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Abstract—Scheduling preventive maintenance in a multi-period and multi-product situation has
been deait with in this paper. An aggregate preventive maintenance programme is determined
based on the time to failure distribution, machine load in every period and varying cost of
breakdown in different periods; using a steppingstone algorithm. Sample results from the
computer programme written for solving this problem are given. This algorithm can be used to
solve similar problems.
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INTRODUCTION

The scheduling of preventive maintenance has been extensively dealt with by many
researchers [1]. A recent paper [2] has however given a new look to the problem. The
problem has been posed in the Joshi and Gupta paper as aggregate planning of preven-
tive maintenance (PM) over a number of periods given that the breakdown cost in each
period varies as a function of the load in the period and the profitability of that period’s
product-mix.

Joshi and Gupta have used a complete search technique for solving the problem. A
more efficient method of solving this problem is described in this paper. This method
uses a steppingstone scheme which can be adopted to solve similar problems.

PROBLEM DESCRIPTION

Performing routine or preventive maintenance has always been a source of conflict
generation between executives managing the production and maintenance functions. A
machine breakdown in peak load periods or in highly profitable periods causes heart-
burns. Medium to long term planning of routine maintenance is very much necessary in
this case in order to account and plan for the interactions between machine load,
product-mix profitability and machine breakdowns.

Joshi and Gupta [2], provide for the interaction by varying the cost of breakdown by
using a weighted average cost. The formula is given below:

Ztix Qijx CiX[D ' Z Q[j

Average cost of

S = X
downtime in period j(B)) H_.. Y Qs Xy
_ (Average value of . average downtime y 1
" production in period j in hours Average time required

per unit of production)

where C; is the “value” of product i being produced on the machine in period j, Q;;is the
quantity of product / produced on the machine in period j, ¢ is the time taken by product i
on the machine in hours/unit, Hy,, the maximum permissible load on the machine and ¢p
the mean downtime in hours from historical data.
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In this paper it is assumed that the breakdown costs, in each period, have been
computed using this or a similar formula. An efficient solution method is proposed to
solve the problem of minimizing the total cost of maintenance.

PROBLEM DEFINITION

Given that:

N = number of periods in the planning horizon

t = time in hours .

§i03) = probability density function of failure (after repair) of the machine for which
the PM schedule is being generated

B; = cost of breakdown per hour of the machine in period i

tp = average total waiting plus breakdown repair hours per breakdown

L; = hours of load on the machine in period i

P = average cost of one preventive maintenance

X, = (, if no preventive maintenance is scheduled in period ¢

= 1, if. preventive maintenance is scheduled in period i

M = number of preventive maintenance to be performed within N, the planning
horizon

H; = expected number of failures in period ;j given the last PM was in period {

K.(S,;) = cost of scheduling the ry, P, in the S period when M = n

H(r) = expected number of failures in time ¢

J = set of periods in which PM is performed where j(n) is the period in which the

n"* PM is scheduled.

The problem can be defined as:

N 3
Min (Min { LipX B X Hy\ + X, % P})

i=]
M=0toN J={j(r),r=11t0 M)
Where:

J(s) € Jand j(s) 2 j(1); j(r) <iand j(r) € J
r=1toM

The problem defined has two dimensions, the first of determining the optimal schedule
J for a given value of M, and the second of optimising over the value of M.

It is assumed that B;, 1, and P are determined from historic data. L; is computed from
the production schedule for the N periods, for the machine. It is assumed that any PM
will be scheduled at the beginning of a period.

Hj as used in the computation is determined by first computing the function H(r),
through the recursion equation given below [3]:

u+1
=1

HO= ¥ jﬂ@.a+H@»u-n.m

u=0
u

 with H(0) = 0 0)
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SOLUTION

Consider the case of M = 1. Without loss of generality we can assume that a newly
repaired (or new machine) is available at the beginning of the first period.

This will imply that if the scheduling of the PM in the n™ period is locally optimum,
then the cost will increase on shifting the PM to either of the adjacent periods, (n—1) or

(n+1).
Thus:
K (n+1)=K, (n)
K (n-1)=K, (n)
(n#1)
or:
n N n-1 N
L H;xB+ ) H, ;XB= ] H,xB+ } H,xB,
j=1 Jj=n+1 j=1 j=n
and
n—~2 N n—1 N
Y H,xB+ ¥ H,.,xB=>LH,xB+Y H, xB, (ii)
j=1 j=n=1 i=1 j=n
or
N
Hlann‘-Hnann‘*_ Z (Hn+1j~Hnj)XBn20
j=n+1
and

N
'—Hln—l X Bn—1+ Z (Hn

j=n

H x B

n=-ln-—1

n=—1 -—l/'-Hnj)XBnZO (lil)

All n satisfying (iil) are locally optimum. Because the cost function can take any shape
a complete search is required. But due to the compactness of the formula, if the totals

r

2. (H;x B)) are computed and stored in a square upper triangular matrix, then the
j=1
computations can be performed quite fast, using (ii) itself.

To extend this to other values of M, consider the case of M=2. The schematic

representation is given in Fig. 1.

~

1t 1 1 1 1 1 1 1 11
Period ;=3 T s= 1T (8T (S+1 T (R=1T (R (R+1) T N=2 N-1 N

Fig. 1

If the PM® are done in periods S and R then:

(i) R must be optimum for the span Sto N
(ii) S must be optimum for the span 1 to (R—1)

1
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The steppingstone algorithm therefore assumes the value of R, one-by-one decreasing
it from N to 3. S is found from (ii) for the span S to N, for each R. If multiple values of S

are there, then these are stored.

After S has been determined, (ii) is used to check the local optimality between 1 to
(R—=1). If it is not “optimal” then the stored solutions for the same value of R are

checked. If they are not optimal, these solutions are deleted.

If S and R are “optimal” then this solution is compared with the previous minimum

“optimal” solution (if any). The minimum solution is stored.

After searching through all values of R from N to 3, the minimum solution is obtained.

If there is no such solution, then two PMs are not required.

For the general case, it is a repetitive application of the steppingstone method until the
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last PM has been scheduled. The last span is checked for “optimality”. The flow chart of
the computations is given in Fig. 2 and the step by step description given below.

00 ~3 O n

10.
11.
12.
13.
14.
15.

16.

THE STEPPINGSTONE SEARCH ALGORITHM

. Set M = 0. Find Ky, the cost of having no PM".

M=M+1.1IfM=NSTOP

. Set, M I N = large number.

NBR, No. of branches = zero
Set the first PM in the (N + 1)* period

. j(1) = N + 1; (note: j(0) = N + 1in Step 9)

. Set the No. of PM® scheduled NPM =1

. j(1) = j(1) — 1. If j(1) is less than M go to step 16
. Increase NPM by one

If NPM > M, go to step 11.

Find the next PM, j(NPM).

Here (i) is used within the specified span j(NPM) to j(NPM~-2), with (NPM—1) as
the “optimal” PM in the span. If there is more than one solution, store these and
increase NBR correspondingly. Go to step 8.

If the next PM cannot be found in step 9, go to step 14.

Check “optimality” using j(M) in the span 1 to j(M—1), using (ii).

If not “optimal” go to step 14.

If “optimal” compare the solution with previous MIN and store the least solution.
If NBR = 0, go to step 7.

Replace the current solution by the last branch solution. Reduce NBR by one. If
NPM of the current solution is equal to M directly go to step 11. Else go to step 8.
Determine Ky, If Kpy > Kpg—y, STOP. Otherwise go to step 2.

COMPUTER PROGRAM

A computer program was written in FORTRAN and run on the VAX 11/730 at the
Administrative Staff College of India, Hyderabad. The program reads the value of H;
computed by another program. This enables different density functions to be tried out.
(The Weibull distribution was used in the runs). There are two sub-routines, one to
compute the next PM, the other to check the final span’s optimality. The output for some
of the values are given in Tables 1-6.

Table 1. The function H(f): seiected values

Hours since Expected no. of breakdowns
last PM (rounded off)
0 0.00000
50 0.00560
100 0.03870
200 0.15042
300 0.31949
400 0.52581
500 0.75093
600 0.98188
700 1.21204
800 1.43961
900 1.66522
1000 1.89007

Note: (1) = (bla). [(1=c)a)’~". Exp ~[(1—c)/a]® for
1> C (Weibull density function) using a = 500 hours;

b=2;c=0hr
Tabie 2
Period §
1 2 3 4 5 . 6 7 8 9 10 11 12
B, breakdown cost 40 70 80 70 69 57 30 99 74 70 75 77

L;, load in hours 50 80 60 80 90.7 604 80 90.5 70.6 80.6 80.6 70.8
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The expected number of breakdowns (see Table 1) are computed using the recursion
relation (i) and assuming the parameters of the Weibull distribution, f{r) = (b/a)
[(t=c)/a)’™*. Exp. —=[(t—c/a)’], to be a = 500 hr, b = 2 and ¢ = 0. Table 2 gives the
expected machine load and the cost of breakdown for 12 periods. Table 3 shows the cost
of breakdowns in period j if the last preventive maintenance is performed at the
beginning of period i. Here it is assumed that the average time for waiting and repair per
breakdown, ¢p, is one hour. Table 3 is converted into Table 4, to give the expected cost
of breakdowns from period i to period j, where i is the last period in which a PM is
performed, prior to period j+1. Table 5 gives the minimum expected cost of mainten-
ance when there are one to four set-ups for preventive maintenance. Here it is assumed
that the average cost per set-up for preventive maintenance is 15.0. The optimal policy is
found to have three set-ups for preventive maintenance in the periods 4, 8 and 11.

In the actual program, the processing does not stop at K, > K, but proceeds till
M = 11. This way the breakeven value for the PM cost in order to have one more PM, is
computed as the difference between the optimal breakdown costs for successive number
of PM*. (See Table 6).

APPLICATION TO THE DYNAMIC LOT SIZE PROBLEM

This algorithm can be used to solve similar problems such as the problem of determin-
ing dynamic lot sizes [5]. The entries of Table 4 can be visualized as the cost of carrying
inventory to meet the demand for periods i to j, when the last set-up for production is at
the beginning of period i. The cost of one preventive maintenance could be equated to
the cost of a setup for production. In case the cost for a set-up is different in different
periods, then this too can be incorporated in Table 4 itself by adding the cost of set-up to
each row. The only difference in the approach for computing dynamic lot sizes would be
that there may be carry-over inventory from periods prior to the planning horizon.
However it can be assumed without loss of generality that, the first setup will be in the
first period of the planning horizon; with the demand in the first period suitably adjusted
to take care of partial fulfilment of that period’s demand from the carry-over inventory.

Table 5. Solution for average cost of PM = 15.00

Period in which PM® Expected total
No. of PM* are to be performed J cost of policy
0 - 114.994
1 (8) 97.094
2 (8. 4) 94.981
3 (11,8, 4) 94.395
4 (11.8,5.3) 100.891

Optimal policy is three PM* in (11. 8. 4).

Table 6. Breakeven PM cost for having "M’ PM?

No. of PM® Periods in which PM® Breakdown cost Breakeven cost
M are to be performed, J for policy of one PM for
(M, ]) having this PM
Ky Kpg= K-
0 114.994 —
1 @& - 82.094 32.900
2 (8.4) 64 981 17.113
3 (11.8.4) 49.395 15.586
4 (11.8.5.3) 40.891 8.504
5 (11,9.8.5.3) 34.073 6.818
6 (11,9.8,6.5.3) 30.285 3.788
7 (12.11.9.8.6.5.3) 27.009 2.277
8 (12.11,10.9.8.6.5.3) . 24.030 2.979
9 (12,11.10.9.8.6.5.4.3) 21.459 2.570
10 (12,11,10.9.8.6,5,4.3.2) 19.305 2.155
11 (12.11,10.9.8.7.6,5.4.3.2 18.203 1.101
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This will imply that a constant will get added to all the cost figures of the first row in
Table 4, due to the setup in the first period.

The minimum cost for having different number of setups in the planning horizon can
be determined using the same search algorithm. The optimal policy is to have 4 setups for
production in periods 1, 4, 8 and 11 (from Table 5). The incremental cost for having
more or less than 4 setups for production in the planning horizon can be found from
Table 6. For example, the marginal increase in cost for having 3 setups in periods 1, 4 and
8 is 0.586; whereas the increase in cost for 5 setups is 6.496. This is a valuable input to the
decision maker if there are different products competing for the same set of production
facilities.

CONCLUSION

The algorithm described is quite’fast taking about 2—4 sec of CPU time, after the Hj
matrix has been generated. This algorithm can be used for solving similar problems, an
example being the dynamic lot size problem of Wagner and Whitin.
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