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In this article, we develop methods for estimating the expected time to the first loss
in an Erlang loss system+ We are primarily interested in estimating this quantity
under light traffic conditions+We propose and compare three simulation techniques
as well as two Markov chain approximations+We show that the Markov chain ap-
proximations proposed by us are asymptotically exact when the load offered to the
system goes to zero+ The article also serves to highlight the fact that efficient esti-
mation of transient quantities of stochastic systems often requires the use of tech-
niques that combine analytical results with simulation+

1. INTRODUCTION

We consider an Erlang loss system with C servers, namely the M0G0C0C queuing sys-
tem+ The arrival rate is l+ The service times are independent and identically dis-
tributed ~i+i+d+!+A typical service time is represented as the random variable S and is
assumed to have finite first and second moments that are denoted as E @S# and E @S 2# ,
respectively+ The distribution function of S is F~{!+ Define µ �10E @S# + The random
variable Se has the equilibrium distribution of S, namely Fe~ y!�µ*0

y F c~x!dx,where
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F c~ y!�1 � F~ y!+We are interested in estimating the expected time to the first loss
of a customer in this system,E @T # ,when the system starts empty at time zero and the
traffic is light+Define the load offered to this system asr�l0Cµ+The stationary prob-
abilities, pj , that there are j customers in this system are given by

pj �
1

K~C!j! �lµ �
j

, j � 0,1,2, + + + ,C,

where K~C! is the normalization constant given by

1 �
l

µ
�

1

2! �lµ �
2

�{{{�
1

C!�lµ�
C

;

see Ross @1# +
Using simulation to estimate the expected time to the first loss is straightfor-

ward under heavy traffic because a loss takes place relatively quickly+ This, how-
ever, is not the case under light and moderately light traffic conditions,which are the
cases we will discuss+ In such cases, the efficiency of a simulation can be improved
both by using stratified sampling and by continuing to simulate beyond the first loss,
using, in the latter case, the additional information of the time to empty the system
to estimate the time to first lose a customer+ Utilizing these ideas, we propose and
compare three simulation techniques as well as two Markov chain approximations
for the mean time of the first loss+

The first Markov chain approximation is an analytical approximation shown to
be asymptotically exact as traffic goes to zero+ The second approximation, which is
also asymptotically correct, requires some ~but not extensive! use of simulation+ In
particular, the simulation effort required does not grow with the decrease in traffic
intensity+ Thus, the second approximation technique is a hybrid one that combines
analytical methods with simulation+We show that even with suitable modification to
estimate the time to first loss, the three simulation techniques require exponentially
increasing time as the traffic intensity decreases+ In the crossover region between
heavy and light traffic, the second Markov chain approximation works best+ In light
traffic, both approximations work well+ Thus, the article, apart from highlighting
new approximation and simulation techniques, also serves to highlight the fact that
efficient estimation of transient quantities of stochastic systems often requires the
use of techniques that combine analytical results with simulation+

2. MARKOV CHAIN APPROXIMATION

We shall define the transition matrix of a Markov chain that plays an interesting
role in determining E @T # + For i � 0,1, + + + ,C � 1, let Wi be a random vector com-
prising i � 1 independent components with the first component distributed accord-
ing to F~{! and the rest according to the distribution Fe~{!+ Also, let WC be a
random vector having C i+i+d+ components distributed according to Fe+ Let the
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random variable A be exponentially distributed with mean equal to 10l+ Denote
the kth smallest component of Wi as Wi

@k# + Define the transition matrix

Pi, j � Pr $Wi
@i�j�1#

� A � Wi
@i�j�2# %, j � 1,2, + + + , i, 0 � i � C, (1)

Pi, i�1 � Pr $A � Wi
@1# %, 0 � i � C, (2)

Pi,0 � Pr $Wi
@i�1#

� A%, 0 � i � C, (3)

PC, j � Pr $WC
@C�j #

� A � WC
@C�j�1# %, j � 1,2, + + + ,C � 1, (4)

PC,0 � Pr $WC
@C#

� A%, (5)

PC,C � Pr $A � WC
@1# %+ (6)

In other words, given that an arrival finds i customers whose remaining service
times are i+i+d+ Fe~{!, Pi, j gives the probability that the next arrival finds j customers
in the system+ Therefore, this is the conditional probability, given that an arrival to a
stationary M0G0C0C queue finds i customers, that the next arrival finds j+Regard the
time for one transition in this chain to be the interarrival time for the M0G0C0C
system+

We shall prove a property of this Markov chain that motivated us to use it in
approximating E @T # + Define an empty-to-empty cycle as the time taken by the
Erlang loss system starting empty of customers at time 0 to return to the empty state
again+The length of this cycle has finite expectation+ Let this expectation be denoted
as E @T0,0

Q # + Let E @T0,0# be the expected time for the Markov chain starting from
state 0 to return to state 0+

Theorem 2.1:

E @T0,0
Q # � E @T0,0 # +

Proof: Call an Erlang arrival ~whether or not it enters the system! an i arrival if
there are i in the system when it arrives, i � 0, + + + ,C, and let Qi, j denote the long-run
proportion of i arrivals that are followed by a j arrival+Also, let Qj denote the pro-
portion of arrivals that are j arrivals+ Then,

Qj �(
i

Qi Qi, j + (7)

However, using the fact that the long-run conditional distribution ~given the number
in system! of remaining service times are i+i+d+ according to the equilibrium service
time, along with the fact that Poisson arrivals see time averages, it follows from the
ergodic theorem that Qi, j � Pi, j , where the Pi, j are the transition probabilities of the
Markov chain+However, then ~7! states that the Qj’s satisfy the stationary equations
of the Markov chain and, by uniqueness, must therefore equal them; that is, if the
pi ’s are the stationary probabilities of the Markov chain, then

pj � Qj ,
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as

Q0 �
10l

E @T0,0
Q #

and, for the Markov chain with an exponential time between transitions,

p0 �
10l

E @T0,0 #
+

Thus,

E @T0,0
Q # � E @T0,0 # +

�

Thus, ignoring the exponential times between transitions,what we have are two
stochastic processes: both regenerative, with one being a Markov chain with tran-
sition probabilities, Pi, j , and the other a non-Markovian process with the same states
and satisfying the property that the proportion of transitions out of i that are into j is
also Pi, j + The preceding argument then shows that their limiting state probabilities
are equal+

However, although the preceding is a nice motivating argument for using the
Markov chain to approximate the first passage time, T, it does not really say much
about whether expected first passage times ~except from the regenerative state back
to itself ! are roughly equal for the two systems+ Thus, it is not clear a priori see why
the Markov chain approximation should be particularly good in very low traffic+ To
motivate this, consider the interval @0,T # + ~Theorem 2+2 will also provide insight
into the rate of convergence of the approximation to the true value+! Let E @T0,C # be
the expected time to reach state C given that the Markov chain started in state 0+ Let
n0 be the expected number of visits to state 0 during T0,C +Let E @TC,0# be the expected
time to reach state 0 given that the Markov chain is in state C+ Let THZ be the time for
the queue to empty after the first loss of a customer+ Let Nj be the number of arrivals
to the queue that saw j customers during @0,T # and Mj be the number of arrivals that
saw j customers during @0,T � THZ# + Also, assume that supx E @S � x 6S � x#� k,
where k is finite+

Theorem 2.2:

lim
lr0

E @T #

E @T0,C #
� 1+

Proof: The proof of this theorem is in several steps and indirect+ Because T and
T � THZ are stopping times, by Wald’s equation we can equate

lE @T # � E @N0 #� E @N1#�{{{� E @NC # + (8)
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Similarly,

l~E @T #� E @THZ # ! � E @M0 #� E @M1#�{{{� E @MC # + (9)

We proceed to bound the difference between these two quantities ~i+e+, bound
lE @THZ# !+Assume that Cr� 1+Modify the queuing system once a customer is lost,
such that every customer that arrives after the loss is routed to the server that had the
maximum remaining work at the time of loss+Assume that customers are no longer
lost—there is infinite waiting space+ It can be shown that the time to return to the
empty state with this modification will be greater than the time to return to the empty
state in the original system+ In fact, to prove this, note that work for this server is at
every instant larger than the work for any server in the unmodified system+ The
expected remaining work at this server after the loss of a customer is less than or
equal to Ck, because the maximum of C nonnegative random variables is surely
less than or equal to their sum+ The utilization of this server is Cr+ By using the
expected length of a busy period in an M0G01 queue with exceptional first service
time ~see @1# !, the expected time to return to the empty state for this server is less
than Ck0~1 � Cr!+ Thus, the expected time for the system to empty is less than
Ck0~1 � Cr!+ Therefore,

lE @THZ# � l
Ck

1 � Cr
+ (10)

Using ~8!–~10!, we obtain that when Cr � 1,

�(
i�0

C

E~Mi � Ni !� � l
Ck

1 � Cr
+ (11)

We next derive the equations that the E @Mj # ’s should satisfy, namely

E @Mj # � (
i�0

C�1

Pi, j E @Mi #� PC, j E @MC # ~1 � PC,C !, j � 1,2, + + + ,C � 1, (12)

E @MC # ~1 � PC,C ! � (
i�0

C�1

Pi,C E @Mi # + (13)

These equations can be justified as follows+We shall denote an arrival that finds i
customers as an i arrival and an arrival immediately after an i arrival that finds j
customers as an ij arrival+ Let Ni, j be the number of ij arrivals during @0,T # + Let Ri

and Ri, j be the number of i arrivals and ij arrivals during the interval ~T,T�THZ# , for
i � 0,1,2, + + + ,C � 1+ Define RC to be the number of C arrivals that are immediately
followed by an arrival that sees less than C customers and define RC, j analogously+
Let ZMC be the number of C arrivals that are immediately followed by a customer that
sees less than C customers+ Clearly,
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Nj � (
i�0

C�1

Ni, j , j � 1,2, + + + ,C,

N0 � 1 � (
i�0

C�1

Ni,0 ,

Rj � (
i�1

C�1

Ri, j , j � 1,2, + + + ,C,

RC � (
i�1

C�1

Ri,C � NC ,

R0 � 1+

In the equation for RC ,we have equated transitions into state C and transitions out of
state C; thus, transitions from state C to state C ~lost customers! are not counted+
Define the cycle for the M0G0C0C queuing system that starts with an empty queue,
loses a customer, and ends with the subsequent return to the empty queue as a “Zero
to Hit to Zero” or simply a ZHZ cycle+ The last return to the empty state in a ZHZ
cycle can be written as

R0 �(
i�1

C

Ri,0 +

Now, notice that either we can count the last visit to state 0 ~i+e+, R0! or the first visit,
but not both visits in M0+ Thus, adding the above equations and using the facts that
Ri � Ni � Mi and that Ri, j � Ni, j � Mi, j , 0 � i � C � 1, we obtain

Mj � (
i�0

C�1

Mi, j � RC, j , j � 0,1,2, + + + ,C � 1,

ZMC � (
i�0

C�1

Mi,C +

The M0G0C0C system regenerates after every ZHZ cycle+ The proof of Theo-
rem 2+1 showed that the fraction of arrivals that see i customers that are followed by
an arrival that sees j customers is given by Pi, j + By the renewal reward theorem @1# ,
the rate of i arrivals is given by E @Mi #0~E @T #� E @THZ# ! ~i+e+, the expected number
of i arrivals during a ZHZ cycle divided by the expected length of a ZHZ cycle!+ Sim-
ilarly, the rate of ij arrivals is equal to E @Mi, j #0~E @T #� E @THZ# !+ The ratio of these
two quantities is the fraction of arrivals that see i customers that are followed by
an arrival that sees j customers+ Thus, E @Mi, j #� Pi, j E @Mi # , 0 � i � C+ By a simi-
lar argument, E @ ZMC #� E @MC # ~1 � PC,C !, and E @RC, j #� E @MC # ~1 � PC,C !PC, j ,
0 � j � C+ These identities yield ~12! and ~13!+
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Now, we proceed to examine the Markov chain approximation+ Consider the
equations

xj � (
i�0

C�1

xi Pi, j , j � 1,2, + + + ,C � 1,

x0 � 1 � (
i�0

C�1

Pi,0 xi +

(14)

We note that ~a! when the Markov chain starts out in state 0, xj is the expected
number of time periods spent in state j before entering C, and ~b! that ~14! can be
proven by use of Wald’s equation+ Thus, the sum x0 � x1 � {{{� xC�1 represents the
expected number of transitions minus 1, until absorption in state C, given that the
Markov chain is started in state 0+ ~The minus 1 accounts for the fact that the final
transition to state C is not counted in the sum x0 � x1 � {{{� xC�1+ The additional
one in the expression for x0 accounts for the fact that the chain starts in state 0+! For
the final step in the proof, let e denote a column vector of dimension C whose
components are equal to 1, let ej denote the unit vector again of dimension C that has
a 1 as its jth element and the rest of its elements equal to zero, let ~ !i denote the ith
component of a vector, and let Q denote the C � C matrix whose elements are Pi, j ,
i � 0,1,2, + + + ,C �1, j � 0,1,2, + + + ,C �1+ Let eT and QT denote the transposes of the
corresponding matrices+ Let ~PC, j ! denote a column vector whose components are
PC,0,PC,1, + + + ,PC,C�1+ Let ~I � QT!�1 denote the inverse of the matrix ~I � QT!+
Observe that this matrix is nonnegative due to its expansion as I�QT � ~QT!2 �{{{+
This expansion converges because the matrix Q does not include the last row and
column of the matrix P+ From ~14!,

(
j�0

C�1

xj � eT~I � QT !�1e1+ (15)

We also observe by referring to ~14! that eT~I � QT!�1ej is the expected number of
transitions minus 1 until absorption in state C when the chain is initially in state j+
Therefore, from the lower triangular structure of the transition matrix, we infer that
eT~I � QT!�1e1 is greater than eT~I � QT!�1ej for j � 0+ Thus,

CeT~I � QT !�1e1 � eT~I � QT !�1e+ (16)

From ~12!,

�(
j�0

C�1

E @Mj #� eT~I � QT !�1e1� � eT~I � QT !�1 6~e1 � ~PC, j !~1 � PC,C !E @MC # !6

� eT~I � QT !�1 6~e1 � ~PC, j !~1 � PC,C !!6

� eT~I � QT !�1~PC, j !~1 � PC,C !
Ck

1 � Cr
,

(17)
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where we have used ~10! to bound E @MC # with 1 � l~Ck0~1 � Cr!!+ The first term
on the right-hand side of ~17! is less than or equal to eT~I � QT!�1e max$1 �
PC,0,PC,1, + + + ,PC,C�1% + The second term is less than eT~I � QT!�1e~Ck0~1 � Cr!!+

From these observations, using ~16! as well as the facts that PC,0 and MC

go to 1 when l goes to 0, we obtain that eT~I � QT!�1 6~e1 � ~PC, j !~1 � PC,C !!6�
eT~I�QT!�1~PC, j !~1�PC,C !~Ck0~1�Cr!! divided by E @T0,C # also goes to 0+Thus
using ~11!, ~15!, and ~17!, we obtain the theorem+ �

It is worth noting that when the service times have the New Better than Used ~New
Worse than Used! property, then, due to the structure of the Markov chain, the ap-
proximation gives a lower bound ~upper bound! for the hitting time when the Se’s are
replaced by S’s in computing the transition matrix ~Pi, j !+ ~Anonnegative random vari-
able H is said to be New Better than Used ~New Worse than Used! if ~H�x 6H � x!�st

H ~H � x 6H � x!�st H !; see @1# +! To see this, assume that the arrival times are gen-
erated first and stored as $a1,a2, + + + ,% +Given this sequence of arrivals, the residual ser-
vice times found by arriving customers are independent random variables+Assume
that the service times have the New Better than Used property+When the first arrival
takes place, replace the residual service times by independent service times drawn from
F~{!+ Thereafter, let the system evolve as usual+ The hitting time will be stochasti-
cally smaller in this system compared to the original system ~given the sequence of
arrivals!; see, for example, @4# + Therefore, the expected hitting time will be smaller
with this modification+ By repeating this construction ~i+e+, induction over the ai ’s!,
it follows that the expected hitting time will be smaller when the service times are re-
placed each time by S’s+ The proof for the New Worse than Used case is similar+ It is
also interesting that these bounds continue to hold even when the arrival process is
not Poisson ~e+g+, see @3# for a method of establishing bounds under a “lack of an-
ticipation” assumption!+

The Markov chain approximation proves to be accurate for light traffic+ The
Markov chain approximation is, however, not quite as useful under other traffic
conditions+

From ~17!, we can visualize that the rate of convergence to the true expected
hitting time is rather slow+There are several ways in which the approximation E @T #�
x0 � x1 � {{{� xC�1 �1 can be improved+We suggest a particular modification that
proves to be robust under moderate traffic conditions+ For the Markov chain, let n0

be the expected number of times state 0 is visited during @0,T0,C # and let E @TC,0# be
the expected time to reach state 0 starting from state C+ Then, it can be shown that

n0

l~E @T0,C � TC,0 # !
� p0 (18)

~i+e+, the fraction of time the M0G0C0C system is empty!+ In other words, when we
look at the “zero to reach state C to return to zero state” cycle in the Markov chain,
the fraction of transitions into state 0 during this cycle equals the fraction of time that
the queue is empty+ ~This cycle is not identical to the ZHZ cycle in the M0G0C0C
system, but the expected fraction of time spent in each state during the two cycles are
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identical—a proof of this can be constructed following the lines of Theorems 2+1 and
2+2+!We suggest the following approximation based on this insight:

E @TC,0 #

E @T0,C #
�

E @THZ #

E @T #
, (19)

namely that the ratio of the expected time to return to the empty state to the expected
time to lose a customer are approximately equal for the queue and the Markov chain+
Based on ~19!, we obtain

E @T0,C #� E @TC,0 #

E @T0,C #
�

E @T #� E @THZ #

E @T #
+ (20)

We know that the expected length of an empty-to-empty cycle for the M0G0C0C
queue is equal to 10lp0, namely the reciprocal of the rate at which customers see an
empty queue+ By an application of Wald’s equation, the expected length of a ZHZ
cycle should equal this quantity divided by the probability of losing a customer in an
empty-to-empty cycle ~denoted by ploss!, or

E @T #� E @THZ # �
1

lp0 ploss

+ (21)

Using ~18! and ~21!, we obtain

n0

~E @T0,C � TC,0 # !
�

1

~E @T #� E @THZ # !ploss

+ (22)

Finally, combining ~20! and ~22!, we get

E @T # � E @T0,C #
1

n0 ploss

+ (23)

Note that as l goes to zero, n0 ploss tends to 1 because at most one customer is lost
before the queue empties+To see this, let n0

q be the expected number of arrivals to the
queue that see an empty system in a ZHZ cycle+ From ~21!,

n0
q �

1

ploss

+ (24)

We can show that E @TC,0#0E @T0,C # goes to zero as l becomes small+ By an applica-
tion of Wald’s equation,

E @T0,C � TC,0 # � n0 E @T0,0 # + (25)

Similarly,

E @T � THZ # � n0
q E @T0,0

Q # + (26)
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Therefore, from Theorems 2+1 and 2+2 and ~24!–~26!,

lim
lr0

n0
q

n0

� 1

n lim
lr0

n0 ploss � 1+

When the queue is lightly or moderately loaded, we can estimate ploss quite quickly
and accurately by simulation @i+e+, estimate the probability of losing a customer in an
empty-to-empty cycle ~using, e+g+,Method 1 given in Sect+ 3!# + Intuitively, the prod-
uct n0 ploss should be greater than 1 when E @T0,C # overestimates the expected hitting
time and should be less than 1 when it underestimates the expected hitting time+
Thus, this correction+

3. SIMULATION

3.1. Method 1

We let B denote the total amount of time that the system has been at capacity by time
T+ Then, B is exponential with rate l and can be used as a control variable ~because
it is clearly positively correlated with T and with N !+ Perhaps the easiest way to see
that B is exponential is to consider its hazard rate function+Think of B as the lifetime
of some item and suppose that the item has just reached age x ~i+e+, the total time at
capacity is now equal to x!+ Then, the probability that the item dies before an addi-
tional small time h elapses ~i+e+, that the total time at capacity does not reach x � h!
is just the probability that a new arrival comes within time h, namely lh+ Therefore,
the hazard rate function of B is l, implying the result; see @2# +

Let Tb be the time point at which the cumulative time at capacity is equal to b+
The raw simulation estimator is

E1 � TB +

Method 1(a). A variance reduction possibility can also be obtained if we first
generate the value of B, and, then, if B�x,we stop the simulation when the total time
at capacity is equal to x+We can then make use of antithetic variables by generating
B from a random number U and using 1 � U to obtain a second value of B+We can
then run the simulation until the total time at capacity is the maximum of the two
generated values of C and thus obtain two values of T+

3.2. Method 2

We know that

E @T # ��
0

`

E @T 6B � b#le�lb db+
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Now, if we shut off the arrivals when at capacity and let Tb be the time point at which
the cumulative time at capacity is equal to b, we can estimate E @T # by

E2 ��
0

`

Tble�lb db+

In essence, this is stratified sampling and it should work nicely in moderately heavy
to heavy traffic+ ~In light traffic, it will probably take too long because accumulating
a sufficiently large value of B in one simulation will take a long time+!The efficiency
of this method can be improved by cutting off the above integral and switching to the
first method+ Therefore, choose a value b* which need not be that large—say, b*�
20l+ Then, write

E @T # ��
0

b*

E @T 6B � b# db � E @T 6B � b* #e�lb*+

Now, generate X, an exponentially distributed random variable with rate l; set

b0 � b* � X

and estimate

E @T 6B � b* #

by Tb0
+

3.3. Method 3

Let Te denote the time from the moment of the first lost customer until the system
becomes empty, and let Be be the amount of that time in which all servers are busy+
We can write

lpC �
1 � lE @Be #

E @Te #� E @T #
+

In this expression we have used the fact that the expected number of lost customers
is the first lost customer plus the expected number of subsequent arrivals ~until the
system becomes empty! that find all servers busy+ Thus, E @T # can be obtained by a
simulation in which a run does not stop when a customer is lost, but continues on
until the system is again empty ~in light traffic, this will not take much additional
time!+ The resulting estimators of E @Be# and E @Te# will then yield, through the
preceding equation, an estimator of E @T # ; that is, if OBe and PTe are the averages of the
generated Be’s and Te’s, then the estimator, call it E3, of E @T # is

E3 �
1 � l OBe

lpC

� PTe +
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The new estimator is

E3 �
1

lpC

�
OBe

pC

� PTe +

Hence,

Var~E3 ! �
Var~ OBe !

pC
2 � Var~ PTe !� 2 Cov� OBe

pC

, PTe�
�

Var~ OBe !

pC
2 � Var~ PTe !

since Be and Te from the same run are ~intuitively! positively correlated+Hence, if the
averages are based on n simulation runs, then

Var~E3 ! �
Var~Be !

npC
2 �

Var~Te !

n
�

Var~Be !

npC
2 +

Note, on the other hand, that if T is the time of the first lost customer, then because
T is approximately exponential in light traffic,

Var~T ! � E 2 @T #

�
~1 � lE @Be # !

2

l2pC
2 +

If Var~Te! is not large, then Var~E3! should be smaller than Var~T !0n+
Method 3(a). If Var~E3! is not smaller than Var~T !0n, then we can use both E3

and T, since a single simulation run gives T, Be, and Te+

4. NUMERICAL RESULTS

In this section, we present numerical results for the 10-server loss system+ The first
set of results ~see Tables 1–3! were obtained using Erlang-8 service times+ The sec-
ond set of results were obtained using hyperexponential service times, generated
using a mixture of exponentials with rates 0+9 and 1

30
_ with probabilities 0+9 and 0+1,

respectively+All of the results are scaled such that they correspond to an arrival rate
of 1+ In Method 2, we have cut off the integral at b*� 20l+ The computations were
performed using the SUN SPARC stations network at the Stern School of Business+

From the results shown in Tables 1, 2, 4, and 5,we observe that direct simulation
of the hitting time is efficient when the traffic is relatively heavy+Although it is true
that when compared to directly simulating the hitting time, Methods 1 and 2 yield
lower standard errors for a given number of replications, a corresponding price ~higher
CPU times! is paid for this gain in efficiency+ ~As the standard error decreases with
the square root of the number of replications, the correct quantity to be used to
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Table 1. Erlang-8 Service Time:Methods 1 and 2

Direct Simulation Method 1 Method 2

Util+ % T Std+ Errora
CPU Time
~s! E1 Std+ Errora

CPU Time
~s! E2 Std+ Errora

CPU Time
~s!

20 33,031+34 335+44 4,351+30 33,667+21 341+42 4,755+54 33,512+24 150+39 12,448+30
30 1,708+39 17+04 225+45 1,738+64 17+41 245+92 1,741+85 9+40 604+50
40 297+67 2+91 39+21 297+65 2+91 42+06 299+90 1+86 96+00
50 99+18 0+96 12+96 98+83 0+93 13+95 98+72 0+65 29+00
60 49+38 0+44 6+33 48+95 0+44 6+82 48+84 0+33 12+90
70 31+09 0+26 3+93 31+16 0+26 4+29 30+74 0+20 7+40
80 22+86 0+17 2+83 22+76 0+17 3+14 22+81 0+14 5+10
90 18+60 0+13 2+26 18+43 0+13 2+52 18+53 0+11 3+80

100 16+09 0+10 1+95 15+86 0+10 2+15 16+05 0+08 3+00

aBased on 10,000 replications+

1
7
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Table 2. Erlang-8 Service Times:Method 3 and Markov Chain Approximations

Method 3 Markov Chain Approximations

Util+ % E3 Std+ Errora
CPU Time
~s! E @T #� E @T0,C #

% Error wrt
Method 2 E @T #� Eq+ ~23!

% Error wrt
Method 2

CPU Time
~s!

20 33,238+51 60+92 4,524+18 32,892+69 1+85 33,336+86 0+52 10+73
30 1,745+70 4+64 235+47 1,772+76 1+77 1,757+48 0+90 29+08
40 296+63 1+49 47+06 320+75 6+95 298+17 0+57 82+46
50 98+68 1+85 33+08 113+11 14+58 105+24 6+60 237+17
60 51+40 4+06 57+67 59+41 21+65 56+79 16+28 390+26
70 31+30 9+94 128+64 39+63 28+88 38+704 25+87 308+46
80 22+34 24+79 303+43 30+3 32+83 29+71 30+26 215+00
90 12+47 59+13 691+42 25+13 35+60 25+02 34+98 155+11

100 2+00 132+14 1,477+70 22+10 37+73 22+05 37+42 119+24

aBased on 10,000 replications+
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compare the efficiency of different methods is the product of the standard error and
the square root of the CPU times+!

Method 2 appears to be efficient under moderate loads+ In relatively light traffic
conditions, Method 3 is the most efficient+ However, it is not as efficient when the
traffic is moderate or heavy+ This is because, as can be seen from Table 3, the vari-
ance of the time it takes the system to empty after the first loss takes place ~i+e+, Te!
grows rapidly as the offered load increases+ Moreover, the simulation of Te con-
sumes a large amount of CPU time when the traffic is moderate to heavy+

We do not report results for Methods 1~a! and 3~a!+ For the examples studied by
us, these methods offer 5–10% reduction in the standard error without additional
effort ~over Methods 1 and 3, respectively!+ This does not change the relative attrac-
tiveness of the three methods, namely direct simulation is preferred under heavy
traffic,Method 2 under moderate traffic, and Method 3 or 3~a! under light traffic+

Both Markov chain approximations are tabulated in Tables 2 and 5+ Simulation
is necessary to compute the transition matrix ~1!–~6!+ In our examples, it is relatively
simple to generate a random variable having the equilibrium distribution because
they have either the Erlang or the hyperexponential distribution+ It is a harder task
when an analytical expression is unavailable for the equilibrium distribution+ In the
case when the service time distribution has finite support, the use of the rejection
technique is suggested; see Ross @2# + If care is taken to scale the service time such
that its mean is not too small, then the simulation effort which is proportional to the
maximum of 10E @S# can be kept small+

The relatively simple approximation, E @T0,C # , is surprisingly accurate for very
light traffic+ When this approximation is corrected by use of the estimate of the
probability of losing a customer in an empty-to-empty cycle @see ~23!# , it proves to
be robust, even for moderate traffic conditions+ The CPU time required to compute
E @T0,C # ranges from 12 to 16 s+ The additional time required to estimate ploss @i+e+,
required for the approximation; ~23!# is reported in Tables 2 and 5+ Thus, when the

Table 3. Erlang-8 Service Times: Intermediate Results for Method 3

Util+
% pC Be Te Var~B! Var~Te! Cov~B,Te!

20 3+79586E�05 0+1310 3+6349 1+34E�02 7+50 1+44E�02
30 0+000810388 0+1437 6+7783 1+57E�02 34+76 5+51E�02
40 0+005307549 0+2172 13+8726 3+96E�02 173+47 1+053
50 0+018384570 0+7087 29+6919 0+474458 833+64 16+04
60 0+043141838 3+0137 65+1534 8+708772 4,042+05 178+98
70 0+078740883 11+2667 140+4286 126+526716 19,492+34 1,553+23
80 0+121661064 37+6837 307+9779 1,423+543923 95,348+38 11,617+66
90 0+167963226 110+2529 655+6870 12,188+343940 430,465+56 72,374+06

100 0+214582343 284+0324 1,323+9179 80,403+295580 1,744,879+30 374,454+33
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Table 4. Hyperexponential Service Times:Methods 1 and 2

Direct Simulation Method 1 Method 2

Util+ % T Std+ Errora
CPU Time
~s! E1 Std+ Errora

CPU Time
~s! E2 Std+ Errora

CPU Time
~s!

20 39,485+71 392+60 1,654+04 38,271+43 379+83 1,886+71 39,387+15 202+79 4,493+50
30 2,623+15 25+69 110+78 2,580+69 25+62 128+06 2,605+80 16+55 270+89
40 617+78 5+65 25+93 625+38 5+65 31+05 618+05 4+17 55+07
50 282+64 2+30 11+94 280+79 2+30 13+95 279+34 1+80 22+26
60 174+86 1+29 7+35 173+71 1+25 8+62 174+23 1+04 12+78
70 130+24 0+87 5+43 128+58 0+86 6+38 127+74 0+70 9+06
80 105+41 0+65 4+39 104+75 0+65 5+22 103+59 0+55 7+15
90 88+73 0+52 3+68 88+61 0+52 4+41 88+58 0+45 6+03

100 77+75 0+44 3+22 76+55 0+44 3+81 77+06 0+38 5+26

aBased on 10,000 replications+
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Table 5. Hyperexponential Service Times:Method 3 and Markov Chain Approximations

Method 3 Markov Chain Approximations

Util+ % E3 Std+ Errora
CPU Time
~s! E @T #� E @T0,C #

% Error wrt
Method 2 E @T #� Eq+ ~23!

% Error wrt
Method 2

CPU Time
~s!

20 39,716+22 230+27 2,032+81 35,689+70 9+39 38,015+23 3+48 4+09
30 2,658+73 23+66 150+88 2,024+22 22+32 2,620+11 0+55 11+47
40 620+07 9+60 52+12 384+27 37+83 707+86 14+53 34+42
50 288+90 10+04 52+80 140+88 49+57 320+45 14+72 62+70
60 175+55 16+51 86+90 75+71 56+55 129+47 25+69 64+34
70 142+17 32+64 169+29 50+71 60+30 98+40 22+97 59+08
80 124+91 65+51 331+82 38+72 62+63 68+38 33+99 54+15
90 124+13 137+58 667+20 31+82 64+08 51+02 42+40 50+86

100 113+93 273+73 1,297+03 27+70 64+06 41+07 46+71 49+04

4Based on 10,000 replications+

1
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CPU time required to estimate this probability is factored in, the Markov chain
approximations are seen to be both efficient as well as accurate for light traffic+ ~We
have cut off the simulation when the probability of loss is within 10�7 of 1+ This is
the reason that the CPU times, reported in the last column of Tables 2 and 5, first
increase and then decrease+! Similar findings were observed for 20- and 30-server
loss systems+

In conclusion, we see that simulation Method 2 is the best to use at medium to
high utilization levels+ The second Markov chain approximation is recommended
for use at low utilization levels+
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