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Abstract. In this paper we study the problem of minimizing the expected number of jobs in a single class
general open queueing network model of a job shop. This problem was originally posed by Buzacott and
Shanthikumar [2] and solved by them for a special case. We extend their work in this paper. We derive
feasibility conditions that simplify the analysis of the problem. We show that the optimal configuration can
be completely characterized when both the utilizations of the machine centers are high and there are a large
number of servers at each machine center. We also derive conditions under which the optimization problem
reduces to solving a concave or a convex program and provide conditions under which the uniform flow
line and the symmetric job shop (or variants of these) are optimal configurations for the job shop.
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1. Introduction

In this paper we study the problem of minimizing the expected number of jobs in a
single class general open queueing network model of a job shop. We are given that the
arrival process of jobs to the job shop is of the renewal type with mean inter-arrival time
equal to 1/A and squared coefficient of variation (scv) of the inter-arrival time equal
to C2. The service times at each machine center as well as the inter-arrival times to each
machine center can not be approximated by exponential distributions. The jobs arriving
to a machine center are processed according to the first come first served (FCFS) service
protocol. There are m machine centers where machine center i has ¢; identical machines
or parallel servers. The service times at machine center i, S;, are i.i.d., with mean service
time equal to 1/x; and scv equal to Céi. The utilization of each machine center is less
than one. The only other parameter that is specified in this problem is that the expected
number of visits that a typical job makes to machine center i is equal to v;. The problem
is to determine

(i) the fraction of jobs arriving to the network that first visit machine center i (denoted
as y;, where Y -, y; = 1), and
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138 GILONI AND SESHADRI

(ii) the probabilities that a job upon completion of service at machine center i visits
machine center j # i (denoted as p;;) such that the expected number of jobs in the
job shop is minimized.

By Little’s law, minimizing the expected number of jobs in the job shop is equivalent
to minimizing the expected flow time of an arbitrary job in the job shop (see, e.g.,
[1, p. 50]). The job shop is open, and therefore every arriving job eventually leaves
the shop. The p;;’s are called the switching probabilities.

This problem was originally posed by Buzacott and Shanthikumar [2] and solved
by them for a special case. We extend their work in this paper. As is the case for an-
alyzing general open queueing networks, approximations are used to obtain tractable
analytical formulae for the expected number of jobs in the job shop. For this problem,
even after the approximations are made, the structure of the optimal solution as a func-
tion of the problem parameters is hard to discern.

This problem is important for several reasons. First, there is considerable flex-
ibility in selecting the initial routing as well as the switching probabilities in service
operations. Thus the techniques presented in this paper can be immediately applied in
this rapidly growing sector of the economy. Second, given any job shop, a solution
to this problem provides a benchmark performance measure for the expected number
of jobs in the shop. Such a benchmark measure can be used, for example, to identify
areas that have the greatest potential of improvement. Third, it is of interest to know
the conditions under which (some variant of) the uniform flow job shop (i.e., y; = 1,

piiv1 = Lfori = 1,...,m — 1, and all other p;; = 0) or (some variant of) the
symmetric job shop (.e., p;; = 1/m,i # j,i,j = 1,...,mand y; = 1/m, for
i = 1,...,m) is optimal. We derive these conditions in section 4. Fourth, as em-

phasized by Buzacott and Shanthikumar [2, p. 136] once structural properties of this
problem are known, it becomes relatively simple to develop solution procedures for spe-
cific instances. For example, if it is known that the uniform flow shop configuration is
optimal, then the search for an optimal solution can be restricted to permutations of the
indices {1, 2, ..., m}.

In section 2, the problem is formulated as a constrained nonlinear optimization
problem. In section 3, the feasibility of the problem is discussed. In section 4, we
give the main results that establish the conditions under which the problem reduces to a
convex or a concave optimization problem.

2.  Problem formulation
We briefly describe the problem formulation in this section. We first define the traffic
equations, then outline the approximation steps for determining the expected number of

jobs at each machine center, and finally formulate the problem as a nonlinear program.
The reader is referred to [1,2] for further details.
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OPTIMAL CONFIGURATIONS 139
2.1. Traffic equations

Let the arrival rate of jobs to machine center i be denoted as A;. We are given that the
expected number of visits to machine center i is v;. Therefore,

_ N @1
vi = .

Equating the expected number of visits into and out of machine center i, we get the
traffic equations

m
Ui=)/i+ Z ViPjis fori:l,...,m, (22)
j=1.j#i
where we assume p; = O fori = 1,...,m, ie., self loops are not permitted. Let the

utilization of machine center i be denoted as p;. Then

A
pi=—— fori=1,...,m. 2.3)
Cildi

2.2. Approximation for the expected number of jobs

Following Buzacott and Shanthikumar, the arrival process to machine center i is assumed
to be of the renewal type. Let the interarrival times (IAT) to machine center i be denoted
by 7 where t;; is the interarrival time between the (k— 1)th and the kth job arrival times
to machine center i. We denote the squared coefficient of variation of the IATSs as Ci,
i.e., the ratio of the variance of the IAT, Var(t;;), to its mean square, E (t;z)%. Let Ci be
the scv of the departure process from machine center i. Then Cfi is approximated by

m

Ay
Z MpilpiCh + A =ppl+ EnCl+a-p] @4
j=1,j !

>—’|._.

The following approximation for Ci is based on the second approximation for the mean
flow time for a GI/G/1 model given by Buzacott and Shanthikumar (see [1, table 3.1,

p- 75D

ci=1+2 (02 1) + (c;—1)<(1_

l

PHQ2 —p) + piC3.(1 —pi)z) 25)
2 —pi+ piCs, . .
The squared coefficients of variation of the arrival processes are computed by solving

the system of linear equations (2.4) and (2.5). Let E[W (A, w)]p/m/c be the expected
waiting time of a job in an M /M /c queue with arrival rate A and service rate p. Let the
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140 GILONI AND SESHADRI

expected number of jobs at machine center i be E[N;] and the expected number of jobs
in the entire shop be E[N]. Then we may approximate

J— ( EIWOui, pd)lupme AL+ CR) o2 = p)C + pIC .p,)
l E[WQ, cip)lmmn 2 — pi + picé 2v;(1 — p;) A
(2.6)
where
E[N]=)_E[Ni]. (2.7
i=l1

As noted in the introduction, we are working only with an approximation of the
system performance, viz. (2.6). To that extent our results should be interpreted to hold
subject to the quality of the approximation. For a discussion on the quality of the ap-
proximation, see [1, tables 7.1-7.5, pp. 334-336]. In contrast, the feasibility condition
we derive for the existence of a solution to the general job shop design problem, see
section 3, does not depend upon an approximation of the system performance.

2.3. Nonlinear optimization problem
In this subsection we formulate the general job shop design problem as a nonlinear
optimization problem. Based on (2.4), (2.6), and (2.7) the problem is

P: min E[N]
Py

subject to

i=1 2.8)
m
Vi + Z vipi=v, i=1, , m,
=1, j#i
vi =0, i=1,...,m,
pij = 0, i,j=1,...,m, andi # j.

3. Feasibility of the general problem

In this section, we first give conditions under which problem P has a feasible solution
given a set of probabilities, {y;,i = 1, ..., m}, that satisfy (3.1) below. We then provide
conditions under which the general job shop problem is feasible. This analysis is used to
establish optimality for the different cases studied in section 4. Problem P is infeasible
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if the sum of the expected number of visits to each machine center is less than one.
Therefore, we always assume that >\, v; > 1.

Theorem 1. Given y; such that
Z)’i=1 and 0<y; <v; fori=1,...,m, 3.1
i=1

then there exists a feasible solution to (2.8) if and only if for all i

Vi — Vi < Z v; (32)

=L j#i

and ) L v > L.

Proof. Consider the following set of constraints which are similar to the constraint set
of (2.8) except that the y; variables are given such that (3.1) and (3.2) hold

Z pjii <1 forj=1,...,m,
i=1,i#j
" 3.3)
Z UjpjiIU,'—)/i fori:l,...,m,
j=lj#i
p,'j>0 fori,j=1,...,m,i7éj.
By Farkas’ lemma (see, e.g., [7, lemma 2, p. 92]) (3.3) is solvable if and only if
every solution u = (uy,...,u4,) € R"and w = (wy, ..., wy) € R" to
uj+vjw; =20 foralll < j#i<m, (3.4)
u; >0 for all j '
satisfies
D ouj+ ) i = ywi 20, (3.5)
j=1 i=1
i.e., (3.3) is solvable if and only if u € R™ and w € R™ satisfying (3.4) and
Dui+ Y (i —ydwi <0 (3.6)
j=1 i=1

do not exist.
Suppose that (3.3) is solvable, but > - v; < 1. Thenu; =0for j = 1,...,m
and w; = 1 for j = 1,...,m satisfy (3.4) and (3.6), because Z:”zl y; = 1, which is a
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142 GILONI AND SESHADRI

contradiction. Suppose that (3.2) is violated. Then we assume without loss of generality

that
v >V +Zvj. (37)
j=2
Then wy = —1, w; =0for j =2,...,m,u; =0and u; = v; for j =2, ..., m satisfy

(3.4) and (3.6), which is again a contradiction. Therefore, the conditions of theorem 1
are necessary.

To prove their sufficiency, suppose that the conditions of the theorem are satisfied.
Let u € R™ and w € R™ be any solution to (3.4). Without loss of generality we can
assume that

wy = min w; and w;= min w;.
1<j<m 2<j<m

Let w} = min{0, w,} and w; = min{0, w,}. From (3.4) it follows that

uj > —vjwy forj=2,....m and u; > —viwj. (3.8)
Consequently, from v; — y; = Ofor j = 1,...,m, wy = w{, w; = wy > wj for
j=2,...,mand Y _ y; = 1, and by using (3.8) we calculate

m m

Z”j + Z(Ui —YOw; = —vjwy — Zvij + (v — yDwy + Z(Uj —y)w;

j=1 i=1 j=2 j=2

= (Ul -1 - ZW)wT - (Ul - Z(Uj - )’j)) wE‘
j=2 j=2

=-wj + (Ul =) (- Vj)> (w} —w3)
i=
2 _w; > Oa

because wi < wi < Oand by (32) and Y i,y = 1, vy — Z'};z(vj —y;) < L
Since u € R” and w € R™ are arbitrary solutions to (3.4), by Farkas’ lemma, the linear
system (3.3) is solvable and theorem 1 follows. O

In section 4, we use theorem 1 to simplify the analysis of the job shop problem
under some further conditions. However, in order to fully discuss the feasibility of the

general job shop problem (2.8), we provide the following two lemmas.

Lemma 1. The general job shop problem (2.8) is feasible if and only if Y ;. v; > 1

and there exist &; > Owithg; < v; fori =1,...,m and Z:”zl g; = 1 such that
m
v, — & < Z v; foralli=1,...,m. 3.9
j=1,j#
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Proof. If (2.8) is feasible, let (¥, p) be any solution to (2.8), where y is the m vector
of the y;’s and p is the m (m — 1) vector corresponding to the p;;’s. Then p is a solution
to the linear system (3.3) and thus by theorem 1 the conditions of lemma 1 are met with

g =y fori = 1,...,m. Suppose that the conditions of lemma 1 are satisfied. By
theorem 1 the system (3.3) with y; = ¢; fori = 1, ..., m is solvable and hence so is the
constraint set of (2.8). Il

For the next lemma, without loss of generality we assume that

U1 >>vm

Lemma 2. The general job shop problem (2.8) is feasible if and only if

m

n—1<) v (3.10)

j=2

and ) i v > L

Proof. Let (2.8) be feasible. Then by lemma 1, 27;1 v; > 1 and there exist &; > 0
with g; < v; fori = 1,...,m and Z:”zl g; = 1 such that (3.9) holds. From (3.9),
n—1<vy—g < Z’;lzz v; and hence the conditions of lemma 2 are necessary. To
prove their sufficiency, we assume that they are satisfied and show that a solution to (2.8)
always exists. Let

g = min{v;, 1} and 8g=min{vi,1—28j}, (3.11)
Jj<i

m

where we assign values to ; in ascending order of their indices. Since vi—1 < > i=2 Vjs
ifv1 < 1, v — & = 0 < Zr;lzzvj, and ifUl > 1, VT — & = VU -1 < Zr;lzzvj.
Furthermore, fork =2,...,m,

m
Vg — & S V% S U < E vj.
j=1,jk

From (3.11), Y I~ , &; = 1. It follows that the conditions of lemma 1 are satisfied, and
hence there exists a solution to (2.8). O

Remark. Theorem 1, and lemmas 1 and 2 are of independent interest in themselves.
Consider the problem, “Given a non-negative vector, can we recognize whether it is the
vector of expected numbers of visits to various states by a transient Markov chain with
some initial distribution.” Theorem 1, and lemmas 1 and 2 provide a necessary and
sufficient condition for answering this question, namely, the answer is yes only if the
expected number of visits satisfy (3.10).
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4. Results

In this section, we begin with a discussion of a special case of problem P that was
considered by Buzacott and Shanthikumar. We first solve this case in theorem 2 and
make a correction to their original result (see [1, pp. 337-338], where the result is almost
the opposite from theorem 2 below). We then extend the results to more general cases in
subsections 4.2 and 4.3.

4.1. Single server, identical stations, and high utilization

Buzacott and Shanthikumar solved for the case when p; = p =~ 1 fori = 1,...,m;
v; = 1 fori = 1,...,m; each machine center has a single server, and each server has
the same service time distribution. Thus, denote Céi = C3. Under these assumptions
and using (2.6) we get

p(1+C2 mp?Ci+ 3, p(2— p)C?
2= o+ 0C2 20— p)

Therefore, minimizing (4.1) is equivalent to minimizing » ;- C i . However, from (2.4)
and the assumptions in this section

ZC Z(Z pji[pjiC§j+(1—pji>]+yi[yic§+<1—m]). (4.2)

i=1 \j=1,j#i

Furthermore, since v; = 1, from (2.2) we get

Z(m+ > pji>=m. (4.3)

i=1 j=1,j#i

aj

E[N]~ + mp. 4.1

As p; = 1 and ¢; = 1, from (2.5) we approximate Cdj ~ Cé. Thus

m

Y cl= ch—l > P+ (CI =)y (4.4)
i=1 i=1

j=l,j¢i

Theorem 2. In problem P, if for all i, ¢; = 1, Céi = Cé, v; = 1, and p; = 1, then

@) if Cé > 1 and C? > 1 then the symmetric flow shop design (i.e., p; i =1/m,i # j,
i,j=1,....mand y; = 1/m,fori = 1,...,m) is an optimal solution to P.

(ii) if C2 < 1 and C? < 1 then the uniform job shop design (i.e., 1 = 1, pii1 = 1 for
i=1,...,m—1, and all other p;; = 0) is an optimal solution to P.

Proof. (i) Since Cé > 1 and C? > 1, the objective function (4.4) is jointly convex in
the p;;’s and in the y;’s. Thus a symmetric allocation, namely, p;; = 1/m,i # j, i, j =
1,...,m,and y; = 1/m,fori =1, ..., m, minimizes Zi Ci and an extreme (uniform)
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allocation, namely, yy = 1, p;;41 = Il fori = 1,...,m — 1, and all other p;; = 0
maximizes it. The objective function (4.4) evaluated at a symmetric allocation is equal to
(C? — C%/m+(C%—1), while at a uniform allocation it is equal to m (C2—1)+C>—C3.
Therefore,

Ci _ C2 = = 2 2(~2
m Cs_l ch_l) Z P +)’i(Ca_1)
i=1 j=1,j#i
<m(C;—1)+C:—Cs. (4.5)

We thus see, in this case, the symmetric flow shop design minimizes the expected number
of jobs in the shop while the uniform job shop design maximizes the expected number
of jobs.

(ii) On the other hand, if Cé < 1 and Cf < 1, the objective function (4.5) is
jointly concave in the p;;’s and in the y;’s. Thus, the above inequalities (4.5) will change
direction and the result will be exactly the opposite to the one above. g

Remark. For the cases discussed in theorem 2, it would be worthwhile to know the
magnitude of error if the wrong design were chosen, i.e., if the uniform job shop design
is used when the symmetric flow shop design is optimal, or vice versa. We denote E[Ng]
for the expected number of jobs under a symmetric job shop configuration and E[Ny]
for the expected number of jobs under a uniform flow configuration. To keep the analysis
tractable, let p; &~ p. If the uniform flow shop were used instead of the symmetric job
shop when the symmetric job shop is optimal (denoted by an asterisk), the ratio of the
expected number of jobs in the system is approximately

P+CY)  mp*C5+p2—p)lm+m(C3—)+C;—C3]

E[Nu] 2—p+pC% 2(1—p) +mp 4.6)
E[N*] PUHCH)  mp*Ci+pQ2—p)im+((CZ-C5)/m)+(C5-D] m ’ '
2=p+pC? 2(1—) P

Setm = [1/(1 — p)]. By evaluating the limit of (4.6) as p approaches 1 from
below, we find that this ratio approaches 2C%/(C2 + 1) which is greater than or equal
to 1 since C§ > 1 (see theorem 2(i)). In the worst case (as C§ — 00) this ratio is two.
Also note that mp is uncontrollable. Thus, we may simplify our discussion of the ratio
in (4.6) by eliminating the second term from both the numerator as well as from the
denominator, i.e., we consider the ratio of the number of jobs in the queue

2 2
CZ 2—p) C2 C;—Cs
s (C o )D 4.7
Ch4+ 01+ 5 o)

As before, when p & 1 and m is large the ratio is 2C? 5/ (C2 + 1). In addition, from
(4.7), as p becomes smaller, the ratio and thus the relative magnitude of error increases.
In very light traffic and when there are many machine centers, the ratio can become as
large as C2.
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In the case where a symmetric allocation is used when a uniform flow shop con-
figuration is optimal the ratio in question is just the reciprocal of (4.6) or (4.7). Here
the ratio approaches (C§ + 1)/ 2C§ which is greater than or equal to 1 since Cé <1
(see theorem 2(ii)). This ratio can be made as large as desired by reducing Cé. Thus,
in the worst case, the ratio is unbounded. Therefore, it is relatively more important to
use a proper configuration when there are many machine centers and either when the
variability of the service times is low or when the utilization is low.

4.2. High machine utilization

In this subsection, we generalize the problem solved in section 4.1. More precisely, we
assume that each machine center has utilization p; = 1, but permit machine centers to
have different expected number of visits, and also different service time distributions.
However, we assume that each machine center has a large number of machines. From
(2.6) we see that the only variables that directly influence the objective function are the
Ci’s. Under the assumptions that p; & 1 and ¢; > 1, from (2.5) we approximate

Ci~1+ %(cﬁi -1)~1 (4.8)

The above approximation can be interpreted as “the superposition of many independent
streams is approximately Poisson” (see [3, section 9.2; 4, section 2.8]). Therefore from
(2.4) and (2.2) we approximate

2

AV
i~ 1+ (C - 1), (4.9)
Define
o pi(2—pi) pi(1+C3) - EIW O, i) lnaymye (4.10)
20— p) 2—pi+ ,0,~C§i E[W i, cimd)lmmn .
Define
m
L,:max{o, vi— Y vj], U; = min{v;, 1}. (4.11)
=L j#i
Then by (2.6), (4.9) and theorem 1, the decision problem can be reformulated as
min i ﬁ(cz — 1)y (4.12)
such that
dovi=1, (4.13)
i=1
L,~<y,~<U,~ fori:l,...,m, (414)
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where the new constraint set arises from theorem 1 and the fact that in this case the p;;’s
are not decision variables. The objective function in (4.12) is convex in the y;’s if C2 > 1
and concave otherwise. Consider the following Lagrangian function

b= Z( o (Ca = )y =iy = L) - u(U—n) (Zy, ) (4.15)

where p is the Lagrangian multiplier for constraint (4.13), s; and ¢; are the Lagrangian
multipliers for constraints (4.14). In the next theorem we characterize the optimal solu-
tion to the decision problem (4.12)—(4.14).

Theorem 3. According to the assumptions in this section, if C> > 1 then the unique
optimal solution to (4.12), y*, can be written as a function of ©*, as shown below

*Aiv;
yi(u*) =L FE <L (4.16)
“Liv; “Aivi
v == L < R < .17)
E3
Aiv;
viw)=u it >, (4.18)

where

* K; - *
u* e [O,miax[Uim:H and ;yi(u )=

The optimal solution can be determined by performing a bisection search for p* in
[0, max;[U; K; / (A;vi)]].

Proof. Since the minimization problem (4.12) has a strictly convex objective function
and linear constraints, the optimal solution can be obtained by solving for the first order
condition of the Lagrangian function (4.15). Differentiating the Lagrangian function
(4.15) with respect to y; gives the first order conditions

K; .

—yi—p—s5i+t,=0 fori=1,...,m. 4.19)

Aiv;
If for i neither the upper nor the lower bounds (4.14) are binding, then y; = uA;v;/K;.
On the other hand, if the lower bound is binding then y; = L; and if the upper bound is
binding then y; = U;. Since 0 < y; < 1, the feasible choices for p are restricted to

K;
Qe [0, m?X[Ui ﬁ]] 4.20)
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However,
F(u) =) vi(w 4.21)
i=l1

is a nondecreasing continuous function in p. Therefore, the optimal solution is found by
using a bisection search for the unique w such that F () = 1. O

In order to discuss the case when Cf < 1, we first define the sets

Uly)=1ilyi=U}, L(y)={i |vi=Li}. (4.22)

Denote the cardinality of the set A as |A|. Thus, according to the assumptions of this
section, if Cf < 1, then the objective function (4.12) is concave in the y;’s. Thus, an
optimal solution must be an extreme point solution of the feasible set, i.e., it has the
property that either

i) |[UW|+|L)|=m and Z U + Z Li=1 or (4.23)
ieU(y) ieL(y)

i) |[UN|+L|[=m—1 and > Ui+ > Li+wn=1, (424
iel(y) ieL(y)

where k ¢ U(y), k ¢ L(y) and O < y, < 1. Therefore, it suffices to compare all such
solutions and choose the one that has the smallest objective function value. In particular,
if v; > 1 for all i, then as long as v; < Z;f;l’#i v; fori =1,..., m (see theorem 1),
the optimal solution is

Y = 1, v, =0 fori #k, 4.25)
where k = argmax,; {K;/(A;v;)}.
4.3. Lower machine utilization
In this subsection, we further generalize the problem solved in section 4.1 by not re-

stricting the p;’s to be close to 1, and also by not requiring the ¢;’s to be large. We define
the following quantities

_A=p)2=p) +pC (L= p)?

i , 4.26
’ 2—p; +piC2 (4.26)
07
0= —’(Cf, — 1), 4.27)
C; !
We then note that from (2.5),
Ci =146+ (Co —1)r;. (4.28)
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Then from (2.4), we get a system of m equations defining Ci , namely,

2

C2—1=Y Zp2 (e +r(C2 - 1)+ Lo (2 - ).

v; v;

0 P51 —n P 7,
21 vy ml v m
V1 2 Um
plzv_rl 0 Puo——Fm
A= 2 s
v v
2 Yl 2 Y2
Pim—h Py, —Nn 0
Um Um
V2 5 Um
/ 0 Pyt P tm
1
v V.
2 4 2 Ym
plzv_gl 0 pmzv—gm
B= 2 2 i
v v
2 Yl 2 2
plm_g1 pZm_E2 0
vm vm
2
"
U1
g=| : |.
Vo
Um
2
Cal
2 __ .
c, = :
C2

Then (4.29) can be written in matrix form as
cc—e=A(c:—e)+Be+ (C2—1)g,

where e is a column vector of m ones.

149

(4.29)

(4.30)

4.31)

(4.32)

(4.33)

(4.34)

Note that the matrix A is non-negative. Therefore, by the Perron—Frobenius The-
orem (e.g., [6, chapter 6]), there exists an eigenvalue Ay > O such that any other eigen-
value of this matrix, A, has the property that |A| < Ag. Furthermore, the eigenvalue A is
bounded by the minimum and maximum column sum and/or row sum of A. However, by
analyzing r; as a function of Céj, we find that (1 — p;))*> <r; < (1 — pf). Furthermore,
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from (2.2), 327, ;.4 pfi vj/v; < 1. Thus, aslong as p; > O for all j, every column sum
of A is strictly less than 1. Therefore,

Ao < 1. (4.35)

Thus, all of the eigenvalues of A are strictly inside the unit circle. Then, (I — A) is
invertible and we may express (I — A)~! as (c.f. [6, chapter 6])

I-A)'"=I+A+A%+.... (4.36)
Then, we reformulate (4.34) in order to isolate ci —eas
2 —e=(I—-A)"'((C?—1)g+Be). (4.37)
Then from (4.10) and (2.6), the objective function is

" K
) i ~2
min —C;. 4.38
Z v (+38)
i=1
However, from (4.37), it is easier to solve the minimization problem with the objective
function reformulated as

min ) | ﬁ(c? —1) (4.39)

UA
i=1 !

instead. This leads us to the following theorem.

Theorem 4, If Cf > 1 and Céj = 1 for all j, then the objective function (4.39) is
convex in (p, y). If C2 < 1 and Céj < 1 for all j, then the objective function (4.39) is
concave in (p, p).

Proof. If Cg}, > 1,then £; = (pf/c,-)(Céj — 1) > 0. Thus all entries of the matrix
B are non-negative. When C2 > 1 then for all j, yjz has a non-negative coefficient in
(4.37), (also see (4.29)). Let (p®, D) and (p@, y®) be two feasible solutions. For
any i, jand 0 < A < 1,

(0§ + (= 1)pD)* <Apf* + (1= )PP, (4.40)

(r” + (1= 0y®) <V 4 (1= 0y @2 (4.41)

Let AV and A® be the matrices defined in (4.30) for the solutions p" and p®, respec-

tively and let g and g be the vectors defined in (4.32) for the solutions ¥V and y @,

respectively. Let A® and g® be the matrices defined in (4.30) and (4.32) for the solu-

tions Ap®D 4+ (1 — )p®@ and Ay + (1 — 1)y P, respectively. It follows from (4.40)
and (4.41) that for all positive integers #

A®? AL L (1 — HAP", (4.42)

A6 < A 4 (] _ )A@rg®. (4.43)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



OPTIMAL CONFIGURATIONS 151

If we define BV, B® and B® as we have done for A, then by (4.40), (4.41) and the fact
that all elements of B are non-negative

B® < AB® + (1 — 0)B®. (4.44)
Then it follows from (4.42) and (4.44) that
ACBO) < HADBD 4 (1 — HA@BP. (4.45)
Let
A0 —e=(1-AD)7'((C? = 1)g® + BPe). (4.46)
Thus, by (4.43), (4.45) and (4.46)
2@ —e <AV —e) + (1 —1)(cf® —e). (4.47)

Since the objective function (4.39) has positive coefficients, it follows that the objective
function (4.39) is convex.

If on the other hand, Cf < 1 and Cf.j < 1 for all j, then g has a nonpositive
coefficient in (4.37) and (4.46). Furthermore, all entries of the matrix B are nonpositive
(because £; < 0), while the matrix A remains non-negative. Then, (4.42) and (4.43) still
hold but the direction of the inequality changes in (4.44) and (4.45). Thus, it follows that
the objective function is concave. O

The above theorem when combined with theorem 1 provides us with the ability to
solve the problem at hand using convex or concave optimization algorithms. Further-
more, it also provides us with the machinery to characterize solutions of several specific
cases. These cases are discussed in the following lemmas.

Lemma3. If v, =v > 1/m,p;=p < l,¢; =¢,C? > 1, and Cé}_ =C% > lthena
symmetric allocation is an optimal solution.

Proof. Ifv; =v,p, =p < 1,¢;, = ¢, and Céj = C§ then K; = K. Thus, from
Theorem 4 the decision problem will be a convex minimization problem with equal
weights to each Cfi in the objective function. Since v > 1/m, by lemma 2 the problem
is feasible. Consider any feasible solution (p', y!). Since there are m stations, there exist
m! permutations of the indices to the stations. If we were to consider all m! permutations
of the given feasible solution, the objective function value in each case will be the same
since the weights in the objective function are equal. By convexity though, the average
of all of these permuted solutions will provide a feasible solution that has an objective
function value less than or equal to every one of the permuted solutions. This average
solution is

-1
yi=—, fori=1,...,m, p;j= L, fori # j,
m (m — Dmv
and p;; = 0. Now, if we follow the above procedure for all feasible solutions, we can
conclude that the symmetric allocation solution is optimal. O
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In order to discuss the next lemma, we modify the constraint set of problem P (2.8)
by including variables L, ..., L,, for the “leakage” flow from each of the .z machine
centers. Also, we assume here that v; = v. The constraint set is then formulated as

m
v Z pji-i-Lj:U, j=1,...,m,
i=1,i#j

Z vi=1,
i=1

Yitv Z pjii=v, i=1....,m,
J=1,j#i
yiﬂLia>Oa i=1,...,m,
pij>05 i,j=1,...,mandi7éj.
We define
; L;
=2, == (4.48)

v v

Then the constraint set becomes

m

Z pji+L(}=1, j=1,...,m,

i=l,ij
m
1
c v
i=1
m

v ) pi=L i=lom,

j=1j#i

)’iOaL?>0, i=1,...,m,
pij = 0, i,j=1,....,mandi # j.

These are 2m 4 1 equality constraints with coefficients equal to only zeros and ones. The
right-hand side coefficients include 2m elements equal to ones and one element equal to
1/v. Thus, the constraint set has the form of a coefficient matrix of a transportation

problem.

Lemma4. If v; = v > 1, where v # (k 4 1)/ k for any positive integer k, p; = p < 1,
C? < 1,and Céj < 1 then an optimal solution has the property that all variables p;; take
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the values 0, 1/v, 1 — 1/v, 1 with at most 2m — 1 of them positive, exactly one y; = 1,
and exactly one L; = 1. In other words, if we denote

0 P21 P31t ... Pml
rz 0 pn ... pm
P=|". , " (4.49)
Pim Po2m P3m e 0

then an optimal solution has the property that
(i) m — 1 of the row and column sums of P are equal to 1 and
(ii) exactly one row and exactly one column sum are equal to 1 — 1/v.

Therefore, we can find an optimal solution by enumerating all feasible solutions that
have the above form.

Proof. Since v > 1, by theorem 1 this problem is feasible. Consider the following
subset of constraints of the original constraint set (2.8)

dopi<l forj=1,....m, (4.50)
i=1
=1L (4.51)
i=1
From (4.48), we reformulate (4.50) and (4.51) as
dopi+LY=1 forj=1,...,m, (4.52)
i=l1
dovl=-. (4.53)
i=1 v

As observed earlier, this new system is in the form of a constraint set to a transportation
problem. The right hand side vector b of this system contains 2m ones and the last
element equals 1/v, i.e.,

—

b=|: |. (4.54)
1

v
The matrix correpsonding to the linear constraints consists of only zeros and ones. Thus,
let B be a nonsingular submatrix of 2m + 1 independent columns, i.e., a basis. Since the
constraint set is totally unimodular, the elements of B~! can only take the values 0, %1
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(cf. [7, p. 204]). Therefore, the variables p;;, yio, and L? corresponding to the positive
part of a basic feasible solution B~!b can only take the values 1/v, 1 — 1/v, 1.

Since v # (k + 1)/k, the constraint Y ., yio = 1/v implies that exactly one
¥ = 1/v. Note, the same will hold true for L? since Y -, L? = 1/v must hold as well.
Therefore, there exist at most 2m — 1 remaining positive elements in a basic feasible
solution. From the analysis of B~'b these positive elements can only consist of the
values 1/v, 1 — 1/v, 1 as mentioned above.

Since C? < 1 and C3 < 1, the objective function is concave (see theorem 4).
Thus, an optimal solution occurs at an extreme point of the feasible set, i.e., at one of the
basic feasible solutions discussed above. O

Remarks (When Cf < land Cé_ < 1). (i) In the special case where v = 1, the optimal
configuration is a uniform flow job shop.

(ii) When v > 1, in all of our numerical results, the optimal configuration is a
reentrant flow line [5], i.e., the optimal solution is one in which the machine centers are
arranged in a flow line, jobs go through the flow line and either exit the shop at the last
station with probability 1/v or reenter the first station with probability 1 — 1/v.

5. Conclusions

We have discussed the problem of minimizing the approximate expected number of jobs
in a single class general open queueing network model of a job shop. We have provided
conditions under which the problem is feasible. We have re-solved the special case orig-
inally posed and solved by Buzacott and Shanthikumar. Furthermore, we have solved
and provided insight into more general cases.

We have completely determined the optimal configurations when p; = 1 and the
¢;’s are large without imposing any other restrictions. In the more difficult case when
pi < 1, (i) we have given conditions under which the problem is convex and stated
when the problem is concave, and (ii) we have given complete solutions for special
cases. Based on our analysis, we may also conclude that when the approximate expected
number of visits to the machine centers are equal, in the majority of cases, (i) when the
service and arrival processes are less variable (C? < 1 and Ci < 1) a uniform flow
line or a variant of this configuration is optimal, and (ii) when the service and arrival
processes are more variable (C> > 1 and Cg} > 1) a symmetric job shop or a variant of
this configuration is optimal.

In future work, we plan to extend this analysis to multi-class open networks of
queues.
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