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Abstract

We consider the dynamic version of the classic problem of allocation of inventories to a set of retailers to rectify the

imbalance of inventories amongst them. While most research is focussed on analyzing different allocation strategies

with a predetermined time of shipment (static policy), we investigate the benefit of using real time demand (inventory)

information to schedule rebalancing shipments in a retail network. We model the dynamic rebalancing problem that has

two decisions, the timing of the balancing shipments and determination of the new stocking levels at the retailers, as a

dynamic program (DP). We obtain structural properties for the optimal allocation, rebalancing and timing strategies.

We also present conditions under which a greedy heuristic to decide how much to ship from one retailer to another is

optimal. The DP for determining the optimal timing and quantity of shipments has a very large state space. We present

an algorithm to solve this DP efficiently. We also provide a heuristic solution procedure to the dynamic problem that

performs very close to optimal. Numerical results show that dynamic allocation policies can lead to substantial benefits

over the static policy especially in systems in which the starting inventories at the retailers are balanced or when high

service levels are required.

� 2003 Elsevier B.V. All rights reserved.
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1. Introduction

We consider a supply chain in which a vendor sells a single good to several stores. The customer demand

at stores is independent. Unmet sales are lost. At the beginning of the period, the inventories at the stores
are known and the supplier has a given stock of the good. The supplier�s decisions are: (i) To determine the

quantities to ship at the beginning of the period to the stores, and (ii) depending on the sales at the stores to

rebalance the inventories held by the stores at an appropriate time but before the end of the period. Our

main objective in this paper is to investigate the value of inventory information in risk pooling and its

impact on allocation decisions for multiple retailers with one supply point.

This problem is different from the ones previously studied because it combines the timing decision with

the rebalancing decision. The problem is relevant because often due to the proximity of stores, suppliers
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find it economical to combine shipments to stores into a single large shipment. For example, to supply milk
from Philadelphia to a cluster of stores in the New York Metropolitan area it is cost effective to send a large

refrigerated truck to supply the cluster of stores rather than to send a small truck to each store. In such

cases, the timing of the shipment is obviously an important decision. However, the same shipment can be

used to rebalance inventories. Thus, it leads to the question whether it is sufficiently beneficial to consider

the two decisions jointly in a dynamic framework when compared to choosing (and fixing) the timing of

rebalance initially and rebalancing appropriately at that fixed time, in other words, optimizing in a static

framework. This problem is of particular interest in the fashion goods industry where the manufacturer has

to decide when to rebalance the inventory during the selling season. Due to the availability of real time
data, such rebalancing decisions can be effected within a few days of the beginning of a selling period for

goods such as music CDs, new releases of books, cosmetics, etc.

The algorithmic aspects of this problem are also of interest because the dynamic program (DP) that has

to be solved to determine the timing and the rebalance quantities has an extremely large state space. Thus,

evaluation of heuristics for solving the problem is of theoretical as well as practical value. Finally, classi-

fication of the factors that determine the value of dynamic scheduling in such situations, for example,

knowing whether savings increase with volatility, is bound to be of value to practitioners.

The last decade has seen tremendous investments in supply chain execution systems that use (nearly) real
time information. In addition, we have seen a huge growth in the number of third party logistics providers,

i.e., firms that provide less than truckload and local courier services. As a result of these changes, the lead-

time from central distribution centers (DCs) or suppliers has gone down resulting in the reduced impor-

tance of stocking regional DCs to support retailers. Thus, rebalancing of retail inventories (only if and

when it is needed as in a dynamic policy) has become more attractive.

The contributions in this paper are as follows: We present the general version of the dynamic scheduling

problem in Section 3. In Section 3.1 we derive several structural properties of dynamic allocation policies

that have two decisions, the timing of the balancing shipments and the new stocking levels at the retailers.
We present conditions under which the optimal rebalancing strategy is to maximize the minimum inven-

tory. We also present conditions under which a greedy heuristic to decide the shipments from one retailer to

another is optimal. In Section 3.2 we formulate the problem as a DP and present several properties of the

optimal solution. This DP has a very large state space. We present a simulation technique for solving the

DP in Section 3.3. We also provide a heuristic solution to the DP that gives results that are very close to

optimal. In Section 4 we exhibit numerical results to demonstrate that dynamic rebalancing policies can

lead to substantial benefits compared to a static rebalancing policy especially in systems in which starting

inventories at the retailers are balanced or when high service levels are required.
2. Related work

2.1. Risk pooling

Our work is related to the literature on risk pooling at the DC as exemplified by the work of Jonsson and

Silver (1987a,b), Jackson (1988), Jackson and Muckstadt (1989), Schwarz (1989), Axs€ater (1990), McGavin
et al. (1993), Kumar et al. (1995), and Graves (1996). Recent studies and additional references on the

problem of how much stock to hold at a central warehouse, how to set transshipment intervals, and how to

allocate stocks from the warehouse to satisfy competing demands, can be found in Mercer and Tao (1996),

van der Heijden (1999), and Verrijdt and de Kok (1996).

Of these studies, our model is the closest to that of McGavin et al. (1993). McGavin et al., model an N
retailer system, in which demand is generated by a stationary process with independent increments.

The demand process is assumed to be independent and identically distributed (i.i.d.) across retailers.
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McGavin et al�s analysis is restricted to one review period of the DC (though it can be extended to multiple
periods) and their aim is to study risk pooling. The DC receives stock at the beginning of its review period,

i.e., the DC follows a base stock policy and enjoys instantaneous replenishment from an external supplier.

The review period is divided into two intervals. In the first interval, part of the replenished stock is allocated

to the retailers. Unmet demand during this interval is lost. At the beginning of the second interval, another

allocation is made. Excess demand is lost in this interval too. The lead-time from the DC to the retailers is

assumed to be zero. They do not model holding or set up costs but instead focus on minimizing the expected

lost sales. The contributions of their paper are: (i) the optimal allocation maximizes the minimum retailer

inventory, and that (ii) two well-chosen (not necessarily equal) intervals work equally well when compared
to four balanced intervals for replenishing stocks.

McGavin et al. (1997) extend the single period problem to T successive time intervals. In this multi-

period problem, the objective is to determine the optimal redistribution of the inventory in each period

(therefore the problem is not dynamic). They show that when the retailer cost is convex and the retailers are

identical, the optimal solution is to balance the retailer inventories in each period. In general, balancing is

shown to be not optimal when retailers are non-identical. Our work differs from this stream of work in that

it develops the theme of dynamic determination of when to rebalance instead of depending on a prefixed

time to rebalance.

2.2. Allocation of safety stock

Models dealing with the allocation of safety stocks between DC and retail outlets, have been considered

by Jonsson and Silver (1987b), Deuermeyer and Schwarz (1981), Schwarz et al. (1985), and Graves (1996).

The numerical results reported in the majority of these papers indicate that the optimal solution is for the

DC to hold little or no stocks. This as well as the other factors discussed in Section 1 motivates our focusing

upon the rebalancing decision and relegating the option of the DC holding back stock to redistribute to
stores some time before the end of the selling season to future work.

2.3. Incentive issues

If the DC and retail outlets were not under single ownership, retail outlets will need an incentive to carry

most of the safety stocks. The same situation will result, if the stocks at the retailers have to be readjusted to

balance the ending stocks, as modeled by Jackson (1988) and Jackson and Muckstadt (1989). In either case,

the analysis and resolution of the coordination issues can be based on the cost-sharing scheme proposed in
Moses and Seshadri (2000). We come back to this issue in the next section when we discuss the optimal

allocation of stocks.
3. Problem setting

We consider a two-echelon supply chain in which a vendor supplies a single good toM stores from a DC.

The time frame for decision making is a single period, that is further sub-divided into N inventory reviews.
Thus, the single period can be considered to comprise of N sub-periods. We assume that the time to

transport the good from the warehouse to the stores or between stores is negligible. There is adequate space

to store inventories at the warehouse as well as the stores. In the general problem setting, the vendor

(centralized decision maker) has complete knowledge of inventory and sales at all stores, Based on this

information s/he must decide when and how to restock and/or rebalance the store inventories (jointly

termed the rebalancing decision). We assume that the vendor has only one opportunity for making the

rebalancing decision. We also assume that sales that are not met are lost, the inventory holding costs at
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different locations can be expressed as functions of the average sub-period opening and ending inventories,
the cost of transportation between locations depends on the quantities shipped, and there is no discounting

of costs that are incurred at different instants but within the same period. After formulating the general

problem in this section we analyze a special case and provide numerical results pertaining to the special case

in Section 4. In order to formally state the scheduling problem define the following quantities:

M number of retailers indexed by i. The warehouse is given the index 0

N number of sub-periods (inventory reviews) indexed by j
xi starting inventory at retailer i
Dij random demand at retailer i during sub-period j, i.e., random demand at retailer i between the jth

and the jþ 1st review. We assume that Dij is a continuous random variable

uikðxÞ cost of transporting a quantity x of the good from store i to store k
s sub-period in which the rebalancing is done

hiðxÞ cost of holding a quantity x of average inventory of the good at store i
Yik the quantity of the good transported at s from store i to store k
giðxÞ cost of losing a quantity x of sales of the good at store i
Ii average inventory at store i
Li lost sale at store i
xis�, xisþ inventory before and after the rebalancing at store i
Aþ stands for the positive part of A, i.e., maxf0;Ag
A� stands for the negative part of A, i.e., maxf0;�Ag

We can express the average inventory ðIiÞ and the lost sales ðLiÞ as shown below:
xis� ¼ ½xi � Di1 � Di2 � � � � � Dis�þ;
xisþ ¼ ½xi � Di1 � Di2 � � � � � Dis�þ þ

X
k

Yki �
X
i

Yik;

Ii ¼ sðxi þ xis�Þ=2þ ðN � sÞðxisþ þ ½xisþ � Diðsþ1Þ � � � � � DiN �þÞ=2; and

Li ¼ ½xi � Di1 � Di2 � � � � � Dis�� þ ½xisþ � Diðsþ1Þ � � � � � DiN ��:

Let E½A� stand for the expectation of a random variable A. Then, the optimization problem can be stated as

follows:
min
s;Yik

E
X
i

hiðIiÞ
  

þ giðLiÞ þ
X
k

uikðYikÞ
!!

subject to :
X
k

Yik 6 ½xi � Di1 � Di2 � � � � � Dis�þ; Yik P 0:
3.1. Identical stores and minimizing lost sales

In this subsection, we study a version of the general problem to obtain structural properties of the

optimal solution. Numerical results are presented in the next section that illustrate the value of dynamic
scheduling. In this subsection we assume (unless stated otherwise) that the objective is to minimize the

expected cost of lost sales at stores and that the demand at the stores are identically distributed in each sub-

period for every store and across stores. Notice that we do not require the demands to be independent

across stores.

Majorization order: Many of our results are based on inequalities that are governed by the majorization

order. Therefore, we briefly define this order relation below and its connection to the usual order relation
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on the real line via the class of Schur Convex functions. Let the ith largest component of any vector
ða1; a2; . . . ; aMÞ be denoted as a½i�. Then, given two real-valued M-dimensional vectors ðx1; x2; . . . ; xMÞ and
ðy1; y2; . . . ; yMÞ, the vector ðx1; x2; . . . ; xMÞ is said to majorize the vector ðy1; y2; . . . ; yMÞ, written as xP my, if:
x½1� P y½1�
x½1� þ x½2� P y½1� þ y½2�
. . .

x½1� þ x½2� þ � � � þ x½i� P y½1� þ y½2� þ � � � þ y½i�
. . .

x½1� þ x½2� þ � � � þ x½M � ¼ y½1� þ y½2� þ � � � þ y½M �:

ð1Þ
Schur-convex function: A function, g, whose domain is a sub-set A of the M-dimensional Euclidean space,

is said to be Schur-convex if given x and y that belong to A and that xP my (x majorizes y) then

gðxÞP gðyÞ (definition A.1, Chapter 3, p. 54, Marshall and Olkin, 1979).

Lemma 3.1. If the cost of lost sales is given by
g1ð½x1 � D11 � D12 � � � � � D1s��; . . . ; ½xM � DM1 � DM2 � � � � � DMs��Þ
þ g2ð½x1sþ � D1ðsþ1Þ � D1ðsþ2Þ � � � � � D1N ��; . . . ; ½xMsþ � DMðsþ1Þ � DMðsþ2Þ � � � � � DMN ��Þ
where g2 is a Schur convex function then the optimal solution (given s) is to set
xisþ ¼
X
i

½xi

 
� Di1 � Di2 � � � � � Dis�þ

!,
M :
Proof. Follows from the definition of a Schur convex function and the fact that the completely balanced

inventory vector is the smallest of all rebalanced inventory vectors in the majorization order. h

Remark

ii(i) This lemma extends McGavin et al. (1993) result that balancing is optimal when the objective is to min-

imize the sum of expected lost sales. This is because minimizing the expected total lost sales is a special

case of this lemma.

i(ii) The lemma will continue to hold even if the function g2 were to depend on the history of the demands
and the past actions of the decision maker.

(iii) Balancing is not optimal if it is only specified that the cost functions are identical and convex, i.e., if the

total cost were written as the sum: Eð
P

i gðLiÞÞ, where gð:Þ is a convex function. In particular, if the

stores are not under common ownership then further incentives might be required to achieve coordi-

nation. To see this notice that if any single store has suffered extremely high levels of lost sales and if

gð:Þ were convex then it is optimal to ship a larger quantity to this store to prevent further loss of sales.

On the other hand, if the cost function could be written as E½gð
P

i LiÞ� (for example, this could be the

objective criterion when the stores and the supplier are under single ownership or could be the criterion
of the supplier who does not wish to lose sales) then balancing is optimal if gð:Þ is convex.

It is straightforward to determine the optimal solution when the cost of transporting the good is linear

and identical between all locations––an assumption that is reasonable given the types of contracts that

shippers such as Federal Express and UPS have entered into with retailers. Assume that g2 is a strictly

convex function. For notational convenience, let
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LiðaÞ ¼ ½a� Diðsþ1Þ � Diðsþ2Þ � � � � � DiðNÞ��:
Let the current inventories at stores i and j be a and b with a greater than b. Let the transportation cost be u
per unit. Clearly, it is optimal to transport one unit of the good from location i to location j if
E½g2ðLiðaÞÞ þ g2ðLjðbÞÞ�PE½g2ðLiða� 1ÞÞ þ g2ðLjðbþ 1ÞÞ� þ u: ð2Þ
Given a vector x of inventories, let S1ðxÞ and S2ðxÞ denote the set of stores with the largest and the smallest

inventory.

Lemma 3.2. Starting with the current inventory vector at time s determine the sets S1ðxÞ and S2ðxÞ, and choose
one store in S1 and one store in S2. Apply (2) to determine whether one unit of the good should be shipped from

the chosen store in S1 to the store in S2. Make the shipment of the single unit if it reduces the cost. Repeatedly

apply this procedure until no further improvement can be made. This algorithm yields the lowest combined

expected cost of lost sales and transportation given that the rebalancing is done at time s.

Proof. Notice that the objective function is convex in the allocation made to each store. If applying con-

dition (2) shows that no cost reduction is possible, then the point reached is a local optimum therefore it is

also a global optimum. Moreover, there is never any backtracking in the algorithm because once a ship-

ment is made it is final.
If we assume that the stores are ordered such that store i initially has the ith largest inventory. When

choosing a store from set S1 choose the one with the largest index. Similarly, when choosing a store from S2
choose the one with the smallest index. Thus, the ith largest inventory is always at the ith store. In this

manner we also get a unique optimal solution. The reader is referred to Fox (1966) for other situations in

which a greedy allocation is optimal. h

Corollary 3.2. Let the cost of transporting the good be linear and identical, say u, between all locations.

Assume that demands at different retailers are independent but not identically distributed. Define a greedy

algorithm, GA, that ships one unit at a time from the store that experiences the smallest increase in the ex-

pected cost of lost sales due to the unit decrease in inventory; to the store that gains the most due to the transfer

and stops when the benefit of such a transfer is less than u. Applying GA leads to the optimal solution of

rebalancing the combined cost of transportation and lost sales.

Proof. Similar to the proof of Lemma 3.2. h

Lemma 3.3. If the cost of lost sales is given by gðL1; L2; . . . ; LMÞ where g is a Schur convex function then the

minimum inventory should be maximized after rebalancing in the optimal solution.

Proof. Follows from the definition of a Schur convex function and the fact that the smallest of all rebal-

anced inventory vectors in the majorization order will have the largest minimum inventory, see (1). h

Remark. This extends the result due to McGavin et al., that the minimum inventory should be maximized

when the function g is convex.

3.2. Dynamic programming formulation and its structural properties

We shall assume that the condition of Lemma 3.1 holds in this section unless stated otherwise. With this

result in hand, we now proceed to develop a Dynamic Programming Formulation for solving the problem.

We shall discuss the algorithmic extension required to cover other cases after presenting the theoretical
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analysis. Let x ¼ ðx1; x2; . . . ; xMÞ denote the inventory vector at the beginning of sub-period j and
Dj ¼ ðD1j;D2j; . . . ;DMjÞ stand for the demand vector in sub-period j. Let ½x�Dj�þ stand for the vector

ð½x1 � D1j�þ; ½x2 � D2j�þ; . . . ; ½xM � DMj�þÞ. Let VjðxÞ be the optimal expected cost to go at the beginning

of sub-period j given that the current inventory vector is x and that rebalancing has not yet been done.

Thus,
VjðxÞ ¼ minfAjðxÞ;KjðxÞ þ E½Vjþ1ð½x�Dj�þÞ�g; ð3Þ

AjðxÞ ¼ E½Ri½RkP jDik � Rixi=M �þ�; ð4Þ

KjðxÞ ¼ E½Ri½Dij � xi�þ�: ð5Þ

Eq. (3) represents the trade-off of rebalancing immediately versus waiting to rebalance. Eq. (4) follows from

Lemma 3.1. The dynamic program given in (3)–(5) can be easily expanded to cover the case when stores are

unequal or when the cost of transportation is linear and the same across all locations. If we could efficiently
solve the problem with unequal stores and linear but different transportation costs between retailers, the

same formulation can be used to solve this more general problem. We shall analyze the simpler formulation

given in (3)–(5) to understand some properties of the optimal solution.

In the following we discuss the properties of the optimal solution to the DP as a function of (a) N , the

number of sub-periods, (b) the result in terms of fixed cost for rebalancing, and (c) the result as a function

of shipment delay. Consider the N -stage problem with initial inventory level x ¼ ðx1; x2; . . . ; xMÞ. Let VjðxÞ
be the minimum cost of the problem with N � jþ 1 sub-periods to go and one chance of rebalancing.

Lemma 3.4. The value VjðxÞ is a Schur-convex function of x.

Proof. This is proved by induction. By using (4) and the fact that symmetric convex functions are Schur-

convex (Proposition C.2, p. 66, Chapter 3, Marshall and Olkin, 1979), we obtain that AjðxÞ is a Schur-

convex function of x. By Eq. (5) and the same reasoning, KjðxÞ is also a Schur-convex function of x. By
these observations as well as the preservation properties of Schur-convex function under the min operator,

it follows that if Vjþ1 is a Schur-convex function then so is Vj. h

It follows from the Schur-convexity of the cost function that among all the states in fx;
PM

i¼1 xi ¼ Constg
the state with all components equal is the most favored state, and the state with only one component non-

zero is the least favored one. Let Sj be the set of states x in which it is optimal to rebalance at the beginning

of the j-stage problem.

Lemma 3.5. The objective is to minimize the expected total lost sales. If it is optimal to rebalance in sub-period

s when the inventory vector is y then it is optimal to rebalance in sub-period s when the inventory vector is x for

all xP my.

Proof. See Appendix. h

Lemma 3.5 reveals that the set of vectors in which it is optimal to rebalance in a given sub-period is not

necessarily convex. This can be pictured in two dimensions (i.e., two retailer case) as follows. Let ða; aþ 2Þ
be the vector with the largest value of a in which it is desirable to rebalance in some sub-period. Then, from

Lemma 3.5 it surely is optimal to rebalance in this sub-period when the vector is ðx; yÞ, with xþ y ¼ 2aþ 2,

and jx� yj > 2. However, it may also be optimal to rebalance in the same sub-period when the inventory
vector is either ð2a; 4Þ or ð2aþ 4; 4Þ due to significant expected lost sales at the second retailer. Thus, ð2a; 4Þ
and ð4; 2aþ 4Þ belong to the set of vectors in which it is optimal to rebalance in the second sub-period but
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ðaþ 2; aþ 4Þ does not belong to this set. However, the lemma yields a nice characterization of Sj as dis-
cussed below.

Lemma 3.6. Let x, y be in Sj and x6 my, where 6 m is the majorization ordering. Let a½i� denote the ith largest

component of a vector a. Consider the vector z whose ordered components equal the convex combination of the

ordered components of x and y, i.e.,
z½i� ¼ ax½i� þ ð1� aÞy½i�; a 2 ð0; 1Þ:
Then the vector z is in Sj. Similarly, if x, y are not in Sj then the vector z is not in Sj.

Proof. Note that Sj is defined as the set of state x for which
X
i

EððDij � xiÞþÞ þ EðVjþ1ðx�DjÞþÞPE
X
i

XN
k¼j

Dik

  
� M

!þ!
: ð6Þ
First note that for x6 my we have
E
X
i

XN
k¼j

Dik

  
�
X
i

xi=M

!þ!
¼ E

X
i

XN
k¼j

Dik

  
�
X
i

yi=M

!þ!
:

Since, by construction x6 mz6 my it follows from the Schur-convexity of the left hand side of (6) that (6) is
satisfied when x is replaced by z, proving the first part of the lemma. The second part is proved simi-

larly. h

Corollary 3.6. Consider the case of two retailers M ¼ 2 and SðDÞ ¼ fx : x1 þ x2 ¼ Dg. The optimal strategy

takes the following form: there exists a dj for the j-stage problem such that given x 2 SðDÞ, it is optimal to

rebalance immediately if and only if jx1 � x2jP dj. Furthermore, dj is an increasing function of j.

Proof. When M ¼ 2 all the elements in SðDÞ are ordered in majorization ordering and x is smaller than y in
this ordering if and only if jx1 � x2j6 jy1 � y2j. Let
a ¼ E
X2
i¼1

XN
k¼j

Dik

  
� D=2

!!
:

Then it is optimal to rebalance if and only if
X
i

EððDij � xiÞþÞ þ EðVjþ1ðx�DjÞþÞP a:
Since the left hand side of the inequality is Schur-convex, it follows that there exists dj such that it is optimal

to rebalance immediately if and only if jx1 � x2jP dj. Furthermore, dj is an increasing function of j is a
consequence of Lemma 3.8 below. h

Let us now assume that, if the system implements a rebalance it incurs a fixed cost of c. In this case the

optimality equation becomes
VjðxÞ ¼ min c

(
þ E

XM
i¼1

XN
k¼j

Dik

  
�
X
i

xi=M

!þ!
;
X
i

EððDij � xiÞþÞ þ EðVjþ1ðx�DjÞþÞ
)
:

Lemma 3.5 remains satisfied, i.e., if it is optimal to rebalance in sub-period s when the inventory level is y
then it is also optimal to rebalance when the inventory level is x6 my. The proof is identical and one only
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needs to show that the value function is a Schur-convex function. Let s�ðs��Þ be the optimal rebalancing

time for the system without (with) a fixed balance cost.

Lemma 3.7. The optimal rebalancing times satisfy s� 6 s��.

Proof. This result is based on the following: it is not optimal to rebalance at time s when the inventory level

is x for the system without a fixed balance cost, then it is also not optimal at time s when the inventory level

is x for the system with a fixed balance cost. The latter result is straightforward to establish. h

Consider again the special case with two retailers.

Corollary 3.7. The optimal strategy for the problem with fixed rebalancing cost c takes the following form:

there exists a djðcÞ for the j-stage problem such that given x is in SðDÞ, it is optimal to rebalance at the

beginning if and only if jx1 � x2jP djðcÞ. Furthermore, djðcÞ is an increasing function of c and j.

Proof. The proof is similar to that of Corollary 3.6. h

Let us consider the case of positive lead-time, i.e., when a decision is made to deliver, it will not be

finished until a positive lead-time L later. We further assume that before the items are rebalanced they are

available to their original location. The optimality condition for this case can be written as
VjðxÞ ¼ min E
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Now we consider whether increasing the number of sub-periods decreases the likelihood of rebalancing the

inventory in an earlier sub-period. This is an important result as it can be used to construct heuristics to

solve the general problem.

Lemma 3.8. The objective is to minimize the expected total lost sales. If it is optimal to postpone the rebalance

in sub-period s when the inventory vector is y and the total number of sub-periods is N then it is optimal to

postpone the rebalance in sub-period s when the inventory vector is y and the total number of sub-periods is

N þ 1.

Proof. See Appendix. h

Lemma 3.8 reveals that the set of vectors in which it is optimal to rebalance is increasing with fewer sub-

periods to go, or that the frequency distribution of rebalancing over the sub-periods will tend to be skewed

to the right.
3.3. Solution to the dynamic program

The DP shown in (2)–(4) has an extremely large state space and thus cannot be solved easily. Instead we

use Monte Carlo integration to solve the problem. The algorithm takes as input the initial vector of in-

ventories, x0 and a number of replications, denoted as R. Thus, ‘‘simulate to estimate’’ means that the
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relevant quantity is simulated R times and averaged out over the R replications. The illustrative procedure
(labeled DRA) for three periods is shown below.

Dynamic Rebalancing Algorithm (DRA)

begin

For period 1

Simulate to estimate the cost if immediately balanced, say, C(1, 1)

Simulate and determine the first period cost if not balanced, say A(1)
Set the accumulator of cost if not balanced in first period, C(1, 2)¼ 0

Generate a demand for the first period R times. Each time:

{

For period 2

Determine the starting inventory vector

Simulate to estimate the cost if immediately balanced, say, C(2, 1)

Simulate and determine the second period cost if not balanced, say A(2)

Set C(2, 2)¼ 0
Generate a demand for the second period R times. Each time:

{

For period 3

Determine the starting inventory vector

Simulate to estimate the cost when balanced, say, A(3)

Set C(2, 2)¼C(2, 2)+A(3)

}

Set C(1, 2)¼C(1, 2)+minimum(C(2, 1), A(2)+C(2, 2)/R)
}

Set minimum cost¼minimum (C(1, 1), A(1)+C(1, 2)

end

The above procedure can be modified to cover the following cases/provide additional information as

follows: (i) The case when there are more than three periods can be solved by adding more inner loops to

DRA (though for practical implementation M ¼ 5 is itself time consuming when R ¼ 1000, because it takes

up to 3 hours of time when N ¼ 6). (ii) When there is a fixed cost of rebalancing, it might not be optimal to
balance at all, thus the last period decision in that case is changed to additionally consider whether or not to

rebalance. (iii) The algorithm can be used to accumulate the frequency with which the rebalancing decision is

optimal in each of the periods. (iv) If an efficient transportation cost routine can be embedded within the

algorithm (for example, the case discussed in Lemma 3.2) then the problem can be generalized to incorporate

transportation cost. (v) If the stores face similar demand then the more general problem wherein the vendor

holds back inventory and balances all inventories with an initial allocation (or at least minimizes in the

majorization order all inventories if transshipment across stores is not allowed at the beginning of the period)

could also be solved by searching for the optimal quantity of inventory to hold back for later rebalancing.
4. Numerical results

In Section 3 we established several structural properties of the optimal solution to the dynamic rebal-

ancing problem. In this section we discuss the results of several numerical experiments that provide insights

into the following issues:
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1. What is the extent of benefit due to optimal dynamic rebalancing when compared to an optimal but sta-

tic rebalancing policy? What are the factors that determine the magnitude of savings that can be ob-

tained by switching to an optimal dynamic policy from a static policy?

2. Whether and under what conditions dynamic policies that are based on heuristic analysis perform nearly

as well as the optimal policies?

3. Whether the pattern of decisions of dynamic and static policies, namely, the frequency with which re-

balancing is done over the different sub-periods provide guidelines as to when to use dynamic rebalanc-

ing, for example, should the rebalancing algorithm be used for the entire horizon or can it be applied to
only certain sub-periods?

4.1. The design of experiments

The number of retailers, M , is varied from 3 to 9 in the experiments. The number of inventory reviews or

sub-periods, N , is fixed at 5. It is a high enough number to study the impact of dynamic re-balancing in

most practical cases.

Three different discrete demand distributions are used to simulate customer demand. These were chosen
so that we can study the impact of the shape of the demand distribution and the variability in demand upon

relative cost saving, frequency of shipments, et cetera. The mean demand at each retailer for a sub-period is

equal to two in all three distributions. The demand distributions are summarized in Table 1. The retailer

demand can take values 0, 1, 2, 3, or 4 (column 1) in a sub-period. The cumulative probability of observing

these values in a sub-period for three different demand distributions are shown in columns 2–4. The three

distributions correspond to increasing variance in demand.

We compare alternate policies under different starting inventory positions as described below.

Alternate policies: The DRA is cumbersome to use when either the number of sub-periods or the number
of retailers is large. Therefore, we propose the use of an intuitively appealing dynamic but myopic heuristic

in which (in its simple form) the re-balancing is done in sub-period s if the expected cost of re-balancing in

sub-period s is lower than the expected cost of re-balancing in sub-period sþ 1. Obviously the heuristic is

not optimal unless there are exactly two sub-periods. Numerical results indicate that the main reason for

the sub-optimal performance of the heuristic is its tendency to ship early. This phenomenon can be ex-

plained as follows: The expected cost of re-balancing in sub-period sþ 1 is greater than the true expected

cost of postponing the re-balancing decision. This makes the decision to rebalance immediately a more

attractive proposition than it is in reality. However, this systematic bias can be partially corrected by adding
a damping factor that inflates sub-period s�s cost compared to sub-period ðsþ 1Þ�s cost when comparing the

two costs. Therefore, the heuristic is called the dampened myopic heuristic (DMDH).

In addition to the DMDH heuristic, we also compare the performance of the optimal static policy with

that of DRA. The optimal static policy is determined by first computing the expected lost sales when the

rebalancing is done in each of the sub-periods. The optimal static policy is defined to be the decision to

rebalance in that sub-period which gives the lowest expected lost sales.
Table 1

Demand distributions used in numerical experiments

Retailer demand in a sub-period ðDijÞ Cumulative probability

Unimodal (low variance) Uniform (medium variance) Bimodal (high variance)

0 0.1 0.2 0.5

1 0.3 0.4 0.5

2 0.7 0.6 0.5

3 0.9 0.8 0.5

4 1.0 1.0 1.0
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Starting inventory vector: Fig. 1 and Tables 2 and 3 all depict the results of the same set of experiments in
which the static, the dynamic and the DMDH performance are compared for the three demand distribu-

tions for different levels of imbalance in the starting inventory vector. In this set of experiments, the number

of retailers is six, and the average starting inventory of the six retailers is fixed at 12 units but the imbalance

of the starting vector is increased progressively. The imbalance can be seen in the starting inventory vector

shown in column 1 of Tables 2 and 3. This set of experiments will be denoted the ‘‘imbalance experiments.’’

In contrast, in the results summarized in Table 4 the average starting inventory is changed but the

starting inventory vector is kept balanced, see column 1. Thus, the experiments summarized in Tables 2 and

3 are intended to isolate the impact of the imbalance of starting inventory, and the experiments shown in
Table 4 are intended to isolate the effect of the total starting inventory. This experiment will be denoted the

‘‘total inventory experiments.’’

4.2. Performance of the optimal dynamic versus the optimal static policy

The computation of the best static policy becomes self-evident upon examining the expected cost if

rebalancing is carried out in the first, second, third, fourth or the fifth sub-period, see columns 3–7 in Table

3. Also, see Table 2, column 2, in which the best static rebalancing sub-period is reported. The optimal
static rebalancing sub-period should be compared with the frequency with which DRA rebalances in each

of the sub-periods, see columns 3–7 of Table 2. The percentage increase in cost due to adopting a static

policy vis-�a-vis the optimal dynamic policy, DRA, is shown in column 2 of Table 3 (for the ‘‘imbalance

experiments’’). From the percentage increase in cost, we see that best static policy performs rather poorly in

comparison to DRA. In some cases, for example in the second and third experiments for the unimodal

demand distribution shown in Table 3, the use of best static policy results in additional lost sales of 32.98%

and 29.50%. The main contributor to the poor performance is the discrepancy in the rebalancing frequency

when compared to DRA: In the first of the above experiments, the best static policy is to rebalance in the
Effect of inventory Imbalance (6 locations)
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Fig. 1. Loss due to use of static policy and heuristic.



Table 2

Comparison of static, heuristic and dynamic rebalancing decisions

Starting inventory Optimal static

perioda

Optimal dynamic rebalancing (DRA) period

frequencyb
Heuristic (DMDH) rebalancing period frequencyc % loss from

Heuristicd

Uniform demand

distribution

1 2 3 4 5 1 2 3 4 5

12,12,12,12,12,12 5 0.00 0.00 0.01 0.25 0.74 0.00 0.00 0.01 0.25 0.735 1.69

10,11,12,12,13,14 5 0.00 0.00 0.03 0.36 0.61 0.00 0.03 0.06 0.35 0.557 3.47

7,9,11,13,15,17 4 0.00 0.03 0.35 0.49 0.13 0.00 0.10 0.35 0.45 0.102 2.50

4,6,10,14,18,20 2 0.00 0.50 0.47 0.03 0.00 0.00 0.60 0.38 0.02 2E-04 1.32

2,6,10,14,18,22 2 0.00 0.90 0.10 0.00 0.00 0.00 0.87 0.13 0.00 0.00 1.05

Unimodal demand

distribution

12,12,12,12,12,12 5 0.00 0.00 0.01 0.19 0.79 0.00 0.00 0.05 0.18 0.767 3.09

10,11,12,12,13,14 5 0.00 0.00 0.02 0.30 0.68 0.00 0.10 0.04 0.26 0.6 8.33

7,9,11,13,15,17 4 0.00 0.07 0.29 0.53 0.12 0.00 0.07 0.24 0.58 0.112 1.50

4,6,10,14,18,20 2 0.00 0.70 0.29 0.01 0.00 0.00 0.70 0.29 0.01 7E-05 0.14

2,6,10,14,18,22 2 0.00 0.97 0.03 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.36

Bimodal demand

distribution

12,12,12,12,12,12 5 0.00 0.00 0.04 0.42 0.53 0.00 0.00 0.04 0.43 0.526 1.64

10,11,12,12,13,14 4 0.00 0.00 0.09 0.44 0.46 0.00 0.03 0.13 0.43 0.411 2.94

7,9,11,13,15,17 3 0.00 0.03 0.42 0.39 0.15 0.00 0.03 0.33 0.48 0.159 2.47

4,6,10,14,18,20 1 0.00 0.47 0.42 0.10 0.01 0.00 0.43 0.47 0.09 0.012 1.78

2,6,10,14,18,22 1 1.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00

aOptimal static period is the sub-period in which the static policy gives the lowest expected cost. See also Table 3.
b The DRA rebalances based on the inventory position. The frequency with which the DRA rebalances in each sub-period is recorded in these columns.
c The DMDH rebalances based on the inventory position. The frequency with which the DMDH rebalances in each sub-period is recorded in these columns.
d The percentage loss from use of the DMDH is computed by averaging (Cost due to DMDH/Cost of DRA-1) over the replications.
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Table 3

Performance of the optimal static policy

Starting inventory % loss from

statica
Static cost for given rebalancing periodb

1 2 3 4 5

Uniform demand distribution

12,12,12,12,12,12 13.23 3.78 2.54 1.95 1.35 1.11

10,11,12,12,13,14 20.54 3.78 2.59 2.03 1.45 1.40

7,9,11,13,15,17 19.29 3.78 2.38 1.79 1.73 2.87

4,6,10,14,18,20 7.20 3.78 2.95 3.11 4.70 7.76

2,6,10,14,18,22 2.74 3.78 2.89 3.73 5.58 8.90

Unimodal demand distribution

12,12,12,12,12,12 13.47 2.40 1.21 0.85 0.53 0.35

10,11,12,12,13,14 32.98 2.40 1.40 1.00 0.64 0.59

7,9,11,13,15,17 29.50 2.40 1.26 0.88 0.82 1.88

4,6,10,14,18,20 6.77 2.40 1.29 1.68 3.52 6.88

2,6,10,14,18,22 0.36 2.40 1.95 3.15 5.28 8.71

Bimodal demand distribution

12,12,12,12,12,12 16.57 5.28 5.83 4.36 3.52 3.28

10,11,12,12,13,14 18.84 5.28 5.49 4.22 3.57 3.58

7,9,11,13,15,17 13.97 5.28 5.31 4.53 4.54 5.37

4,6,10,14,18,20 6.31 5.28 5.79 5.39 6.71 8.69

2,6,10,14,18,22 0.00 5.28 6.70 6.80 8.40 10.72

a The percentage loss from use of the static policy is computed by averaging (Cost due to use of static policy/Cost of DRA-1) over

the replications.
b The static policy rebalances based on the lowest cost of rebalancing in a fixed sub-period. The expected cost of rebalancing in each

sub-period is recorded in these columns.
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fifth sub-period when it is optimal to do so only 68% of the time under DRA. In the second of the examples,
the best static policy is to ship 100% in the fourth sub-period compared to the optimal frequency of just

53%. Thus, factors that make DRA spread out the frequency of rebalancing in different sub-periods explain

most of the poor performance of the static policy.

(a) Imbalance of the starting vector of inventories: From Fig. 1, the gain due to dynamic rebalancing is

the largest when the starting inventory vector is (nearly) balanced. We know from the proof of Lemma 3.4

that rebalancing is more valuable when the inventory vector is more unbalanced. In contrast, the value of

dynamic rebalancing vis-�a-vis adopting a static policy should be intuitively greater when the initial in-

ventories are balanced––when the inventories are highly unbalanced it is better to balance them immedi-
ately.

Even in the balanced inventory situations there are some situations (see the initial few results for the

static policy shown in Fig. 1) in which the static policy does not do as poorly when compared to others. The

reason is as follows: When the starting inventory is balanced and not too large, the dynamic policy waits

until the last period a greater number of times before rebalancing. Therefore, if the lowest cost of rebal-

ancing under a static policy occurs in the last period then the loss in inefficiency is not as significant, see

Table 2.

(b) Total starting inventory: In Table 4, the results from the ‘‘total inventory experiments’’ are reported.
In these experiments the starting inventory is balanced but the total inventory changed, see column 1. The

sub-optimality of the best static policy is shown in column 2 and the expected cost for different rebalancing

sub-periods in columns 4–8. We see that when the initial inventory is high and balanced, the dynamic

optimal policy always does significantly better compared to the best static policy, see Table 4. The relative

value of dynamic rebalancing increases with increase in the total system inventory (i.e., in systems with high



Table 4

Effect of average starting inventory (balanced case)

Averagea

starting

inventory

% loss

staticb
% loss

DMDHc

Static costd Dynamic shipping period

frequencye
Heuristic (DMDH) shipping period

frequencyf

1 2 3 4 5 1 2 3 4 5 1 2 3 4 5

Bimodal

13.5 30.71 5.14 4.5 3.08 2.12 1.43 1.37 0 0 0.05 0.57 0.38 0 0.1 0.04 0.50 0.36

13 22.61 7.18 4.08 3.52 2.64 1.90 1.75 0 0 0.03 0.49 0.48 0 0.1 0.03 0.43 0.44

12.5 20.83 3.19 5.88 4.42 3.19 2.45 2.27 0 0 0.02 0.42 0.56 0 0.03 0.03 0.40 0.54

12 16.57 1.64 5.28 5.83 4.36 3.52 3.28 0 0 0.04 0.42 0.53 0 0.00 0.04 0.43 0.53

11.5 17.19 1.80 7.86 5.94 4.41 3.79 3.74 0 0 0.10 0.4 0.5 0 0.00 0.07 0.42 0.51

11 9.45 1.66 8.52 7.19 6.20 5.39 5.69 0 0 0.12 0.46 0.41 0 0.00 0.04 0.53 0.43

10.5 5.75 1.90 10.9 9.05 8.33 7.47 8.30 0 0.03 0.17 0.53 0.26 0 0.00 0.04 0.68 0.28

10 6.13 1.69 11.8 9.64 9.24 8.45 9.37 0 0.1 0.19 0.49 0.22 0 0.17 0.07 0.55 0.21

Uniform

13 20.14 10.63 2.28 1.34 0.92 0.52 0.35 0 0 0.01 0.33 0.66 0 0.07 0.02 0.31 0.61

12 13.23 1.69 3.78 2.54 1.95 1.35 1.11 0 0 0.01 0.25 0.74 0 0.00 0.01 0.25 0.74

11 12.06 4.03 5.88 4.54 3.91 3.18 3.21 0 0 0.05 0.41 0.54 0 0.10 0.08 0.35 0.47

10.5 7.60 5.15 8.76 6.21 5.72 5.00 5.33 0 0.07 0.09 0.47 0.37 0 0.30 0.10 0.36 0.24

10 5.89 1.64 8.76 7.27 6.50 5.83 6.28 0 0.03 0.13 0.52 0.32 0 0.00 0.04 0.63 0.33

9 5.39 3.28 12.5 10.1 9.34 8.99 9.62 0 0 0.25 0.56 0.19 0 0.30 0.22 0.38 0.10

aDenotes average inventory of a balanced starting inventory vector. For e.g., the starting inventory vector for average inventory of 12 is (12,12,12,12,12,12) and the

starting inventory vector for average inventory of 10.5 is (10,10,10,11,11,11).
b The percentage loss from use of the static policy is computed by averaging (Cost due to use of static policy/Cost of DRA-1) over the replications.
c The percentage loss from use of the DMDH is computed by averaging (Cost due to DMDH/Cost of DRA-1) over the replications.
d The expected cost of rebalancing using the static policy in each sub-period is recorded in these columns.
e The frequency with which the DRA rebalances in each sub-period is recorded in these columns.
f The frequency with which the DMDH rebalances in each sub-period is recorded in these columns.
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service levels), see Table 4. This is because when there are low levels of inventory both the optimal static
policy as well as the optimal dynamic policy will suggest rebalancing early.

(c) Number of locations: We also ran experiments in which the number of retailers ranged from 6 to 50

but the initial inventory is kept the same (12 units) at all retailers. The results from these experiments are

shown in Table 5. The benefit due to rebalancing increases with the number of retailers. Without rebal-

ancing the expected lost sales per store will remain constant. With rebalancing the expected lost sales per

store drops with increase in the number of retailer inventories rebalanced, see last column of Table 5.

However, the value of dynamic rebalancing vis-a-vis static rebalancing decreases with the number of

retailers. This is because the inventory vector gets distorted more quickly when there are more retailers. It is
also probably quite difficult to rebalance so many retailers together. Therefore, we conjecture that sub-sets

of retailer inventories should be rebalanced––not all retailers at once. Determining the optimal partitioning

of retailers could be an interesting exercise because it depends on trading-off the loss from increased cost of

transportation against the gain from rebalancing. In Table 5, we also report the run times for solving the

DP. As can be seen, the dynamic program takes a long time to solve and this time is some what affected by

the number of retailers. The main determinant of the run time are the number of replications R and the

number of sub-periods ðNÞ.

4.3. Performance of the DMDH heuristic

Numerical results show that when there are six retailers, the DMDH, with a damping factor equal to

1.11, achieves close to the optimal cost. Thus, in the DMDH, rebalancing is done in sub-period s if the

expected cost of re-balancing in sub-period s is lower than 1.11 times the expected cost of re-balancing in

sub-period sþ 1. We note that based on Lemma 3.8 the damping factor should progressively reduce as s
increases, eventually reducing to one in the final sub-period.

The DMDH performs very well when compared to DRA and the lost sales are usually within a few
percent of the optimal (see last column of Table 2 and column 4 of Table 4). To enable comparison with

DRA, the shipping frequency for DMDH is reported in columns 8–12 of Table 2 and the last five columns

of Table 4. The DMDH shipping frequency in different sub-periods differ very little from the optimal ones!

The damping factor of 1.11 is used prevent early shipment in these experiments. Only in some situations

when the heuristic suggests early shipments in sub-periods 2 or 3 there is a greater loss in efficiency (see for
Table 5

Effect of number of retailers

Demand Number of

retailers

% loss statica % loss

DMDHb

Run time

(cpu min.)

Damping fac-

tor

Optimal E

(Lost sales)c
Optimal E

(Lost sales)

per storec

Bimodal 6 16.57 1.64 248 1.11 2.81 0.4688

20 3.83 1.86 310 1.22 6.94 0.3468

35 0.89 0.68 367 1.39 9.85 0.2815

50 0.40 0.34 397 1.54 14.22 0.2845

Unimodal 6 13.23 3.09 298 1.11 0.31 0.0515

20 4.79 1.04 355 1.39 0.84 0.0420

35 2.78 1.77 373 1.67 1.39 0.0397

50 3.63 0.62 413 1.67 1.71 0.0342

a The percentage loss from use of the static policy is computed by averaging (Cost due to use of static policy/Cost of DRA-1) over

the replications.
b The percentage loss from use of the DMDH is computed by averaging (Cost due to DMDH/Cost of DRA-1) over the replications.
c The expected lost sales when DRA is used.
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example Table 4, the first run for uniform demand shown in boldface). Possibly a higher damping factor
should be used for earlier sub-periods to counter this. The performance of the heuristic improves when

there is lower starting inventory in the system (Table 4). The heuristic is computationally much more ef-

ficient when compared to DRA, especially when there are many sub-periods.

As the number of retailers increases the damping factor needs to be reduced. In Table 5, we report the

optimal damping factor of the heuristic for different number of retailers. We may infer from these results

that the DMDH performs quite well if the damping factor is chosen correctly. Contrariwise, when there are

more retailers, myopic rebalancing, that is using the wrong choice of the damping factor, can lead to sub-

optimal results and costs that exceed that of the static policy.
4.4. Shipping pattern of the optimal dynamic policies

It is useful to study Tables 2–4 and Fig. 2 to see if the frequency of re-balancing follows some trend. This

trend if it can be predicted will allow a decision maker to plan in advance for transportation and the

warehousing requirements for carrying out the rebalancing. From Table 2 (average inventory of 12 units

per retailer) it is seen that if the starting vector is perfectly balanced then the majority of rebalancing

shipments are made in period 5 followed by period 4. When the starting inventory vector is unbalanced the
shipments are made earlier.

As seen in Table 4 and Fig. 2, at high levels of starting inventory re-balancing is done before the last sub-

period because lost sales can be avoided much more easily due to the availability of ample cushion for

all locations. When the initial inventory is low then too rebalancing is done before the last sub-period

because this way left over inventory at any retailer can be avoided. Our results also suggest that a com-

bination of DRA and DMDH will yield excellent results in systems with initial balanced inventories. We

suggest the use the DMDH until the last 2–3 sub-periods, then to use DRA, if necessary, in the last few sub-

periods.
Interestingly, in Fig. 2 the lower curve is for the unimodal demand distribution and the upper curve is for

uniform demand, i.e., rebalancing is more frequently done in the last sub-period when the demand is less

variable. This phenomenon can be also seen in Tables 2–4 where higher demand variance leads to rebal-

ancing in earlier periods. This is because if the demand variance is high then significant imbalance in re-

tailers� inventory vector develops earlier, and therefore increases the benefit due to early rebalancing. In

fact, adopting the dynamic policy saves more if the demand is uniformly distributed.
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Fig. 2. Total starting inventory and frequency of rebalancing in the last sub-period.
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5. Discussion

We have provided a thorough analysis of the dynamic rebalancing problem and established several

structural properties of the optimal timing as well as rebalancing allocation. In particular, we have dem-

onstrated that systems rebalanced using different policies can be compared analytically using suitable

constructions to ascertain the impact of increasing the number of opportunities to rebalance as well as the

impact of less-versus-more balanced inventory positions on the optimal time to rebalance. A key finding

based on our analysis is that as the number of opportunities to rebalance increases, rebalancing tends to
take place later during the period. This clearly demonstrates the value of information in supply chains.

Using numerical experiments, we have shown that dynamic rebalancing of inventories using up-to-date

information on retailer inventories hold the potential to reduce lost sales quite significantly. Our results

suggest that dynamic policies can lead to substantial benefits over the static policy especially in systems in

which starting inventories at the retailers are balanced or when high service levels are required. The benefits

are more when the initial inventories are balanced, as usually is the case when an initial allocation at the

beginning of a period is followed up with a rebalancing allocation during the period. The main benefit of

dynamic balancing comes from the fact that if the imbalance has not set in, then the rebalancing can be
postponed. Thus, dynamic rebalancing is probably less beneficial when demand is very volatile because

inventories get out-of-balance quite quickly.

We also proposed a heuristic, DMDH, that performed close to optimal in most experiments. This

heuristic is myopic in nature because it compares rebalancing now versus rebalancing next period. How-

ever, we also know that rebalancing tends to occur (in systems with initially balanced inventories) in the last

few sub-periods. Therefore, the myopic nature of the heuristic can be corrected by dampening the tendency

to rebalance––rebalance now only if doing so yields an expected cost that is less than a factor f (greater

than one) times the expected cost of waiting to rebalance in the next sub-period. The factor f depends not
only on the number of retailers but also upon the volatility of demand. The analysis of rebalancing fre-

quency in different sub-periods shows that the use of a combination of the optimal policy and DMDH will

yield excellent results in systems with initial balanced inventories. We suggest that DMDH be used until the

last 2–3 sub-periods, then if inventories have not yet been rebalanced, to switch to the optimal policy for the

last few sub-periods.

The value of rebalancing increases with the number of retailers. However, the value of dynamic rebal-

ancing compared to static rebalancing reduces with the number of retailers. We conjecture that sub-sets of

retailer inventories should be rebalanced––not all retailers at once. The problem of determining the optimal
partitioning of retailers to rebalance at a time is an open problem. It entails balancing the cost of carrying

out the rebalance versus the savings from the reduction in lost sales.
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Appendix

Proof of Lemma 3.5. Let sa be the optimal random rebalance time if rebalancing is not done at time s and
when the current inventory vector is y. The assumption states that
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Due to our assumption, that x majorizes y (see (1)),
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Let sb > s be the optimal time to rebalance when the inventory vector is x. As sb is not optimal for y,
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Thus, all we need to show given (A.1)–(A.3) is that
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However, if we permute the demands over all retailers, we obtain
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where Dipj refers to the jth sub-period demand of retailer ip in the pth permutation. Thus, we see due to the

symmetry that the function f ðyÞ defined in (A.5) is a Schur convex function of y. The desired result (9)

follows because x majorizes y. h

Proof of Lemma 3.8. Let sa > s be the optimal random rebalance time when the current inventory vector is

y. The assumption of the lemma is that
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It is convenient to rewrite the left hand side of (A.6) as
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Consider the second expression on the right hand side of (A.7). By interchanging the summation and the

½:�þ, and because
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In words, (A.8) reveals that the lost sales are smaller after the rebalance sub-period until the end of the

period, (namely from the beginning of sub-period sa until the end of sub-period N ) when compared to the

lost sales in the immediately rebalanced system even if inventory and demand were pooled until time sa!
The inequality in (A.8) immediately reveals that:
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We now wish to show that the right hand side of (A.9) is smaller than a similar quantity for the immediately

rebalanced system.

From Theorems 2.A.12 and 2.A.6 in Shaked and Shanthikumar (1994),
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Thus, from Theorem 2.A.7 in Shaked and Shanthikumar and (A.10),
X
i

yi=M �
X
i

Xsa�1

j¼s

Dij

 !,
M �

XN
j¼sa

D1j 6 cx

X
i

yi=M �
Xsa�1

j¼s

D1j

 !
�
XN
j¼sa

D1j: ðA:11Þ



316 V. Agrawal et al. / European Journal of Operational Research 159 (2004) 296–317
Let
X ¼st

X
i

yi=M �
X
i

Xsa�1

j¼s

Dij

 !,
M �

XN
j¼sa

D1j; ðA:12Þ

Y ¼st

X
i

yi=M �
Xsa�1

j¼s

D1j

 !
�
XN
j¼sa

D1j; ðA:13Þ
where the notation ¼st stands for ‘‘stochastically equal to.’’ From Theorem 2.A.3 in Shaked and Shant-

hikumar, there exist random variables defined on the same probability space such that
bX ¼st X ;bY ¼st Y ;

E½bY jbX � ¼ bX a:s::

ðA:14Þ
(The qualification ‘‘a.s.’’ stands for almost surely and is used to indicate that the said relation holds on all

except possibly a set that has probability equal to zero.)

We need an important property of the constructed random variables for completing the proof. Notice

that in general it is not true that the signs of E½bY jbX � and bX are the same. In this special construction it turns

out that is true almost surely. To see this we give a proof along the lines of the positivity result for con-

ditional expectation given in Section 9.6 (page 87) of Williams (1992). Consider the set An on whichbY 6 � 1
n ;
bX P 0

n o
. Let PðAÞ denote the probabilityof the event A. Then
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This implies that P ðAnÞ ¼ 0. Similarly, it can be established that bY P 1
n ;
bX 6 0

n o
has probability zero.

Thus, we conclude that the events fbY P 0g and fbX P 0g differ at most by a set of measure zero. We also

obtain by using Jensen�s inequality (see property 1.1d, Chapter 4, Durrett (1991)), that (A.14) implies that

given a constant d
E½ðd � bY ÞþjbX �P ðd � E½bY jbX �Þþ ¼ ðd � bX Þþ a:s ðA:15Þ

where we have used the fact that ðd � xÞþ is a convex function of x.

Finally using this inequality and the property that the events fbY P 0g and fbX P 0g differ at most by a set

of measure zero, and noting that D1ðNþ1Þ is independent of both bX and bY we obtain
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Similarly,
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In other words we have produced a construction in which the system that is rebalanced at time sa loses less
expected sales in the ðN þ 1Þst sub-period compared to the system that is rebalanced immediately at time s.
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This shows that the inequality in (A.6) is preserved when extended to one more sub-period, i.e., to the

ðN þ 1Þst one. Formally, combining (A.6)–(A.17)) we obtain
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The last inequality implies that it is optimal to postpone rebalancing when there is one extra sub-period to

go (because sa need not be the optimal rebalancing time when there is one extra sub-period to go). Actually,

we have proved something stronger, the immediately rebalanced system�s expected lost sales in each period

after the rebalance is greater than that in the system that is rebalanced later. h
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