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Abstract

We study the expected time for the work in an M/G/1 system to exceed the level
z, given that it started out initially empty, and show that it can be expressed solely
in terms of the Poisson arrival rate, the service time distribution and the stationary

delay distribution of the M/G/1 system. We use this result to construct an efficient

simulation procedure.

1The research of Sheldon M. Ross was supported by the National Science Foundation Grant DMI-

9610046 with the University of Califorﬁia.



1 INTRODUCTION

For an initially empty M/G/1 system we determine the expected time until the work in
the system exceeds a given value z. Let, G(y),0 < y < z, denote the expected time to
exceed the level z given that the work is currently z — y. In this notation, the expected
hitting time is G(x). In section 2, we derive and invert the transform of G(y). We then
show that G(z) can be expressed solely in terms of the Poisson arrival rate, the service
time and the stationary delay distributions in the M/G/1 system. Based on the formula
derived in section 2, we provide an efficient simulation procedure for computing G (z) in
section 3. The transform of the hitting time had previously been derived by Cohen [2],
section I11.5.8 (but had not been inverted) using a method that is different than the one

used in this paper.
2 EXPECTED HITTING TIME

The arrival process of customers to the M/G/1 queue is Poisson with rate A, and the service
times are i.i.d. rv’s with finite first and second moments. The service time distribution is
denoted as F' and the service rate is denoted as u = 1/E[S]. We assume that the service
time distribution has no probability mass at 0. The utilization of the system is expressed
as p = A/u. We assume that p < 1. Let W represent a random variable that has the same
distribution as the stationary delay in the M/G/1 queue. Let S be a random variable that
is independent of W and has the distribution F. The expected length of a busy period
in the M/G/1 queue is given by E[S]/(1 — p), see Wolff [4]. An idle period followed by a
busy period will be called a cycle. The expected length of a cycle is given by (see Ross [3]

for example)

EIS)/(1-p)+1/A = ;Zl—{—p-) 1)

The M/G/1 system regenerates after the end of each cycle. Let p be the probability that
the work ever exceeds z in a busy cycle. Let ¢ be the conditional probability, given that
the work is currently z, that it will exceed z at least one more time in the same busy
cycle. _

We shall derive expressions for p and g by setting up a differential equation. A similar
equation is used later in this section to derive an expression for G(y). The formulae for
p and g are derived in Chapter III, section 8, page 551 of Cohen [2] using a different

approach.



Theorem 2.1

Pr{iz-S<W <z}

b= Pr{W < z} ’ @

Pr{W <z} - (1-p)

¢ = Pr{W < z} ®)

Proof: Let P(y) be the probability that the work does not exceed z in the busy cycle, given
that the work is currently  — y. Thus, P(0) = 1 — ¢. For 0 < y < z, we may condition

on whether or not a new customer arrives within the next Ay time units to obtain

y+Ay
P(y) = (1—AAy)P(y+ Ay)+ Ay / P(y + Ay — w)dF(u) + o(Ay).
0

Rearranging, dividing by Ay, and taking limits as Ay goes to zero, yields the equation

Y
= _AP(y) + )\/P(y —wdF(u), 0<y<ac. (4)
0

_dP(y)
dy

Let P*(s) be the Laplace Stieltjes Transform (LST) of P(y). Taking transforms of

both sides of equation (4) and rearranging gives

l—q
s = A+ AF*(s)

P (s) =

Using the known result for the LST of the stationary delay (see Cohen [2], section
I1.4.5, page 255) yields

Ply) = i:ZPr{0§W<y}.

We can directly obtain a formula for ¢ from this equation by observing that, lim,_,; P(y) =

1. Therefore, (cf: equation (3))

1=
1—q’Pr{W<cz:}' (5)

We need another equation to determine p. Observe that 1 — p is the probability that
the work does not exceed the level x during a busy cycle. Therefore, upon conditioning

on the service time of the first customer in the busy period, we can express
i
1-p = [ Ple-ydF(y) (®
0
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1~ T
= i—:—%/?r{W<x—~y}dF(y)
0

(1—-q)Pr{W+S <z}

= — 7)
Equations (3) and (7) together yield
1—p = Pr{W + S <z}
Pr{W <z}
O

Our approach for obtaining G(z) is a little indirect. We first derive a differential
equation for G(y). Second, we use this equation to determine the expected overshoot
above the level z under two different conditions, namely (i) when it takes place for the
first time in a cycle, and (ii) when it takes place after the first overshoot but in the
same busy cycle. Finally, we finish off with obtaining the value of G(z). Recall that
G(y),0 < y < z is the expected time to hit or exceed the level z given that the workload
is currently z —y. For y < z we may condition on whether or not a new customer arrives
within the next Ay time units to obtain

y+Ay

Gly) = Ay+(1—AAy)Gy+ Ay) + AAy / Gly + Ay — w)dF(u) + o(Ay).
0

Rearranging, dividing by Ay, and taking limits as Ay goes to zero, we get the equation

v
_dG(y) = 1 —/\G(y)-%—)\/G(y-u)dF(u).
0

dy

Denote the LST of G(y) as G*(s). Taking the LST of both sides of this equation we obtain
—sG*(s) + G(0) = 1/s — AG™(s) + AG™(s)F™(s)

implying that
s GO)—1/s  s(0-0p)
G"(s) = s(1=p) s— A+ AF*(s)

The last quantity in the right hand side of this equation is the LST of the stationary delay
distribution. Let I(.) stand for the identity function (I(y) = y), and o for the convolution
operation. Let H(y) = Pr{W < y}. We can invert the transform G*(s) and write

GO = [=(60)~DeHW). ®)



The value of G(0) must still be determined. We proceed to do so now. Let the work in
the system currently be z. Let A be the event that the work again exceeds = before the
end of the present busy cycle. In our notation, Pr(A) = ¢. Let V; be the expected time
to exceed « given that event A occurs. Let E[A] be the overshoot above the level z given
that event A happens. Let Vj be the expected time for the work in the system to reach
the level 0 given that event A does not happen. We also know that the expected time to
hit 0 unconditionally is z/(1 — p), i.e., it is equal to the expected length of a busy period
which begins with an exceptional service time equal to x, see for example Wolff [4]. Then

conditioning on the event A happening or not, we obtain,

x
I-p

z + E[A]
I-p

= v+ ) +-a%. (9)

Using a similar argument, G(0) equals V; if A happens, else it equals the expected time
to hit 0 plus the time G(z). Thus we get

G0) = gVt (1-gVo+(1-q)G(a). (10)
Combining equations (9) and (10) we obtain the second equation for G(0),

o) = B8 1 g)6(e). ay

Substituting the expression for G(0) from equation (11) into equation (8) (with y set equal

to ), we get

(1 —q)z — qE[A]
1—p

(1-p)G(z) = ( (- q)G(m)) Pr{W < z} — I o H(z).

Using (3) and simplifying yields

_ (A -=p)z—1I0cH(z))
Ela) = Pr{iW <z}-(1-p) (12)

The reader can verify that the expected overshoot is 1/u for the M/M/1 system. Because
there is a probability mass at zero, the expression I o H(z) should be interpreted as
z — [y Pr{W > y}dy.

Having obtained E[A] it becomes relatively simple to evaluate the expected value of
the jump above z the first time the work hits or exceeds z during a busy cycle. Denote
the expected value of the first jump as E[Ao]. From equation (3) we can determine the

average time the work is above the level z during a busy cycle, say L(z), as follows. The
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first jump contributes an expected duration of %Ll%ol to L(z). The subsequent jumps (a

geometric number of them with parameter ¢) contribute, i‘gﬁ%' Therefore,

Le) = p(l—p 1-gl-p

The ratio of L(z) to the length of a cycle (see (1)) should be the fraction of time the work
is above the level z, and must equal by PASTA, Pr{W > z}. Making this connection and

simplifying we obtain

E[Ag] = W—[w—IoH(x)]. (14)

Once again the expected value of the first overshoot equals 1/p for the M/M/1 case.

Theorem 2.2

1 (F‘—{l;pﬂl +71o H(a:))

@ = Saea T—p | 1)

Proof. The expected number of cycles necessary to hit or exceed the level z is given by
the expectation of a geometrically distributed random variable with parameter p times
the average length of a cycle, i.e., W%:p_)' The value of G(z) is this quantity minus the

expected time to hit the level zero having hit or exceeded the level z. From equation (14)

z+E[Ag

the expected time to reach level zero once having hit or exceeded the level z is T
O

Remark: For the M/M/1 queue, the value of G(z) can be explicitly given as

~(p—A i
1 — pe~(r=A)z T+

@ M= p)Zew=dz — T—p’

3 SIMULATION

In this section, we present a method that employs simulation to obtain the quantities p,
Pr{W > z}, and I o H(z) required for computing G(z). As noted earlier the expression
ITo H(z) should be interpreted as z — [ Pr{W > y}dy. This can be further simplified and

written as

IoH(z) =z — E[W]+ E[(W —z)7], (16)



where (W — z)* equals (W — z) if W > z, and equals zero otherwise. Denote the
equilibrium distribution of the service time distribution as Fe(y) = p J§ F¢(z)dz, where

F¢(y) =1— F(y). W can be represented as

where X7, Xo,... are independent random variables distributed according to Fe, and N

is independent of these X;, and is such that
Pr{N =n}=p"(1-p), n>0.
When p is small, we can estimate Pr{WW >z} by using
Pr{W >z} = p(1 — p)Fi(z) + p? Pr{W > z|N > 2}.

The term Pr{W > z|N > 2} can be estimated by simulating N conditional on it being
at least 2 (which can be accomplished by generating a geometric with parameter 1 — pA

and then adding 1 to this generated value) and then simulating X1,..., Xn-1 according

to F.. If }:?;‘11 X; = s, then the estimate of Pr{W > z} from this run is
p(1 — p)FE(z) + p°F(z — s).

The quantity Pr{WW + S > z} can be similarly estimated. To estimate E[(W —z)"] we

use a similar representation:
E[(W — 2)*] = p(1 = p)BI(X — 2)*] + p*E[(W - 2)*|N > 2]

and use simulation to estimate the latter conditional expectation.

When p is not particularly small we recommend a different simulation procedure. With

the same notation as in the preceding, let
n ,
M(z) = min{n : ZXi > z}.
=1
Since

Pr{W > z|M(z)} = Pr{N > M(z)|M(z)} = M@

it follows that p™({® is an unbiased estimator of Pr{W > z}. By then generating a

service time random variable S, we can use the same data to estimate Pr{W + S5 > z}

by pM@=%) where M(y) should. be taken to equal 0 when y is negative.
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To estimate E[(W —z)"], let

M(z)
0= Z X; — .
=1

Using the lack of memory property of N gives

E[(W —z)¥] = E[W —z|N > M(z)]Pr{W > z}
= E[O+ E[W]|N > M(z)|Pr{W > z}
= Pr{W > z}(E[W]+ E[O|N > M(z)]).

To estimate E[O|N > M (z)] perform n simulation runs, where a simulation run generates

the value of M (z). Imagine that we had also generated the random variable N in each
run, and let I; be the indicator for the event that N > M(z) in the i** run. Then, with

O; being the value of O in the i** run, it follows from the strong law of large numbers that

O\ +...4+ 0,1,
L+...+1,

is a consistent estimator of E[O|N > M (z)]. However, since N is independent of M (z), it
is intuitively clear that replacing I; in the preceding by its conditional mean given M;(z),
the value of M(z) obtained in the i** run, should result in an improved estimator. As a
result, we suggest the estimator

) Oipile)

Soieg pMiE)
We now argue that this too is a consistent estimator of E[O|N > M(z)]. To see this,

note that dividing the numerator and denominator by n shows that, with probability 1,

L, 0" _ El0pME)]

e A R P E]

whereas
lim 2,00 _ E{O1]
nmoo 3R L E[I)C

Since E[pM(®)] = E[I], consistency will follows if we can show that

E[0I] = E[0pM®)].



This is shown as follows:

E[0I] = E[E[OI|M(z)]]
— E[E[0O|M(2)|E[I|M(z)]] since given M(z), I and O are independent
= E[pM® E[0|M(z)]]
= E[E[0pM®|M ()]

= BlopM@)]

thus showing that our suggested estimator is consistent.

It is intuitive that the quality of our suggested estimator should be roughly the same
for all z; what does vary with z is the time to generate a simulation run - that is, the
time to generate M(z). However, since M(z) is equal to 1 plus the number of renewals
by time z of the renewal process having interarrival distribution F,, it follows from the

elementary renewal theorem that

z _ 2E[S]z
E[X] ™ E[SY°

Therefore, the computational effort grows linearly in z. Please see Asmussen and Ru-
binstein [1] for a discussion on the computational complexity of simulating rare events.
Simulation results obtained using our suggested procedure are shown in Table 1, along
with those computed using the direct approach of simulating the M/G/1 queue. The sim-
ulations were coded in f77, and executed on a SUN SPARC station. As anticipated, for
the same number of runs, the cpu time grows exponentially with z when simulating the

M/G/1 queue, whereas, only linearly when using the suggested procedure.
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Direct Simulation

Suggested

Service Time Server of M/G/1 Queue Simul. Procedure
Distribution | Utilization z n G(z) | cpu (sec) | Std. Err. G(z) | cpu (sec)
Exponential 0.909 | 0.5 50,000 1.697 0.35 0.0077 1.686 0.46
with rate 1.1
2.0 50,000 5.771 1.77 0.0252 5.677 0.77
16.0 | 50,000 | 297.314 32.19 1.2202 | 298.969 3.58
Sum of 5 Exp. 0.900 | 0.5 | 500,000 1.183 15.87 0.0017 1.180 21.8
with rates 3.66,
10.11, 4.7, 2.0 | 500,000 6.665 80.37 0.0088 6.60 58.11
6.7 and 6.0.
16.0 | 500,000 | 924.611 | 11100.10 1.2477 | 923.145 219.20

Table 1: Comparison of Simulation Procedure with Direct Simulation of Queue
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