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In this paper we study how the time-series structure of the demand process affects the value of informationsharing in a supply chain. We consider a two-stage supply chain model in which a retailer serves auto-
regressive moving-average (ARMA) demand and a manufacturer fills the retailer’s orders. We characterize three
types of situations based on the parameters of the demand process: (i) the manufacturer benefits from inferring
demand information from the retailer’s orders; (ii) the manufacturer cannot infer demand, but benefits from
sharing demand information; and (iii) the manufacturer is better off neither inferring nor sharing, but instead
uses only the most recent orders in its production planning. Using the example of ARMA(1,1) demand, we find
that sharing or inferring retail demand leads to a 16.0% average reduction in the manufacturer’s safety-stock
requirement in cases (i) and (ii), but leads to an increase in the manufacturer’s safety-stock requirement in (iii).
Our results apply not only to two-stage but also to multistage supply chains.
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1. Introduction
In this paper, we examine how the value of shar-
ing demand information in a supply chain depends
on the time-series structure of the demand process.
The question is motivated by the work of Lee et al.
(2000) and Raghunathan (2001), who study the value
of information sharing in a two-stage supply chain
model consisting of a single retailer and a manu-
facturer. In their model, the retailer serves an AR(1)
demand with a nonnegative autocorrelation coeffi-
cient, and places orders with the manufacturer using
a periodic-review order-up-to policy. Both the manu-
facturer and the retailer know the parameters of the
demand process; however, the retailer might choose
not to share information about the actual realizations
of demand with the manufacturer.
Lee, So, and Tang (hereafter referred to as LST) ana-

lyze this model and conclude that information shar-
ing results in significant inventory reduction and cost
savings to the manufacturer. However, they qualify
their results by noting that information sharing could
be less valuable if the manufacturer uses the historical

stream of orders from the retailer to forecast demand.
Raghunathan (2001) further develops this idea and
shows that the value of information sharing indeed
decreases monotonically with each time period, con-
verging to zero in the limit, under AR(1) demand with
a nonnegative autocorrelation coefficient.
In this paper, we extend the results of Raghunathan

to cases in which demand is generated by a higher-
order autoregressive process, viz., a finite-order
autoregressive process (AR�p�, p ≥ 1) or an autore-
gressive moving-average process (ARMA�p� q�, p≥ 1,
q ≥ 1). This extension is valuable to managers for two
reasons: First, real-life demand patterns often follow
higher-order autoregressive processes due to the pres-
ence of seasonality and business cycles. For example,
the monthly demand for a seasonal item can be an
AR(12) process. More general ARMA processes are
found to fit demand for long lifecycle goods such as
fuel, food products, machine tools, etc. as observed in
Chopra and Meindl (2001) and Nahmias (1993). Sec-
ond, recent research has shown that ARMA demand
processes occur naturally in multistage supply chains.
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For example, Zhang (2004) studies the time-series
characterization of the order process for a decision
maker serving invertible ARMA demand and using
a periodic-review order-up-to policy. He proposes the
“ARMA-in-ARMA-out” principle, i.e., if demand fol-
lows an ARMA�p� q� process, then the order process
is asymptotically an ARMA�p�max�p� q − l�� process,
where l is the replenishment lead time. Thus, it is of
interest to know whether the results on the value of
information sharing under AR(1) demand extend to
general autoregressive moving-average processes.
We make the following contributions in this

paper: First, we give a time-series characterization
of the retailer’s order process when demand fol-
lows a noninvertible ARMA process and an order-
up-to policy is used.1 We find that a noninvertible
ARMA�p� q� demand process leads to a noninvertible
ARMA�p� p + q� order process. This characterization
is exact for both finite and infinite time horizons. It
is also necessary for analyzing the value of informa-
tion sharing in a supply chain because of our finding
that even when demand is an invertible ARMA pro-
cess and Zhang’s results are used, the orders can be
a noninvertible ARMA process. In such cases, results
for noninvertible demand will be required to charac-
terize the order process in a multistage supply chain.
Second, we determine conditions on the parame-

ters of the demand process under which the retailer’s
demand history can be inferred from the retailer’s
orders. In such situations, we say that the demand
is inferable. Our definition of inferability differs from
that of invertibility of demand: Invertibility implies
forecasting demand from historical values of demand,
while inferability implies forecasting demand from
historical orders. Using this characterization, we
obtain a rule by which a decision maker can deter-
mine when information sharing is useful in the
supply chain and when using historical order infor-
mation suffices. Consider the application of this rule
to AR(1) demand. Raghunathan (2001) proves that the
retailer’s demand can be inferred from the retailer’s
order process for AR(1) demand with autocorrela-
tion coefficient, 	, greater than or equal to zero. We
show that Raghunathan’s insight that the value of
information sharing tends to 0 as time t goes to
infinity extends to the case when 	 ∈ �−0�5�0�, but
does not carry over when 	 ≤ −0�5. Thus, even for
AR(1) demand, information sharing can be valuable
if 	 ∈ �−1�−0�5�.
Third, we numerically quantify the benefit to the

manufacturer from the retailer’s demand informa-
tion using the example of ARMA�1�1� demand.

1 Informally, invertibility is the property by which we can deter-
mine the underlying driving process (i.e., the white noise in the
demand process) by observing the output process generated by it
(in this case, the historical demand process).

In this part of the paper, we only assume that
the manufacturer has access to demand informa-
tion, but we do not distinguish whether there is
sharing of demand information between the retailer
and the manufacturer, or whether the manufacturer
infers demand information from the retailer’s histori-
cal orders. We find that when the autoregressive and
moving-average coefficients have the same sign, the
use of downstream demand information leads to a
16.0% average reduction in the standard deviation
of the manufacturer’s lead-time demand, and hence
in the manufacturer’s safety-stock requirement.2 In
these cases, the benefit of demand information is
often much higher under ARMA�1�1� demand than
under AR(1) demand, and is increasing in the magni-
tudes of the autoregressive and moving-average coef-
ficients. On the other hand, when the autoregressive
and moving-average coefficients have opposite signs
and demand is not invertible, downstream demand
information can lead to an increase in the standard
deviation of the manufacturer’s lead-time demand. In
such cases, we find that the manufacturer is better
off treating the retailer’s orders as an independent
noninvertible ARMA process, and forecasting lead-
time demand using only the most recent p orders.
Our results in this part of the paper, together with
our results on the inferability of demand, help clas-
sify all pertinent cases: those in which there is value
to sharing demand information, cases where inferring
demand information is beneficial, and those in which
the manufacturer is best served by treating the order
process as an independent noninvertible time-series.
Information sharing can be valuable in a supply

chain for various reasons. Chen (2003) reviews the
research on this topic for different supply chain mod-
els. For example, Cachon and Fisher (2000) analyze
the ability of a warehouse to make better ordering
and allocation decisions using downstream inven-
tory information in a one-warehouse multiretailer sys-
tem. Chen (1998) analyzes the cost difference between
echelon-stock and installation-stock ordering policies
in a serial supply chain, where the echelon-stock pol-
icy is made possible by availability of downstream
information. Gavirneni et al. (1999) study the effect
of demand information in the context of a retailer
using an �s� S� policy in a two-stage serial supply
chain. Aviv and Federgruen (1998) quantify the value
of information sharing and vendor-managed inven-
tory in a decentralized one-supplier multiretailer sys-
tem. While the above papers consider stationary
demand, Graves (1999) considers a serial supply chain

2 This average is taken over the following set of values of 	 and
�� �	� < 1, ��� ≤ 2. Here, 	 and � denote the autocorrelation and
moving-average coefficients, respectively, as defined in §2. The lead
times are assumed to be two time periods.
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with ARIMA�0�1�1� demand, and shows that the
demand process for the upstream stage is also of the
ARIMA�0�1�1� form, but is more variable than for
the downstream stage. Similar to Raghunathan’s con-
clusion, Graves finds that there is no benefit from
letting the upstream stages see exogenous demand
in this model. Our paper adds to this literature by
addressing the question of the value of information
sharing under ARMA demand, and identifying cases
in which there is value from information sharing or
inferring demand.
The rest of this paper is organized as follows. Sec-

tion 2 introduces the model setup; §3 presents the
time-series characterization of the retailer’s order pro-
cess given the demand process; §4 provides condi-
tions on the parameters of the demand process under
which demand can be inferred from the order process;
§5 investigates the value of sharing demand infor-
mation in the supply chain; and §6 summarizes the
implications of our results.

2. Model Setup
The model setup and assumptions are the same as
those of LST (2000) and Raghunathan (2001) except
for the assumptions about demand. We consider a
supply chain with one retailer and one manufacturer.
At discrete time periods, t = 0�1�2� � � � � the retailer
faces external demand, Dt , for a single item. Let Dt

follow an ARMA�p� q� process,

Dt = d+	1Dt−1+	2Dt−2+ · · ·+	pDt−p + �t

−�1�t−1−�2�t−2− · · ·−�q�t−q� (1)

where �t is a sequence of uncorrelated random vari-
ables with mean zero and variance �2, and 	1� � � � � 	p

and �1� � � � ��q are known constants. If p= 1 or q = 1,
we drop the respective subscript and denote the
parameter simply as 	 or �.
We assume that Dt is covariance stationary, that is,

E�Dt� exists and is constant for all t, Var�Dt� is finite,
and the covariance of Dt and Dt+h depends on h but
not on t. Let the cumulative error at time t be defined
as �t = �t −�1�t−1−�2�t−2− · · ·−�q�t−q .
Let the replenishment lead times from the external

supplier to the manufacturer, and from the manu-
facturer to the retailer, be L and l periods, respec-
tively. In each period t, the retailer satisfies demand
Dt from its on-hand inventory with complete backlog-
ging of excess demand. Then, the retailer places order
Yt with the manufacturer. The manufacturer satisfies
this order from its own on-hand inventory, also with
complete backlogging (see Chen 2003). The shipment
of this order is received at the retailer at the begin-
ning of period t + l + 1. The sequence of events at
the manufacturer is similar. The manufacturer places

its orders with an external supplier with ample stock
to replenish its own inventory. We assume that both
the retailer and the manufacturer use myopic order-
up-to inventory policies where negative order quanti-
ties are allowed, and d is sufficiently large so that the
probability of negative demand or negative orders is
negligible.
With respect to the information structure, we as-

sume that the parameters of the demand process
are common knowledge to the retailer and the man-
ufacturer, but the demand realizations are private
knowledge to the retailer. When there is no informa-
tion sharing, the manufacturer receives an order of Yt

at the end of time period t from the retailer. On the
other hand, when there is information sharing, the
manufacturer receives the order Yt as well as infor-
mation about Dt at the end of time period t from the
retailer.
Because the choice of time 0 is arbitrary, we shall

define the demand process for t = 0�±1�±2� � � � �
Also, we denote an infinite sequence of real numbers,
such as � � � � a−2� a−1� a0� a1� a2� � � � � by �aj�. An infinite
sequence is said to be absolutely summable if the limit
limn→�

∑n
j=−n �aj � is finite. The following properties of

a time-series process are useful; see Fuller (1996) or
Box et al. (1994).
Property 1. Dt is covariance stationary if and only

if it can be expressed as an infinite moving average
of ��t�, Dt =

∑�
j=0 aj�t−j , where �aj� is an absolutely

summable sequence of real numbers.
Property 2. Dt is invertible if and only if all the

roots of the equation formed by the coefficients of
lagged �t terms,

mq −�1m
q−1−�2m

q−2− · · ·−�q = 0�
are less than one in absolute value.

3. Computation of the Order Process
To derive expressions for the order process, Yt ,
we consider the following alternative representation
of Dt . Let D�t� denote the p-vector �Dt�Dt−1� � � � �
Dt−p+1�′, �t denote the p-vector ��t�0� � � � �0�′, and P be
the p× p matrix (

	1 · · · 	p

Ip−1 0p−1

)
�

where Ip−1 is a p− 1× p− 1 identity matrix and 0p−1
is a column of p − 1 zeros. Also let e = �1�0� � � � �0�′

be a p-vector with 1 in the first row and 0’s in the
remaining p− 1 rows. Then,

D�t� = de+PD�t− 1�+ �t

= d
k−1∑
i=0

Pie+PkD�t− k�+
k−1∑
i=0

Pi�t−i
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for k ≥ 1. Particularly, Dt can be expressed as a func-
tion of D�t− k� for k≥ 1 and arbitrary t as follows:

Dt = Pk�1��D�t− k�+ d
k−1∑
i=0

P i
�11� +

k−1∑
i=0

P i
�11��t−i� (2)

where Pk�1�� is the first row and Pk
�ij� is the ijth element

of the matrix Pk.
Because we are interested in the retailer’s order

quantity to the manufacturer when lead time equals l,
consider the total demand over the lead time,

l+1∑
k=1

Dt+k =
l+1∑
k=1

(
Pk�1��D�t�+ d

k−1∑
i=0

P i
�11� +

k−1∑
i=0

P i
�11��t+k−i

)
�

The conditional expectation of
∑l+1

k=1Dt+k given
Dt�Dt−1� � � � is

mt = E

[ l+1∑
k=1

Dt+k

∣∣∣Dt�Dt−1� � � �
]

=
l+1∑
k=1

(
Pk�1��D�t�+ d

k−1∑
i=0

P i
�11�

)

+E

[ l+1∑
k=1

k−1∑
i=0

P i
�11��t+k−i

∣∣∣Dt�Dt−1� � � �
]
�

Here,
∑l+1

k=1
∑k−1

i=0 P
i
�11��t+k−i can be expressed as a linear

function of �t−q+1� � � � � �t� �t+1� � � � � �t+l+1. It is clear that
E��s �Dt�Dt−1� � � ��= 0 for t + 1≤ s ≤ t + l+ 1 because
demand in periods t + 1 through t + # + 1 has not
been observed. However, the problem of estimating
E��s �Dt�Dt−1� � � �� for t− q+1≤ s ≤ t remains because
demand in those periods has been observed and
therefore gives some information about these error
terms. In this estimation problem, given data from
time 1 until time t, there are t unknowns, namely,
�1� � � � � �t , whereas only t − q equations, namely, the
ARMA equations for Dq+1� � � � �Dt .3

Because we consider noninvertible demand pro-
cesses, we assume that the conditional expectations
of the most recent q error terms, �t−q+1� � � � � �t , are
set to zero. When demand is invertible, an alterna-
tive assumption used in the time-series literature is to
set the conditional expectations of �1� � � � � �q to zero,
and estimate the remaining error terms recursively by
using the observed demand data. Under this alterna-
tive assumption, the estimate of �t converges almost
surely to the true value as t tends to infinity for
invertible demand, but is not a convergent series for
noninvertible demand (see Fuller 1996, pp. 79–93).4

3 The ARMA equations for D1� � � � �Dq cannot be used because they
contain the terms D−p+1� � � � �D0, which are also unknown.
4 Fuller (1996) also describes other forecasts for covariance-
stationary invertible time-series that differ in their finite sample
properties, but lead to the same asymptotic convergence.

Zhang (2004) provides a time-series characterization
of Yt under this alternative assumption. We refer to
the computation of the order process by Zhang for
invertible demand as “Zhang’s approach” (set the first
q error terms equal to zero), and the method proposed
by us for noninvertible demand as “our approach”
(set the last q error terms equal to zero). We dis-
cuss and compare the results from the two approaches
in §5.
We note that our approach gives the same results

as Zhang when demand is AR�p�. Additionally, our
approach can also be used as an alternative to
Zhang’s approach when Dt is invertible. Thus, in
this section and §4, we do not explicitly require the
demand process to be noninvertible.
Therefore, we have

mt = E

[ l+1∑
k=1

Dt+k

∣∣∣Dt� � � � �Dt−p+1

]

=
l+1∑
k=1

(
Pk�1��D�t�+ d

k−1∑
i=0

P i
�11�

)
�

Likewise, the conditional variance of
∑l+1

k=1Dt+k given
Dt� � � � �Dt−p+1 is

vt = Var
[ l+1∑
k=1

Dt+k

∣∣∣Dt� � � � �Dt−p+1

]

= Var
[ l+1∑
k=1

k−1∑
i=0

P i
�11��t+k−i

∣∣∣Dt� � � � �Dt−p+1

]
�

The covariance stationarity of �t implies that vt can
be written as vt =C�2, where C is a positive constant
independent of t. In the case of AR�p� demand, we
obtain the following closed-form expression for vt :

vt = �2
l+1∑
k=1

(k−1∑
i=0

P i
�11�

)2
�

Now consider the retailer’s ordering decision. Let
St denote the retailer’s order-up-to level in period t.
Then,

Yt =Dt + St − St−1�

where

St =mt + z�
√
C

for some critical fractile z. The value of z depends
on the desired service level and the distribution of �t .
Because �t is assumed to be independent of mt , the
value of z is independent of mt . Thus, the retailer’s
order quantity at time t can be written as

Yt =Dt +
l+1∑
k=1

�Pk�1���D�t�−D�t− 1���� (3)
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Let
∑l+1

k=1 P
k�1�� be denoted by the vector �'1� � � � �'p�.

Using this, (3) can be expressed as

Yt = �1+'1�Dt − �'1−'2�Dt−1− �'2−'3�Dt−2

− · · ·− �'p−1−'p�Dt−p+1−'pDt−p� (4)

The following properties of Yt follow from this
equation.

Theorem 1. (i) If Dt is covariance stationary, then Yt

is covariance stationary. (ii) If Dt is ARMA(p� q), then
Yt is ARMA(p�p+ q). In particular, if Dt is AR(p), then
Yt is ARMA(p�p).

Proof. From (4), Yt can be written as a moving
average of �Dt�,

Yt =
p∑

j=0
bjDt−j �

where b0 = 1 + '1, bi = 'i − 'i+1 for 1 ≤ i ≤ p − 1,
and bp = 'p. Because �bj � is a finite sequence, it is
absolutely summable. Further, from Property 1, Dt

can be written as a moving average of ��t� with
absolutely summable coefficients. Thus, (i) follows by
Fuller (1996, Corollary 2.2.2.2, p. 34).
To prove (ii), let � denote the backward shift oper-

ator, i.e., �Dt = Dt−1. Also, let )��� = 1 − 	1� −
	2�

2−· · ·−	p�
p, *���= 1−�1�−�2�

2−· · ·−�q�
q ,

and +���= �1+'1�− �'1−'2��− �'2−'3��
2− · · ·−

'p�
p. Using )��� and *���, we rewrite the demand

process (1) as

Dt =)−1��� · �d+*��� · �t�� (5)

Similarly, using +���, we rewrite the order pro-
cess (4) as

Yt = +��� ·Dt� (6)

Substituting from (5) into (6), we get Yt = +��� ·
)−1��� · �d+*��� · �t�, and thus,

)��� ·Yt = d++��� ·*��� · �t� (7)

Because +��� · *��� is a polynomial of degree
p+ q, we find that Yt is an ARMA�p� p + q� pro-
cess. The result for AR�p� demand follows by setting
*���= 1. �

3.1. Demand Propagation in the Supply Chain
Theorem 2 applied iteratively to a multistage sup-
ply chain shows that, if the demand at the lowest
stage (numbered as the first stage) is ARMA�p� q��
and all players in the supply chain use an order-
up-to policy, then the demand at the kth stage is
ARMA�p� �k − 1�p + q�. For example, even when the
retailer’s demand is AR(1), the dependent demand for
components and subassemblies at the kth upstream

level in the supply chain is an ARMA�1� k� process. In
addition, as demand progresses upstream in a supply
chain, the coefficients of its autoregressive component
are preserved.
To see this, note that if Dt is AR�p�, then Yt has the

representation

Yt = d+
p∑

i=1
	iYt−i + �1+'1��t

−
p−1∑
i=1

�'i −'i+1��t−i −'p�t−p� (8)

Alternatively, if Dt is ARMA�p� q�, then Yt has the
representation

Yt = d+
p∑

i=1
	iYt−i ++��� ·*��� · �t� (9)

In either case, the coefficients of lagged Dt terms
in (1), 	i, appear again in (8) and (9) as the coefficients
of lagged Yt terms. Further, the coefficients of �t terms
in (8) and (9) are obtained by multiplying the orig-
inal coefficients of �t in Dt represented by the poly-
nomial *��� with the coefficients of Dt terms in (4)
represented by +���. Because *��� is a polynomial
of degree q and +��� is a polynomial of degree p, Yt

contains p+ q lagged �t terms. Therefore, Yt has the
same autoregressive component as Dt and a higher-
order moving-average component.

4. Inferring Dt from Yt
In this section, we use the characterization of the
order process in §3 to show the conditions under
which it is possible for the manufacturer to infer Dt

accurately simply by observing Yt . In brief, (4) gives
a rule by which the retailer can determine its order
quantity after observing the demand realization in
each period. However, this equation may also be used
to express the demand process, Dt , in terms of histor-
ical values of the order process, Yt . We state this as a
definition.
Definition 1. Demand process �Dt� is inferable

from �Yt�, or simply that Dt is inferable, if the manu-
facturer’s forecast of Dt obtained by observing Yt con-
verges almost surely (i.e., with probability 1) to the
actual realization of Dt as t tends to infinity.
When Dt is inferable, there is no need to share

demand information between the retailer and the
manufacturer; when Dt is not inferable, the manu-
facturer may benefit from sharing of the retailer’s
demand information. Let Y�t� denote the p-vector
�Yt�0� � � � �0�′ and A be the p× p matrix '1−'2

1+'1
· · · 'p

1+'1

Ip−1 0p−1

 �
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Then, from (4), D�t� can be written as

D�t� = AD�t− 1�+ 1
1+'1

Y�t�

= AkD�t− k�+ 1
1+'1

k−1∑
i=0

AiY�t− i�

for k ≥ 1 and t = 0�±1�±2� � � � � Therefore, for t ≥ p,
Dt can be expressed in terms of the historical values
of �Yt� and initial vector D�p− 1� as

Dt =
p∑

j=1
A

t−p+1
�1j� Dp−j +

1
1+'1

t−p∑
k=0

Ak
�11�Yt−k� (10)

where Ak
�ij� is the ijth element of the matrix A

k. Sup-
pose that the manufacturer has a possibly noisy esti-
mate, D̃�p − 1�� of the initial vector. Using this esti-
mate, the manufacturer can compute an estimate, D̃t�
of the demand at time t using (10). The manufac-
turer’s estimate of the retailer’s demand converges to
the true value over time if the contribution of the ini-
tial vector, D̃�p− 1�, to D̃t tends to zero as t goes to
infinity. The following theorem provides the condi-
tions under which this happens.

Theorem 2. Dt is inferable from Yt , that is, indepen-
dent of the choice of D̃�p− 1�, D̃t converges to Dt almost
surely as t goes to infinity, if the roots of the equation

�1+'1�m
p − �'1−'2�m

p−1

− �'2−'3�m
p−2− · · ·−'p = 0 (11)

are less than one in absolute value.

Proof. Please see the appendix. �

Thus, Theorem 2 gives a rule by which a manu-
facturer can determine whether it can accurately esti-
mate the retailer’s demand from historical orders. If
Dt is inferable, then the manufacturer can forecast
its lead-time demand,

∑L+1
k=1 Yt+k, by applying (4) and

(10) recursively. The result in Theorem 2 implies that,
even without explicit demand information from the
retailer, the manufacturer’s forecast of its lead-time
demand converges to the same value as if there were
complete information sharing between the retailer
and the manufacturer. Therefore, the need for informa-
tion sharing diminishes as t increases if the roots of (11)
are all less than 1 in absolute value.
In the case of AR�1� q� demand, Theorem 2 reduces

to the following result.

Corollary 1. Let Dt be AR�1� q� with the represen-
tation Dt = d + 	Dt−1 + �t − �1�t−1 − · · · − �q�t−q , where
�	� < 1 and �t are uncorrelated �0��2� random variables.
Then, Dt is inferable for all l if and only if 	 ∈ �−0�5�1�.

Proof. When Dt is AR�1� q�, (4) reduces to Yt =
�1 + '1�Dt − '1Dt−1, where '1 = 	 + 	2 + · · · + 	l+1,
and has the characteristic equation �1+'1��−'1 = 0
with the unique root �= '1/�1+'1�. Thus, from The-
orem 2, Dt is inferable if and only if∣∣∣∣ '1

1+'1

∣∣∣∣=
∣∣∣∣	�1−	l+1�
1−	l+2

∣∣∣∣< 1�
This gives us two inequalities:

−1< 	�1−	l+1�
1−	l+2 < 1�

The second inequality gives 	− 	l+2 < 1− 	l+2, which
is true for all 	 < 1. The first inequality gives −1 +
	l+2 <	−	l+2, which is rewritten as

2	l+2−	< 1� (12)

The left-hand side achieves its largest value when
l= 0. Thus, Dt is inferable for all l if and only if 2	2−
	< 1, which implies that 	 ∈ �−0�5�1�. �

Remark 4.1. In Corollary 1, consider the cases of
even and odd values of l separately. For l odd,
inequality (12) holds for all 	 ∈ �−1�1�, so that Dt is
inferable for all 	 ∈ �−1�1�. For l even, the left-hand
side of (12) is decreasing in l. Thus, for l even, the
range of values of 	 for which Dt is inferable increases
as l increases. For example, when l= 2, Dt is inferable
for all 	 ∈ �−0�64�1�, when l= 4, Dt is inferable for all
	 ∈ �−0�72�1�, and so on.
Remark 4.2. Raghunathan (2001) showed that for

AR(1) demand with 	 ≥ 0, the value of informa-
tion sharing declines monotonically as t increases and
tends to 0 as t tends to infinity. Corollary 1 extends
this result to the case when 	 < 0. It shows that his
result extends to the case when 	 ∈ �−0�5�0�, but not
to the case when 	≤−0�5. Negative autocorrelation of
demand can arise when the demand is generated by a
process with negative feedback, e.g., due to high-low
pricing in supermarkets, or due to technological evo-
lution leading to business cycles in the semiconductor
industry. Thus, even for AR(1) demand, information
sharing can be valuable in such cases.
Remark 4.3. For general ARMA(p� q) demand pro-

cesses, the property of invertibility gives a simple
method for verifying the condition in Theorem 2.
Recall the definition of invertibility in Property 2.
For Yt , the coefficients of lagged �t terms are obtained
by applying the backshift operator polynomials, +���
and *���, as in (7). Define +̃�m� = �1 + '1�m

p −
�'1 − '2�m

p−1 − �'2 − '3�m
p−2 − · · · − 'p and *̃�m� =

mq − �1m
q−1 − �2m

q−2 − · · · − �q . Then, Yt is invertible
if and only if the roots of the equation

+̃�m�·*̃�m�

=[�1+'1�m
p−�'1−'2�m

p−1−�'2−'3�m
p−2−···−'p

]
×�mq−�1m

q−1−�2m
q−2−···−�q�=0 (13)
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are less than one in absolute value. Here, +̃�m� is gen-
erated by the transformation of Dt into Yt , while *̃�m�
is generated by the moving-average terms of Dt , as
defined in (1). It follows that if the order process is
invertible, then the manufacturer can infer Dt from Yt

without explicitly solving for the condition in Theorem 2.
Thus, the manufacturer can utilize standard time-
series analysis software to estimate the parameters of
the order process and verify if it is invertible. We find
that invertibility gives a stronger result when Zhang’s
(2004) approach is used, that is, invertibility of Yt is
both necessary and sufficient for the inferability of
demand. These results are useful in interpreting the
numerical examples in the next section.

5. Value of Information Sharing
In this section, we provide decision rules for sharing
of demand information and computing order quanti-
ties for t sufficiently large by integrating our results
for noninvertible ARMA demand processes with
Zhang’s (2004) results for invertible ARMA demand
processes. We then present a numerical study quan-
tifying the benefits to the manufacturer from sharing
of demand information between the retailer and the
manufacturer, or from inferring demand using histor-
ical orders.
Table 1 summarizes how the time-series structure

of the demand process impacts information sharing
and ordering decisions. As an illustration, Figure 1
gives the range of parameter values for ARMA�1�1�
demand in which each of the implications in Table 1
hold.
When Dt is invertible, the retailer computes Yt

using the approach in Zhang (2004). In this case, Yt

is represented by an ARMA(p�max�p� q− l�) process,
and may or may not be invertible. From Remark 4.3,
when Yt is invertible, the manufacturer can infer Dt

accurately without direct access to demand infor-
mation, and can further apply Zhang’s approach to
compute its orders to its supplier. When Yt is not
invertible, then the manufacturer cannot infer Dt

Table 1 Implications of ARMA Demand for Information Sharing and Ordering Decisions

Implications for the manufacturer
Time series

characterization Resulting Information Ordering
of Yt properties sharing decision

Dt invertible Based on Zhang (2004) Yt is invertible, and Not required Use Zhang’s approach
Dt is inferable

Yt is not invertible, and Required Use our approach
Dt is not inferable

Dt not invertible Based on our approach Yt is not invertible, but Not required Use our approach
Dt is inferable

Yt is not invertible, and Required Use our approach
Dt is not inferable

Figure 1 Impact of the Values of Time-Series Parameters on the Need
for Information Sharing for ARMA �1�1� Demand
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Notes. A (� ≤ −0�64, �	� ≥ 1): Dt is neither invertible nor inferable;
B (� >−0�64, �	� ≥ 1): Dt is not invertible but inferable; C (area to the right
of the curve and with �	�< 1): Dt and Yt are both invertible; D (area to the left
of the curve and with �	�< 1): Dt is invertible but Yt is not invertible. There
is need for information sharing in areas A and D, but not in areas B and C.
In this figure, the values of lead time are l = L= 2.

from Yt and there is need for sharing demand infor-
mation. Further, the manufacturer and all upstream
decision makers in the supply chain will have to
use our approach to compute their orders to their
upstream partners.
When Dt is not invertible, the retailer computes Yt

using our approach. In this case, Yt is represented by
an ARMA(p�p+ q) process. The need for information
sharing in this case is determined by Theorem 2, i.e.,
if Dt is inferable, then there is no need for informa-
tion sharing, while if Dt is not inferable, then there is
need for information sharing. In addition, Yt is itself
not invertible, and the manufacturer and all upstream
decision makers in the supply chain must continue
to use our approach to compute their orders to their
upstream partners.
We now present a numerical study to evaluate the

value of demand information to the manufacturer.
There are two cases. In Case 1, there is no sharing of
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demand information, and further, the manufacturer
does not attempt to infer Dt from Yt . Instead, the man-
ufacturer uses only the most recent p orders to fore-
cast its lead-time demand. This case is analogous to
the no-information-sharing case in LST. In Case 2, the
manufacturer either uses shared demand information
or infers the retailer’s demand from historical orders
to forecast its lead-time demand.
When Dt is not invertible, the conditional variance

of the manufacturer’s lead-time demand in the two
cases is computed using our approach as follows.
(The corresponding formulas for invertible demand
can be obtained using Zhang’s approach in a sim-
ilar fashion.) In Case 1, the manufacturer uses the
ARMA�p� p + q� representation (7) of Yt to forecast
its lead-time demand. With some algebraic manipula-
tion, it can be shown that the conditional variance of
the manufacturer’s lead-time demand at time t given
Yt� � � � �Yt−p+1 is a function of �t−p−q+1� � � � � �t+L+1. In
particular, if Dt is ARMA�1�1�, then we obtain

Var
[ L+1∑

k=1
Yt+k

∣∣∣Yt� � � � �Yt−p+1

]

=Var
[L+1∑
j=1

1−	L+2−j

1−	
c1�t+j +

L∑
j=0

1−	L+1−j

1−	
c2�t+j

+
L−1∑
j=−1

1−	L−j

1−	
c3�t+j

]
� (14)

where c1 = 1+'1� c2 =−a1�1−'1� c3 = �1'1.
In Case 2, first consider the situation when Dt is

not inferable and the manufacturer and the retailer
share demand information. The manufacturer can
use (4) recursively to estimate its lead-time demand
as a function of Dt�Dt−1� � � � and �t−q+1� � � � � �t+L+1.
From this procedure, it can be shown that the con-
ditional variance of the manufacturer’s lead-time
demand at time t given Dt�Dt−1� � � � is a function of
�t−q+1� � � � � �t+L+1. If Dt is ARMA�1�1�, then we obtain

Var
[L+1∑
k=1

Yt+k

∣∣∣Dt�Dt−1� � � �
]

=Var
[L+1∑
j=1

1−	L+2−j

1−	
c1�t+j +

L∑
j=0

1−	L+1−j

1−	
c2�t+j

+
L−1∑
j=0

1−	L−j

1−	
c3�t+j +

1−	L+1

1−	
'1�t

]
� (15)

where c1, c2, c3 are as defined in (14). Now con-
sider the situation when Dt is inferable. Theorem 2
implies that, as t increases, the conditional variance
of the manufacturer’s lead-time demand when Dt is
inferable converges to the conditional variance under
full information sharing. Hence, the formula for the

Figure 2 Impact of Shared or Inferred Demand Information on
the Standard Deviation of Manufacturer’s Lead Time for
ARMA�1�1� Demand
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conditional variance of the manufacturer’s lead-time
demand in this situation is identical to (15).
We compare Cases 1 and 2 numerically for a wide

range of values of 	, �, l, and L. We say that demand
information is valuable if the standard deviation in
Case 2 is less than that in Case 1.5 Figure 2 shows the
percent change in standard deviation in Case 2 com-
pared to Case 1 for the following values of param-
eters: l = L = 2, � ∈ �−1�1�−0�5�0�0�5�1�1�, and 	 ∈
�−1�1�. The values of � correspond to different cases
in Table 1: � = −0�5�0�0�5 correspond to the case
when Dt is invertible and the retailer uses Zhang’s
approach; �= 1�1�−1�1 correspond to the case when
Dt is not invertible and the retailer uses our approach.
We observe that the change in standard devia-

tion varies considerably with the values of 	 and �.
Demand information is always beneficial when 	
and � have the same sign. Moreover, in these cases,
the benefit of demand information is increasing in the
magnitudes of 	 and �. The average reduction in stan-
dard deviation is 41.1% for 	 ≥ 0�5 and � ∈ �0�5�2�,
and 12.2% for 	 ≤ −0�5 and � ∈ �−2�−0�5�. We also
find that the benefit under ARMA�1�1� demand is
significantly higher than under AR(1) demand when-
ever both 	 and � are positive.
We also observe that demand information may not

be beneficial when demand is not invertible, and
	 and � have opposite signs. This effect is explained
by the inability of the manufacturer to decipher the

5 We also evaluated the reduction in the manufacturer’s average
on-hand inventory and average cost. The conclusions using these
variables are identical to those obtained by comparing the standard
deviations in Cases 1 and 2.



Gaur et al.: Information Sharing in a Supply Chain Under ARMA Demand
Management Science 51(6), pp. 961–969, © 2005 INFORMS 969

�t terms from the demand information in these cases.
Thus, demand information leads to an increase in
the variance of the manufacturer’s forecast of lead-
time demand. As a result, the manufacturer is bet-
ter off ignoring the demand information and treating
the retailer’s orders as an independent noninvertible
ARMA time-series for planning its production.

6. Conclusions
We have shown how the value of sharing demand
information in a supply chain depends on the time-
series structure of the demand process. When both
the demand process and the resulting order process
are invertible, demand can be inferred by the man-
ufacturer without requiring further information from
the retailer. When demand is invertible but the result-
ing order process is not, sharing demand information
is necessary. In the situation where demand is not
invertible, we provide a rule to determine whether
demand can be inferred from the order process. Using
these results, we show how a manufacturer can deter-
mine when there is value to sharing demand infor-
mation, inferring demand information, or treating the
order process as an independent noninvertible ARMA
time-series. Our numerical results show that the value
of sharing demand information, where present, can
be quite significant.
Our results are applicable to multistage supply

chains because the order process at each successive
level remains an ARMA process. Thus, each succes-
sive upstream player in the supply chain can use
the same rules to determine the value of information
sharing. Our results could be used for investigating
the bullwhip effect in multistage supply chains under
autoregressive demand. Our results could also form
the basis for empirical investigations into the relation-
ship between the time-series structure of demand and
demand propagation, as well as value of information
sharing in supply chains.
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Appendix
Proof of Theorem 2. We have

D̃t −Dt =
p∑

j=1
A

t−p+1
�1j� �D̃p−j −Dp−j �

≤
p∑

j=1

∣∣At−p+1
�1j�

∣∣ · ∣∣D̃p−j −Dp−j

∣∣� (16)

We obtain a bound on the values of Ak
�ij� in terms of the roots

of the characteristic equation of matrix A. Note that the
characteristic equation of A is (11). By the Cayley-Hamilton
theorem (Strang 1980, p. 235), A also satisfies this equation.
Thus,

�1+'1�A
p − �'1−'2�A

p−1− �'2−'3�A
p−2− · · ·−'pA

0 = 0�
Multiplying by Ak−p where k≥ p, we get

�1+'1�A
k−�'1−'2�A

k−1−�'2−'3�A
k−2−···−'pA

k−p=0�
Because this equation must hold for all elements of Ak,
we have

�1+'1�A
k
�ij�−�'1−'2�A

k−1
�ij� −�'2−'3�A

k−2
�ij� −···−'pA

k−p
�ij� =0�

Let � denote the largest of the absolute values of the roots
of (11), and let �< 1. Because Ak

�ij� satisfies the characteristic
equation of A, there exists a c such that �Ak

ij �< cMk, where
� <M < 1. Thus, �Ak

ij � decays exponentially. Applying this
to (16), and letting t tend to infinity for fixed p, we obtain
the required result. �
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