
The modification of the static policy using these rules is called the HILO heuristic. Comparisons are 
made via simulation. Prior to running the simulations, we were not sure whether the optimal policy was 
simply trading off the losses of costly cells against those of cheap cells. The simulations results clarify this 
issue. 

6. I. Poisson arrivals 

We first simulate the same two-node example as in Section 5 using the Poisson process to model arrivals 
for the different traffic classes. The run lengths of the simulations are 10 00 000 time units. We compare 
three policies: (i) The HILO heuristic, (ii) the Static policy described earlier and (iii) the FIFO rule. For 
the HILO heuristic, when the number of cells in the buffer at node 2 is above a preset level, called HI, the 
scheduling rule is l/4 > l/3 and never to schedule l/l or l/2; when the level is below a preset limit, 
called LO, the rule is to schedule according to l/2 > l/4 > 1 / 1 > l/3, and when it is in between 
these limits the rule is to use the static priorities l/4 > l/2 > l/3 > l/l. When the buffer occupancy 
at node 2 is above HI, the only cells in buffer at node 1 are of type l/l and l/2, and the number of cells 
in the buffer at node 1 are above a level denoted as FULL, cells of type l/l are transmitted in preference 
to cells of type l/2. Denote the buffer sizes as Bt and B2, respectively. In our simulations, we set LO to 
20% of B2, HI as 70% of B2, and FULL as 90% of Bl. The static rule has been discussed in Section 4. 
The FIFO rule rejects the last arriving cell and schedules the cell that arrived earliest. 

We simulate the two-node system with Poisson traffic for two examples. The parameters used in the 
simulations for the two examples and the results are presented in Tables 3 and 4. Although the offered 
traffic load on nodes 1 and 2 in both the examples is identical, in the second example cells from 2/l and 
2/2 constitute a smaller fraction of the load on node 2 than in the first example. From these results, we can 
conclude that the Static rule saves expensive cells but does not reduce overall cell loss when compared to 
FIFO, whereas the HILO heuristic reduces overall cell loss by one order of magnitude. In the sequel, we 
extend our investigations to more complex arrival processes and network configurations. 
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6.2. Correlated arrivals 

Encouraged by the results from the simulation of the two-node example using Poisson arrivals, we extend 
the simulation using arrivals from a two-state Markov Modulated Poisson Process (MMPP). The MMPP 
process has been shown to capture some of the correlations characteristic of traffic in high speed networks. 
A 2-state MMPP is described by the parameters hi and pi, i = 1, 2. When the process is in state i = 1, 2, 
arrivals occur according to a Poisson process of rate hi. The distribution of the time spent in state i = 1. 2 
is exponential with parameter pi. The two-state MMPP is commonly referred to as an ON-OFF process, 
since it has two levels of traffic, “high” and “low”, depending on which state the process is in. We refer to 
the time spent in the “high” state as the Ontime and in the “low” state as the Offtime. Correspondingly, we 
refer to the cell arrival rate in each state as Onrate and Offrate, respectively. 

Traffic from each class is modeled using an MMPP. We report results from four examples that show that 
the HILO heuristic is very effective even for correlated arrival processes with widely varying process param- 
eters. The parameters used in the four examples and the distribution of cell losses between the different traffic 
classes are given in Tables 5-8. In the first two examples, results are presented based on average cell losses 
over 20 replications of the simulation, each of length lo6 ticks. In the other two examples with large buffers, 
we increase the length of each run to 5 x lo6 ticks. The parameters of the MMPP processes and the buffer sizes 
at the two nodes were chosen to reflect a wide range of traffic characteristics and network configurations. 
From the tables, it is evident that the HILO heuristic is very effective in controlling the cell loss. Once again, 
the Static rule merely trades off losses of costly cells for cheaper cells, but does not reduce the overall cell loss 
when compared to the FIFO rule. We now describe how to make the HILO heuristic adaptive to changes in 
network conditions, and evaluate the performance of the adaptive policy under more complex configurations. 

Table 3 
Results for a two-node system with Poisson traffic. Simulation duration is IO6 slots, and the results are for a single replication. 
The buffer sizes are 30 cells at both nodes. The traffic load at node 1 is 70%, and 9 1% at node 2 

Policy Losses of traffic type 

l/l l/2 l/3 l/4 2/l 212 Total 

HILO 0 0 0 0 16 0 16 
STATIC 0 0 0 0 278 0 278 
FIFO 0 0 0 0 151 101 252 
Traffic 0.07 0.14 0.28 0.21 0.28 0.42 

Table 4 
Results for a two-node system with Poisson traffic. Simulation duration is lo6 slots, and the results are for a single replication. 
The buffer sizes are 30 cells at both nodes. The traffic load at node 1 is 70%, and 92% at node 2 

Policy Losses of traffic type 

l/l 112 l/3 l/4 2/l 212 Total 

HILO 11 0 0 0 0 0 I1 
STATIC 0 0 0 0 433 0 433 
FIFO 0 0 0 0 193 201 394 
Traffic 0.21 0.21 0.14 0.14 0.2 0.3 
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Table 5 
Results for a two-node system with MMPP traffic. Simulation duration is lo6 slots, and the results are for 20 replications 

Policy Losses of traffic type 

l/l 112 l/3 l/4 2/l 212 Total 

HILO 239.8 
STATIC 0 
FIFO 0 

MMPP traffic parameters 
Onrate 0.25 
Ontime 0.001 
Offrate 0.1 
Offtime 0.002 

0 0 0 0 0 239.8 
0 0 0 1330 0 1330 
0 0 0 733.9 602.5 1336.4 

0.35 0.2 0.2 0.25 0.25 
0.001 0.001 0.001 0.001 0.001 
0.1 0.1 0.1 0.1 0.1 
0.002 0.002 0.002 0.002 0.002 

Table 6 
Results for a two-node system with MMPP traffic. Simulation duration is lo6 slots, and the results are for 20 replications. 
The buffer sizes are 1000 cells at each node. The traffic load is 65.6% at node 1 and 100% at node 2 

Policy Losses of traffic type 

l/l 112 l/3 l/4 2/l 212 Total 

HILO 1133 
STATIC 0 
FIFO 0 

MMPP traffic parameters 
Onrate 0.32 
Ontime 0.01 
Offrate 0.1 
Offtime 0.02 

0 0 0 0 0 1133 
0 0 0 2300.6 0 2300.6 
0 0 0 1077.3 1222.6 2299.9 

0.4 0.15 0.15 0.4 0.45 
0.02 0.1 0.1 0.03 0.02 
0.1 0.1 0.1 0.1 0.1 
0.01 0.01 0.01 0.02 0.04 

Table 7 
Results for a two-node system with MMPP traffic. Simulation duration is 5 x lo6 slots, and the results are for 20 replications. 
The buffer sizes are 1100 cells at each node. The traffic load is 65.6% at node 1 and 99.67% at node 2 

Policy Losses of traffic type 

111 112 113 114 211 212 Total 

HILO 927 
STATIC 0 
FIFO 0 

MMPP traflic parameters 
Onrate 0.315 
Ontime 0.01 
Offrate 0.1 
Offtime 0.02 

0 0 0 0 0 927 
0 0 0 4072.6 0 4076.6 
0 0 0 1913.6 2155.6 4069.2 

0.4 0.15 0.15 0.4 0.45 
0.02 0.1 0.1 0.03 0.02 
0.1 0.1 0.1 0.1 0.1 
0.01 0.01 0.01 0.02 0.04 

6.3. Making HILO adaptive 

The results from the previous examples indicate that there is great scope for minimizing losses using 
some form of limited feedback and that much of the savings are obtained by turning off the traffic into the 
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Table 8 

Results for a two-node system with MMPP traffic. Simulation duration is 5 x lo6 slots, and the results are for 20 replications. 
The buffer sizes are 1100 cells at each node. The traffic load is 65.6% at node 1 and 99.47% at node 2 

Policy Losses of traffic type 

l/l l/2 

HILO 235.9 0 
STATIC 0 0 
FIFO 0 0 

MMPP traffic parameters 

Onrate 0.312 0.4 
Ontime 0.01 0.02 
Offrate 0.1 0.1 
Offtime 0.02 0.01 

l/3 l/4 2/l 212 

0 0 0 0 
0 0 2175.7 0 
0 0 1030.8 1142.2 

0.15 0.15 0.4 0.45 
0.1 0.1 0.03 0.02 
0.1 0.1 0.1 0.1 
0.01 0.01 0.02 0.04 

Total 
__- 

235.9 
2175.7 
2172.9 

- 

Cross Traffic 

to Node 2 

Cross Tmffic 
to Node 3 

Cross Tr&ic 
to Node 4 

Cross Traffic 
to Node 5 

BIJE:[l] ntJW1 BLF[3] BW41 BWSI 

Fig. 2. A five-node system 

downstream node when that node’s buffer is almost full. However, due to the random nature of the cell 
arrival processes, and more specifically of the cross traffic streams, it is desireable that the HILO heuristic 
be able to react to increases and decreases in cell losses in downstream nodes. For instance, increased cell 
loss in a downstream node would advocate an increase in the HI value used by an upstream node thus 
holding back traffic from the congested node. Similarly, a long period without cell loss at a node would 
indicate that the node is congestion-free, thus warranting a decrease in the HI value at an upstream node. 
Such adjustments can be made to help the HILO heuristic fine tune the control parameters at each node to 
achieve the best performance. However, care should be taken to ensure that such adjustments do not result 
in oscillatory behavior of cell losses. 

We studied a simple two node model via simulation as well as Markov Chain analysis to understand the 
loss behavior of cells. In the two-node model, we had only two types of traffic, one arriving to the first node 
and proceeding to the second; and the other arriving to the second node (the cross traffic). The HILO rule is 
implemented by choosing a blocking value b and another value FULL. The rule is to block the transmission 
at the first node if the downstream buffer has b or more cells and to always transmit when the first node’s 
buffer is above the level FULL. In these experiments, we observed that the total number of lost cells was a 
convex function of the blocking value b chosen for the HILO rule. This led to the conjecture that the total 
number of lost cells is jointly convex in the blocking parameters for any network configuration. We are 
unable to prove this even for the two-node case. However, based on this assumption the HILO heuristic can 
be made adaptive. 

Consider, for example, the five-node serial system shown in Fig. 2. The buffer size at node i is denoted by 
BUF[1’], the number of cells lost at node i is Li, the service time is 1 unit of time (deterministic) at all nodes, 
and all the traffic flow is unidirectional. We designate the controls for this system as (bi , i = 1, 2, . . . , 5). 
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Table 9 
Results for a five-node system with Poisson traffic. Simulation duration is lo6 slots, and the results are for 20 replications. 
The buffer sizes are 10 cells at each node. The traffic loads are 20%, 50%, 70%, 80% and 90%, respectively 

Policy Losses of traffic at node 

#l #2 #3 #4 #5 Total 

HILO 31.9 17.3 7.4 6.7 105.1 168.4 
HILO ADAPTIVE 21 98.9 15.2 1.1 0.2 136.4 
FIFO 0 2.2 96 229.3 3559.5 3887 

The interpretation of bi is that if the number of cells in node (i + 1) is bi or less, the buffer control policy 
processes a cell at node i, else it stays idle. The algorithm, which we call Adaptive HILO, for adaptively 
modifying the bi values for a five-node serial system, is as follows: 

Algorithm 1 (Adaptive HILO). Input: bl, b2, b3, bq, INC, DEC, BASE, BUF[l], BUF[2], BUF[3], 
BUF[4]: blocking values for the first 4 nodes, increment, decrement, minimum size of blocking value 
and buffer sizes of the five-nodes, respectively. 

Set TIME = 0. 
while not end of simulation 

run simulator for 10 000 more time units 
and collect cell loss statistics at each node 
do for nodes i = 4 to 1 

if Li > 1.1 x Li+l then 
bi = min(bi+ INC, BUF[i + 11) 

endif 
if Li < 0.9 x Li+l then 

bi = max(bi - DEC, BASE) 
endif 

enddo 
endwhile 

The constants 1.1 and 0.9 in Algorithm 1 are chosen specifically to prevent the losses from oscillating. 
The value of INC was chosen between 0.5% and 3% of the buffer size. The value of BASE is usually 
set to 30% of the buffer size to prevent losses due to large random fluctuations. These controls result in a 
stable controlled system and produce the results shown in Table 9. The data shown in Table 9 are obtained 
from simulating the five-node serial system shown in Fig. 2. Cells from all the traffic streams are generated 
according to the Poisson process. The data show that the Adaptive HILO control reduces losses over the 
HILO policy. The parameters for the HILO policy were chosen after trial-and-error to produce the smallest 
losses. We simulate the FIFO rule by setting bi = 11, i = 1,2, 3,4; b5 = N/A. Tables 9-l 1 present 
results from simulating the five-node system for uniformly increasing traffic load on the fifth node and 
large buffers in all nodes. The data indicate that the Adaptive HILO policy is indeed able to stably control 
the system even under very heavy traffic conditions. Remarkably, for the system in Table 11, the adaptive 
policy is able to achieve levels of zero cell loss. 

We now study the performance of the adaptive policy for a more complex six-node system with Poisson 
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Fig. 3. A six-node system. 

Table 10 
Results for a five-node system with Poisson traffic. Simulation duration is lo6 slots, and the results are for 20 replications. 

The buffer sizes are 10 cells at each node. The traffic loads are 40%, 41%, 5 l%, 91% and 92%, respectively 

Policy Losses of traffic at node 

#l #2 #3 #4 #5 Total 

HILO ADAPTIVE 303.9 0 20.1 701.1 0 1025.1 
FIFO 0 0 0 14301.9 0.3 14302.2 

Table I1 
Results for a five-node system with Poisson traffic. Simulation duration is 5 x lo6 slots, and the results are for 20 replications. 
The buffer sizes are 100 cells at each node. The traffic loads are 30%, 40%, 41%, 8 1% and 97%, respectively 

Policy Losses of traffic at node 

#l #2 #3 #4 #5 Total 

HILO ADAPTIVE 0 0 0 0 0 0 
FIFO 0 0 0 0 245.2 245.2 

Table 12 
Results for a five-node system with Poisson traffic. Simulation duration is 5 x lo6 slots, and the results are for 20 replications. 
The buffer sizes are 100,50, 100,50 and 100 cells, respectively, at each node. The traffic loads are lo%, 50%, 60%, 89% and 
99%, respectively 

Policy Losses of traffic at node 

#l #2 #3 #4 #5 Total 

HILO ADAPTIVE 276 6.1 0 0 0 282.1 
FIFO 0 0 0 0 22909.7 22909.7 

and MMPP traffic streams. In Fig. 3, we show a six node example which is quite similar to the system 
in Fig. 2, except that from the third node traffic can bifurcate to a sixth node. The splitting probability is 
50%, i.e., with probability 0.5 an arriving cell is meant for transmission to the sixth node, else it goes to 
the fourth node. Note that the route of the arriving cell is known at the instant of arrival. We assume that if 
the buffer is full at node 3, and a cell has to be dropped, then the cell meant for node 6 gets dropped first. 
The Adaptive HILO policy for this system is similar to the one in Algorithm 1. 
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Table 13 
Results for a six-node system with Poisson traflic. Simulation duration is lo6 slots, and the results are for 20 replications. The 
buffer sizes are 10 cells at each node. The traffic loads are 20%, 50%, 70%, 70%, 80% and 70%, respectively 

Policy Losses of traffic at node 

#l #2 #3 #4 #5 #6 Total 

HILO 0.4 0.6 18.7 2.3 9.4 13 44.4 
HILO ADAPTIVE 0.3 0.1 39.6 10.6 8.8 28.4 87.8 
FIFO 0 1.3 110.5 10.4 249.5 38 409.7 

Table 14 
Results for a six-node system with MMPP traffic. Simulation duration is lo6 slots, and the results are for 20 replications. The 
buffer sizes are 100 cells at each node. The traffic loads are 24.1%, 44.1%, 72.1%, 65.0%, 87.0% and 50.8%, respectively 

Policy Losses of traffic at node 

l/l 112 l/3 l/4 2/l 212 Total 

HILO ADAPTIVE 0 0 0 0 0 0 0 
FIFO 

Traffic parameters 
Onrate 
Ontime 
Offrate 
Offtime 

0 0 0 0 56.5 0 56.5 

(3-+4,3-+6) 
0.312 0.4 (0.15,0.25) 0.15 0.4 0.45 
0.01 0.02 (0.1,0.02) 0.1 0.03 0.02 
0.1 0.1 (0.1,O.l) 0.1 0.1 0.1 
0.02 0.01 (0.01,0.02) 0.01 0.02 0.04 

Table 15 
Results for a six-node system with MMPP traffic. Simulation duration is lo6 slots, and the results are for 20 replications. The 
buffer sizes are 100 cells at each node. The traffic loads are 24.1%, 44.1%, 72.1%, 74.6%, 96.6% and 50.8%, respectively 

Policy Losses of traffic at node 

l/l l/2 l/3 l/4 2/l 212 Total 

HILO ADAPTIVE 
FIFO 

Traffic parameters: 
Onrate 
Ontime 
Offrate 
Offtime 

56.6 0 0 0 0 0 56.6 
0 0 0 0 5092.8 0 5092.8 

(3-+4,3+6) 
0.312 0.4 (0.15,0.25) 0.25 0.4 0.45 
0.01 0.02 (0.1,0.02) 0.1 0.03 0.02 
0.1 0.1 (0.1,O.l) 0.15 0.1 0.1 
0.02 0.01 (0.01,0.02) 0.01 0.02 0.04 

The HILO policy, Adaptive HILO policy and the FIFO rule are compared with Poisson traffic in Table 13. 
The effectiveness of the Adaptive HILO policy in controlling the six node system with bursty traffic is 
demonstrated in Tables 14 and 15. The parameters for the MMPP processes in these examples were chosen 
to reflect increasing traffic loads and varying levels of burstiness. The data once again indicate the adaptive 
policy is robust under varying traffic conditions. 

From the studies of the various systems presented in the preceding discussions, it is evident the HILO 
and the Adaptive HILO policies hold much promise for cell loss control in ATM networks. However, it 
is a well-known fact that in ATM networks propagation delays will be large in comparison to queueing 
and transmission delays. This results in a large delay-bandwidth product, implying that a large number of 
cells could be in transit between nodes at any instant of time. This could cause severe oscillatory behavior 
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Table 16 
Results for a five-node system with Poisson traffic. Simulation duration is lo6 slots, and the results are@ 20 replications. 
The buffer sizes are 1000 cells at each node. The traffic loads are 21%, 53%, 75%, 84.999% and 99.999%, respectively. The 
propagation delay between nodes is 100 times the cell transmission time 

Policy Losses of traffic at node 

#l #2 #3 #4 #5 Total 

HILO ADAPTIVE 0 0 0 0 0 0 
FIFO 0 0 0 0 271.3 271.3 

in controls that are dependent on information propagated back from adjacent nodes. In the sequel, we 
demonstrate that the Adaptive HILO policy does not suffer from this drawback. 

6.4. Incorporating propagation delays 

In all the experiments considered thus far, we have neglected the propagation delay for a cell to transit 
from one node to another. This delay could be several times larger than the transmission time for a single 
cell in an ATM network. Now we incorporate this component of the total delay into our experiments. 

Once again, we consider the five-node system in Fig. 2. The propagation delay between successive nodes 
is now 100 times the transmission time for a single cell. For links of capacity 150Mbps and ATM cells 
of size 53 bytes, this corresponds to a physical distance of approximately 1OOkm between nodes. When 
there are such propagation delays, the delay should not be too large so as to make the feedback information 
completely useless. Based on our experiments, the following guidelines are useful in constructing controls 

for networks with large propagation delays: 
l the propagation delay multiplied by the time to transmit a cell (i.e, the service rate of the ATM switch) 

should be less than a fifth of the size of the downstream buffer, and 
l the HILO rule needs to account for the cells in transit. We do this by adding the number of cells in transit 

to the next node to the buffer content of that node. Note though that the value of the buffer content known 
to the upstream node is “old” due to the propagation delay. This procedure in some sense attempts to 
predict the buffer content of the downstream node (for a detailed predictive scheme, see [ 121). 
We first simulate the five-node system with Poisson traffic and large buffers. The load on the fifth node in 

the system is very high (99.999%). From Table 16, we see that the Adaptive HILO policy is very effective 
in controlling cell losses. Now, we make the buffers smaller and change the traffic streams to the bursty 
MMPP process. Once again, cell losses are contained (see Table 17). 

These preliminary experiments indicate that the Adaptive HILO policy can indeed be useful in real 
ATM networks with large delay-bandwidth products. We are currently evaluating the policy under various 
realistic network configurations. In the next section, we provide some intuition into the reasons for the 
effectiveness of the HILO and Adaptive HILO policies. 

7. Discussion 

We have shown via a number of examples that the HILO and Adaptive HILO policies do reduce cell loss 
significantly. Intuitively, these policies hold back traffic from congested nodes in buffers that are relatively 
lightly utilized until such time that the congestion abates. We hypothesize that these policies are able to 
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Table 17 
Results for a five-node system with MMPP traffic. Simulation duration is 5 x lo6 slots, and the results are for 16 replications. 
The buffer sizes are 600 cells at each node. The traffic loads are 24.1%, 44.1%, 54.6%, 75.05% and 97.05%, respectively. The 
propagation delay between nodes is 100 times the cell transmission time 

Policy Losses of traffic at node 

HILO ADAPTIVE 
PIP0 

Traffic parameters 
Onrate 
Ontime 
Offrate 
Offtime 

#1 #2 #3 #4 #5 

0 0 0 0.44 0 
0 0 0 0 3602.75 

0.32 0.4 0.15 0.38 0.4 
0.01 0.02 0.1 0.01 0.03 
0.1 0.1 0.1 0.03 0.1 
0.02 0.01 0.01 0.01 0.01 

Total 

0.44 
3602.75 

Table 18 
Single server equivalence 

Example Traffic combined 
and fed into 

Total buffer in Buffer(K) in 
series in the ./D/I/K 

Total cell loss 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 

/D/I/Kqueue original example queue HILO Adaptive .lDl1lK 

l/l, 1/z 211,212 60 45 16 20 
l/l, l/2,2/1,2/2 60 45 11 43 
1/1,1/z 2/1,2/2 1000 600 239.8 635.2 
1/1,1/z 211,212 2000 1800 1133 849.4 
1/1,1/2,2/1,2/2 2200 1980 927 770.4 
1/1,1/2,2/1,2/2 2200 1980 235.9 178.3 
All 50 30 168.4 187.2 
All 50 30 1025.1 530.7 
All 500 INF 0 0 
All 350 220 282.1 475.3 
All Traffic to node #5 50 20 87.8 33.3 
All Traffic to node #5 500 INF 0 0 
All Traffic to node #5 500 350 56.6 88.4 
All 5000 INF 0 0 
All 5000 INF 0.4 0 

control cell loss due to the effective manner in which they utilize unused buffer capacity in upstream nodes 
during periods of heavy load in downstream buffers. To test this hypothesis, we conduct a final test of the 
efficiency of these controls. For each of the fifteen examples previously discussed in this chapter, we pose 
the following problem: 

Assume that all the trafic art-&&g to most heavily loaded node in the system is directed to a single server 
queue withjnite buffer K. We>all this system a ./D/l/K queue. Find the value of K for this system which 
gives roughly the same cell loss as the Adaptive HILO rule for the original system. 

Comparisons of the ./D/l/K system with the original multi-node system controlled by the Adaptive 
HILO policy are shown in Table 18. We observe that the value of K for the ./D/l/K system that yields 
roughly the same losses as the Adaptive HILO controlled system ranges about 40%-90% of the total buffer 
capacity in the entire original system. The value of K is closer to 90% for bursty MMPP traffic (for example 
see Examples 4-6). This confirms that the HILO rule makes congestion at downstream nodes visible to 
upstream nodes well in time - thus filling up empty buffers upstream as the downstream buffers get filled up. 
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8. Conclusions 

We have considered buffer control policies for connections sharing finite buffers in ATM networks. 
We presented important characteristics of the optimal policy for a single node. For the general multi-node 
problem, we have presented insights into the nature of optimal policies. Then, using a dynamic programming 
formulation for a two-node network, we were able to construct a simple heuristic, the HILO policy, that 
significantly outperformed the static priority rule. We then modified the HILO policy to react to changing 
network conditions. This new control is called the Adaptive HILO policy. Simulations studies of more 
complicated networks show that the heuristic is indeed effective under diverse conditions. The key idea we 
have discovered are that simple ON-OFF type of non work-conserving policies which use limited feedback 
from adjacent nodes can be effective in controlling cell loss. 

We have tested the Adaptive HILO policy for ATM networks with large delay-bandwidth products. Pre- 
liminary results indicate that cell loss can be effectively contained even in the presence of large propagation 
delays, and that the policy does not suffer from oscillatory behavior. Future work in this area includes 
testing of the Adaptive HILO policy under realistic traffic conditions in complex networks. 
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