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Linear Control Rules for Production
Control of Semiconductor Fabs

C. Roger Glassey, Member, IEEE, Jeyaveerasingam George Shanthikumar, and Sridhar Seshadri

Abstract— We consider the problem of reducing the cycle
time required for producing wafers at a given rate in high-
volume single-product semiconductor fabs. Based on theoretical
results, we propose a new method of input control that uses
intersecting hyperplanes to decide when to release a new lot into
the wafer fab. The release control rules constructed thus are said
to belong to the class of linear control rules. We provide numerical
examples to demonstrate that our method gives nearly optimal
results for flowline and probabilistic reentrant flowline models.
We then propose the linear control rule called descending control
(DEC) and give a hybrid simulation—optimization procedure for
determining DEC rules in real-life settings. We provide numerical
results for the HP development fab model of Wein [31].

I. INTRODUCTION

N this paper we consider the short- to medium-term pro-

duction control problem in high-volume single-product
semiconductor fabs of reducing the cycle time required for
producing wafers at a given rate. The problem of reducing
the mean cycle time is important because shorter cycle time
can lead to shorter delivery lead time, greater flexibility in
meeting customer demands, as well as lower exposure time
to contaminants in the clean room, quicker response to yield
variations detected by testing of the finished wafer, and lower
costs of holding and monitoring unfinished inventories on the
shop floor [8], [16], [18], [27], [28], [31], [32]. This problem
has been addressed by earlier researchers using analytical as
well as simulation techniques. The novel features in this paper
are that we use theoretical results from analyzing Markovian
models and exact numerical results on optimal control poli-
cies obtained by solving a dynamic program to develop a
methodology for releasing work into a fab. The methodology
for developing work release rules for semiconductor fabs,
as proposed by us, combines simulation and optimization
techniques in a step-by-step approach.

There are two types of controls available for controlling the
production in the fab: i) deciding when and what type of new
lot to release into the fab, called the input or release control
decision, and ii) deciding which lot will be loaded next at
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a given work station, denoted the dispatching or scheduling
decision. We chose to fix the dispatching rule, and concentrate
on the release control decision in this paper. The use of recent
advances in scheduling research, described in Section II, in
conjunction with our work release method (in a multiproduct
setting) is currently under investigation. The method proposed
by us was developed in several steps. We initially investigated
properties of optimal input control in deterministic as well as
failure prone flowlines, and then reentrant flowlines. (An N
station flowline is a production system that has either infinite
or finite buffers, in which parts after processing at station 1,
proceed to station 1+ 1, eventually exiting the system from the
Nth station. In a reentrant flowline, parts make several passes,
duplicating the flow from stations 1 = >2—->3—-> .- ~> N
through the flowline before exiting. In a probabilistic reentrant
flowline, parts after finishing processing at station NN, with
a fixed probability leave the system, else go back to station
1 or 2, and repeat the process.) Next, we studied numerical
solutions based on dynamic programming to optimal flow
control in flowlines as well as probabilistic reentrant flowlines.
We finally combined the ideas from this research with the
work of other researchers; and then developed the hybrid
optimization—simulation methodology.

At the core of the proposed release control scheme is the
state of the shop, which is defined as the vector of jobs under
process and awaiting processing at different work centers.
Consider the Markovian setting when jobs processing times
are exponentially distributed, and we are given a dispatching
rule for selecting which job to process next at a work center.
Using dynamic programming, it is possible to determine the
set of states in which it is optimal to release a new job for
processing into the fab. This set is called the optimal control
set. In our numerical investigations, the optimal control set was
found to be nearly convex but hard to describe using closed
form expressions. This finding suggested the approximation of
the control set using intersections of linear functions, yielding
an approximate control set. The rule suggested by dynamic
programming investigations (see Section IV) is to release a
new job into the shop whenever the state of the shop lies
in the approximate control set. This rule was later called
the descending control (DEC) rule because of the ordering
of the coefficients in the linear functions. In Section III we
describe additional theoretical results that motivated us to
consider linear control rules for approximating a control set.
Determining the optimal control set for a real life fab is cur-
rently impossible, but, as described in Section V, these results
(especially the ordering of coefficients), when combined with
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assumptions about second order properties of throughput, can
be used to construct efficient search techniques for determining
linear controls. An example of applying the technique to a
small flow line and the implementation of such a search
technique for the Hewlett-Packard (HP) development fab
model (Wein [31]) is described in Section V.

The contributions in this paper are, i) the integration of
several theoretical results that bear upon input regulation and
scheduling to synthesize a subclass of linear control rules; ii)
the use of this class of rules, to provide a unified representa-
tion for many input control rules described in literature; iii)
the characterization of the optimal control sets for flowlines
and reentrant flowlines based on exact solutions to dynamic
programs; and iv) a simulation—optimization algorithm that
can be used to construct input controls for complex real-life
systems, which can not otherwise be analyzed ‘exactly. For the
HP development fab model of Wein [31], the DEC rule gave
3%-10% lower average inventory for the same throughput
values compared to other methods, such as CONWIP and
workload regulation, found in the literature.

In the next section, we examine modeling issues and sum-
marize earlier work relevant to our study. In Section III we
provide a summary of theoretical results that motivated the
investigation of linear control rules. In Section IV we briefly
describe the dynamic programming experiments. In Section V
we present the hybrid simulation—optimization extension for
determining linear control rules for fabs, and we conclude in
Section VI with suggestions for future research.

II. MODELING ISSUES AND REVIEW OF LITERATURE ’

Several books and studies have summarized the manu-
facturing processes involved in making a VLSI chip (for
example see Sze [26] and Sullivan and Fordyce [25]). There
are three major stages to making an IC, namely wafer prepa-
ration, wafer fabrication, and assembly. We study the wafer
fab because most of the complicated production work and
also the major investment in facilities are concentrated at
the clean room fabrication stage, where the intricate cir-
cuitry on the wafer is built up in layers. The work done
by several researchers supports the finding that input control,
in other words controlling the start-rate of new lots into
the fab, is a key variable for controlling throughput and
work-in-progress. Significant work done in demonstrating this
fact includes that of Glassey and Resende [14] and Wein
[31]. Also see Bechte [4] for an early application of input
regulation in a different manufacturing context, and Uzsoy,
Lee, and Martin-Vega [27] and [28] for a comprehensive
review of models that have been used to model semiconductor
fabs.

Wein [31] demonstrates the good performance of the work-
Joad regulation (WR) rule and Glassey and Resende present
the starvation avoidance (SA) rule in [14]. The WR rule
was constructed by modeling the fab as a queuing network,
and using a Brownian model to approximate the network.
When there is only one bottleneck station in the fab, the
WR rule is implemented by keeping the total work content
for the bottleneck station (as found in all jobs anywhere in

537

the fab) below a preset limit, and new work is released only
when the total work content for the single heavily loaded
station falls below the preset limit. The starvation avoidance
concept is based on the reasoning that: i) the photolithography
station is usually a bottleneck in most fabs and also has the
most expensive equipment in the fab, and ii) by keeping the
workload for this single bottleneck at or below preset limits,
the regulation of work in the shop can be achieved. The
difference between SA and WR is that Glassey and Resende
only consider the work that will arrive at the bottleneck
within the time required to feed new work to the bottleneck
station, whereas Wein uses the total work content (in jobs
anywhere in the fab) for the bottleneck station. Subsequent
efforts were made by several researchers to improve the
performance of this simple scheme by using sophisticated
(but deterministic) queue length predictions. The results were
unsatisfactory, because the queue predictions were of poor
quality, (for example see Leachman et al. [17]). The reader
is also referred to Petrakian [20], in which the visit time
of jobs to the stations is maintained on a discrete time grid
and the production control problem posed in the framework
of linear programming. Petrakian’s approach can be used for
actual shop loading purposes. '

Amongst these release control rules, only WR is based on
an analysis of the optimal control policy. WR was derived
under the assumption of heavy loading and by solving the
Brownian model. The analytical extension of WR to fabs
with three or more bottleneck stations has proved to be
difficult, and interpreting the optimal control policy for the
Brownian model to construct a control rule for the physical
model has also been found to be a difficult task; for a
discussion, see Chevalier and Wein [7] and the references
therein. The reader is also referred to a the excellent summary
of work done by Kumar et al. in [16] and how the intuition
derived using queuing as well as other analytical models
of the fab could be applied to controlling large real life
manufacturing facilities. Other control rules are described in
Section III.

The discoveries of new dispatching rules have opened
avenues for research into combined input regulation and
scheduling techniques. Lu, Ramaswamy, and Kumar [18]
show that smoothing the flow of work within the fab can
lead to substantial improvements in both the mean as well
as the standard deviation of cycle time. Their method em-
ploys a “probe” of the downstream stations using iterative
simulations to estimate the downstream delay, and thus the
slack available for a lot awaiting processing. Similar tech-
niques were also proposed for controlling the release of
packets into telecommunication systems; see, for example,
Mitra and Seery [19]. Seshadri and Srinivasan [21] and Se-
shadri and Harche [23] provide a survey and analysis of
some scheduling rules used to establish delay bounds in com-
munication networks. These scheduling rules are conjectured
to decompose a multiclass queuing network under heavy
traffic into separate flowlines, thus making the job of delay
estimation and control simpler. Such scheduling techniques
have yet to be rigorously combined with input regulation
methods.
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III. RELATED THEORETICAL RESULTS

Qur choice of using linear control rules for controlling
inputs into the fab and the general modeling approach itself
were based on the learning experiences and theoretical results
described below. We have chosen to set all the results in one
place for easy reference. First, five results are discussed. These
provided us the motivation to study the form of optimal control
sets using dynamic programming (DP), and the DP formulation
is discussed next. In Section IV, we give the description of
control rules found in literature and show they are linear
and preserve a property called transition monotonicity (TM)
described in R1, below. '

RI: Consider a k station flowline with reliable machines.
Assume that there is infinite demand, unlimited supply of raw
materials for the first station, and unlimited buffer (storage)
space between all stations. Let the number of jobs under
process or awaiting processing at stations 4, 4 = 2, 3, -+, k
be given by z;. Let the job processing times be exponentially
distributed. Denote (z3, x3, -+, Zx) as the state of the shop.
As an alternate terminology it is appropriate to call this the
inventory vector. There may be one or more identical machines
at each station. Then, given it is optimal to start processing
a new job at the first station in the state (zq, T3, -, Tk),
we showed in Glassey et al. [13] that it is also optimal to
start processing a new job in any state that can arise from
(za, T3, -+, Tx) solely due to the processing of a job(s) at
stations 2 to k. Examples being, (z3, T3 ~2, z4+1, -+, Tp+
1) and (z9, 3, -- -, Tk — 1). This property is called transition
monotonicity (TM); see also Glasserman and Yao [11], Veatch
and Wein [29], and Weber and Stidham [30]. (In addition we
have found that TM is very useful for proving other structural
properties of the optimal control policy.) Our linear control
rules, as well as other control rules described below, preserve
TM.

R2: In Seshadri [22], the shortest expected remaining pro-
cessing time (SERPT) scheduling rule was shown to be
optimal for reentrant flowlines when the discount rate is suffi-
ciently large, and the preemption of jobs is allowed. The near
optimality of the SERPT rule when there are many stations or
many visits through the flowline was also demonstrated. The
SERPT rule has also been found to perform well in empirical
investigations as reported in Kumar [15]. As discussed earlier,
new scheduling rules outperform SERPT, and also result in
stable systems for which delay estimation and guarantees can
be provided. We have chosen to investigate the input regulation
aspect keeping the scheduling rule fixed (to be SERPT in most
experiments and first-in first-out (FIFO), in the rest.)

R3: The results reported in Glassey et al. [12] convinced us
that an input control policy need not completely duplicate the
optimal policy to provide good results; also see the conclusions
given in Kumar [16]. For example, applying this reasoning
the use of an approximate optimal control set, as described
in the introduction, need not lead to substantial deviation in
performance. A key idea is, however, necessary in creating
the approximation (as explained in Section IV), i.e., we must
ensure that the weights attached to inventories downstream of
the input get progressively smaller in the linear functions.

R4: The work reported in {1]-[3] as well as [13], indicates
that failure prone manufacturing facilities can be controlled in
either of two ways. If the time to repair is comparable to the
time needed to produce a part, then the failure may be treated
as a part in process or even as part of the service time (see for
example the calculation of the M1-M2 policy shown on p. 383
in [18]). Whereas, if the time to repair was to be very long, say
one order of magnitude larger than the processing times, then
dropping the input rate into the fab when critical machines
fail would be advisable. We have applied our methods first
to flowlines and the HP development fab model given in [31]
sans failures, then heuristically extended the rules to failure-
prone fabs without accounting for information on machine
failures. The implicit assumption underlying this logic is that
the time to repair is relatively short compared to the processing
time. Further work is necessary to extend the results reported
in [1]-{3] to semiconductor fabs.

RS5: The throughput in a single-class closed queuing net-
work with exponential processing times is increasing and
concave in the number of jobs in the network, (see Buzacott
and Shanthikumar [5]). A similar property can be shown to
hold (for the buffer size K) in a M/M/S/K stopped arrival
model of a queue, where the input is stopped when the buffer
fills up to K. This property of concavity of throughput is
conjectured to hold in the threshold level or cutoff value (see
Sections IV and V), when the input to a semiconductor fab
(producing a single type of part) is controlled using a linear
function. The elaboration and application of this property is
discussed at the end of Section IV. The property is again used
in justifying a quadratic fit in Section V.

Based on these observations, we felt that better control
policies than those reported in the literature could be found
by: i) using the transition monotonicity property to characterize
the states in which it is optimal to release a new job into the
system; ii) restricting the search to input control policies by
adopting the SERPT dispatching rule; and iii) searching for
effective and simple approximations using DP to the optimal
control policy while retaining the assumption that processing
time distributions are exponential. The dynamic programming
setup as well as the use of (and more motivation for using)
linear control rules are explained below.

IV. DP MODEL AND LINEAR CONTROL RULES

In the fab, three major steps are performed per layer, namely
oxidation, photolithography, and diffusion, and a typical wafer
will undergo these steps 10 times. There are several smaller
steps that have to be executed in precise sequence and in a
controlled manner within these major steps. The processing
times required for carrying out these steps are known,
within 15 ms to 20 min” depending on the process (p. 51,
Sullivan and Fordyce [25]). We reasoned that aggregating
these minor operations could prove adequate if the purpose
of the analysis is only to gain insights into what may be good
operating rules for a fab. The reentrant flowline is the simplest
model which can accommodate the repetitive nature of the
three major processing steps of oxidation, photolithography,
and diffusion, (see for example Uzsoy, Lee, and Martin-Vega
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(271, [28]). Kumar [15], [16] has used the reentrant line
model to analyze several issues related to production control in
semiconductor fabs. However, solving for the optimal control
set using DP for even a modest deterministic reentrant flowline
model where the product makes five passes through three
processing steps proves to be intractable. (The size of the
state space, i.e., the total number of permutations of the vector
representing the state of the shop, for a small problem could
well be of the order of 1019.) Therefore, we took the route of
using DP for studying flowlines, then probabilistic reentrant
flowlines and finally extending the results heuristically to
deterministic reentrant flowlines and semiconductor fabs.

For convenience in solving the DP, we have assumed
that there are no yield losses, all machines are available
all the time, that lot sizes do not vary from machine to
machine, and setup as well as change-over times are negligible.
Moreover, we assumed that the processing times of lots are
exponentially distributed. We have stated our objective to be
the minimization of the cycle time, but for analytical purposes
it is easier to consider the equivalent problem of minimizing
the average inventory in the fab subject to achieving a given
production rate. This problem in turn is equivalent to one of
maximizing the average rate of profit over the infinite time
horizon, given that each lot on leaving the fab yields a profit
of p, and while in the fab incurs a holding cost of ¢ per unit
time. Once we had numerical solutions to the DP, given p, ¢,
and the data about the flowlines, we investigated the “shape”
of the optimal control set. The logic employed in analysis of
the control sets is explained below.

Let the state space be denoted by 5. Without loss of
generality assume that S is bounded. Define the subset S(rel)
by the set of states in which it is optimal to release a job
given the profit per unit (p) and a constant holding cost )
per unit per unit time spent in the system. In symbols, we
have S(rel) = {X : X € S} and it is optimal to release a job
when the state is X. This set, S(rel), is the optimal control set.
Define a partial order based on transition monotonicity (TM),
X >rm Y, if the state Y can be reached from X without
input of new jobs into the system. The order induced by T™M
is a partial order because in general given two nonnegative
n-dimensional real vectors, we may not be able to compare
them (i.e., say which one is smaller and which is larger) using
TM. For example, the vectors, (2, 1, 37T and (3, 0, 2)T cannot
be compared using TM. However, we may use this ordering
to further reduce the control set by defining

S(rel >rm) ={X : X € S(rel >rm); andY € S(rel >1m),
Y <tm (ZTM)X =Y = X}

This is called the reduced control set and contains
all the largest elements of the chains ordered by TM.
This set is possibly smaller than S(rel), but stll it
is impossible to enumerate the set without solving a
dynamic program. Instead consider the set of all linear
functions f such that X >tm Y = f(X) > f(Y).
Define the cutoff value ¢y for f as the max {f(X) =
X belongs to S(rel)}. Then the set S(rel) is surely a subset
of Sy(cy) = {X : X belongs to Sand f(X) < ¢s}. The class
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of input control rules based on the above reasoning will
be called the class of linear control rules that preserve ™.
The class of rules that use combinations of linear functions
to effect control will be called the class of linear rules. If
we use intersections and unions of the Sy(cs)’s, then the
control set can at least in theory be described very accurately.
For example we could choose approximations of the form
Sapp = Ss(cp) M Sglcg) U Si(ck). (The control sets were
found to be convex in our numerical examples. Therefore
intersections of the hyperplanes, S¢(cg)’s, should be adequate
for approximating the control set, as explained at the end of
this section.) This was the basic motivation for performing
the set of experiments described next.

We first investigated four-stage flowlines, with multiple but
reliable machines at each stage. The job processing times
are assumed to be exponentially distributed. The data for a
problem (see Table 1) consisted of i) four pairs of numbers
denoting the number of machines and the processing rate of
a typical machine for each of the four stations; ii) values of
profit per unit produced (p) and holding cost per unit time per
job (c); and iii) upper bound on total inventory allowed in the
system. The average cost criterion was used for solving the
DP to maximize the profit rate. In order to modify the above
set up to model reentrant flowlines, we permitted probabilistic
reentrance back to the second station of the flowline. In this
model, a job on completion of processing at the fourth station
is fed back to the second station with a fixed and given
probability. This device allows us to work with a manageable
state space but does not permit modeling of different service
times for different visits to the same station. Several rules were
used as benchmarks and also as functions for approximating
the optimal control set. The rules described below are of
interest because they are widely found in the literature and
they are linear and preserve TM. A brief description of the
rules, and their application to a four-stage flowline is given.
In the examples, the number of jobs at station 1, ¢ = 2, 3, 4,
is denoted as z;, i = 2, 3, 4. See Section II for a description
of the first two rules.

1) Starvation Avoidance ( SA): For a four-station flow-
line, if the third station were the bottleneck station, then the
SA rule is to release new jobs if (z2 + z3) is below a preset
limit. The rule is linear and seen to preserve T™.

2) Workload Regulation (WR): When there is a single
bottleneck, this rule is the same as SA. We have assumed
that any station which is loaded 90% or less relative to the
bottleneck station is a nonbottleneck. With this qualification,
in most cases for flowlines, SA and WR are identical. WR
also belongs to the class of linear contro] rules.

3) CONWIP: The idea in this rule is to keep the total
number of jobs in the system below a certain level (see
[8]-[10] and [24]). This rule is also a linear control rule,
preserves TM, and for the four-station example we release
a job if (x2 + 73 + 74) is below a preset limit.

4) Deterministic (DET): In this rule, work is fed into
the network at constant intervals of time depending on the
throughput requiréd from the network. Implementing this rule
leads to open loop control and is included for comparison
purpose's.
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TABLE I
DATA FOR FOUR-STAGE FLOWLINE AND PROBABILISTIC REENTRANT LINE MODELS
Station 1 Station 2 Station 3 Station 4
No. of Process. | No. of Process. No. of Process. | No. of Process. | Probability
Machine| Rate per | Machine| Rate per | Machine| Rate per | Machine| Rate per of
Machine Machine Machine Machine | Reentering
Model (Rel..Load)* (Rel..Load)* (Rel..Load)* (Rel..Load)*| 2nd Stn.**
FLOW1 2 0.8 4 03 3 0.45 4 0.375 0
(75) (100) (89) (80)
FLOW2 2 0.8 4 0.3 3 0.42 4 0.325 0
' (75) (100) (95) (92)
FLOWS 2 0.8 4 0.5 3 0.45 4 0.335 0
(84) (67) (889) (100)
FLOW4 2 0.8 4 0.3 3 0.42 4 0.305 0
75) (100} (95) (98)
RFLOW1 2 0.8 4 0.3 3 0.42 4 0.305 - 0.6666
(25) (100} (@5) (98)
RFLOW2 2 0.8 4 0.3 3 0.45 4 0.375 0.8
(15) (100) (89) (80)

Notes: * - Relative load is computed with respect to bottleneck station.
**_ Probability that job on leaving last staion reenters the 2nd station.

5) The PAC System: The production authorization card
(PAC) system was developed by Buzacott and Shanthikumar
[5], [6]. When PAC is applied in a simplified form to a four-
station flowline, we obtain S(rel) = {z2, z3, 4 : min(Z3 —
Ty — T3 — T4, K3 ~ 1o — 33, Ko — z2, K1) > 0}, where Z3,
K;, i =2, 3, 4 are parameters. Thus PAC also belongs to the
class of linear control rules, and can be shown to preserve TM.
Moreover PAC can mimic the control exercised by Kanban,
MRP, base stock policy, CONWIP, and fixed buffer.

6) Function TWK: This function measures the total work
content of the jobs in the system. Let the combined pro-
cessing rates of the machines at the three downstream sta-
tions be (u2, 13, pa). Let the inventory (including the jobs
under process) at the three downstream stations be X
(.’L‘z, xs, .’54). Then

To + T3+ T4
Ha

T3

o+
2 3+
M3

L2

TWEK((u2, 13, pa), X]

TWK preserves TM.

7) Function NJOB: This function adds up the number of
jobs in the system at the downstream stations, NJOB(X) =
T9 + T3 + T4.

8) Function BOT: This function adds up the jobs at the
bottleneck station. For example if station 3 is the bottleneck,
then BOT(X) = z3 BOT does not preserve TM.

The usefulness of the compact representations of the control
set given above is that now all the rules can be exercised
by using linear controls. A simulator needs only to know
how many linear functions are there, what the coefficients are
to attach to the various components of the current inventory
vector and an associated cutoff (or threshold) value for each
function. The controller then chooses to release a job if the

first station has an available machine and if all the functions
evaluated at the current value of the inventory vector return
numbers below the corresponding threshold or cutoff values.
The result RS described in Section I1I, can be used to fine-tune
the value of the threshold. As an example, consider the rule,
3zs + 2z3 + 24 < k. If we get throughput values of TH; and
TH, using values of k = k; and kp, using RS, we may use
linear interpolation to guess the correct value of & for obtaining
throughput values between TH; and THj, or use bisection
search to find the right value of k for a desired throughput
rate. This trial and error device is necessary, whichever rule
is being considered, SA, WR, or a general linear control.
The models FLOWI1-FLOW4 were used for testing the
use of linear control rules in flowlines. The data for these
models is given in Table 1. For each model, given the values
for the profit, p, and the holding cost, ¢, we first obtained
the optimal control set by solving a dynamic program. Then
we tried out various combinations of just the rules described
in the previous section (linear functions) to determine which
pair of functions gave the best fit to the optimal control
set (see Table II for some examples). The fit was obtained
by eyeballing the data and the details can be found in Se-
shadri [22]. The approximate control set was then tested
for efficacy using simulation and the results are shown in
Table II. As seen from Table II, the intersecting hyperplane
rule performed as well or better than other rules compared
in the experiments. The best benchmark in these simulations
is against the PAC rule, because as mentioned earlier, PAC
can mimic many of the linear control rules found in the
literature. The results corresponding to CONWIP are not
shown, but the rule gave poor performance. In the second
stage of the experiments, we used reentrant flowline models
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TABLE I
SOME SIMULATION RESULTS FOR FOUR-STAGE FLOWLINE MODELS
Utilizatio Best Fit Control Starvation Avoldance PAC System WR
of Bottie |Pair of Throughput| Average | Throughput] Average | Throughput| Average Throughput} Average
-neck Functions Rate Inventory Rate Inventory Rate Inventory Rate Inventory
Mode! Used x 0.3 x 0.3 x 0.3 x 0.3
FLOWY 98.40% TWK+BOT 1.181 8.41 1.184 8.42 Same as SA Same as SA
* +1- 0.0 +/-0.08 +f-0.048 +- 0.1
FLOW2 99.50% TWK+BOT 1.194 11.08 1.194 11.22 Same as SA Samne as SA
(.) +- 0.004 +-007 +/- 0.004 +{- L4
FLOW3 97.70% TWK+NJOB 1.309 10.17 1.308 11.34 1.309 10.68 Same as SA
(*) +/- 0.004 +- 0.08 +1 0.004 +/- 0.08 +/- 0018 +/-028
FLOW4 88.90% TWK+BOT i.187 13.99 1.188 16.53 1.188 14,45 Same as SA
*) +/- 0.008 +- 898 +/- 0.008 + 487 + G004 +/-0.38
RFLOW1 §7.70% NJOB+BOT 0.3908 11.212 0.3905 11.911 Same as Best Fit 0.3898 12.445
*) +/- 0,008 +/- 0312 +/- 0,008 +1-0.312 +/- 0.008 +-0472
RFLOW2 99.60% TWK+BOT 0.23899 7.347 0.23818 7.081 0.23818 8.947 0.23884 10.348
*) +/- 0,004 +1- 0283 +/- 0.004 +/- 0,408 +/- 0.004 +- 0108 +/- 0.004 +1-0.48

Note: (*) 99% Confidencs intervals, Simulation run length = 100,000 to 500,000 time units
Confidence intervals based on breeking up observations for blocks of 5,000 units

with probabilistic routing. Table I gives the data for the models
and Table II the simulation results using the best pair of
functions from the list. These six experiments convinced us
of the following. i) Using intersecting hyperplanes for control
purposes gave as good or better performance compared to
other rules found in the literature. ii) Rules such as SA, WR,
and PAC are not robust in the sense we can come up with
counter examples wherein such rules fail. iii) The intersecting
hyperplane rule is better because only its functional form is
specified and there is flexibility in choosing the coefficients
based on experimentation.

These observations alone would not suffice to develop
good linear controls for fabs. However, we draw attention
to three important points about a typical control set. The
first observation is that the control sets are nearly convex.
Second, it follows that intersection of linear functions would
suffice to approximate the control set, and the numerical
results suggest that the approximation did not detract much
from the quality of the solution. Third, the slopes of the set
indicate that it is important to place more weight on upstream
inventories. To help visualize the first and last observations,
we have provided sections of the optimal control set obtained
from solving a DP, for a four-station balanced flowline, in
Fig. 1(a)~(e). The sections (plots of the control set in the
€, and z4 plane) are taken along the z3 plane. The optimal
control, the “best fit linear control,” and the SA control are
shown. Note that SA remains a “vertical line” throughout
these sections, whereas the approximating hyperplanes adjust
to increasing congestion at the third station. We used these
ideas in developing linear controls for models from the class
of deterministic reentrant flowlines and the details can be
found in [22]. In these experiments, we were able to obtain
5%-40% improvement in cycle time over SA or WR, using
linear controls constructed by trial and error. The important

point to be kept in mind in developing the control was to
place more weight on upstream inventory. Thus if the product
undergoes n steps of processing in the fab, then letting z;,
i=1,2, ---, n, be the number of jobs at step 4, the form
of the linear function should be a1z + agz2 + -+ + AnZa,
with a; > air1, @ = 1,2, -+, n — 1. Such a (descending)
linear function preserves TM if the route through the shop
were visualized to be a “long” flowline. In the next section we
discuss how a combined simulation—optimization approach can
be used to develop such a function in a step-by-step manner.

V. HYBRID SIMULATION-OPTIMIZATION APPROACH FOR
CONSTRUCTING LINEAR CONTROLS AND NUMERICAL RESULTS

We present a simulation—optimization approach for develop-
ing linear control rules in this section, and discuss some results.
An algorithm such as the one presented below is not new,
and similar algorithms have been used to carry out sensitivity
analysis in different contexts (see for example the discussion
of stochastic optimization in Glasserman and Yao [11D). We
propose the following numerical procedure for obtaining the
coefficients, a;’s, in @121 +a9Ta+- - -+ anTn, Without solving
a dynamic program.

A. Simulation-Optimization Procedure

0. Input = desired value of throughput, TH.
Set ag = zg == 0. z; is the number of jobs at
step i of the route through a fab. a; is fixed
to be 1 throughout. n = number of steps
in the process (route).
1. DOi=2,---,n
1.1 (Simulation) Using the hyperplane ayzy + -+ -+
a{i-1}T(i-1} +aZi < b, keep varying b till TH is
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Fig. 1. (a) Balanced flowline: section at X3 (3rd stn inv) = 1 and 2 and (b) balanced flowline: section at X3 (3rd stn inv) = 7 and 8.

attained, for values of @ =0, ag;—1}/4, ai—1}/2,
a{;—1}- (In practice the trial values must be chosen
such that at least one value of a gives a lower

total average inventory compared to a = 0.)
1.2 Label the total average inventory values, as I{a),
a=0,an-13/4 a {\Mi- N\}}2, agiogy-
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Fig. 1. (Continued.) (c) Balanced flowline: section at X3 (3rd stn inv) = 15 and 16 and (d) balanced flowline: section at X3 (3rd stn inv) = 21 and 22.

1.3 Fashion a quadratic fit, I(z) = a + bz + cz?;
using the data in step 1.1. If no trial value
gives average inventory which is smaller than for

(d)

o = 0, go to next ¢ after setting a; = 0.
1.4 (Optimization) Minimize the quadratic function
obtained in step 1.3.
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1.5 Simulate and test the new hyperplane, given in Buzacott and Shanthikumar [5] or Seshadri and
repeat step 1.1 using the additional information _ Srinivasan [21]. It is also difficult to obtain the value of
if necessary. TH, using just say control of inventory at the first two

ENDDO steps of processing. In such situations, we suggest the

use of CONWIP (in addition to the hyperplane being

2. STOP developed) to control the throughput to the desired level

P P
(see Table V).
Remarks: 4) In a practical setting, such as a semiconductor fab, the
1) In step 1.1, some simnulation is necessary to obtain the gumber of steps, n, can be very large. For example,

correct threshold value corresponding to the throughput in the HP development fab model [31] there are 172

TH, and typically3—4runs are necessary. As mentioned processing steps using 24 stations. In such cases, exe-

earlier we rely on result RS, and the fact that any linear cuting the DO loop could be time consuming. However,

control rule needs some trial and error for obtaining the based on the logic behind WR as well as SA, we may
desired value of throughput. aggregate the inventory between visits to highly loaded
2) In step 1.3, we assume that the effect of the ith co- stations.” For example, if there were two bottleneck
efficient can be captured using a quadratic function. stations, inventory between visits to either station could
Typically, the term b in the quadratic, I(z) = a + bx + be aggregated (see Tables III-V).
cz?, will be negative andc will be positive. This would 5) As a thumb rule, we need 3—4 simulations per trial value

3)

follow if R5 were true in this setting, because —I{z)
would then be concave in z. Another justification for
using a quadratic function is the idea of a Taylor series
expansion around z = 0.

Sometimes, it is difficult to get the exact value of TH
for all trial values of a in step 1.1. In that case, the
resulting average inventory can be normalized by first
multiplying by (1 — ppot), Where pyo¢ is the utilization
of the bottleneck station. This procedure is justified
by recourse to the formula for the average number of
customers in queue in a M/G/1 queuing system, and
in general by the form of delay bounds, such as those

per visit to a highly loaded station. Thus a total of say
(4 simulations x 4 trial values x the number of visits
to a highly loaded station, say m) =16m simulations.
This number can be very large, but the entire algorithm
should then be placed on auto-pilot, and the method
coded to work (off-line) without manual intervention.
For an exhaustive analysis and search on a standalone
workstation, the exercise could well take 10 min per
simulation, and up to 8 h of work for m = 30. Our
experience running the simulations indicates that the
time required will be smaller, as discussed in the next
section.
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TABLE I
ONE-BOTTLENECK EXAMPLE

Input Throughput Rate Average Improvement (%) Comment
Rule Inventory*0.3 ovar Deterministic
Determiniatic 0.03083 7.9820 95-96% utilization of bottleneck
CONWIP .0.03048 8.0470 -0.81
WR 0.03049 7.9680 0.16
Linear Control 0.03057 7.8380 1.80 Steps 1-4 weight = 3.15

Steps 5-13 weight = 1

Steps 42-62 weight = 0.693
Datarministic 0.03127 9.0990 97-98% utilization of bottlaneck
CONWIP 0.03129 9.2616 -1.79
WR 0.03128 9.0177 0.89
Linear Control 0.03131 8.8426 2.82 Steps 1-4 weight = 1

' Steps 5-13 weight = 0.837

Deterministic 0.03181 11.7213 99.5% utilization of bottieneck
CONWIP 0.03183 11.6500 0.61
WR 0.03182 11.2191 4.28
Linear Control 0.03182 10.4236 11.07 Steps 1-4 weight = 1

This corresponds to SA

Notes: This example corrasponds to Wein [31]'s one bottleneck model. All machines are failure free.
Processing time distribution is exponential, scheduling rule SERPT, simulation length = 1,000,000.

Standard arror of estimates based on blocks of 5,000 time units data was typically of the order of magnetude
of 1.0E-04 for throughput rate, and 1.0€-02 for the average inventory.

Bottleneck station is PHOTO.

6) Finally, we point out the importance of the “form” of the
linear control. Because the coefficients are descending,
the search in step 1.1 can be restricted to just a few
values. This provides the efficiency of the method. The
case for using descending coefficients can be further
strengthened if the new scheduling rules such as the
fair processor sharing rule described in Seshadri and
Srinivasan [21] are used. Under the use of such rules that
mimic head-of-the-line processor sharing, the reentrant
line behaves very much like a long flow line. Such a
rule would also simultaneously achieve the objective of
smoothing the internal flow (cf., [18]) if the processing
times were deterministic.

We give below an example of applying a variation of the
method to create a linear control for a small flowline, and
then discuss results obtained for the HP development fab
model. Consider the four-station flow line with 2, 4, 3, and
4 identical machines at the four stations. Let the processing
times be exponentially distributed (we also tested with gamma
distributions having different shape parameters), with mean
processing times 1.25, 2, 2.22, and 2.985 at the four stations.
The desired value of throughput, TH, is 1.31. This corresponds
to 96.9% utilization of the bottleneck station (i.e., station #4).
As in Section IV, in all results the average inventory has been

multiplied by 0.3 (as the simulator uses a holding cost per
unit time of 0.3). We have cut and pasted simulation outputs,
to avoid errors in transcribing results. Using the hyperplane,
T3+ z4 < 55 we get TH of 1.31000 and average inventory of
18.2877. Using the hyperplane, z3 < 13, we obtained a TH
of 1.31047 and average inventory to be 20.5643. Using the
hyperplane, z, < 48, the values of TH and average inventory
are 1.31203 and 87.3755. The system is “uncontrollable” using
the hyperplane 2 < b and so we ignore the inventory at station
2. Using the above results, let z be the relative weight given
to z4 [i.e., the ratio of aq/(az + a3 + a4)]. Then we need to
fit the quadratic, I(z) = a + bz + cx? using

a = I{0)
=20.56
a + b(0.5) + ¢(0.5)% =1(0.5)
=18.28
a+b+c=I(1)
=87.37.

Solving for a, b, and ¢, we get I(z) = 20.56 — 75.9z +
142.9222%. Minimizing in «, we get £ = 0.266, and the desired
new hyperplane as 2.76z3 + Z4 < b, [where we used the
result from the optimization z = 1/(1 + 2.76) = 0.266 =
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TABLE IV
Two-BOTTLENECK EXAMPLE
Input Throughput Rate Average Improvement (%) Comment
Rule Inventory*0.3 over Deterministic
Daterministic 0.03043 11.8906 95.2% utilization of bottieneck
CONWIP 0.03049 12.1791 -2.43
WR 0.03046 11.8732 0.15
Linear Control 0.03047 11.3111 4.87 Stops 1-4 weight = 1
Steps 5-13 weight = 0.87
Deterministic 0.03114 15.2758 97.2% utilization of bottleneck
CONWIP 0.03105 15.1450 0.86
WR 0.03110 15.0464 1.50
Linear Control 0.03114 13.8624 9.25 Steps 1-4 weight = 1
Steps 5-13 & step 17 waight = 0.05
Deterministic 0.03147 19.8152 98.4% utilization of bottieneck
CONWIP 0.03145 18.0504 3.86
WR 0.03151 & 18.8756 4.74
0.031441 18.1204 8.55
Linear Control 0.03150 17.1866 13.27 Steps 1-4 waeight = 1
This corresponds to SA
WR 0.031568 13.89657 Changed processing time
distribution to gamma parameter = 2
98.7% utilization of bottleneck
Linear Control 0.031568 12.5020 10.48 Steps 1-4 weight = 1
{over WR) Steps 5-13 & 17 weight = 0.031

Notes: This sxample corresponds to Wein [31]'s two bottlensck model. All machines are failure free.
Processing time distribution is exponential, scheduling rule SERPT, simulation length = 1,000,000,

Standard error of estimates based on blocks of 5,000 time units data was typically of the order of magnetude
of 1.0E-04 for throughput rate, and 1.0E-02 for the average inventory.

Bottleneck stations are PHOTO (1st two visits = steps 4, 13) & ION IMPLANT (first visit = step 17).

75.9/(2 * 142.92)]. The hyperplane suggested is quite unlike
workload regulation, starvation avoidance or CONWIP. This
hyperplane when used to control the flowline gives, TH =
1.31121, and average inventory to be 15.1264. Note the 20%
improvement (improvement = 18.28/15.12 ) over giving equal
weight to z3 and z4 (e, T3 + T4 < 55) as suggested by
the workload regulation method. At higher values of TH we
obtained larger percentage improvement over WR or SA.
We next discuss examples using Wein’s [31] model of a
fab. The fab has 24 stations and 172 processing steps. We
assume that all stations are free from failures. Most of our
simulation examples assume exponential processing times and
the SERPT scheduling rule. Some results are shown for failure-
prone stations, FIFO scheduling as well as processing times
with gamma distribution of parameter = 2 (which is Erlang of
degree 2). In these examples, station #14 (LITHOGRAPHY)
is one of the bottleneck stations. We give examples with
one-, two-, and four-bottleneck stations. In these examples,
jobs make the first visit to station #14 on their 4th step
and the second on their 13th step. The actual data is in the

<

public domain, and the interested reader is referred to Lu,
Ramaswamy, and Kumar [18], and Wein [31]. Due to limita-
tions on our computing resources, we have developed only one
linear function per example, and stopped the algorithm when
reasonable improvement in cycle time was obtained compared
to either WR or Deterministic release. The simulator employed
was coded in f77 for reentrant flow models and adapted to
cater to linear control rules. The processing time distributions
were truncated at seven times their mean. As mentioned in the
remarks at the beginning of this section, for computing the
linear control, we had to “normalize” the average inventory
because the throughput values will not be exactly the same
using different linear controls.

For one- or two-bottleneck fabs (see Tables III and IV),
we are able to obtain 3%-10% reduction in the average
inventory, with greater reduction being observed for more
heavily loaded fabs. We have labeled one of the release control
rules as WR in Table IV, but follow the surrogate release
control policy suggested in the appendix of Wein [31], p.
129. The last example in Table IV corresponds to processing
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TABLE V
FOUR-BOTTLENECK EXAMPLE
Input Throughput Rate Average improvement (%) Comment
i Rule Inventory*0.3 over Deterministic (no WR rule known for this example)
Deterministic 0.02914 10.0721 91% ytilization of bottleneck
SERPT scheduling
CONWIP 0.02901 & 9.8285 2.42
0.02920 10.1214 -0.49 SERPT
Linear Control 0.02916 9.8079 2.62 Staps 1-4 weight = 1
Staps 5-13 weight = 0.56
CONWIP to control, SERPT
Deterministic 0.02998 11.7646 93.8% utilization of botleneck
SERPT scheduling
CONWIP 0.03001 12.0394 -2.34
Linear Control 0.02944 11.4424 2.74 Steps 14 weight = 1
Steps 5-13 weight = 0.1
CONWIP to control, SERPT
Dsterministic 0.02999 9.8242 93.8% utilization of bottleneck
: FIFQ scheduling
Linear Control *0.02999 9.6388 1.89 Steps 1-4 weight = 2
Steps 5-41 weight = 1, rest weight = 0.1
> FIFO scheduling
Deterministic 0.03107 13,6080 97.2% utilization of bottleneck
FIFO scheduling
Linear Control 0.03105 13.1147 3.63 Steps 1-4 weight = 2
Staps 5-41 weight = 1, rest weight = 0.1
FIFO scheduling
Deterministic 0.03144 18.0872 98.3% utilization of bottleneck
FIFQ schaduling
Linear Controi 0.03148 16.7716 7.27 Steps 1-4 weight = 2
Staps 5-41 weight = 1, rest weight = 0.1
FIFO scheduling
Detarministic 0.02982 16.1638 94.2% utilization of bottleneck
i FIFO scheduling
Stations 13-24 failure prone (see below)
Linear Control 0.03001 14.9549 8.08 Steps 1-4 weight = 2
Steps 5-41 waight = 1, rest weight = 0.1
FIFQ schaduling

Notes: This example corresponds to Wein {31]'s modsl with stations 14 19, 21 & 24 being bottlenecks.

The number of machinas at these 4 stations are 3,1,1,&1 respactively.

Procsssing ime distribution is gamma parameter =2, scheduling rule varies, simulation length = 1.000.000.
Standard arror of estimates based on blocks of 5,000 time units data was typically of the order of magnetude
of 1.0E-04 for throughput rats, and 1.0E-02 for the average inventory.

In the last sxample, MTTF = 10,000 and MTTR = 100, with failure & repair imes exponentially distributed,

for stations 13 to 24 (that includes all bottleneck stations).

time distribution of gamma with parameter equal to 2. For
the four-bottleneck fab model, see Table V, FIFO scheduling
is better (as already noted in classical job shop scheduling
literature). There is no known WR or surrogate WR method
for this example. For this four-bottleneck example, processing
time distributions are gamma of parameter equal to 2; and
we see that changing the service time distribution does not
change the relative magnitude of improvement in cycle time.
We also show one example (the last one) in Table V, where
all the four-bottleneck stations have mean time to failure
(MTTF) and mean time to repair (MTTR) of 10000 and 100
respectively: Both the time to fail as well as repair times
are exponentially distributed. In general we observe that for
failure-prone fabs the improvement due to controlled release
over deterministic release occurs earlier, especially when the

mean time to repair is larger than the processing time. (Initial
experiments with fab models, in which the MTTR is the
same order of magnitude as the service times, indicate that
a modified algorithm might be necessary. When determining
the ith value of the coefficient, the linear function should be
of the form a1z; + az%2 + -+ + a@-1)%i + ay ;> Tj- The
value of “a” is selected as done before by optimizing the
quadratic function fitted using simulated values. Improvements
of 3%—-10% in the average inventory are observed for the
single-bottleneck examples.) ‘

In all the examples, at very high levels of bottleneck
utilization, the coefficients of the linear control are zero beyond
the initial few steps. This suggests that input regulation helps in
reducing congestion at the very beginning of the process, and
the rest of the inventory is hard to control. Obviously, if this

4
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were true, then the search for coefficients in the algorithm can
terminate sooner, and this issue needs further experimentation
and research. One way of overcoming the lack of control
beyond the initial steps is to stage the inventory every so many
steps, and release from these stages in a controlled manner.
The dispatching algorithm given in [18] apparently achieves
this end.

V1. CONCLUSIONS

We have demonstrated a practical algorithm that can be
used to develop linear control rules for input regulation in
semiconductor fabs. The class of linear control rules have
been narrowed down into those with descending coefficients.
This narrowing down helps in searching for a good linear
control, as explained in the remarks following the simu-
lation—optimization procedure. Several interesting theoretical
issues arise from these investigations. First, there is the role of
the scheduling discipline. For fabs that have several bottleneck
stations, it appears that FIFO is still a good rule to adopt.
There are other dispatching rules that have not yet been
tried out in fabs, such as fair processor sharing. These rules
have been used to guarantee delay in telecommunications
networks, and recently Seshadri and Harche [23] established
bounds for delay in multiclass open queuing networks using
such a rule. The interesting feature about these rules is that
under heavy traffic and deterministic routing, the network is
conjectured to decompose into separate tandem queues. These
individual tandem systems are more amenable to analysis, and
can be controlled as if they are single product systems. Such
rules are also more natural in a multiproduct setting, and we
intend to test these rules in a multiproduct setting in future
work. Second, in our experiments most of the improvement
in performance, due to controlled release, comes at the early
processing steps. Therefore, there is still scope for applying
dynamic programming to the initial steps to compute an
approximate release control policy. Establishing the validity of
this procedure in terms of bounds for performance is an inter-
esting problem. We have also suggested that staging inventory
and controlled release from WIP may be another alternative
worth exploring. Third, the use of hierarchical procedures
for controlling failure prone fabs—even a simulation analysis
that uses “discrete” flow of jobs (as against continuous flow
approximation) is a possible extension of this work. Fourth,
given a sequence of jobs that have to be released into the
fab and a scheduling rule that uses due dates (such as the
one described in [18]), the linear control rules described in
this paper can be adapted to make-to-order situations. Fifth,
iteratively determining the control, observing the results, and
making changes based on the values of the observed deviations
in average inventory at different steps, is a feature that can
be combined with the simulation—optimization approach to
develop adaptive control mechanisms.
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