
Efficient Algorithms for Multi-file Caching

Ekow J. Otoo1, Doron Rotem1, and Sridhar Seshadri2

1 Lawrence Berkeley National Laboratory, 1 Cyclotron Road
University of California, Berkeley, California 94720

2 Leonard N. Stern School of Business, New York University
44 W. 4th St., 7-60 New York, 10012-1126

Abstract. Multi-File Caching issues arise in applications where a set
of jobs are processed and each job requests one or more input files. A
given job can only be started if all its input files are preloaded into a
disk cache. Examples of applications where Multi-File caching may be
required are scientific data mining, bit-sliced indexes, and analysis of
sets of vertically partitioned files. The difference between this type of
caching and traditional file caching systems is that in this environment,
caching and replacement decisions are made based on “combinations of
files (file bundles),” rather than single files. In this work we propose
new algorithms for Multi-File caching and analyze their performance.
Extensive simulations are presented to establish the effectiveness of the
Multi-File caching algorithm in terms of job response time and job queue
length.

1 Introduction

Caching techniques are widely used to improve the performance of comput-
ing systems whenever computations require frequent transfers of data between
storage hierarchies that have different access speeds and/or network bandwidth
characteristics. Given a sequence of requests for files from some slow or remote
storage media, one may use a cache of a small relative size on a faster storage
media that holds the most frequently used files. Retrieval to the slow or distant
memory is needed only in the case that the file requested is not found in the
cache. This results in improved efficiency and reduced costs even with relatively
small cache sizes. When a requested file is not found in the cache the system
incurs a ”fault”. The costs associated with a ”fault” consist of costs of resources
needed to read the file from slow memory and then transferring the file across
the network. Efficient caching algorithms choose which current files in the cache
must be replaced with new ones in order to maintain a set of files in the cache
that minimizes the expected cost of ”faults”.

There are many papers [1,2,3,4,5,6] describing and analyzing caching and
replacement policies. These works distinguish between online and off-line algo-
rithms. In both cases, a sequence of requests for files arrive at a queue and must
be served on a First Come First Served (FCFS) basis. A replacement decision
must be made whenever a ”fault” occurs. Online algorithms make a replace-
ment decision based only on the current request and previous requests but do

F. Galindo et al. (Eds.): DEXA 2004, LNCS 3180, pp. 707–719, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

708 Ekow J. Otoo et al.

not have any information about future requests. On the other hand, off-line al-
gorithms make replacement decisions based on the complete sequence of both
past and future requests. Off-line algorithms are not practical and are mainly
used for establishing bounds and gaining insights on the performance of online
algorithms.

In addition, caching algorithms can be classified based on their sensitivity to
file sizes and ”fault” costs. The following cases are considered in the literature:

Paging: Sizes of all files and their ”fault” costs are equal
Fault Model: File sizes are arbitrary while ”fault” costs are the same for all

files
Weighted caching: All files sizes are the same but ”fault” costs may be arbi-

trary
Bit Model: Files may have arbitrary sizes, ”fault” costs are proportional to file

size
General Model: Both ”fault” costs and file sizes may be arbitrary

This work is motivated by file caching problems arising in scientific and other
data management applications that involve multi-dimensional data [3,7,8]. The
caching environment for such applications is different than the works described
above in two main aspects:

Number of files associated with a request: As explained below due to the
nature of the applications a request may need multiple files simultaneously.
A request cannot be serviced until all the files it needs are in the cache.

Order of request service: In case several requests are waiting in the queue,
they may be served in any order and not necessarily in First Come First
Serve order (FCFS). Policies that determine the order in which requests
are served (admission policies), become important and sometimes must be
considered in combination with cache replacement policies [3].

1.1 Motivating Examples of Applications

Scientific applications typically deal with objects that have multiple attributes
and often use vertical partitioning to store attribute values in separate files.
For example, a simulation program in climate modeling may produce multiple
time steps where each time step may have many attributes such as temperature,
humidity, three components of wind velocity etc. For each attribute, its values
across all time steps are stored in a separate file. Subsequent analysis and vi-
sualization of this data requires matching, merging and correlating of attribute
values from multiple files. Another example of simultaneous retrieval of multiple
files comes from the area of bit-sliced indices for querying high dimensional data
[8]. In this case, a collection of N objects (such as physics events) each having
multiple attributes is represented using bit maps in the following way. The range
of values of each attribute is divided into sub-ranges. A bitmap is constructed for
each sub-range with a ′0′ or ′1′ bit indicating whether an attribute value is in the
required sub-range. The bitmaps (each consisting of N bits before compression)
are stored in multiple files, one file for each sub-range of an attribute. Range

Efficient Algorithms for Multi-file Caching 709

queries are then answered by performing Boolean operations among these files.
Again, in this case all files containing bit slices relevant to the query must be
read simultaneously to answer the query.

1.2 Problem Description

Our approach for caching multiple files consists of two steps that are applied
at each decision point of the algorithm. Given a cache of some fixed size and a
collection of requests currently waiting in the admission queue for service:

Step-1, File removal: We first remove from the cache a set of ”irrelevant”
files. Files become ”irrelevant” if they are not used by any current request
and fall below some threshold in terms of their ”desirability” according to
some known eviction policy such as ”least recently used” or ”greedy-dual”.

Step-2, Admission of requests: After the removal step, we load files into
the available space in the cache such that the number of requests in the
admission queue that can be serviced is maximized. In the weighted version
of the problem, each request may have some value reflecting its popularity or
priority and the goal in that case is to maximize the total value of serviced
requests.

From these two steps, the more interesting for us is Step-2 since Step-1 can
be performed based on any known efficient algorithm for file replacement in the
cache. The problem presented by Step-2 is called the Multi-File Caching (MFC)
problem and is described more precisely in Section 2. We will next illustrate the
problem with a small example.

1.3 Example

As a small example of the non-weighted version of this problem, consider the
bipartite graph shown in Fig. 1. The top set of nodes represents requests and
the bottom set of nodes represents files. Each request is connected by an edge
to each of the files it needs. Assuming all files are of the same size, each request
has value 1, and the cache has available space to hold at most 3 files, it can be
shown that the optimal solution of value 3 is achieved by loading the files a, c
and e into the cache and servicing the three requests 1,3, and 5. Loading a, b
and c has a value of 1 as only request 2 can be served whereas loading b, c and
e has a value of 2 as it allows us to serve requests 2 and 5.

1.4 Main Results

The main results of this paper are:

1. Identification of a new caching problem that arises frequently in applications
that deal with vertically partitioned files.

2. Derivation of heuristic algorithms that are simple to implement and take
into account the dependencies among the files.

710 Ekow J. Otoo et al.

Requests

Filesa b c d e f g

1 2 3 4 5 6

Cachea c e

Fig. 1. A bipartite graph depiction of a set of jobs and their file requests

3. Analysis of the heuristics and derivation of tight bounds from the optimal
solution

4. Extensive simulation results comparing the new algorithm with the tradi-
tional first come first serve.

The rest of the paper is organized as follows. In Section 2 we formally describe
the MFC problem and discuss its complexity. In Section 3 a heuristic greedy al-
gorithm, called Greedy Request Value (GRV) is proposed and its bounds from
the optimal solution are shown using Linear Programming (or LP) relaxation.
In Section 4, we present a simulation framework for evaluating the performance
of the proposed GRV algorithm. Results of the simulation studies, i.e., work-
load characterization and measurements of performance metrics are presented
in Section 5. Conclusions and future work are presented in Section 6.

2 Related Problems and Approximation Complexity

The Multi-File Caching (MFC) problem is defined as follows: Given a collection
of requests R = {r1, r2, . . . , rn}, each with associated value v(ri), defined over a
set of files F = {F1, F2, . . . , Fm}, each with size s(Fi) and a constant M , find
a subset R′ of the requests, R′ ⊆ R, of maximum total value such that the
total size of the files needed by R′ is at most M . It is easy to show that in the
special case that each file is needed by exactly one request the MFC problem is
equivalent to the knapsack problem. The MFC problem is NP-hard even if each
request has exactly 2 files. This is done by reduction from the Dense k−subgraph
(DKS) problem [9]. An instance of the DKS problem is defined as follows: Given
a graph G = (V, E) and a positive integer k, find a subset V ′ ⊆ V with |V ′| = k
that maximizes the total number of edges in the subgraph induced by V ′. Given
an instance of a DKS problem, the reduction to an instance of MFC is done by
making each vertex v ∈ V correspond to a file f(v) of size 1. Each edge (x, y)
in E corresponds to a request for two files f(x) and f(y). A solution to the
MFC instance with a cache of size k corresponds to a solution to the instance
of the DKS where the k files loaded into the cache correspond to vertices of
the subgraph V ′ in the solution of the DKS instance. We also note that any
approximation algorithm for the MFC problem can be used to approximate a
DKS problem with the same bound from optimality. Currently the best-known

Efficient Algorithms for Multi-file Caching 711

approximation for the DKS problem [9] is within a factor of O(|V |1/3−ε) from
optimum for some ε > 0. It is also conjectured in [9] that an approximation to
DKS with a factor of (1+ε) is NP-hard. It is also interesting to note that in case
each request can start its service when at least one of its files is in the cache (but
not necessarily all), the problem becomes equivalent to the Budgeted Maximum
Coverage Problem (BMC) [10,11]. Using the above terminology, in the BMC
problem we are given a budget L (cache size) and the goal is to select a subset
of the files F ′ ⊆ F whose total size is at most L such that the total value of the
requests using files from F ′ is maximized. It turns out that BMC is easier to
approximate. In [10], an approximation algorithm is given for the BMC with a
factor of (1 − 1/e) from optimal.

3 A Greedy Algorithm and Bounds from Optimality

Next, we will describe a simple greedy algorithm called Algorithm GRV (Greedy
Request Value) and later prove the relationship between the request value pro-
duced by this algorithm and the optimal one. First we need some definitions. For
a file fi, let s(fi) denote its size and let d(fi) represent the number of requests
served by it. The adjusted size of a file fi, denoted by s′(fi), is defined as its
size divided by the number of requests it serves, i.e., s′(fi) = s(fi)/d(fi). For a
request ri, let v(ri) denote its value and F (ri) represent the set of files requested
by it. The adjusted relative value of a request, or simply its relative value, v′(rj),
is its value divided by the sum of adjusted sizes of the files it requests, i.e.

v′(rj) =
v(rj)

∑

fi∈F (rj)
s′(fi)

Algorithm GRV below attempts to service requests in decreasing order of their
adjusted relative values. It skips requests that cannot be serviced due to in-
sufficient space in the cache for their associated files. The final solution is the
maximum between the value of requests loaded and the maximum value of any
single request.

3.1 Linear Programming Relaxation

We now proceed to analyze the quality of the solution produced by this algo-
rithm. The MFC problem can be modeled as a mixed-integer program as follows.
Let

zi =

{

1 if the filefi is in cache
0 otherwise

and let

yj =

{

1 if all files used by rj are in cache
0 otherwise

Then the mixed integer formulation,P , of MFC can be stated as:

P : max
n

∑

j=1

v(rj)yj

712 Ekow J. Otoo et al.

input : A set of n requests R = {r1, . . . rn}, their values v(rj , a set of n

files F , the sets F (ri), a cache C of size s(C) and the sizes s(fi) of
all files in F.

output: The solution - a subset of the requests in R whose files must be
loaded into the cache.

Step 0: /* Initialize */
Solution ← φ; //set of requests selected
s(C′)← φ ; // s(C′) keeps track of unused cache size
Step 1: Sort the requests in R in decreasing order of their relative values
and renumber from r1, . . . , rn based on the this order
Step 2:

for i← 1 to n do

if s(C′) ≥ s(F (ri)) then

Load the files in F (ri) to the cache
s(C′)← s(C′)− s(F (ri)) ; // update unused cache size
Solution ← Solution ∪ ri ; // add request ri to the solution

end
end

Step 2: Compare the total value of requests in Solution and the highest
value of any single request and choose the maximum

Algorithm 1: GRV

subject to
yj − zi ≤ 0, ∀i ∈ F (rj), and ∀j

m
∑

i=1

s(fi)zi ≤ s(C), zi ∈ {0, 1}

The linear relaxation of this problem,P∞, and its associated dual problem,
D, are not only easier to analyze but also provide a useful bound for a heuristic
solution procedure.

P∞ : max

n
∑

j=1

v(rj)yj

subject to
yj − zi ≤ 0, ∀i ∈ F (rj), and ∀j

m
∑

i=1

s(fi)zi ≤ s(C), 0 ≤ zi ≤ 1.

D : min s(C)λ +

m
∑

i=1

λi

subject to
∑

i∈F (rj)

λji = v(rj) for j = 1, 2, . . . , n (1)

Efficient Algorithms for Multi-file Caching 713

λs(fi) + λi −
∑

j:fi∈F (rj)

λji ≥ 0, for i = 1, 2, . . . , m, λ, λi, λji ≥ 0, (2)

where λji are the dual variables corresponding to the first set of primal
constraints, λ is the dual variable corresponding to the cache size constraint,
and the λi’s correspond to the last set of constraints bounding the z’s to be less
than one.

To avoid trivialities, we assume that for each request j,
∑

i∈F (rj)

s(fi) ≤ s(C).

That is, each request can be addressed from the cache, otherwise we can eliminate
such requests in the problem formulation.

Theorem 1. Let VGRV represent the value produced by Algorithm GRV and let
VOPT be the optimal value. Let d∗ denote the maximum degree of a file, i.e.,
d∗ = maxi d(fi) then

VOPT

VGRV
≤ 2d∗

Proof Outline: For lack of space, we provide only an outline of the proof. The
full version is in [12]. Consider the algorithm GRV (LP) such that it stops
with the last request that can only be accommodated partially (or not at all).
It then compares the solution produced to the value of the last request that
could not be accommodated and outputs the larger of the two solutions. We
can also show, from a detailed analysis, that the integral solution produced
by the modified GRV (LP) is at least 1/2d∗ times the optimal solution.
Algorithm GRV can be adapted to produce equivalent or a better solution
then GRV (LP)�

4 The Simulation Framework for Multi-file Caching

To evaluate various alternative algorithms for scheduling jobs in a Multi-File
caching environment, we developed an appropriate machinery for file caching and
cache replacement policies that compares GRV and FCFS job admissions each
in combination with the least recently used (LRU) replacement policy. Although
cache replacement policies have been studied extensively in the literature, these
only address transfers between computing system’s memory hierarchy, database
buffer management and in web-caching with no delays. The model for cache
replacement assumes instantaneous replacements. That is that the request to
cache an object is always serviced immediately and once the object is cached,
the service on the object is carried out instantaneous. As a result the literature
gives us very simplistic simulation models for the comparative studies of cache
replacement policies. Such models are inappropriate in the practical scenarios
for MFC. For instance, once a job is selected for service, all its files must be read
into the cache and this involves very long delays.

We present an appropriate simulation model that takes into account the in-
herent delays in locating a file, transferring the file into the cache and holding the
file in the cache while it is processed. The sizes of the files we deal with impose

714 Ekow J. Otoo et al.

these long delays. We capture these in the general setup of our simulation ma-
chinery. The machinery considers the files to exist in various states and undergo
state transitions conditionally from state to state, when they are subjected to
certain events.

4.1 The States of a File in a Disk Cache

Each file object associated with the cache is assumed to be in some state. If
the file has not been referenced at all it is assumed to be in state S0. When a
reference is made to the file (an event which we characterize subsequently), the
file makes a transition to state S1. A file in state S1 implies that it has been
referenced with at least one pending task waiting to use it but has neither been
cached nor in the process of being cached. A file is in state S2 if it has been
previously referenced but not cached and there are no pending tasks for the
file. A file is in state S3 if it has been cached but not pinned and it is in state
S4 if space reservation has been made for the file, but it is still in the process
of being cached. A file is in state S5 if it is cached and pinned. Each of these
states is characterized by a set of conditions given by the file status, number of
waiting tasks, the last time the file was cached, the job identifier that initiated
the caching of the file, and the setting of a cache index.

At some intermittent stages, all files in state S2 that have not be used for
a specified time period are flushed from memory. At this stage all accumulated
information, such as the number of reference counts accumulated since its first
reference, is lost. The file is said to be set back into state S0. For our simulation
runs all files in state S2 that have not been referenced in the last five days are
cleared. Any subsequent reference to the file would initiate a new accumulation
of historical information on the references made to the file. The various states
of a file is summarized as follows:

S0: Not in memory and not-referenced.
S1: Referenced, not cached but has pending tasks.
S2: Referenced, not cached and has no pending tasks.
S3: Cached but not pinned.
S4: Space reserved but not Cached. Caching in progress.
S5: Cached and pinned.

4.2 The Event Activities of the Disk Cache

A file that is referenced, cached, processed and eventually evicted from the
cache is considered to undergo some state changes. The events affecting the
state changes of the files are caused by the actions of the tasks that are invoked
by the jobs and other related system actions. Jobs that arrive at a host are
maintained in either a simple queue or a balanced search tree depending on the
algorithm for processing the jobs.

A job scheduling policy is used to select the job whose files are to be cached
next. For FCFS, the job in front of the queue is selected next. In the GRV
algorithm, we evaluate the selection criterion for all waiting jobs and select the

Efficient Algorithms for Multi-file Caching 715

recommended one based on the potential available cache space. When a job is
selected, all its files are then scheduled to be brought into the disk cache. For
each such file of a job a task event is initiated by creating a task token that is
inserted into an event queue. Each task token is uniquely identified by the pair
of values of the job and file identifiers. A task token is subjected to five distinct
events at different times. These events are: Admit-File (E0) Start-Caching (E1),
End-Caching (E2), Start-Processing (E3) and End-Processing (E4). Two other
events are the Cache-Eviction (E5) and the Clear-Aged-file (E6). The special
event, Clear-Aged-file (E5), when it occurs, causes the all the information (e.g.,
history of references to a file) for files that have been dormant for a stipulated
period to be deleted. The entire activities within this framework are executed as
a discrete event simulation. The activities of the simulation may be summarized
by the finite state machine, with conditional transitions. This is depicted as a
state transition diagram of Figure 2. The simulation is event driven and the

E

2E

1E

4S

5E

5E

1E

1S S

3S

4(No PendingTasks)

(With PendingTasks)4E

1E
3E2E ,1E ,

5

0E

2S
E6

0E

0E

0S

(No PendingTasks)

Tasks)
(With Pending

Fig. 2. A Finite State Machine Diagram with Conditional Transitions

three different file processing orders are modeled accordingly with the order of
insertions and deletions of files in the data structure T4.

4.3 File Processing in MFC with Delays

The event selected next is an admission if the arrival time of the next job is
earlier than the time of the earliest event. If a job arrival is earliest, it is inserted
into the admission structure. On the other hand if the top event of the event
queue is earlier, it is removed and processed accordingly. The processing of the
event may reinsert an event token into the event queue unless the event is the
completion of a task. Each time a job completes, we determine the potential
available free cache space and schedule the next job to be processed. In GRV,
the potential available cache space is used in the algorithm and not the actual
free space. The potential available free cache space is the sum of unoccupied
space and total size of all unpinned files.

716 Ekow J. Otoo et al.

40000

60000

80000

100000

120000

140000

160000

180000

200000

220000

70000 80000 90000 100000 110000 120000 130000

A
vg

. R
es

po
ns

e
T

im
e

(s
ec

)

Cache Size in Megabytes

(a) Avg. Response Time with l = 40

GRV Admission
FCFS Admission

400

500

600

700

800

900

1000

1100

1200

70000 80000 90000 100000 110000 120000 130000

A
vg

. Q
ue

ue
 L

en
gt

h

Cache Size in Megabytes

(b) Avg. Queue length with l = 40

GRV Admission
FCFS Admission

20000

40000

60000

80000

100000

120000

140000

160000

180000

200000

70000 80000 90000 100000 110000 120000 130000

A
vg

. R
es

po
ns

e
T

im
e

(s
ec

)

Cache Size in Megabytes

(c) Avg. Response Time with l = 60

GRV Admission
FCFS Admission

200

300

400

500

600

700

800

900

1000

1100

70000 80000 90000 100000 110000 120000 130000

A
vg

. Q
u

eu
e

L
en

gt
h

Cache Size in Megabytes

(d) Avg. Queue length with l = 60

GRV Admission
FCFS Admission

0

20000

40000

60000

80000

100000

120000

140000

160000

70000 80000 90000 100000 110000 120000 130000

A
vg

. R
es

p
on

se
 T

im
e

(s
ec

)

Cache Size in Megabytes

(e) Avg. Response Time with l = 120

GRV Admission
FCFS Admission

0

100

200

300

400

500

600

700

70000 80000 90000 100000 110000 120000 130000

A
vg

. Q
u

eu
e

L
en

gt
h

Cache Size in Megabytes

(f) Avg. Queue length with l = 120

GRV Admission
FCFS Admission

Fig. 3. Graphs of GRV vs FCFS in Multi-file Caching for Average Response
Times and Average Queue Lengths

We evaluate the jobs admission policy and the cache replacement policy sep-
arately but not independently. In evaluating GRV, a file in the cache is assigned
a zero file size and in evaluating a replacement policy, all files that appear in
the batch of files to be cached are first pinned by restricting them from being
candidates for eviction.

Efficient Algorithms for Multi-file Caching 717

5 Experimental Setup

We conducted experiments using the simulation framework described above to
compare the GRV algorithm with a naive FCFS job scheduling of the Multi-file
Caching problem when the cache replacement algorithm is LRU. Two perfor-
mance metrics were used: the average response time of a job and the average
queue length jobs with workloads of varying jobs arrival rates. Our implementa-
tion is a straight forward translation of the Finite State Machine (FSM), with
conditional transitions, to a C++ code. When all the files of a job are cached the
tasks associated with the jobs, process the files at a steady rate of 10 MBytes
per second. This implies that the processing time of a job is the time to process
the file with the largest size.

5.1 Workload Characteristics and Simulation Runs

We subjected the simulation model to workloads in our experiments where the
job inter-arrival times are exponentially distributed with mean inter-arrival times
of 40, 60 and 120 seconds. Each job makes a request for n files where n is a
uniform number between 1 and 25. The file sizes are also uniformly distributed
between 500KB and 4GB.

The simulation runs were carried out on a Redhat Linux machine with 512
MBytes of memory. We evaluated the performance metrics of the average re-
sponse time per job and the average queue length when the cache replacement
policy is LRU. For each configuration and for each workload, a number of runs
were done with cache sizes varying from 70 to 130 Gigabytes. For each run and
for each cache size, we applied a variance reduction method by averaging the
statistics that we compute independently for 5 segments of the workload.

5.2 Discussion of Results

Figures 3a, 3c and 3e show the graphs of the response times of synthetic work-
loads with respective mean inter-arrival times of 40, 60 and 120 seconds. These
graphs indicate that the GRV clearly gives a better response time than a simply
FCFS job scheduling. GRV performs even better for higher arrival rates. How-
ever, as the disk cache sizes increase the graphs of the two algorithms converge.

The graphs of the average queue length shown in Figures 3b, 3d and 3f show
similar trends as the graphs of the average response times. This was expected
since the average queue length is strongly correlated with the response time for
a fixed arrival rate. FCFS admission policy cannot be discarded entirely. As Fig-
ures 3e and 3f illustrate, for sufficiently low rate of arrivals and significantly large
disk cache size, FCFS job scheduling can perform competitively with GRV. Us-
ing different cache replacement policies, e.g., greedy dual size, the same relative
results are likely to be achieved. This is left for future work.

718 Ekow J. Otoo et al.

6 Conclusions and Future Work

We have identified a new type of caching problem that appears whenever depen-
dencies exist among files that must be cached. This problem arises in various
scientific and commercial applications that use vertically partitioned attributes
in different files. Traditional caching techniques that make caching decisions one
file at a time do not apply here since a request can only be processed if all files
requested are cached. Since the problem of optimally loading the cache to max-
imize the value of satisfied requests is NP hard, we settled on approximation
algorithms that were shown analytically to produce solutions bounded from the
optimal one. The MFC problem is also of theoretical interest in its own right
because of its connection to the well known dense k-subgraph and the fact that
any approximation to MFC can be used to approximate the latter problem with
the same bounds from optimality.

The simulation studies show that the new algorithms outperform (FCFS)
scheduling of requests with multiple file caching. The system throughput us-
ing schedules based on Algorithm GRV is consistently higher than the FCFS
schedules and the queue length is correspondingly shorter. Future work to be
conducted involves detailed simulations using real workloads derived from file
caching activities of data intensive applications. We also intend to pursue these
studies for both synthetic and real workloads for multiple file replacements at a
time rather than one file at a time.

Acknowledgment

This work is supported by the Director, Office of Laboratory Policy and In-
frastructure Management of the U. S. Department of Energy under Contract
No. DE-AC03-76SF00098. This research used resources of the National Energy
Research Scientific Computing (NERSC), which is supported by the Office of
Science of the U.S. Department of Energy.

References

1. Cao, P., Irani, S.: Cost-aware WWW proxy caching algorithms. In: USENIX
Symposium on Internet Technologies and Systems. (1997)

2. Hahn, U., Dilling, W., Kaletta, D.: Adaptive replacement algorithm for disk caches
in hsm systems. In: 16 Int’l. Symp on Mass Storage Syst., San Diego, California
(1999) 128 – 140

3. Otoo, E.J., Rotem, D., Shoshani, A.: Impact of admission and cache replacement
policies on response times of jobs on data grids. In: Int’l. Workshop on Challenges of
Large Applications in Distrib. Environments, Seatle, Washington, IEEE Computer
Society, Los Alamitos, California (2003)

4. Tan, M., Theys, M., Siegel, H., Beck, N., Jurczyk, M.: A mathematical model,
heuristic, and simulation study for a basic data staging problem in a heterogeneous
networking environment. In: Proc. of the 7th Hetero. Comput. Workshop, Orlando,
Florida (1998) 115–129

5. Wang, J.: A survey of web caching schemes for the Internet. In: ACM SIG-
COMM’99, Cambridge, Massachusetts (1999)

Efficient Algorithms for Multi-file Caching 719

6. Young, N.: On-line file caching. In: SODA: ACM-SIAM Symposium on Discrete
Algorithms (A Conference on Theoretical and Experimental Analysis of Discrete
Algorithms). (1998)

7. Shoshani, A.L.B., Nordberg, H., Rotem, D., Sim, A.: Multidimensional indexing
and query coordination for tertiary storage management. In: Proc. of SSDBM’99.
(1999) 214 – 225

8. Wu, K., Koegler, W.S., Chen, J., Shoshani, A.: Using bitmap index for interactive
exploration of large datasets. In: SSDBM’2003, Cambridge, Mass. (2003) 65–74

9. Feige, U., Peleg, D., Kortsarz, G.: The dense k-subgraph problem. Algorithmica
29 (2001) 410–421

10. Khuller, S., Moss, A., Naor, J.S.: The budgeted maximum coverage problem.
Information Processing Letters 70 (1999) 39–45

11. Krumke, S.O., Marathe, M.V., Poensgen, D., Ravi, S.S., Wirth, H.C.: Budgeted
maximum graph coverage. In: int’l. Workshop on Graph Theoretical Concepts in
Comp. Sc., WG 2002, Cesky Krumlov, Czech Republic (2002) 321 – 332

12. Rotem, D., Seshadri, S., Otoo, E.J.: Analysis of multi-file caching problem. Tech-
nical report, Lawrence Berkeley National Laboratory (2003)

	Introduction
	Motivating Examples of Applications
	Problem Description
	Example
	Main Results

	Related Problems and Approximation Complexity
	A Greedy Algorithm and Bounds from Optimality
	 Linear Programming Relaxation

	The Simulation Framework for Multi-file Caching
	The States of a File in a Disk Cache
	The Event Activities of the Disk Cache
	File Processing in MFC with Delays

	Experimental Setup
	Workload Characteristics and Simulation Runs
	Discussion of Results

	Conclusions and Future Work

