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We address the problem of hedging inventory risk for a short life cycle or seasonal item when its demand is
correlated with the price of a financial asset. We show how to construct optimal hedging transactions that
minimize the variance of profit and increase the expected utility for a risk-averse decision maker. We show that
for a wide range of hedging strategies and utility functions, a risk-averse decision maker orders more inventory
when he or she hedges the inventory risk. Our results are useful to both risk-neutral and risk-averse decision
makers because (1) the price information of the financial asset is used to determine both the optimal inventory
level and the hedge, (2) this enables the decision maker to update the demand forecast and the financial hedge
as more information becomes available, and (3) hedging leads to lower risk and higher return on inventory
investment. We illustrate these benefits using data from a retailing firm.
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1. Introduction

The demand for discretionary purchase items, such
as apparel, consumer electronics, and home furnish-
ings, is widely believed to be correlated with eco-
nomic indicators. Our analysis not only supports this
belief but also shows that the correlation can be quite
significant. For example, The Redbook Average monthly
time-series data' for the period November 1999 to
November 2001 have a correlation coefficient of 0.90
with the same-period returns on the S&P 500 index
(R? = 81%, see Figure 1). Furthermore, using sec-
torwise data, we find that the value of R? is corre-
lated with the fraction of discretionary items sold as
a percentage of total sales. For example, discretionary
items constitute a larger fraction of total sales for
apparel stores and department stores than discount
stores. Correspondingly, apparel stores and depart-
ment stores have a higher correlation of demand with
the S&P 500 index than discount stores (see Table 1).
Our results are also supported by firm-level analysis.

1 The Redbook Average is a seasonally adjusted sales-weighted aver-
age of year-to-year same-store sales growth in a sample of 60 large
U.S. general merchandise retailers representing about 9,000 stores
(Instinet Research 2001a, b). It is released by Instinet Research on
the first Thursday of every month.
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Figure 2 shows that for The Home Depot Inc.,* sales
per customer transaction and sales per square foot
both have statistically significant correlation with the
value of the S&P 500 index. Their R? values are equal
to 79.11% and 39.92%, respectively.

These findings present an opportunity to use finan-
cial market information to improve demand fore-
casting and inventory planning, and use financial
contracts to mitigate (hedge) the risk in carrying
inventory. This paper addresses these problems for
discretionary purchase items based on a forecasting
model that incorporates the subjective assessment of
the retailer and the price information of a financial
asset.

We show how to construct static hedging strate-
gies in both the mean-variance framework and the
more general utility-maximization framework. In the
mean-variance framework, we determine the optimal
portfolio that minimizes the variance of profit for a

2Home Depot is a retail chain selling home construction and home
furnishing products. We use public data from the first quarter of
fiscal 1997 to the second quarter of fiscal 2001, a total of 22 quar-
terly observations. The data are obtained from the 10-K and 10-Q
reports that Home Depot files with the Securities and Exchange
Commission.
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Figure 1 Redbook Same-Store Sales Growth Rate vs. Annual Return Figure 2 Quarterly Sales of Home Depot vs. Corresponding Values of
on the S&P 500 Index the S&P 500 Index
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and analyze how the hedging solution affects inven-
tory levels. We note, however, that most of the results

Table 1 Results for the Regression of Sectorwise Redbook Same Store
Sales Growth Rate on the Annual Return on the S&P 500 Index

R? F-statistic  p-value Intercept  Slope

Apparel 0.411 7.6618 0.0183  —0.583 0.351
2.168 0.127

Department stores  0.468 9.6673 0.0099 2.088 0.215
1.182 0.069

Discount stores 0.020 0.2298 0.6410 3596 —0.025
0.890 0.052

Notes. (1) The analysis uses monthly data for 13 months from Novem-
ber 2000 to November 2001 for each sector. The dependent variable is the
growth rate of same-store sales during the month with respect to the same
month in the previous year. The independent variable is the annual return
on the S&P 500 index for the same period. (2) The standard errors of the
parameters are reported below the corresponding parameter estimates.

S&P 500 index (quarterly closing)
(b) Sales per square foot

derived in this paper are either standard or obtained
by a combination of standard results.

Researchers in inventory theory have considered
both risk-neutral and risk-averse decision makers,
but none of these researchers has studied the impact
of hedging on decision making. According to the
received theory, a risk-neutral decision maker is unaf-
fected by the variance of profit, thus is indiffer-
ent toward hedging inventory risk (for example, see
Hadley and Whitin 1963, Lee and Nahmias 1993, Nah-
mias 1993, Porteus 2002, Zipkin 2000). For a risk-
averse decision maker, it is well known that the
expected utility-maximizing inventory level is less
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than the expected value-maximizing inventory level
(for example, see Agrawal and Seshadri 2000a, b;
Chen and Federgruen 2000; Eeckhoudt et al. 1995;
and the papers cited therein). Although it seems rea-
sonable to conjecture that risk-averse decision makers
will prefer to hedge inventory risk, it is less obvious
that the hedge will also lead to an increase in the
quantity ordered. We show that hedging impacts both
types of decision makers:

(1) Hedging reduces the variance of profit and
increases expected utility. The reduction in the vari-
ance of profit is directly proportional to the correla-
tion of demand with the price of the asset.

(2) It provides an incentive to a risk-averse deci-
sion maker to order a quantity that is closer to the
expected value-maximizing quantity. This result holds
for a wide range of hedging strategies and for all
increasing concave utility functions with constant or
decreasing absolute risk aversion.

(3) The hedging transactions do not require addi-
tional investment. On the contrary, the funds required
to finance inventory at the beginning of the planning
period are offset by the cash flows from the hedging
transactions, so that the net inventory investment of
the firm is reduced.

The last result shows that hedging is useful even to
a risk-neutral decision maker although he or she may
not be interested in reducing the variance of profit
in a perfect market.> Hedging is especially useful to
small privately owned firms, e.g., the so-called Mom
and Pop retail stores, because risk reduction provides
them access to capital, reduces the cost of financial
distress, and enables the owners to diversify their risk
and increase their return on investment.

We present a numerical study using data from a
retailing firm to quantify the impact of our results
on forecasting demand, optimal inventory planning,
risk reduction, and return on investment. Because the
forecast is a function of the asset price, the retailer can
dynamically update it with changes in asset price or
the volatility of the asset. Therefore, it improves the
optimal inventory decision and impacts the expected
profit of the retailer. The increase in the expected

® When there are market imperfections, for example, if bankruptcy
is costly, then even a risk-neutral decision maker may prefer to
purchase insurance.

profit in our numerical study is as high as 7%. The
numerical study also shows that hedging reduces the
variance of profit by 12.5% to 56.5%. The amount of
reduction is a function of the correlation of demand
with the asset price, the volatility of the asset, and
the lead time. Compared with the optimal hedge,
the heuristic hedge proposed by us achieves 6% less
reduction in the variance of profit. Dynamic hedging
using the heuristic strategy reduces the variance of
profit to within 0.5% of the optimal hedge.

This paper is also related to the real-options litera-
ture. For example, Dasu and Li (1997), Huchzermeier
and Cohen (1996), Kogut and Kulatilaka (1994), and
Kouvelis (1999) consider the valuation of real options
wherein the cash flows from real assets depend on the
price of a traded security, such as the exchange rate.
Other authors, including Birge (2000), Brennan and
Schwartz (1985), McDonald and Siegel (1986), Triantis
and Hodder (1990), and Trigeorgis (1996) consider the
valuation of real options using the assumption that
the cash flows from a basecase scenario or a port-
folio of marketed securities, or both, can be used to
replicate the cash flows from the real option. When
this assumption holds, the value of the option can
be set equal to the value of the replicating portfo-
lio. (This assumption is called the Marketed Asset
Disclaimer. See Copeland and Antikarov 2001, p. 94.)
Our paper differs from this literature in two aspects.
First, we do not focus on valuation. Instead, we focus
on the interaction between real options and finan-
cial hedging by analyzing how the optimal inventory
decision changes with hedging and with the degree
of correlation of demand with the underlying asset.
Second, we use neither the marketed asset disclaimer
nor the assumption that the cash flows corresponding
to each inventory level are traded in a perfect market
to construct the hedge. Instead, as set out in the first
paragraph of the paper, we justify the application of
risk-neutral valuation by demonstrating the correla-
tion of demand with financial assets, and show in §4
how to incorporate this information in a forecasting
model to plan inventory.

The paper is organized as follows. We set up the
framework of our analysis in §2 by using a model
in which demand is perfectly correlated with the
price of an underlying asset. In §3, we analyze the
model with partial demand correlation and establish
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the properties of the hedged payoff function result-
ing from the newsvendor model. Section 4 presents
a numerical example to illustrate the results of our
model. Section 5 concludes the paper with directions
for future research.

2. Demand Perfectly Correlated with
the Price of a Marketable Security

We consider a single-period, single-item inventory
model with stochastic demand, i.e., the newsvendor
model. To establish the basic ideas, we first consider
the case when the demand forecast for the item is
perfectly correlated with the price at time T of an
underlying asset that is actively traded in the finan-
cial markets. The analysis in this section is based on
the theory of valuing real options.

Let p denote the selling price of the item, c the
unit cost, s the salvage value, I the stocking quantity,
and D the demand. The firm purchases quantity I at
time 0 and demand occurs at a future time T. Demand
in excess of I is lost, and any excess inventory is liqui-
dated at the salvage price of s. The firm’s cash flows
at times 0 and T, respectively, are

IY,(I)=—cI, and
M7 (I) = pmin{D, I} +s(I — D)". (1)

We use the subscript U to denote unhedged cash flows,
i.e., cash flows before any financial transactions, and
the subscript H to denote hedged cash flows, i.e., cash
flows including financial transactions.

Let S, be the current price of the financial asset, S be
its price at time T, and r be the risk-free rate of return
per annum. We assume that the financial market is
complete and has a unique risk-neutral pricing mea-
sure (RNPM).* Let Ey denote the expectation under
the risk-neutral probability measure. Thus, we have
Sy = e "TE\Sy. To distinguish expectation under the
RNPM from expectation under the decision maker’s
subjective probability measure, we shall denote expec-
tation under the subjective measure as E[-], and condi-
tional expectation under the subjective measure over
a random variable { as E,[-].

* This assumption can be relaxed further because market comple-
tion is not a necessary condition. All we need is that the no-
arbitrage principle should hold in the market and that the claim
Sy should have a unique price at time 0 (see Pliska 1999, chap. 1).

We use the correlation of demand with S; in three
ways: to value the newsvendor profit function, to con-
struct transactions to hedge inventory risk, and to
exploit the benefits of hedging. Because the demand
is perfectly correlated with S;, we specify it as D =
a+bS;, where a and b are constants. We assume that
b >0 to ensure that the demand is nonnegative, and
that I > max{a, 0}, otherwise II];(I) will be a deter-
ministic quantity equal to pmax{a, 0} that requires no
risk analysis. We also assume that p > ce’” > s, other-
wise the newsvendor problem has trivial solutions at
either I =0 or [ = co.

Substituting the demand forecast in (1) and simpli-
fying the expression for 11}, we get

7 (I) = (p— s)min{a + bSy, I} + sl
= (p—s)bSp +[(p —s)a+sl]
—(p—s)bmax{S; — (I —a)/b,0}. (2)

Equation (2) reveals that the random payoff from the
newsvendor model can be represented as a portfolio
comprising only financial assets. This portfolio is said
to replicate the newsvendor payoff function. It follows
from standard valuation theory that this portfolio can
be used not only to value II};(I), but also to hedge
the inventory risk. Because demand is perfectly cor-
related with S;, the hedge is perfect and completely
eliminates the uncertainty in newsvendor profits. The
hedging transactions at time 0 are

(1) Borrow and sell (p —s)b units of the underlying
asset at the current price Sy. The borrowed asset is to
be replaced at time T by purchasing (p — s)b units of
the asset from the market at price Sy.

(2) Buy (p—s)b call options on this asset with exer-
cise price (I —a)/b and settlement date T.

(3) Borrow a sum of money equal to [(p — s)a +
sIle™"T at the risk-free rate to be repaid at time T.

These hedging transactions have several benefits.
Through hedging, the net payoff to the retailer in all
states of nature at time T is zero, and the hedged
profit is realized at time 0 itself. This profit is given by

(1) = (p—s)bSy +e T [(p — s)a+sI]
— (p — s)be "TEy[max{S; — (I — a)/b, 0}] — cI.

The hedged profit is identical to the expected news-
vendor profit for any inventory I, i.e.,

Ex[Hy(D]=1g(I) and Var[lly(I)]=0,
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where 1I;;(-) denotes the total unhedged profit dis-
counted to time 0. Therefore, the expected value-
maximizing inventory decision remains the same
regardless of the decision to hedge the market expo-
sure. Notably, because the hedged profit is realized
at time 0, we find that hedging reduces the retailer’s
investment to zero in all cases when there is perfect
correlation. Moreover, there is no need to revise the
hedge over time.

3. Demand Partially Correlated with
the Price of a Marketable Security

Let the demand forecast for T periods hence be
given by
D=a+bS;+¢€,

where €' is an error term independent of 5; such that
E[¢'] =0 and E[€"*] < 0. In this model, a is a function
of the firm’s subjective forecast, b gives the slope of
demand with respect to Sy, and € is the firm’s sub-
jective forecast error. Section 4, Equation (20), shows
how to incorporate both the subjective forecast and
the market information in the same forecasting model.

Define e = €¢//b and S; =S, + € /b= S; + €, so that
demand can equivalently be written as D = a+bS;. As
in §2, we assume that b > 0 and [ > max{a, 0}. Addi-
tionally, we assume that a is sufficiently large that
the probability of demand being negative is negligi-
ble. Thus, analogous to the case of perfectly correlated
demand, the unhedged newsvendor cash flow can be
written in terms of S, as

n%,(I) = —cI, and
(1) = (p — 9)bS; — (p — )b max(; — (I — a)/b, 0}
+(p—s)a+sl. (3)

Suppose that the cash flow at time T is hedged
by short selling (p — s)b units of a portfolio derived
from the underlying asset. Let X; denote the cash
flows of the hedging portfolio at time T, and X
denote its price at time 0. Because the financial mar-
ket is arbitrage free and frictionless, we have X, =
e "TEy[X;]. The hedged cash flow is no longer deter-
ministic, because € cannot be replicated in the finan-
cial market. It is therefore natural to split the hedged

cash flow into components at time 0 and at time T as
shown below:

119, (I) = —cI  purchase inventory
+(p —s)bX,, short sell X, 4)

M5 (D) = (p — $)bS; — (p — s)bmax{S; — (I - a)/b, 0}
+[(p—s)a+sl] realize sales
—(p—s)bX; cover short sale of X;.  (5)

Let the present value of the total hedged profit
discounted at the risk-free rate be Il (I). From (4)
and (5),

I, (D) =TI (De™"" + M (D).

Consider the expectation under the RNPM of the
hedged profit similar to the case of perfectly corre-
lated demand. Using the fact Ey[X;] =¢'TX,, we find
that

EN[HU(I)] = EN[HH(I)]'

Therefore, it follows that if I[* maximizes the
expected value under the RNPM of the newsvendor
profit function Ey[II(I)], then I* also maximizes the
expected value under the same probability measure
of the hedged newsvendor profit function Ey[I1;(I)],
regardless of the hedging transactions used.

However, it is no longer possible to hedge the
inventory risk perfectly. As a consequence, unlike the
case in §2, we cannot provide a no-arbitrage argument
for the use of RNPM to compute the optimal inven-
tory level. Moreover, different decision makers could
prefer different hedging transactions depending on
their utility functions. Therefore, from here forward,
we assume that the decision maker is risk averse. We
use the subjective probability measure in our analy-
sis. In §3.1, we analyze the hedged payoff (5) in the
mean-variance framework. In §3.2, we provide results
for more general utility functions.

3.1. Minimum Variance Hedge

Minimum variance hedging is a common solution
concept used for a risk-averse decision maker (see,
for example, Hull 2002, chap. 2). Therefore, in this
section, we first determine the optimal hedging port-
folio X; that minimizes the variance of the payoff
at time T for a given inventory level I, and then
consider a heuristic hedge comprising fewer financial
transactions. Finally, in §3.1.1, we examine dynamic
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hedging, i.e., the rebalancing of the hedging portfolio
when new information regarding the asset price and
the demand forecast becomes available over time. The
optimal solution to the problem of minimizing the
variance of I17,(I) with respect to X for given I can be
obtained from a standard result in probability theory;
see, for example, §9.4 in Williams (1991). Specifically,

LEMMA 1. The variance of 115,(I) is minimized by set-
ting X3 = E[T (D) | Syl.

PrROOF. Omitted. O

Figure 3 depicts the cash flows of the minimum
variance hedge as a function of S;. For comparison,
it also shows the hedging portfolio when € = 0. It can
easily be shown that the hedge is a concave increasing
function of S;. Thus, the hedge can be approximated
by short selling the underlying asset and purchasing
a series of call options with settlement date T and dif-
ferent exercise prices. As a first-order approximation,
consider a hedging portfolio consisting of a short sale
of the asset and a purchase of call options with a sin-
gle exercise price, s,. Let

X7 =(p—9)baS — (p — s)bBmax{S; —s,, 0}.

We refer to this portfolio as the heuristic hedge with
parameters «, (3, and Sps where « and B are the
hedge ratios. Let C(s,) denote the cost at time 0 of
purchasing a European call option on the underly-
ing financial asset with an exercise price of s, and

Figure 3

Cash Flows of the Minimum Variance Hedging Portfolio X;
as a Function of S;

Variance
1,600 -

1,400 1

1,200

1,000

800

600 - Hedging portfolio under partial correlation

Hedging portfolio under perfect correlation

400 T T T
800 1,200 1,600 2,000 S(T)

Notes. This example uses dataset B described in §4 with / =6.

settlement date T. From Hull (2002, chap. 11), C(s,) =
e”""Ey[max{S; —s,, 0}].

The decision maker seeks to determine «, 8, and
s,, such that the variance of IT},(I) is minimized. For
simplicity, we shall ignore the constant scale factor
(p—s)bin (5). We first determine « and f3 for given s,

miEVar[gT —max{S; — (I —a)/b, 0}

—aS; + Bmax{S; —s,, 0}]. (6)
Because € is independent of Sy, it follows that

Cov(S;, S;) = Var(S;) and
Cov(S;, max{S; — s,, 0}) = Cov(Sy, max{Sy —s,, 0}).

Expanding (6) and using this simplification, we obtain

miﬁn [(1—@)*Var(S;)+ B*Var[max{S; —s,,0}]

+2aCov(Sy, max{S;—(I—a)/b,0})
—2apCov(Sy, max{Sy —s,,0})

+2BCov(Sy, max{Sy —s,,0})
—2pCov(max{Sy —s,,0}, max{S; — (I —a)/b, 0})

+terms independent of @, B and 5,].  (7)

Let A,B,C,D, and E denote Var(S;), Cov(Sr,
max{Sy — s,,0}), Cov(max{% -5, 0}, max{S; —
(I —a)/b,0}), Cov(S;, max{S; — (I — a)/b,0}), and
Var[max{S; — s,, 0}], respectively. Ignoring the terms
independent of «, 8, and $,, We rewrite (7) as

rni/?[(l —a)’A+2B(1—a)B—2BC+2aD+B’E]. (8)

This problem is similar to the minimization of the
squared error in regression. Therefore, by apply-
ing standard procedures, we obtain the following
proposition:

ProrosiTioN 1. If s, > 0, then the function in (8) is
strictly convex in a and B, and the minimum variance
hedge is obtained by setting

DE — BC
a:1_—AE—32 )
AC—-BD
= 1
B B (10)
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ProOF: Omitted. [

Now consider the choice of s,. As pointed out by
a referee, it is no longer optimal in general to set
s, = (I —a)/b as it was in the case of perfectly corre-
lated demand in §2. Furthermore, we found examples
in which the variance function is not jointly quasi-
convex in «, B, and Sp- Therefore, the optimal value
of s, has to be determined numerically by doing a line
search on s, with the values of @ and B, as given by
Proposition 1. This method gives the correct answer,
because the variance is strictly convex in « and 8 for
a given s,.

The following example illustrates how the variance
of the hedged profit behaves as a function of s,.

ExamPLE. Let Sy = $660, r = 10% per annum, and
Sy have a log-normal distribution with u =10% per
annum and o =20% per annum. Let T =6 months.
Let the demand for the item be 10S; + €, where €
is normally distributed with mean 0 and standard
deviation 600. Let p =$1, c = $0.60, and s = $0.10.

Let I =7,000. The variance of the unhedged profit
function is equal to 371,280. Figure 4 shows the vari-
ance of the hedged profit as a function of s, for dif-
ferent values of a and 3. Whereas (I —a)/b is equal to
700, the optimal value of s, differs from 700 for each
set of & and B values. For example, when o =1.1 and

Figure 4 Variance of Hedged Profit as a Function of s, for Different
Values of Hedge Ratios « and
Variance
700,000

600,000 -

500,000 -

400,000 -

300,000 1)

200,000 1

100,000

—(1.1,0.8)
------- (0.8,0.75) - - - .(0.65,0.9)

1.1

0 T T T T T
550 650 750 850 950 1,050

Notes. The legend gives the values of « and B, respectively.

1,150 Sp

B =0.8, then the minimum variance is 161,301 and is
realized at s, = 630; when a = 0.65 and B8 =0.9, then
the minimum variance is 155,145 and is realized at
s, = 770. The global optimal solution is @ = =0.75
and s, =722, and gives a variance of 146,400.

Now let I = 8§8,950. It can be shown that for a =
0.851 and B =0.02, the variance function has a local
maximum at s, =472 and a local minimum at s, = 762.
Thus, the variance function is not quasiconvex in s,.

The minimum variance hedge, as given by Lemma 1,
gives a lower bound for the variance of the hedged
profit. Thus, the effectiveness of the heuristic hedge
can be ascertained by benchmarking it against this
lower bound. We provide such comparisons in §4.

We note that the optimal values of o and B in
the heuristic hedge are always nonnegative. Thus, the
hedging transactions always consist of a short sale of
the asset and a purchase of call options (the interested
reader is referred to Appendix B in Gaur and Seshadri
2004). This implies that the payoffs from these two
transactions offset each other, so that the market expo-
sure of the firm is reduced. Moreover, the sale of the
asset at time O provides cash to finance the invest-
ment in inventory. Thus, the net investment required
by the firm is reduced and its return on investment
is increased. The numerical study in §4 shows the
impact of minimum variance hedging on risk, inven-
tory levels, and return on investment.

Our method for computing the hedge parameters
can easily be generalized to the case when several call
options with different exercise prices are considered
in the hedging portfolio. Even for this case, the vari-
ance function remains convex in the hedge ratios and
the formulas for the optimal hedge ratios can be com-
puted similarly.

3.1.1. Dynamic Hedging. When demand is par-
tially correlated with the price of the underlying
financial asset, the demand forecast may change with
time as new information is revealed. Suppose that
there are T + 1 trading time instants, t =0,...,T.
At each time ¢, the price, S;, of the underlying asset
is observed. Also suppose that the forecast error at
time t is given by €, where E[¢,] = 0. In this man-
ner, the demand forecast is updated with time. Thus,
the decision maker can use dynamic hedging, i.e., he
or she can trade between times t =0 and t =T to
rebalance the hedging portfolio.
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Such information revelation has implications on
whether the hedging strategy is self-financing. A trad-
ing strategy is said to be self-financing if the time t
values of the portfolio just before and just after any
time ¢ transactions are equal. In a self-financing trad-
ing strategy, no money is added to or withdrawn from
the portfolio at times t =1 to T — 1. Such a trading
strategy has a unique value at time ¢ =0 (see Pliska
1999, chap. 3). In our case, the following proposition
gives the implications of information revelation on
the hedging strategy:

ProrosITION 2. If new information is revealed at times
t=0,...,T—1 about S; but not about €, then the min-
imum variance trading strategy, X3, defined in Lemma 1
is self-financing. If, instead, new information is revealed at
times t =0, ..., T —1 about both S; and €, then the min-
imum variance trading strateqy, X3, defined in Lemma 1
is not in general self-financing.

Thus, if both the asset price and the subjective fore-
cast error are updated with time, then dynamic hedg-
ing can result in net cash flows different from zero
at intermediate time instants. The hedging strategy
can no longer be uniquely valued at time 0 because
it depends on the decision maker’s utility func-
tion. Nevertheless, dynamic hedging can give further
reduction in the variance of the profit. Section 4 eval-
uates the benefits of such dynamic hedging.

The benefits of revising the hedge possibly increase
when inventory commitments can be changed or can
be made at more than one time epoch. Analysis of
these issues is deferred to future work.

3.2. Risk Aversion

This section analyzes whether a risk-averse decision
maker will choose to hedge, the form of the hedging
portfolio for such a decision maker, and the impact of
hedging on operational decisions.

Consider a risk-averse decision maker with a con-
cave utility function, u: ® — R. Let W, denote the ini-
tial wealth of the decision maker before investing in
inventory or undertaking any financial transactions.
To facilitate comparison between the hedged and
unhedged payoffs, we transfer all payoffs to time T
by investing the certain payoffs at time 0 at the risk-
free rate, denoted r. Thus, the expected utility of the

decision maker after purchasing inventory I takes the
form

E[u(Il,;(I))] = E[u(Woe’T+(p—s)bmin{ST +e€,(I—a)/b}
+(p—s)a—(ce’m —s)I)].

Without loss of generality, we scale all cash flows
by 1/(p — s)b. Let ¢; denote (ce’™ —s)/{(p — s)b}, and
W denote {Wye'™ + (p — s)a}/{(p — s)b}. Thus, we write
I, (I) =min{S; +¢€, (I —a)/b} — c;I and

E[u(I1,(I))]
=E[u(W +min{S; +¢, (I —a)/b} —c,])].  (11)

The decision maker can access the financial market
and construct a portfolio derived from the underly-
ing asset Sy at zero transaction cost. Given this alter-
native, the decision maker may or may not prefer
to invest in inventory depending on the parameters
of the newsvendor model. The following proposition
specifies the range of parameter values under which
the decision maker prefers to invest in inventory.

ProrosITION 3. Any risk-averse decision maker with
utility function, u(-), prefers to invest in inventory I
than to invest solely in the financial market if ¢;I <
Ey[Edmin{S; + €, (I — a)/b} | S;]]. In particular, the
decision maker prefers to invest in inventory I if ¢;I <
Ey[min{S;, (I — a)/b}] — E[|€|] and does not prefer to
invest in inventory I if ¢;I > Ey[min{S;, (I —a)/b}].

This result can be explained as follows: The pay-
off E.[min{S; + €, (I — a)/b} | S;] can be constructed
from derivative instruments with S; as the under-
lying asset. This payoff is larger than II;; + ¢;I in
the second-order stochastic dominance sense and
costs Ey[E.[min{S; + €, (I —a)/b | S;}]]. Thus, if ¢;I >
Ey[E . [min{S; + €, (I — a)/b | S;}]], then we obtain a
financial asset that is preferred to the profits from
inventory I and costs less than the investment of c;I
in inventory. Thus, any risk-averse decision maker
chooses to invest in this asset rather than in inventory
level I.

In the rest of the analysis, we assume that ¢/
is such that the decision maker prefers to invest in
inventory I. Let there be a hedging portfolio with
the random payoff at time T denoted as X;, and the
price at time 0 denoted as X,. We assume that X; is a
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fair gamble, i.e., e7’7X; is a martingale and the deci-
sion maker must construct the hedge subject to this
assumption. Thus, we require that

E[X; — X,e'T] =0. (12)

If, instead, X; had a positive risk premium, then there
will be two effects of investing in X; on the decision
maker’s expected utility: a wealth effect and a risk-
reduction effect. By assuming that X is a fair gamble,
we examine the risk-reduction effect while controlling
for the wealth effect.

First, consider the problem of determining X; such
that the expected utility of the decision maker is max-
imized for a given inventory level I, i.e.,

max E[u(W +11;(I) — X7 + Xe'")]
such that B[X; — Xye'"] =0. (13)

The following proposition specifies the form of
the hedge using the Karush-Kuhn-Tucker conditions
(KKT). It provides broad insights but is primarily use-
ful for the purposes of constructing an optimal hedge:

ProPoSITION 4. For a strictly concave utility function,
u(-), the optimal solution of Problem (13) is given by X;*
that satisfies the following equations for some A € R:

E [t/ (W + T, (I) — X5 + Xz*e'T)] = A,
E[X3* — X*e'T] =0.

For example, note that for a quadratic utility func-
tion, Proposition 4 yields the same solution as given
in Lemma 1. To see this, let u(x) = ax — bx?/2 where
a,b > 0. Then, Proposition 4 gives

E[a—b(W +11,(I) - X3 + X;*e'T)]
=a—b(W — X3+ X*e'™) — bE [T ;(I)] = A.

Because a, b, W are constants, X;* = E_[I1;;(I)] = X} is
an optimal solution to the above problem. As stated in
§3.1, Figure 3 depicts X as a function of S;. Optimal
hedges for other utility functions could be similarly
derived.

We now consider the questions whether the ex-
pected utility of the decision maker increases with
hedging, and whether the optimal inventory level
increases in the degree of hedging. In practice, sim-
pler hedges than the hedge in Proposition 4 may be

used. Therefore, we consider a fairly general class of
hedges in the remaining analysis. We assume that X;
is an increasing function of S; because it should off-
set the subject cash flows as closely as possible. The
minimum variance hedge considered in §3.1 satisfies
this assumption. The heuristic hedge in §3.1 also sat-
isfies this assumption when 8 < a regardless of the
value of s,. Furthermore, the hedging strategy permits
the use of several call options with different exercise
prices in order to match I1;; more closely. To facilitate
the analysis, we also assume that X; is a piecewise
continuous function of S;, and is differentiable with
respect to Sy almost everywhere.

The following properties of utility functions are
useful in the remaining analysis. The Arrow and
Pratt measure of absolute risk aversion of a util-
ity function u(-) of wealth w is defined as the ratio
R, (w) = —u"(w)/u' (w) (Arrow 1971). Note that R ,(w)
is always nonnegative for an increasing concave-
utility function. The utility function is said to dis-
play decreasing absolute risk aversion (DARA) when
R,(w) is decreasing in w, and constant absolute
risk aversion (CARA) when R,(w) is a constant.
Both DARA and CARA further imply that u”(w) is
decreasing in absolute value (i.e., v (w) > 0). Abso-
lute prudence is defined as the ratio —u”(w)/u"(w)
(Kimball 1990). Decreasing or constant absolute pru-
dence implies that u”(w) is decreasing in w. Many
commonly used classes of utility functions, such as
the power utility function, the negative exponential
utility function, and the logarithmic utility function,
satisfy the properties of constant or decreasing abso-
lute prudence (DAP).

Suppose that the risk-averse firm shorts an amount
a of the portfolio X;. Thus, the expected utility of the
decision maker from the investment in inventory and
from the hedging transactions is given by

E[u(T4(I, @)] = E[u(W +min{S; + ¢, (I — a)/b}
-l —aXr+ aXOerT)]. (14)

Proposition 5 shows that a risk-averse decision
maker prefers the hedged newsvendor payoff to the
unhedged newsvendor payoff for any given I.

ProOPOSITION 5. For any concave and differentiable
utility function, u(-),

d
2o Pl (L @))]lazy = 0. (15)
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Although this result by itself is not surpris-
ing, it should be considered as a counterpart to
Proposition 3. Together they show that, under appro-
priate conditions, a risk-averse decision maker will
both invest in inventory and hedge the risk using
financial instruments. We now examine the impli-
cations of hedging on the optimal inventory level.
Propositions 6 and 7 give two sufficient conditions
under which the optimal stocking quantity chosen by
a risk-averse decision maker increases when he or she
decides to hedge the newsvendor risk. Given the util-
ity function, Proposition 6 gives a sufficient condi-
tion on the structure of the hedging portfolio, derived
using the form of the newsvendor payoff and Jensen’s
inequality. Given the hedging portfolio, Proposition 7
gives a sufficient condition on the utility function.

PrOPOSITION 6. For any increasing, concave, and dif-
ferentiable utility function, u(-), the value of inventory that
maximizes E[u(11y)] is greater than the value of inventory
that maximizes E[u(I1y)] if X is such that

E[{u/ (I (1)) — ' (Iy(I)} - e < (I —a)/b—5;}] < 0,
(16)
and
E[u/ ((I—a)/b—c,] —aX; +aXye')]
—u'((I—a)/b—cI)>0. (17)

If u(-) is additionally CARA or DARA, then (17) is auto-
matically satisfied.

Proposition 6 is primarily useful for constructing an
optimal hedge. The intuitive content of the proposi-
tion is that when S, and thus, I1;; is small (i.e., when
(16) applies), then the hedge increases the utility of
the decision maker. When S; is large (i.e., when (17)
applies), however, then the hedge decreases the utility
of the decision maker.

Proposition 7 considers hedging portfolios that
are increasing in Sy, and gives a sufficient condi-
tion on the decision maker’s utility function. Thus,
Proposition 7 supplements the result in Proposition 6.
Let I*(a) = arg max; {E[u(11;(I, «))]} denote the stock-
ing quantity that maximizes expected utility for a
given value of a. Also, let @ be the largest value of
a such that E_[II4(I, @) | S;] is nondecreasing in S;.
We focus attention on hedging ratios in the range

0 < @ < a because higher values of a correspond to
overhedging.

ProPOSITION 7. For any increasing, concave, and dif-
ferentiable utility function, u(-), with constant or decreas-
ing absolute risk aversion and constant or decreasing
absolute prudence, dI*/da >0 for 0 <a < a.

We relate these results to the research on the impact
of risk aversion on operational decisions, specifically
on the newsvendor model. Eeckhoudt et al. (1995)
show that the optimal inventory level for a risk-
averse newsvendor is lower than that for a risk-neutral
newsvendor under both CARA and DARA prefer-
ences. Similar conclusions are to be found in Agrawal
and Seshadri (2000a, b) and Chen and Federgruen
(2000). Propositions 6 and 7 add to the above research
by showing that financial hedging changes the opti-
mal inventory decision for a risk-averse newsvendor
under various conditions. In particular, financial hedg-
ing increases the optimal inventory level for the risk-
averse newsvendor, and brings it closer to the risk-
neutral profit-maximizing quantity. Thus, it increases
expected profit, decreases the effect of risk aversion,
and brings the market closer to efficiency.

We also note that Eeckhoudt et al. (1995) make
similar assumptions on the utility function as in
Proposition 7, and show that the optimal inventory
level decreases when an uncorrelated background risk
is added. Our result differs from their results because
the new risk X; is correlated with the investment in
inventory. Therefore, although Eeckhoudt et al. (1995)
find that optimal inventory decreases with the addi-
tion of the background risk, we find that the optimal
inventory increases with hedging.

4. Numerical Example
In this section, we quantify the impact of our method
on expected profit, risk reduction, and return on
investment using a numerical example. We show how
the benefits of hedging change with the degree of cor-
relation of demand with the price of the underlying
financial asset, with the volatility of the asset price,
and with dynamic hedging. The example is based on
sales data for computer game CDs sold at a consumer
electronics retailing chain.

We are given the following datasets.

(1) A fit sample consisting of historical monthly
forecasts and sales data for 42 items for one year
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Table 2 Results of the Estimation of Forecasting Models (18) and (19) for Item 1
Forecasting Standard
model Dataset m, m, b R? F-statistic error
Equation (18) A —117.128 1.049 0.162 0.736 296.3 19.63
17.724 0.046 0.086
B —112.273 1.059 0.157 0.628 179.8 25.302
22.844 0.059 0.111
Equation (19) A 47.51 1.029 0.626 358.3 23.291
3.136 0.054
B 47.257 1.039 0.541 252.2 28.043
3.776 0.065

Notes. (1) The F-test for each regression model is statistically significant at p < 0.001. (2) The standard

errors of the parameters are reported below the corresponding parameter estimates.

aggregated across all stores in the chain The total
number of observations is 216 because the items have
short life cycles and not all items are sold in each
month.

(2) A test sample consisting of demand forecasts
for 10 items for one month in the subsequent year.

Let t=1,...,t, denote time indices in the fit sam-
ple, and T denote the time index in the test sample,
T > t,. Let x;, and y;, respectively, denote the fore-
cast and the unit sales for item i in month ¢ aggre-
gated across all stores, and S, denote the value of
the S&P 500 index at the end of month t. We first fit
a forecasting equation to the fit sample. Then, using
the estimated parameters, we compute the optimal
inventory level, the hedging parameters, the expected
profit, and the standard deviation of profit for the test
sample.

To estimate the effect of correlation of demand with
S, on the performance variables, we perturb the fit
sample by adding independent and identically dis-
tributed (i.i.d.) errors ¢, to y;,. Let §;, = y;, + &;,. Here,
&, has normal distribution with mean 0. Results are
computed for various values of the standard devia-
tion of &, to ascertain the effect of decreasing cor-
relation of demand with S,. In this paper, we report
results for two datasets, the original dataset and the
perturbed dataset, with the standard deviation of &
equal to 15. These datasets are labeled A and B,
respectively.

To estimate the effect of the volatility of S; on the
performance variables, we consider six scenarios for
each dataset assuming that the inventory decision is
taken 1,2, ...,6 months in advance of time T. Let [
denote the lead time and T — I denote the time when

the order is placed. The longer the lead time, the
greater is the volatility of S;.

For both datasets in the fit sample, we esti-
mate the following forecasting equations using linear
regression.

(18)
(19)

Vi = my +myx; +bS, + €,
N / / /
Yir =My +1MX;; + €.

Here, the error terms, €, and €, are assumed
to be iid. normally distributed.’® The coefficients
my, my,, m;, m,, and b are assumed to be identical
across items and over time.® Note that the compari-
son between the forecasting Equations (18) and (19)
remains fair when §;, are added to y;,. Table 2 shows
the estimation results for (18) and (19). The coefficient
of S, is statistically significant (p < 0.001 in each case),
showing that (18) is more appropriate than (19) for
modeling demand. However, note that although (18)
has a higher R?, it does not imply a lower forecast
error because S, is a random variable. Thus, the bene-
fit of using (18) is that it provides a method to incor-
porate market information in forecasting demand, not
that it reduces forecast error.

We compute the volatility of the S&P 500 index
using 90 days of historical data prior to the time

® The sales of a given item at a given store may not be normally dis-
tributed, because they are truncated by the inventory level. How-
ever, normal distribution is a fair approximation for the sum of
sales across a large number of stores.

¢The coefficient b is identical across items, because we do not
expect items in the product category to have different degrees
of correlation with economic factors. Likewise, the coefficients
my, m,, my, m, are identical across items, because we do not expect
dissimilar biases in the forecasts of different items.
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Table 3 Optimal Inventory Level and Expected Profit for ltem 1 Obtained Using Forecasting Models (18) and (19) for
Each Dataset for Different Degrees of Volatility of S,
) Optimal inventory Expected profit Increase in expected profit
Lead time
Dataset / (months) Model (18) Model (19) Model (18) Model (19) Mean Standard error  Percent increase
A 1 179 153 1,299.53 1,221.66  77.87 20.41 6.37
A 2 181 153 1,274.60 1,198.19  76.41 22.62 6.38
A 3 183 153 1,250.20 1,175.55  74.65 24.11 6.35
A 4 183 153 1,226.23 1,153.56  72.66 24.34 6.30
A 5 183 153 1,202.73 1,132.09  70.63 24.98 6.24
A 6 184 153 1,179.56 1,111.04  68.52 25.55 6.17
B 1 181 155 1,270.68 1,208.27  62.41 19.88 517
B 2 182 155 1,248.83 1,186.23  62.61 21.64 5.28
B 3 183 155 1,226.83 1,164.70  62.13 23.00 5.33
B 4 184 155 1,204.84 1,143.63  61.22 24.05 5.35
B 5 184 155 1,182.90 1,122.93  59.97 24.49 5.34
B 6 184 155 1,161.00 1,102.54  58.46 24.51 5.30

of inventory decision for month T by the method
given in Hull (2002, §11.3). The volatility is given
by the standard deviation of log(S,;/S;_1), where S,
is the closing value of the index for day d. The
value of the daily standard deviation is obtained
as 1.3984%, and the annual standard deviation as
22.1982%, assuming 252 trading days in the year. The
risk-free rate of return is assumed to be 5% per year.

Optimal Inventory Level and Expected Profit.
Using the estimates of Model (18), the demand fore-
cast for item 7 in the test sample can be written as

Dy =a+bS;+¢€;r, (20)
where a = m; +m,x;;. We compute the optimal inven-
tory level and the profit with and without hedging in
this model. As a benchmark, we compute the inven-
tory level and profit for Model (19). Note that in (19)
the demand forecast for item i in the test sample is
given by m} + myx;r + €;r.

Table 3 compares the inventory levels and the
expected profits obtained using demand distributions
estimated from the two forecasting models. Results
are reported for one item in the test sample. Other
items give similar insights. We find that using (18)
instead of (19) changes the inventory decision signif-
icantly and increases the expected profit by 5.1% to
6.6% for different datasets. The values of the standard
deviation show that the increase in expected profit is
statistically significant. The reasons for the increase
are as follows.

(1) The two models use different probability distri-
butions for the forecast error. In (19), the forecast error
€;, is normally distributed, whereas in (18) the distri-
bution of the forecast error is a convolution of the log-
normal distribution of S, and the normal distribution
of €;. Because the lognormal distribution is skewed
to the right, the convolution results in a higher inven-
tory level. See Figure 5 for a Q-Q plot of the demand
distribution.

(2) In Model (18), up-to-date information from the
financial markets has been used to augment the firm'’s
historical data. Thus, forecasts based on (18) adjust to
changes in S,. When the market moves up (down), the
forecasts are revised upward (downward).

Q-Q Plot of the Demand for ltem 1 Shows that the Demand
Distribution Is Skewed to the Right

Figure 5
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Table 4

Variance of Profit with Different Hedging Strategies

Lower bound (LB)

Static hedge — LB Dynamic hedge — LB

Lead time Standard o (Static o (Dynamic
Dataset I (months) Variance error (o) Variance hedge — LB) Variance hedge — LB)
A 1 80.16 2.87 85.71 0.29 80.40 0.23
A 2 67.5 3.81 73.73 0.51 67.88 0.36
A 3 58.61 4.10 65.02 0.65 59.07 0.42
A 4 52.47 4.20 59.15 0.97 52.98 0.46
A 5 47.47 4.14 54.28 1.02 47.99 0.46
A 6 43.44 4.04 50.72 1.05 43.97 0.46
B 1 87.65 1.98 92.66 0.39 87.79 0.15
B 2 78.56 3.00 84.13 0.57 78.83 0.27
B 3 71.43 3.56 77.22 0.64 71.79 0.35
B 4 65.67 3.87 71.55 0.83 66.10 0.41
B 5 61.09 4.05 67.39 0.94 61.58 0.45
B 6 57.39 4.15 63.96 1.20 57.92 0.48

Notes. All variances are expressed as percentages of the variance of unhedged profit. The lower bound is obtained from
the minimum variance hedge in §3.1. The static hedge is identical to the heuristic hedge in §3.1. The dynamic hedge
is constructed by dynamically rebalancing the heuristic hedge once at time (T — /)/2 as new information is revealed.

By comparing the results for different values of I,
we find that Model (18) enables the decision maker to
respond to the increase in volatility of S, by increasing
the inventory level whereas Model (19) does not. Fur-
thermore, hedging gives a greater reduction of risk as
the volatility of S, increases, as shown below.

Risk and Investment. Table 4 compares the vari-
ance of unhedged profit at the optimal inventory
level with the variance of hedged profit. It compares
results from the minimum variance hedge of §3.1 and
from the heuristic hedge of §3.1 with no rebalanc-
ing of the hedging portfolio (static hedge), and with
a rebalancing of the hedging portfolio once at time
T —1/2 (dynamic hedge). Because the minimum vari-
ance hedge gives a lower bound on the variance of
hedged profit, it provides a benchmark for the static
and dynamic hedges.

The static hedge parameters, «, 8, and $,, are com-
puted as described in §3.1. The dynamic hedge is
computed by dynamic programming. Thus, at time
T —1/2, the following actions take place: (i) the asset
price Sr_;, and the preliminary forecast error, €r_;,
are observed’; (ii) the hedge parameters, (o, B,
and s,,), are computed. These hedge parameters yield

7We assume that the subjective forecast is reevaluated at time
T —1/2, and that the forecast error is a sum of two components,
€r_y, observed at time T —1/2, and e; observed at time T. Here,
we let Var[e;_;,] = Var[e;] = Var[e] /2.

Table 5 Initial Investments Required Without Hedging and With Static

Hedging for the Inventory Levels Corresponding to Tables 3

and 4

Initial investment
Lead time Without With static Percent

Dataset I (months) hedging hedging difference
A 1 3,502.58 1,573.79 55.07
A 2 3,535.56 1,484.95 58.00
A 3 3,562.47 1,449.96 59.30
A 4 3,563.47 1,424.20 60.03
A 5 3,576.19 1,417.16 60.37
A 6 3,588.22 1,417.31 60.50
B 1 3,524.59 1,761.46 50.02
B 2 3,547.35 1,675.63 52.76
B 3 3,570.36 1,634.52 54.22
B 4 3,590.07 1,613.15 55.07
B 5 3,597.64 1,596.92 55.61
B 6 3,596.34 1,582.51 56.00

the cash flows at time T — [/2. Thus, the hedge
parameters at time 0, &g, 3,, and Sy, are then com-
puted in order to hedge the cash flows at time T —1/2.

From Proposition 2, rebalancing the hedge is not
a self-financing activity, because it uses information
about €r_;,. Thus, we reinvest the cash flow at time
T —1/2 at the risk-free rate to evaluate the variance
of hedged profit at time T. Identical series of sam-
ple paths are used to evaluate all hedging strate-
gies. Many simulation runs are conducted to compute
average performance statistics and estimate the statis-
tical significance of the results.
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All figures in Table 4 are expressed as percent-
ages of the variance of unhedged profit. We find that
the lower bound on the variance of hedged profit
varies between 87.7% and 43.4%. Thus, the potential
reduction in variance that can be obtained by hedging
varies between 12.4% and 56.6%. Static hedging has a
gap of about 6% with respect to the lower bound. This
gap is statistically significant at p = 0.01. Dynamic
hedging realizes almost the full potential for variance
reduction. Its gap with respect to the lower bound
is about 0.4%, and is not statistically significant. This
performance is notable, because both dynamic and
static hedging use only two financial instruments. In
particular, the results on dynamic hedging show that
even though the decision maker is unable to modify
the inventory level after time ¢, he or she can still use
new information to manage the exposure to risk.

We further find that the percent reduction in vari-
ance increases significantly with the volatility of S,. For
example, for dataset A the percent reduction in vari-
ance under the minimum variance hedge is 20% when
I =1and 56.6% when [ = 6. Thus, hedging is more ben-
eficial when the market volatility is higher, or, equiv-
alently, when the lead time is longer. As expected,
we also find that the percent reduction in variance
decreases when demand is less correlated with S,.

Table 5 shows the initial investment in inven-
tory with and without hedging for each scenario
corresponding to Table 5. Note that hedging reduces
the initial investment by about 60% because the
inflow from the short sale of the stock offsets the
cash required for buying inventory and call options.

Furthermore, the investment decreases as the volatil-
ity of S, increases. This is surprising: We would
expect both the amount of inventory and the price
of the call option to increase with volatility, result-
ing in larger investment. We find that « increases
with volatility, however. Thus, a larger quantity of
the underlying asset is sold short, offsetting the
additional investment required in inventory and call
options.

Therefore, from Tables 4 and 5 we conclude that the
benefits of hedging increase with the volatility of S,.
Interestingly, this implies that items with longer lead
times will benefit more from hedging than items with
shorter lead times.

Risk-Averse Decision Maker. To evaluate the ef-
fect of hedging on the optimal inventory deci-
sion of the risk-averse decision maker, we assume
the expected utility representation E[u(w)] = E[w] —
pVar[w], where w denotes wealth. The value of p is
taken as 0.01. Table 6 presents the inventory levels
that maximize the expected utility for each of the 10
items in the test sample with and without hedging.
Observe that hedging increases the optimal inven-
tory level. It brings the inventory level closer to the
expected value maximizing quantity, restoring effi-
ciency in the market.

5. Conclusions

We have shown how to generate a solution to the
hedging of inventory risk using the newsvendor
model when demand is correlated with the price of

Table 6 Comparison of Optimal Inventory Level, Expected Profit, Standard Deviation of Profit, and Expected Utility for
Each Item for a Risk-Averse Decision Maker Without and With Hedging
Optimal inventory level Expected profit Standard deviation of profit Expected utility
Without With Without With Without With Without With
Item hedging hedging hedging hedging hedging hedging hedging hedging
1 159 165 1,241.92 1,288.15 82.50 89.94 1,199.37 1,235.72
2 159 165 1,286.76 1,314.75 61.97 68.18 1,248.36 1,268.27
3 159 165 1,282.37 1,311.24 61.04 68.44 1,245.11 1,264.39
4 160 164 1,285.8 1,305.33 67.40 68.67 1,240.38 1,258.17
5 158 164 1,276.8 1,306.02 64.91 74.79 1,234.67 1,250.09
6 158 162 1,276.61 1,296.39 70.19 74.87 1,227.34 1,240.33
7 163 171 1,315.53 1,340.02 60.47 53.98 1,278.97 1,310.88
8 163 175 1,322.04 1,349.92 52.85 33.29 1,294.11 1,338.84
9 165 175 1,328.63 1,350.78 55.74 19.85 1,297.56 1,346.84
10 164 176 1,326.99 1,351.23 53.48 15.85 1,298.4 1,348.72

Note. These results are obtained using the original dataset, i.e., ¢; =0.
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a financial asset. Hedging reduces the variance of
profit and the investment in inventory, increases the
expected utility of a risk-averse decision maker, and
increases the optimal inventory level for a broad class
of utility functions. Our numerical analysis shows
that hedging is more beneficial when the price of the
underlying asset is more volatile or the product has
a longer order lead time. Dynamic hedging provides
additional risk reduction even when the retailer can-
not change her initial inventory commitment.

Our forecasting model could be extended to incor-
porate macroeconomic variables such as interest rates
and foreign exchange rates that provide demand sig-
nals. It might also be customized for specific busi-
nesses by using more securities from the equities
market, such as sector-specific indices or portfolios
of firms in similar businesses. Furthermore, the evo-
lution of the price of the underlying asset may be
used to update the demand forecast and modify order
quantities even in the absence of early demand data.

An important aspect of our analysis is that the
demand risk is not fully spanned by the financial
market. Our analysis of the effects of financial hedg-
ing on operational decisions under such a scenario
may be extended to other problems that have been
considered in the real-options literature, such as pro-
duction switching (Dasu and Li 1997, Huchzermeier
and Cohen 1996, Kouvelis 1999), capacity planning
(Birge 2000), and global contracting (Scheller-Wolfe
and Tayur 1999).
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Appendix

PROOF OF PROPOSITION 2. According to Lemma 1, the
optimal hedge at time t is given by EEt[H{[(I) | S If
no additional information about € is available at time t
compared with time 0, then the optimal hedge at time ¢
equals E[II],(I) | S;]. However, E_[I17;(I) | S,] is a martingale
with respect to the filtration generated by {S,}. Thus, the
dynamic hedging strategy, E.[I115(I) | S,], is self-financing.

If, however, additional information about € is available at
time ¢, then E [IT],(I) | S,] is not a martingale with respect to
the filtration generated by {S,}. Thus, the dynamic hedging
strategy is not, in general, self-financing. O

Proor or ProrosiTioN 3. We show that if

il > Ey[E[min{S; +€, (I —a)/b| S¢}1],

then there exists a portfolio X; that is preferred to II; by
all risk-averse decision makers. Let

X; = E[min{S; +¢, (I —a)/b| S;)].

Then X7 is a strictly increasing function of S;. The newven-
dor profit function can be written in terms of X, as

Iy, =X; — I+ 6(Sy),

where E[6(S7) | X;] =E[6(S7) | S¢] =0. From the conditional
Jensen’s inequality,

E[u(Ily)] = E[E[”(XT —cl+9)| ST]] <E[u(Xr —¢D)].

Now, note that the time-zero cost of portfolio X; is X, =
e "TEy[Xr]. Thus, if

oI > Ey[E[min{S; +€, (I —a)/b| S;}]],

then investment of an amount less than e~"7¢;I in X; yields

a higher expected utility than the inventory investment.

The second part of the proposition follows from the
fact that Ey[min{S;, (I —a)/b}] and Ey[min{S;, (I —a)/b}] —
E[|€|], respectively, are upper and lower bounds on

Ey[E[min{S; +¢, (I—a)/b|S;}]]. O

PROOF OF PROPOSITION 4. Let A € ) be the Lagrangian
multiplier for the constraint E[X; — X;e’T] = 0. The decision
maker solves the problem

max E[u(W + I, (I) — X7 4+ Xpe'") + AX; — AXpe'T].

Because u is concave, the first-order conditions of optimality
are sufficient. The optimal solution is obtained by maximiz-
ing the utility function pointwise at each value of S;. Thus,
the first-order conditions are

E. [t/ (W +T1,(I) — X; + Xpe'T)] =4, (1)
E[X; — X,e'T] =0. (22)

A feasible solution to this system of equations can be
found as follows: Fix A. For each value of Sy, find X such
that (21) is satisfied. This value of X; exists and is unique
because u’' is strictly decreasing. Substitute X; into (22).
If E[X; — Xpe'T] > 0, then reduce A (and correspondingly
reduce all X;) until a solution is obtained. Otherwise,
increase A and correspondingly increase all X7.

Suppose that there exist two distinct solutions to (21)-
(22), denoted (A, X5*(A)) and (X', X5*(X')). Clearly, A = X'.
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This further shows that X;*(A) is equal to X;*(\’) almost
everywhere. Thus, the two solutions are equal except pos-
sibly on a set of measure zero. O

PrROOF OF ProrosiTION 5. The first derivative of the ex-
pected utility function evaluated at a =0 gives

E[u/(W +min{S; + €, (I —a)/b} — c;){— X7 + Xpe' " }].

Here, u/'(-) is a decreasing function of S; at « =0, and —X;+
X,e'T is also decreasing in S;. Thus, they have a positive
covariance, which gives

E[u/ (W +min{S; + €, (I —a)/b} — o, ){—X7 + Xpe'T}]
> E[u/(W +min{S; + ¢, (I —a)/b} — ¢;])]
SB[ Xp + Xpe'T]
=0,

where the last equality follows from (12). O

ProoFr oF ProPOSITION 6. The value of inventory that
maximizes E[u(I1y)] is greater than the value of inventory
that maximizes E[u(I1;;)] if

E[{u'(HH(I» - u’(nu(l))}“;—lu] - 0.

Here, we have used the fact that 9T, /I = dI1;;/dI. Let G(e)
denote the distribution function of €. Conditioning on Sy
and taking expectation with respect to €, we get

st

(I=a)/b
=—o [ () - (T (1)} dG(e)
' (I —a)/b— ;] — aXp +aXye'™™)
—u'((I—a)/b—c,I)}Pr{e>(I—a)/b—S;}.

, , Jl
B 0 (1(0) - w () 57

Consider the expectation over S; of the second term in the
above equation. We use the facts that

Prie> (I —a)/b—Sr} = Pr{e > (I —a)/b},
and that S; is independent of € to write
E[{«/((I—a)/b—c;] —aX;+ aXpe'™™) —u' (I —a)/b—c,I))
Prie> (I-a)/b— S]]
> E[{u/ (I —a)/b—c,] — aX; + aXye'™)
—u/((I = a)/b— ;1)) Pr{e > (I - a)/b}]
> [E[u/ (I —a)/b— ;] — Xy + aXpe')]
—u/' (I —a)/b—c,1)| Pr{e > (I — a)/b}. (23)
Thus, if

E[u/((I-a)/b—c;] —aXy+aXee')] =0/ (I—a)/b—c]),

then the second term is nonnegative. This inequality com-
bined with the first term gives sufficient conditions on the
hedging portfolio under which the hedged optimal inven-
tory level is larger than the unhedged optimal inventory
level.

When u(-) is CARA or DARA, then u/(-) is convex in
wealth. Thus, applying Jensen’s inequality to (23), we get

E[/ (I —a)/b— ;] — aXy+aXoe' )]~ (I—a) /b—cyI)
>u'(I—a)/b—c;1 —aB[ Xy — X' 1) =/ (I —a) /b—c,I)
=0. O

The following lemma is a standard result. It is useful for
proving Proposition 7.

LEMMA 2. Let X be any random variable, and f: R — N
be a decreasing function such that E[f(X)] = 0. Then, (i) for
any decreasing nonnegative function w(x), E[w(X)f(X)]>0;
(ii) for any increasing nonnegative function  w(x),
E[w(X)f(X)] <0.

Proor. Consider (i). Let G(X) denote the cumulative dis-
tribution function of X. Because f(x) is decreasing in x,
there exists x, such that f(x) > 0 for all x <x, and f(x) <0
for all x > x;. Then,

E[w@f(0] = [ 0@ f()dCE) + | w(x)f(x)dG()

> [0 f@)dGE + [ w) f(1 4G ()

w(x)E[f(X)]
> 0.

v

Now consider (ii). We have

Elw@f(0] = [ 0@ f(0)dCe) + | w(x)f(x)dG()

< [0l 060 + [ wir) f()dC)

w(x)E[f(X)]
0. O

IA

IA

PrOOF OF ProrPoSITION 7. Let the hedged profit be
denoted II (the subscript H is ignored for simplicity). We
need to show that d*E[u(I1)]/d] da is greater than or equal
to zero. We have

P I aI
5 Elum] = E[ w5 5 |
L am| ol
- E[E[u mSr ST]E] (24)

= B[ GBI [ 5715, - { Ry (1)

-Pr{e > (I—a)/b—ST}%}, (25)
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where (24) follows because dll/da is independent of €. For
(25), note that
all

1
ﬁz—cl+zl{e>(l—a)/b—ST}. (26)

Also note that IT is independent of € for € > (I —a)/b— Sy,
and we write
My=U—-a)/b—c] —aX;+aX,.

Finally, u”(IT) = —R 4 (I1) 2/ (IT).
Consider E [u"(IT) | S;]. Let G(e) denote the distribution
function of €. We have

E [u"(IT) | S7]
(I-a)/b—St
:/ ' (Sy + € — ] — aXy + aX,) dG(e)

+/°° W((I—a)/b— T — aXy + aXy) dG(e).
(I-a)/b—St

Because u”(-) < 0, the above expression shows that
E.[u”(IT) | S;] is negative for all S;. Furthermore, differenti-
ating E_[u”(IT) | S;] with respect to S;, we get

d p
TSTEE[” (IT) | 5¢]

(I-a)/b—S aX
=/ i u”’(ST+e—C11—aXT+aXO)<1 —a#) dG(e)
o B
= " dXT
- u"(I—a)/b—c]—aXp+aX,)a——dG(e).
(I-a)/bS1 ds;

Let
f(e,Sr)=lHe<(I—a)/b—S;} —adX;/dSy.

f() is decreasing in €. Furthermore, E_[f(-) | S;], which is
equal to the slope of E_[I1 | S;] with respect to Sy, is positive
for all a € [0, &]. Thus, f(-) is a decreasing function with a
nonnegative conditional expectation with respect to .

In addition, #”(-) > 0 because u(-) is CARA or DARA.
Furthermore, from the assumption of constant or decreasing
absolute prudence, we have that #(-) is decreasing in e.
Combining these observations and applying Lemma 2(i), we
find that E_[u”(IT) | S;] is increasing in Sy.

Consider the first term in (25): dI1/da is decreasing in Sr
and has zero expectation (due to the first condition for an
optimum with respect to a); —c,E [u”(II) | S;] is decreasing
in S; and is nonnegative for all S;. Thus, all conditions of
Lemma 2(i) are satisfied. Therefore, applying Lemma 2(i),
we find that the first term in (25) is nonnegative.

Consider the second term in (25). Here, I1; is decreas-
ing in Sr. Thus, R,(I1), t'(Ily), and Pr{e > (I — a)/b — S;}
are increasing in Sy; dIl/da is decreasing in S; and has
zero expectation. Therefore, applying Lemma 2(ii), we find
that the second term in (25) (i.e., (1/b)R,(Iy)u'(I1y) Pr{e >
(I —a)/b— S;}0I1/da) is negative.

Thus, dI*/da>0for0<a<a O
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