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Abstract: We study the problem of using information about the type of machine failures to control
production. When each station in a two stage flowline has a single machine, the processing time
distributions are Erlang, and the time to fail as well repair a machine are exponentially distributed;
we show that the optimal policy for controlling the flowline is completely specified by selecting a
produce up to level called threshold level corresponding to each type of machine failure. These
threshold levels are shown to be ordered as per the rate at which the failed downstream station can
be repaired. These results are partially extended to the case when there are multiple machines at the
two stations of the flowline. We then summarize numerical results that illustrate when it is worth
while to use information about failures in controlling inputs to the flowline.
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1 Introduction

Machine failures are usually a major source of uncertainty in production plan-
ning and control. This is especially true in the context of semiconductor fabrica-
tion where the operations are machine dependent, critical machines are very
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expensive, and work can not be subcontracted out. It is well known that
the effect of machine breakdowns can be mitigated by carrying out properly
planned preventative maintenance. However relatively little effort has been
made to understand when and how information about the type of machine
breakdowns can be used in production control. In this paper we study how
information about the type of machine failures can be used for solving the
production control problem of minimizing the average inventory in two stage
flow lines subject to achieving a given rate of production (also called throughput
rate). In our models the flowline consists of two stations, see Figure 1. There
may be several identical machines at each station that are subject to multiple
types of failures. There is unlimited supply of raw materials at the first station
and unlimited storage space (also called the buffer space) between the stations.
The decision required is when to release material for processing to the first
station.

Using this model, we show that when there are single machines at the two
stations, machine failure as well as repair times are exponentially distributed,
and processing time distributions are Erlang, the optimal control policy can be
described by specifying a threshold (or produce up to) level for each type of
failure of the downstream station. Thus the information about the type of failure
translates into the optimal control of releasing material into the flowline till the
work for the second station in the line reaches the threshold level for that type
of failure. We then show that the threshold levels are ordered naturally (nested),
in the sense, the longer it will take to repair a given type of machine failure the
smaller should be the threshold level for that type of failure. Because we use
Erlang distributions for the processing times, the results extend to the case when
processing times are deterministic. These results are partially extended to the
case when there are multiple machines at the two stations of the flowline. We
then summarize numerical results that illustrate when it is worth while to use
information about the type of failure in controlling inputs to the flowline. Our
proof techniques comprise studying an equivalent problem of controlling a
Markov chain; and setting up a dynamic program to find the optimal control.
Most of the methods used by us are standard, except a coupling argument used
for establishing the nestedness of the threshold levels.

First Station Second Station
PR——— ,/\\ _E
I y 1 (\ \
I J—— \ ;)
Raw Material Buffer
Up state = 0

Down states = {1,2,....k}

Fig. 1. A two stage flowline with multiple types of machine failures
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The paper is organized as follows, in section 2 we discuss the modeling issues
and review related literature, in section 3 we describe the model with single
machines at each station and present the analysis of the optimal control policy,
section 4 is on the analysis of the model with multiple machines at each station,
and in section 5 we summarize numerical results, and suggest extensions of this
work.

2 Modeling Issues and Review of Literature

The work reported in this paper is part of a larger study, described in Seshadri
(1993) and Glassey, Shanthikumar and Seshadri (1996), whose objective was to
determine efficient scheduling and input control rules for use in semiconductor
wafer fabrication. The facility for producing semiconductor wafers, each wafer
containing from tens to hundreds of chips, is called a fab. In this section, we
briefly describe a typical fab, how some of the modeling assumptions stated in
the introduction arise in this context, and review related literature.

The Flowline Model for Fabs: There are three major stages to making an IC,
namely Wafer Preparation, Wafer Fabrication and Assembly. We study the
wafer fab because most of the complicated production work and investment in
facilities are concentrated at the clean room fabrication stage — in which layers
of intricate circuitry gets built upon the wafers. Because of the large investment
in fabs, the stated goal of most fabs is to simultaneously achieve high levels of
production and high yield of good wafers. While this goal has to be achieved to
recoup the investment, it is often at odds with the goal of maintaining low
inventories. Moreover, high inventories that result as a consequence of high
levels of production can conceal problems, leading to lowered yields, which
means more pressure for higher production and higher inventories and so forth
— a well understood downward spiral (Thomas (1993)). This explains the choice
of the trade-off in our objective function, namely, “to minimize the average
inventory subject to achieving a given throughput.”

In the entire wafer fabrication there are three critical processes: oxidation,
photolithography and diffusion, and the wafer visits these processes a number
of times before leaving the fab. Kumar (1993, 94) proposed a reentrant flow line
model to capture this repeated sequence of processing which is necessary to
build up the layers of circuitry. While his model captures the actual dynamics, it
is also rather complex for applying dynamic programming (DP) — the technique
used in this paper. Therefore, we have chosen to study two stage flowlines in this
paper, and focus more on understanding when information about the type of
machine failures is important, and how this information should be used by a
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production controller. We do suggest guidelines for extending our work to real
life fabs in section 6.

There are two major sources of uncertainty in a fab, namely, yield variations
and machine failures. We attempt to model only uncertainties arising from
machine failures in this paper, and some of the yield management aspects have
been reported in Nurani (1995), Seshadri and Shanthikumar (1994) and Nurani,
Seshadri, and Shanthikumar (1995). The decision to use the exponential distri-
bution in our model for the time to fail and repair machines was based on
informal discussions with fab managers. In addition we assume that the se-
quence of durations when a given machine is operational (called up times), and
the sequence of the repair times (called down times), are independent of one
another, and that the successive up (down) times are independent and identi-
cally distributed random variables. The statistical work of Hanifin discussed
in Buzacott and Shanthikumar (1993) shows that these assumptions may not
always hold good in practice and that subsequent times to fail could well be
correlated.

Related Literature: We review literature related to incorporating machine fail-
ures in production control. For work done on production planning of semi-
conductor fabs, the reader is referred to the excellent survey provided by Uzsoy,
Lee and Martin-Vega (1992, 94). There has been ample work done in the area
of scheduling single stage failure prone facilities, see for example Glazebrook
(1987), Birge and Glazebrook (1988), Pinedo and Ramouz (1988), Posner and
Berg (1988), Buzacott and Shanthikumar (1993), and also Pinedo (1995) which
contains a description of the research on single machine stochastic models that
deal with a large class of objective functions. In most of these studies, the
objective of controlling a single stage facility is usually given in terms of meeting
due dates or avoiding backlog while minimizing the cost of holding finished
products. Thus the single stage models do not deal with release control. Because
of this the results for single stage failure prone facilities are not directly applica-
ble in our context.

Several studies have been carried out to evaluate the performance of failure
prone flowlines in which the control is exercised solely by fixing the sizes of
inter-stage buffers. Literature survey, examples, and analysis of these models are
given in Buzacott and Shanthikumar (1993). There is however no guarantee that
the control of a flowline using fixed buffer sizes will give results close to the
optimal performance. Flowlines have also been analyzed under the assumption
that the machines are completely reliable. Examples of such work include the
analysis of the PAC system in Buzacott and Shanthikumar (1992), the work
reported in Veatch and Wein (1993), and the unifying notion of Linear Control
Rules for release control developed in Glassey, Shanthikumar, and Seshadri
(1996).

There have been several studies devoted to the design of release control
systems for flexible manufacturing systems (FMS). Machine failures are the
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major source of uncertainty in FMS and their control systems have to use
feedback information on failures to perform correctly. The earliest work on
failure prone FMS is that of Hildebrandt (1980). More recent examples include
the work of Akella and Kumar (1986), Sharifnia (1988) and Boukas and Hourie
(1990). An excellent and accessible summary of this work is given in Gershwin
(1994). In the models of FMS, the flow of work is approximated by fluid flow
and production is assumed to be instantaneous (i.e., the stocks and flows in the
model are connected by differential equations). The assumption of fluid flow is
appropriate in the context of FMS because there is little or no storage space
between stations in FMS, and operations take place on a time scale which is
much smaller compared to the times to failure and the repair times. The produc-
tion control problem in FMS is to match the output from the FMS with a given
demand pattern. Thus the time scales in the models of FMS as well as tradeoffs
in the production control problem for FMS are entirely different and we should
expect little of the results for FMS to carry over to the case of flowlines. It is
interesting then, that the structural results in our study correspond to those
given in Sharifnia (1988). Sharifnia using the fluid flow approximation, studied
the problem of controlling a single stage facility subject to different types of
failures in order to minimize the combined cost of backlogged demand and the
cost of holding finished product in the output store. He too found that there
were threshold levels corresponding to each type of failure, and given a type of
failure it was optimal to produce whenever the inventory in the output store was
below the corresponding threshold level. This similarity of optimal policies is
due to the ubiquity of threshold type optimal control policies for control of
Markovian systems; and interesting because we are able to obtain a similar
result for a two stage flow line with discrete job flow, and deterministic pro-
cessing times. -

There are a number of studies related to control of queueing networks that
incorporate machine failures, such as the work of Harrison (1988), Harrison and
Wein (1990), Wein (1990), and Kushner (1990). In these studies, the time to
repair a failed machine is considered to be a part of the job processing times.
This assumption is valid when the duration of failures and job processing times
are comparable. On the other hand there are situations in which the times to fail
and repair are very much larger than the processing times. In such circum-
stances the occurrence of failures and repairs can not be ignored and the state of
machines can not be taken as fixed for the purpose of controlling the release and
scheduling of jobs. Buzacott and Shanthikumar (1993, p. 234) discuss these two
views.

3 Single Machines in Each Station — Model Description and Analysis.

In this section, we consider a two stage flow line with single machines at each
station and infinite inter-stage buffer. The assumptions are listed below.
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Station # 1: There is infinite supply of raw materials, the service time to process
a job at the first station has an Erlang distribution with r phases and mean r/y,,
and the station is completely reliable.

Station #2: Processing times have an Erlang distribution with s phases and
mean S/, the failure rate is exponentially distributed with rate {, it is assumed
that the machine can fail even when it is idle (called the time dependent failure
model, see Buzacott and Shanthikumar (1993)), and that the job under process
at the time of failure will “resume” its processing after the machine has been
repaired. There are k types of failures and the probability that the next failure is

k
of type jis given by p;, j=1,2,...,k, Y p;= 1.
=1

Demand and Costs: Demand for the product is unlimited, every completed
unit (job) yields a profit of p’ per unit produced, there is a per unit holding cost
of Ac per unit time spent in the system after the first phase of processing has
been completed at station # 1 (discussed below), and all profits and costs are
continuously discounted using a factor of a.

Control: The controller is allowed to process a job at the first station using a
rate, u € [0, 1]. The control space is [0, 1]V, where N = {1,2,...}.

The Dynamic Programming Recursions: The objective is to maximize the average
discounted net profit over the infinite time horizon. This problem is equivalent
to that of minimizing the average discounted inventory holding cost subject to
achieving a given throughput rate. Instead of analyzing the problem in continu-
ous time as stated, we use a technique due to Lippman (1977) and work with the
equivalent discrete time Markov chain to analyze the problem. The Markov
chain is obtained by uniformizing the continuous time process of part produc-
tion, machine failures and repairs, using a fast Poisson process of sufficiently
large rate A. The state space for this chain is given by,

S={Wv,njhu=012..,r—15v=0,12,...,5s— 1

n=012..,...;j=012,..,k};

where the first two values, ie. u and v, denote the phase of service that is
underway at the first and second machines. The third value, n, is the number of
jobs in the buffer plus the job in service if any at the second machine. The last
value denotes the type of breakdown, with 0 denoting that the second machine
is operational (up). We have assumed that the information on the phase under
service is available to the controller, for analytical convenience. Define n’ to be
the number of jobs in the system that have completed the first phase of pro-

. . . A
cessing at the first station. Redefine the profit per unit to be, p = p’ — -c——~. The
31

logic of redefining the profit is that as stated we shall be charging inventory
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holding costs on a job from the instance one phase of service gets completed at
the first station. This is not a shortcoming because we are primarily interested
in the average cost case and use discounting to facilitate inductive proofs of
structural properties. For the average cost case the correction to the profit is
correct when the first station is never idled whenever there are no jobs down-
stream of the first station. Also note that in extending the results to the deter-
ministic case, we will have to let the number of phases get very large and
increase the processing rates proportionately, in which case the correction term
goes to zero. Denote the indicator function of set A as I{4}. The expected single
stage reward function, R(u, v, n, j; u,), received from using the control u, in the
state (u, v, n, j), can be written as,

R(us v, B, ]9 ul)

_ml{v=s5—-1;j=0;n#0}
B A+ a

{(p — (n" — 1)c) (Profit - Holding Cost of
(n" — 1) jobs if a job leaves
the system)

Uyl
A+«

(—n'c — cI{u = 0}) (Holding cost of n’ jobs plus the cost of holding a
new job that progresses beyond the 1st stage of
processing at the first machine)

_(A‘“u1ﬂ1“li21("=3_1;.1':05”7&0))
A+ a

n’c  (Holding cost of n’ jobs if
“nothing”, i.e., a transition
in the fast Poisson process,
happens)

_wllv=s5-1j=0n+#0)
B A+ a

cdu=0)y. (1)

A ’ ulﬂl
(p+0) A+(xnc A+«

The three components of the expected reward correspond to the three possi-
bilities: the second station completes one stage of processing, the first station
completes a stage of processing, or a transition of the fast Poisson process
occurs. The denominator of 4 + « in these expressions arises due to the dis-
counting of the profit and costs by the factor, A/(A + a). Let V(u, v, n, j; u,), be
the expected net discounted profits over the infinite horizon, obtained by using
the control u, immediately in the state (u, v, n, j), and the optimal control there-

after. Let V(u, v, n, j) = max V{(u, v, n, j; u,), be the optimal value function in
u; e{0,1]
the state (u, v, n, j). Then, using equation (1), and a similar logic, we obtain,

Viu, v, n, j;uy) = R(u, v, n, j; uy)

Uy Hy

+
A+ a

VO,v,n+ 1, )l{u=r—1}
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Uy Uy
+
A+ o

Viu+1,v,n Dlu#r—1)

I(j=0
+“2—/1(—J_:&——2(V(u,0,n—l,j)f{v-“*s—l;”?&o}

+ Vv +1,n DI #s—Ln#0)

LML # 0}

ZICPz .
o V(u,v,n,O)+mV(u,v,n,l)I{]-O}

4 (A —uypy — (I {n # 0} + OI{j =0} — A(HI{j #0})
A+«

x Vlu,v,m, j) . 2)

The existence of an optimal policy for this discounted version of the DP
follows from standard arguments, for example see Ross (1970). For the average
cost case, when the holding cost is positive it can be shown that there is a finite
upper bound for the value of n’ for the states that are not transient in the
optimally controlied Markov chain. This implies that the state (0, 0, 0, 0) will
recur infinitely often and thus there exists an optimal control policy for the
average cost too. To formalize this argument we would only need to show that
the original problem is equivalent to solving a dynamic program which termi-
nates when the state of the chain hits (0, 0, 0, 0), and the proof is omitted. In
equation (2), collecting the terms involving control u; in the expression for
V(u, v, n, J; u,) gives,

u(—cl{r—1=0}+VO,v,n+ 1, j)— V(r — 1,v,n, j))

foru=r—1; n>0, (3a)
ug(—cl{u=0} + V(u+ 1,v,n,j)— Viu,v,n, j))

foru#r—1; n>0, (3b)
u(—clr—1=0)+ ¥(0,0,1, j)— V(r — 1,0,0, j))

foru=r—1; n=0, (3¢)
u(—clfu=0)+ Vu+1,0,0, j) — V(u0,0, j))

foru#r—1; n=0. (3d)
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From these expressions, it is evident that the optimal control is of the bang-
bang type. The decision to produce in state (u, v, n, j) will be either 0 or 1,
depending on whether the terms in the parentheses in (3) are negative or non-
negative. In other words, the optimal control u¥ is a function of the state
(u, v, n, ), with uf(u, v, n, j) taking values in the set {0, 1}.

The Main Result: The main result of this section is given next. It is based on four
lemmas, with Lemma 3 being the key to the theorem.

Theorem I: For a two stage flowline, with single servers at both stations, Erlang
processing time distributions, reliable first station; when the time to fail and
repair the second station are exponentially distributed, there are multiple types
of failures possible, profit p per unit produced, constant holding cost per unit
per unit time spent in the system, and under continuous discounting; the opti-
mal policy to maximize the expected net value of discounted profits over the
infinite time horizon has the following structure,

(i) For every state j, j=0, 1, 2, ..., k of the second machine, there exists a
threshold level Z(j), such that when the second machine is in state j, it is
optimal to continue production at the first machine (and produce at the
maximum possible rate) only if the inventory downstream of the first ma-
chine measured in terms of processing phases for the second machine is less
than or equal to Z(j). ‘

If all threshold values are finite then:

(i) If Z(0)is not zero, then Z(0) = Z(j), j=1,2,..., k.

(ii) If the repair rate (of the second machine) in failed state j is smaller than that
in failed state [, then Z(l) = Z(j).

(iv) It is never optimal to idle the first station except when the first phase of
processing has to be undertaken. It is never optimal to idle the second
station.

Proof:

(i) In Lemma 2, we show that V{(u, v, n, j) — V{u — 1, v, n, j) is non-decreasing
in v. Part (i) of the theorem now follows from equations (3).

(i) In Lemma 3, we show that V{(a,v,n, j) — V(b,v,n j) < V(a,v,n0) —
Vb, v, n, 0), for a > b, n > 0. Part (ii) follows from this and equations (3).

(ii)) In Lemma 4, we show that if A(I) > A(j), then V{a, v, n, j) — V(b, v, n, j} <
Via, v, n, 1) — V{b, v, n, 1), for a > b, n > 0. Part (iii) follows from this and
equations (3).

(iv) This part follows immediately from Lemma 1, where we show that (a)
Viw,v,n, j) — Vlu—1,v,n,j) = 0,for (u— 1) > 0, and (b) V(u, v, n, j) —
Vu,v—1,n,j) = 0. |
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There are two practical implications of this theorem. The first implication is
that using thresholds that are stated in terms of jobs (instead of phases) down-
stream of the first machine will result in a policy that is at most “one job away”
from the optimal policy. The second implication is that all the results of the
theorem extend to the case when processing times are deterministic. The four
lemmas used in this theorem are proved below.

Lemma 1:

(@ Vlu,v,n,j)— Vu—1,v,n,j)=0,for(u—1)>0and
(b) V(u: v, n, .]) - V(ua vV — 1a UN ]) = 0

Proof: For proving (a), consider two systems I and II. Let the initial state in
system I be (u — 1, v, n, j) and be (u, v, n, j) in system 11, withu — 1 > 0. Couple
the two systems by letting the sequence of up and down times and processing
times at the second station be the same in both systems. Assume that system I
is operated under the optimal control. Consider the (sub-optimal) policy of
idling the first station in system I1 till the first station in system I has completed
the processing of the (u — 1)st phase, an event that is bound to happen eventu-
ally as the systems are assumed to be profitable to operate. At that instant either
the two systems hit the same state or system II may have processed jobs for a
longer time at the second station (if u > r). Part (a) now follows by use of part
(b).

For proving part (b), consider two systems I and I1. Let the initial state in
system I be (u, v — 1, n, j) and in system II, let the initial state be (u, v, n, j).
Assume that the sequence of up and down times at the second station, as well as
the processing times at the first station are the same in the two systems. Use the
optimal policy to operate system I. In system 11, follow the same input control
policy as used in system I (which is a sub-optimal policy for system II). It is then
easy to see that both systems will have the same stream of new jobs joining the
buffer between the stations — but the second station in II will always either be
ahead in processing jobs, or in step with the second station in system I. This will
lead to net profits in II being at least as high as that in system I. This lemma
may be summarized by saying that inserted idleness is not beneficial. ]

Lemma 2:

@ Vw,v,nj) — Viu—1Lv,nj)=> Viwv—1,n,j)— Viu—1,v—1,n,j)for
. 0<u<sr—-1,0<gvss— 1
(i) V(©,0,0, /) — Vu~—1,0,0,7) = V(u,v,n, j)— Vu—1,v,n,j)
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Proof: We shall prove only part (i) of the claim. The proof of part (ii) is similar
and is omitted. To prove part (i) we use a standard induction technique using
the finite time horizon framework. The proof is tedious and involves enumerat-
ing several cases, and analyzing each separately. One unit of time is one transi-
tion in the uniformizing Poisson process. Define, V™(u, v, n, j) to be the optimal
net discounted profit, when starting at state (u, v, n, j) and there are m time units
left to go. The time units (periods) left to go will also be termed the stage of the
DP, and V™(u, v, n, j) in this terminology is called the m stage value function.
The recursion equations for the (m + 1) stage value function are, compare with
equation (1),

V™, v, n, j) = max (R(u,v,n, j;u;)
u; €[0,1]

Uy iy

A+aV”‘(0,v,n+1,j)I{u=r——l}

-+

Uy iy

A+aV"’(u+1,v,n,j)I{u¢r~1}

+

LU =0 niy 001, 1o = s 1im 20}

+ V™u, v+ 1,0, )I{v+#s—1;n#0})

+ MHI{j # 0}

m Zlcpl m T
Tta V(u,v,n,0)+mV(u,v,n,l)]{]-—O}

. (A —ugpy — (oI {n # 0} + OI{j =0} — AjI{j+#0})
A+«

x V™u, v, n, j)) . 4

Let the lemma be true for the m stage value function. As a check, the induc-
tion can be started in the last period by setting the zeroth period value function
to be identically zero. Let u,, u,, u; and u, be the optimal controls used in
the states (u, v, n, j), @ — 1, v,n, j), w,v—1,n, j), and (u — 1, v — 1, n, j) when
there are (m + 1) periods left to go. Denote the difference, (V™(u, v, n, j) —
V™u — 1,v,n, j)) = 4™u, v, n, j). Define (—1,v,n, j)=(—1,v,n—1,j) and
(w, —1,n,j) = (u,s — 1,n + 1, j). Consider the difference (V™" (u, v, n, j) —
Vit —1,v,n, j)) — (V™ w0 — 1,n, j) — V™ N u — 1, v — 1, n, j)) given by,
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A", v, n, ) — A™ Hu, v — 1, 1, §)

_ [ Wy _ Uy 1= )
= (A+ocd{u 0} A+ocd{u 1 O}) (5-1)
+£%%memn+hﬁﬂu=r—n
+ VM Ly Hu#r — 1)) (5-2)
Uzl om . -
Z:;VWJmJ) (5-3)

4 (A —uypy “Nzl{j": 0} - i(j)l{j¢0})

Vm”)‘
A+ o . v.m j)

M #0}

+
A+ a

(u, v, n, O) (5'4)

_(A =yt — o I{j=0} _i(j)l{jséo})V"‘(u-— 1,v,n,j)

A+ a
MPI{#0}
— S V= L vn, 0) (5-5)
0
+ %(d"‘(u, v+ Ln pI{v<s—1}
+ A, 0,n — 1, )I{v = s — 1}) (5-6)
Uzly o Hally 1= :
+<cA+aI{u-0} cA+aI{u 1 0}) (6-1)
Uy .
. 23F1 pm — -p 1
A+<x(V Ov—Ln+1, j{u=r }
+V™u+1L,v—1,n pl{u#r—1}) (6-2)
e O (6-3)

A+a
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_ (A —uspy — p1{j= 0} — MN)I{j #0})

Vru,v—1,n,j
Y (u,v—1,n,j)

A #0)

Vmu, v — -
Y (u,v—1,n,0) (6-4)

" (A — ugpy — Hzl{j= O} - l(j)]{j;éO})

V™u—1,v—1,n,j)

A+
APNI{j#0}
+“TTZT”VW 1,v—1,n0) (6-5)
wl(j=0 . _
—mm(d wOon—1, HI{v—-1=5-—1}
+ A", v,n, DI{v — 1 <s—1}) . (6-6)

The proof will be based on manipulating these expressions so that the induc-
tion hypothesis can be used. We shall tackle the case (u, v, n, j) = (0,0, 1, 0)
separately. In all other cases, by using the induction hypothesis, only the terms
involving u’s, i = 1, 2, 3, 4, have to be analyzed to see whether the difference
A™ Y u, v, n, j) — 4™ (u, v — 1, n, j), i.e., the sum of terms in (5) and (6), is non-
negative. In other words, if u;, u,, u; and u, were all equal to 1 then grouping
the terms in (5) and (6), and applying the induction hypothesis will be sufficient
proof of the lemma (see case (i) below), but analysis is necessary when some of
the controls do not equal 1. Using Lemma 1, as well as the induction hypothesis,
there are only five cases (out of a possible 16 cases) to consider. A complete analy-
sis is given for case (i), and proof showing 4™ (u, v, n, j) — 4™ (u, v — 1, n, j)
is non-negative for the remaining cases is given in Glassey, Seshadri, and
Shanthikumar [1996a].

Case (i) (uy, uy, us, uy) = (1,1, 1, 1) The terms in (5-1) cancel with those in
(6-1). Combining the terms in (5-2) & (5-3) with those in (6-2) & (6-3), and use of
the induction hypothesis yields,

251 . 231 .
Am — B pm, v —
e (u, v, n, j) Y (u,v—1,n,j)
=_F 4™, v,n, j)— 4™w,v—1,n,j)) =0 .
A+a -

Using the induction hypothesis and combining the terms in (5-6) & (6-6) gives,
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ﬂzI(J 0)

Y d™u,v+1,n,j)— 4™w,v,n, j)) =0

Similarly, using the induction hypothesis and adding the terms in (5-4) & (5-5)
and (6-4) & (6-5) gives,

+(/1 =y = {j =0} — ANI{j # 0})

A1 a (d™u,v,n, j) — A™(u, v — 1, n, j))

LA {j# 0}

T+ a {4™u, v,n,0) — 4™w,v—1,n,0) >0 .

Analysis of the Boundary Case: The problem with the boundary state (u, v, n, j)
= (0,0, 1, 0) arises due to transitions at the second station, i.e. terms involving
u,. This is called a boundary state because there are no states below this with v
positive. When (u, v, n, j) is (0, 0, 1, 0) the four states in the lemma are (0, 0, 1, 0),
& (r —1,0,0,0) and the pair (0,s — 1,2,0), & (r — 1, s—l 1,0). The terms
involving , in (5) and (6) can be grouped into,

(Vm(O’ 15 17 O) - Vm(r - 1: 09 0: 0)) - (Vm(oa 09 1: O) - Vm(r - 15 Oa 07 O))

=V"0,1,1,0)—-¥V"0,0,1,0)

Appealing to proposition 1, that inserted idleness is not beneficial, we have
(Vm(07 13 19 O) - Vm(O: Oy 1: 0) = 0. n

Lemma 3: V(a, v, n, j) — V(b,v,n, j) < V(a,v,n,0) — V(b,v,n,0), for a > b,
n> 0.

Proof: Consider the four systems:

System 1: Starts with initial state (a, v, n, j) and is operated using the optimal
control policy.

System II: Starts with initial state (a, v, n, 0) and is operated using the control
policy for system I till a random time, denoted by .# and to be specified in the
proof. Thereafter the system is controlled using the optimal control policy.
System I11: Starts with initial state (b, v, n, j) and is operated using the control
policy for system IV till the same random time _# as in system II and thereafter
is controlled using the optimal control policy.
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System 1V: Starts with initial state (b, v, 1, 0) and is operated using the optimal
control policy.

Let P(x), x = I, 11, I11, IV denote the expected discounted value of profits less
holding costs incurred in system x, over the infinite time horizon. First we note
that V{a, v, n, j) — V(b, v, n, j) < P(I) — P(I1), as the control policy used for
operating system I1I is sub-optimal. Similarly, the difference P(1I) — P(IV) <
Wa, v, n, 0) — V(b, v, n, 0). The amount of processing done at the first station in
systems I and II will be assumed to be identical in every finite time interval in
[0, #]. Similarly in systems I1I and IV, the amount of processing done at the
first station will be assumed to be the same in every finite time interval in [0, #].
Let T; be the duration of the initial down period in systems I and /1] and be
exponentially distributed with parameter 4;, denoted as T, ~ exp(4;). Let Z ~
exp({) be the duration of the initial up period in systems IJ and I'V. Let [ be the
type of the first failure in systems I and IV. Let the duration of this failure be
T, ~ exp(4,) in both these systems. Let P(x, [1,, t,], @) be the discounted profit
less holding cost in system x, x = I, II, I1I, IV over the time interval [¢;, ¢, ]
over a particular sample path.

Let us first discard the possibility that during [0, Z], the second station might
have idled in either system II or IV. Let T, be the first time before Z, that in
either system II or IV the second station became idle. Equate the processing
done at the second station in systems I7 and IV during the interval [0, T;]. At
time T, let the states of the four systems be (x, v, n, j), {x, 0,0, 0), (z, v, n, j), and
(z, 0, 0, 0) respectively. We shall also assume that x > z. The reason is, if x = z
then systems I and I1] have coupled and so have IT and IV, and x < z will imply
that x = z was true at some previous instant but after time zero - so the systems
would have coupled. As x > z, by Lemma 2, V(x, 0,0, 0) — V{(z, 0, 0, 0) is not
smaller than V(x, v, n, 0) — V(z, v, n, 0). So we can resume comparing the four
systems after time T;, with initial states (x, v, 1, j), (x, v, n, 0), (z ,v, 1, j), (z ,v, n, 0)
- start the argument all over from time T; onwards. A formal argument for
establishing this can be given, see case (i) below. From now onwards we assume
that systems II and IV have not idled during [0, Z]. We shall therefore assume
that processing done at the second station in both these systems are equal
during time [0, min(Z, _#)]. We need to consider two cases now.

Case (i): T, < Z: See Figure 2(a). In this case we shall terminate the coupling at
time T, i.e. set # = T,. During this time period over a sample path where the
second station has not idled,

P(I, [0, ], w) — P(III, [0, T1, ®) = P(IL, [0, T,], ) — PUV, [0, T], @) .

Let the states of the four systems be (x,v, ny, j), (x, z, 1,,0), (¥, v, ny, j),
(¥, z, n,, 0) at time T;. Once again we argue (proof omitted) that we only need to
consider x > y. Using Lemma 2, and the fact that (s — 1 — z + n,(s — 1}) is not
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Fig. 2. Proof of proposition 3

larger than (s — 1 — v + n,(s — 1)), the statement of the lemma is seen to be true
on these sample paths.

We now formalize this argument. Let us denote A to be the event that {x > y,
the second machine has not idled during [0, T,], and {T, < Z}}. Let V(a, v, n, j, A),
Vib, v, n, j, A), V(a, v, n, 0, A), and V(b, v, n, 0, A) be the expectations of the value
received (till time infinity) using the optimal control policy and starting out from
the four states (a, v, n, j), (b, v, n, j), (a, v, n, 0), and (b, v, n, 0) on the set 4. Let
Pr(4) be the probability of event 4 happening. Let P(x, [0, 1;1, A) be the
expected value of discounted profits less holding cost incurred on the set in
which event 4 happens in system x, x = I, 11, I11, 1V. Let E(p7) be the expected
value of the discount factor till time 7}. Then,

Via, v, n, j, A) — V(b, v, n, j, A)
"+ E(pT)(Mx, v, ny, 0) — V(p, v, ny, 0) Pr(4)
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+ E(pT)(V(x, z, ny, 0) — V(y, 2, ny, 0)) Pr(4)

<V, v,n0,4)— Vb, v,n0,A) .

Case (ii): T,> Z: We equate the processing done in the second station in
systems II and IV during [0, Z]. There are two sub-cases to consider.

(@) T, > T;: We stop the coupling at time Z + T;, ie. set ¢ = Z + T,. If the
second machine is still down in systems I and II] at this instant (see Figure
2(b)), let the states of the four systems be (x, v, n,, j), (x, z, ny, 0), (¥, v, ny, j),
(y, z, ny, 0) at time Z + T,. Arguing as done earlier, we may start the argument
afresh from time Z + T, with the four states: (x, v, 1, j), (x, v, n, 0), (y, v, 1, j),
(v, v, n, 0). Else if the second machine is operational at time _Z, then let the states
of the four systems be (x, v, ny, j), (x, z, n,, 0), (y, v, 5y, j), (¥, z, n,, 0} at time
Z + T, see Figure 2(c). In this case we equate the processing done in the second
stations in systems I and 111 during [T, Z + T;] with that done at the second
station in systems II and IV during [0, Z + T, — T;]. Set ¢ = Z + T,. We ob-
serve that on every sample path on which the event {T; > T;; T, < Z + T;}
occurs and also on which the second machine has not idled in any of the four
systems,

By Lemma 2, and using the fact that (s — 1 — v + n,(s — 1)) is not smaller than
(s — 1 —z + ny(s — 1)), the claim follows on these sample paths. The formal
proof is omitted.

(b) T; < T;: Let the type of failure that occurs at time T; + Z in systems [ and
III be of type I, and of duration Ty ~ exp(4,). We shall assume that T; is
independent of T;'. At time Z + T; we stop the coupling, see Figure 2(d). Set
F# = Z + T,. Equate the processing done in the second stations in systems [ and
IIT during [T, Z + T;] with the amount of processing done by the second
station in systems IT and IV during [0, Z]. At time # let the states of the four
systems be: (x, v, ny, 1), (x, 2, ny, ), (y, v, ny, 1), (3, 2, 05, ). As argued previously
the difference,

P(I,[0, Z + T), w) — PUIL [0, Z + T;}, )
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and (s — 1 — v+ n(s — 1)) is not smaller than (s — 1 — z + n,(s — 1)). The
claim now follows by use of Lemma 2. The formal proof is similar to the one
given for case (i) and is omitted. n

Lemma 4: 1f A(j) < A(), then V(a,v,n, j) — V(b,v,n,j) < Via,v,n, 1) —
V(b,v,n,l),fora > b,and n > 0.

Proof: Consider the four systems:

System I: Starts with initial state (a, v, n, j) and is operated using the optimal
control policy.

System I1: Starts with initial state (a, v, n, [) and is operated using the control
policy for system I till time 7; (defined below) and thereafter is operated using
the optimal control policy.

System I11: Starts with initial state (b, v, n, j) and is operated using ihe control
policy for system IV till time T; (defined below) and thereafter is operated using
the optimal control policy.

System IV: Starts with initial state (b, v, n, I) and is operated using the optimal
control policy.

Let the duration of downtime in systems I and II1 be T; and in systems /I and
IV be T,. Equate the processing done at the first station in systems I and II
during the time period [0, 7;] and do similarly for systems III and IV. This
coupling will stop at time T;. Because, A(I) > A(j), we can generate random
variables T; ~ exp(A(j)) and T, ~ exp(A(/)) such that T > 1T, almost surely using
a standard construction. Let the states of the four systems at time T, be:
(v, m, ), (x,v,1,0), (3,1, j), (3, v,n,0). As argued in Lemma 3, we can
discard the possibility that x is smaller than y. Lemma 4 now follows by use of
Lemma 3. ]

Accurately Predictable Repair: Consider now the case when the time to repair
the jth type of failure has an Erlang distribution with #(j) phases and mean
¢(j)/A(j). This model is appropriate when the repair times can be predicted very
accurately. In that case, we can vary just the number of phases of the Erlang
distribution associated with each failure type. The state space of the controlled
Markov chain is expanded to (u, v, w,n, ,u=0,1,...,r— 1;v =0, L,...,s—1,
J=0,1..,k;w=0,1,...,¢(j) — 1) where u, v, n, j are as before and w is the
number of stages of repair completed. If in addition we assume that A( J) = A(k),
Vj, k # 0, then a theorem very similar to Theorem I may be proved. The result
now is that the control is purely a function of the number of stages of repair to
g0, say y, and the threshold levels are given by a non-increasing function Z(y).
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4 The Multiple Machines Model

We can extend the model to include a two stage flow line, in which there are Ny
machines in the first stage feeding N, machines in the second stage. All machines
in a stage are assumed to be identical. Both stages are subject to machine failure,
with failure rates {, and (,. We assume that there are k, types of failures
possible for the first stage machines and k, types of failures for the second stage
machines, and the type of the next failure is modeled as in section 3. The
processing times are assumed to be distributed exponential with parameters p,
and y, at the two stages. There is a per unit holding cost of Ac per unit time,
from the time the processing at the first station has been completed till the job
leaves the system (see discussion in section 3). Each job on leaving the two stage
flow line gives a profit of p. All profits and costs are continuously discounted
using a factor o. It is assumed that the processing rate of any first stage machine,
if it is operational, can be controlled continuously in the range [0, x; 1. The
control space is [0, 11" To simplify notation we represent a feasible control as
the N, dimensional vector &, with components u(i), i = 1, 2, ..., N, and that the
ith machine’s processing rate is, u(i)u;, where

€ [0, 1], if machine i is operational

u(i)

= 0, if machine i is under repair

Assume that if a machine breaks down, the processing of the part if any on
that machine can be taken up by an available (or next available) machine. The
objective is to maximize the mean discounted net profit over the infinite time
horizon. As in section 3, we work with the equivalent Markov chain. The state
space for the Markov chainis S = {n;, ny, n, 4;, 4;;n > 0}; where the first three
components are integers and stand for the number of machines working in the
first and second stations and the number of jobs downstream of the first station.
The last two components give the vector of repair rates for the failed machines
in the two stations. The components of the repair rates are denoted as {4,(}),
j=1,...,N;} and {4,(j), j=1,..., N,}. If a machine is operational then its
repair rate is set to zero. Let e; be the unit vector of appropriate dimension
(depending on the context) with a one in the jth position. Then as in section 3
the single stage reward obtained from using the control # in the state (n,, 15, 1,
A4, 4,), and the optimal value function can be written as,

Ziu(i)lh(n + e+ (ny A mu,y

A+ A+ (p={n =10

R(ny, Ny, 1y Ay, Ags U} = —

_ (4 - Ziu(i)ﬂz — (ny A n)iy) ne
A+«

3



474 C. R. Glassey et al.

and
V(ny, ny,m, Ay, Ay) = max (R(ny, ny, n, Ay, Ay 0)

1 )
+ m(z: u(l)ﬂ1 V(nls n29 n+ 19 ’119 )'2)

+ (ny, A mu,Ving, ny,n—1,4,,4,)

+ 1,8, Y 0 PADVn — 1, ny, m, A1, 45)

+ 13053 4 A Vng, ny — 1,m, Aq, A3)

+ Zjll(j)V(nl + 1, ny,m, 4y — A,(j)e;, A,)1{n, # N, }
+ YA (NVng, ny + 1,m, Ay, Ay — A,(j)ej)I{n, # N}
+ (A = Yupy — (ny A m)uy —ny Ly — 0yl

- Zj’ll(j) - Zj'lz(]'))v(nu ny, 1, Ay, 4)))

where we have used 4] and p(4;) to denote a new vector of repair rates and
the probability of its occurrence given the current vector is A;, i = 1, 2, and
X A Y =min(X, Y). The terms involving the control, u(i)’s, when collected
together, give,

‘*’Z u@(—c+ Ving, ny,n+ 1, 44, 4,) — Ving, nyum, 44, 4,)) 7

It is clear from equation (7) that either all machines at the first station will
produce at the maximum rate or not at all. We shall call (n,, n,, 1,, 4,) as the
state of the flow line. The number of possible states of the flowline are finite, and
their collection will be denoted as Sg.

Theorem I1: For the two stage flow line when there are multiple but identical
machines at each stage, exponential processing time distributions, multiple
types of failure at both stages, failure and repair times distributed exponential,
constant per unit holding costs once a job has completed its processing at the
first stage, constant profit per job on completion, under continuous discounting;
and when the objective is to maximize the expected discounted value of net
profit over the infinite time horizon, the structure of the optimal policy is such
that: For each possible state of the flow line, s € S;, there exists a threshold level
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Z(s), such that if the number of jobs downstream of the first stage is less than or
equal to Z(s) it is optimal to process jobs at the highest possible rate at all
machines at the first stage.

Proof: The proof follows from equation (7) and Lemma 5 in Glassey, Seshadri,
and Shanthikumar [1996a], where it is shown that for each value of (n,, n,,
A1, A2), the value function V(n,, n,, n, A;, 4,) is concave in n. n

Remark: Erlang repair times pose no problem in the muitiple machine case too.
However ordering the threshold levels is a difficult problem. This is because the
vector of repair rates introduces only a partial ordering of the states of the
flowline.

5 Numerical Results

The structural properties described in the previous sections by themselves will
not help in answering questions such as: How does the distribution of pro-
cessing times affect the optimal threshold levels? How will threshold levels
change when failures occur? When is a policy that uses feedback on the machine
status and type of failure clearly superior to one that does not use any feedback?
What is the effect of multiple machines on threshold levels? And how to com-
bine the theoretical results into a practical algorithm for release control? Several
experiments were conducted to answer these questions. In this section we sum-
marize the key observations from these experiments, describing 2 phenomenon
called the separation effect and the value of using information about machine
failures. The reader is referred to Glassey, Seshadri, and Shanthikumar [1996a]
for the details of other experiments. The stations in the two stage lines contain
multiple but always identical machines. The job processing time distributions
are exponential and like in sections 3 and 4, the time to fail and repair are
assumed to be exponentially distributed. Both stages are failure prone. The unit
profit, holding cost, and the continuous discount factor are denoted as p, ¢, and
r in the tables, typically these parameters were set to, p = 10, ¢ = 0.3 and
r = 0.1. We have used three combinations of processing rates, namely (1.5, 0.5),
(1, 1), and (0.75, 1.25); where the first number denotes the processing rate of a
typical machine at the first station and the second number that of a machine in
the second station. This helps us compare situations in which (i) a fast station
feeds a slower one, (ii) a balanced setup and (iii) one where a slow station feeds
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a faster station. These combinations are labeled as processing rates in the tables.
The machine state is used to denote how many machines are working in each
stage and also include where appropriate the repair rates of the failed machines.
The machine state in the tables, indicated as i — j, denotes i machines working
in station 1 and feeding j operational machines in station 2.

Separation Effect: Consider just the results of Experiments I and VI shown in
Table 1. In Experiment I the machines are operational about 90% of the time
and the repair rate is about a fifth of the processing rate. The optimal threshold
levels for this set up differ quite a bit depending on the machine state. This is a
phenomenon we call the separation effect. Contrast this with the results of
Experiment VI, where the repair rate is comparable to the processing rate of the
second station. In this experiment, there is almost no difference in the threshold
levels across machine states. The results from Experiment VII show that even
when the machines are nearly 100% reliable, there is no significant change in
threshold levels when the repair rate is comparable to the processing rates of the
second station. The gradual impact of the repair rate on threshold levels can be
traced by examining the results in the following sequence: Experiment IV — I —
V — VI - VII. Moreover, on comparing the threshold levels in Experiments 1,
IT and III, we find that the parameters of failure times are apparently less
important compared to the repair rate of the second station in determining the
threshold levels.

Value of Information About Machine Failures: A static policy is one that does
not react to machine failures, but keeps the threshold level unchanged. A dy-
namic policy is one that reacts to machine failures. In Table II, we show the
results for a two stage flowline with two machines at each stage. For different
combinations of processing rates, machine failure and repair rates we investi-
gate the difference between the best static policy and the optimal policy. There
are two measures used in making comparisons, for the first we simply compute
the difference between the average profit rates per transition, and for the second
we compute the largest deviation in the value functions over all recurrent states.
In Table II we also show the optimal threshold level when all machines are
operational, along with the value of the best static threshold level. It turns out
that excepting in the case when repair rates are very small these two values are
the same. This is not surprising as a static policy should be correct most of the
time, and most of the time all machines in the examples in Table II are working.
We see from the table that a dynamic policy is beneficial when, the processing
rate of the first station is comparable to or is greater than that of the second
stage, the fraction of down time of the second stage is not too small, and when
the repair rate is small compared to the second station’s processing rate.
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Table L. Sensitivity of threshold level to repair rate
DATA: (2 machines per station, ¢ = 0.3, p = 10, r = 0.1)
MACHINE STATE
(# working m/cs 1st stage — # working m/cs 2nd stage)

Processing | Failure |Repair |1 -1 |152 {2122 [|1-0]2-0
Rates Rate Rate
Experiment 1 11 0.01 0.1 9 14 5 9 4 2
Experiment 11 0.033 0.1 8 13 6 10 4 2
Experiment III 0.044 0.1 7 13 6 10 4 1
Experiment IV 0.001 0.01 6 17 4 9 0 0
Experiment V 0.02 0.2 9 13 7 10 6 4
Experiment VI 0.08 0.8 9 10 8 9 7 7
Experiment VII 0.001 0.8 9 10 8 9 8 7
Experiment 1 (1.5,0.5) 0.01 0.1 3 5 2 4 0 0
Experiment 11 0.033 0.1 3 5 2 4 1 1
Experiment IIT 0.044 0.1 3 5 2 4 1 1
Experiment IV 0.001 0.01 2 5 2 4 0 0
Experiment V 0.02 0.2 3 5 2 4 1 1
Experiment VI 0.08 0.8 3 4 3 4 3 2
Experiment VII 0.001 0.8 3 4 3 4 3 2
Experiment I 0.75,1.25 0.01 0.1 15 23 11 18 8 5
Experiment 11 0.033 0.1 14 21 11 17 8 5
Experiment IIT 0.044 0.1 14 20 12 17 8 6
Experiment IV 0.001 0.01 10 26 6 18 0 0
Experiment V 0.02 0.2 16 21 14 18 12 10
Experiment VI 0.08 0.8 15 17 15 16 14 13
Experiment VII 0.001 0.8 16 18 16 17 15 14
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Table II. Dynamic versus static policies
Data: (Profit = 10, cost rate = 0.3, All failures same type; Two machines at each station; # of
iterations = 300, Average Cost Criterion)

Processing | Repair | Failure | Threshold Profit Rate % Diff. | MAX
Rates Rate Rate Diff.
Optim | Static | Optimal | Static Value Fn.
All Up | Level | Policy Policy
t€n 0.05 0.005 11 11 3.00064 297538 —0.84 2635
0.01 12 11 259045  2.55493 —137 2236
0.05 12 11 1.07578  1.03820 —3.49 9.85
0.1 0.001 12 12 265007  2.63653 —0.51 6.67
0.05 12 12 1.58421 1.56450 —1.24 3.75
0.01 12 12 098526 096722 -—1.83 2.10
0.2 0.02 12 12 2.16535 216071 —0.21 1.22
0.1 12 12 131780 131144 048 0.48
0.2 12 12 0.83372  0.82633 —~0.89 0.36
(1.5,0.5) 0.05 0.005 4 4 1.63517 160742 —1.70 6.76
0.01 4 4 145064 141573 —241 5.60
0.05 4 4 0.62243  0.59594 —4.26 2717
0.1 0.001 4 4 143685 141434 —1.57 224
0.05 4 4 090170 087443 -3.02 0.99
0.01 4 4 055632  0.53871 —3.17 041
0.2 0.02 4 4 116163  1.14637 —1.31 0.65
0.1 4 4 0.72768  0.71586 —1.62 0.11
0.2 4 4 045384 044563 —1.81 0.02
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Table IL. (Cont.)

Processing | Repair | Failure | Threshold Profit Rate % Diff. | MAX
Rates Rate Rate Diff.
Optim | Static | Optimal | Static Value Fn.
All Up | Level | Policy Policy
(0.75, 1.25) | 0.05 0.005 32 14 267903 267467 —0.16 9.55
0.01 31 14 2.35333 234647 029 8.31
0.05 24 14 1.02716  1.01456 ~—1.23 3.55
0.1 0.001 31 31 237971 237624 —0.15 413
0.05 26 26 1.50521 1.49030 —0.99 2.84
0.01 26 26 096292 095141 -—-1.20 147
0.2 0.02 31 31 1.94304 194246 —0.03 0.28
0.1 25 25 1.25144 124757 031 042
0.2 20 20 0.81560  0.81025 —0.66 0.35

6 Summary

We have shown that threshold type policies, with threshold levels nested ac-
cording to the rate of repair are optimal for controlling production in a class of
failure prone two stage flowlines having a single machine at each stage. Thresh-
old type policies are also optimal under our assumptions for models with multi-
ple machines and types of failures. Numerical investigations reveal that the
threshold level corresponding to a given machine state is dependent mostly
upon, the ratio of the repair rate to the processing rate of the second station.
Dynamic policies that react to machine failures are most beneficial when, the
second machine is a bottleneck, the fraction of downtime is not too small, and
when the ratio of the repair rate to the processing rate of the second station is
small. We plan to extend and apply these results to controlling failure prone
reentrant flowlines in future work.
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