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A significant amount of recent research has been focused on the stability of multi-
class open networks of queues (MONQs). It has been shown that these networks
may be unstable under various queueing disciplines even when at each one of the
nodes the arrival rate is less than the service rate. Clearly, in such cases the expected
delay and the expected number of customers in the system are infinite. In this paper
we propose a new class of scheduling rules that can be used in multiclass queueing
networks. We refer to this class as the stable shortfail-based priority (SSBP) rules.
This SSBP class itself belongs to a larger class of rules, which we refer to as the
shortfali-based priority (SBP) rules. SBP is a generalization of the standard non-
preemptive priority rule in which customers of the same priority class are served
first-come, first-served (FCFS). Rules from SBP can mimic FCFS as well as the
so-called strict or head-of-the-line priority disciplines. We show that the use of any
rule from the SSBP class ensures stability in a broad class of MONQs found in
practice. We proceed with the construction of a sample path inequality for the work
done by an SSBP server and show how this inequality can be used to derive upper
bounds for the delay when service times are bounded. Bounds for the expected
delay of each class of customers in an MONQ are then obtained under the assump-
. tions that the external arrival processes have i.i.d. interarrival times, the routings are

deterministic and the service times at each step of the route are bounded. In order to
derive these bounds for the average delay in an MONQ we make use of some of the -
classical ideas of Kingman.
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1. INTRODUCTION

Closed-form solutions for multiclass open networks of queues (MONQs) have been
obtained only for very special cases, such as single-stage queueing systems ( Wolff
[37]) and reversible queueing networks (Kelly [23]). The same is true with regard to
bounds on the delays in MONQs. While some bounds have been found for certain
types of telecommunications networks (Cruz [11,12]), a number of examples in the
literature show that MONQs can be unstable even when service times are determin-
istic, the arrival rate at each node is less than the service rate, and each node operates
according to the first-come, first-served (FCFS) rule. .

In this paper, we establish upper bounds on the expected delay in MONQs under
the assumption that every node operates according to a certain type of priority rule. In
order to obtain these results, we first select a priority rule that guarantees a stable sys-
tem. To this end, we introduce a new class of rules which we call the stable shortfall-
based priority (SSBP) rules. A rule from this class is a function of a set of parameters
and its behavior can be controlled to a certain extent through proper selection of these
parameters. The parameters represent the proportion of busy time the server allocates
to each class of customer. We construct a sample path inequality for the work done in
amulticlass single-stage, single-server system undera SSBPrule by comparing it with
the work done in a specific single-class FCFS queue. This inequality is used to estab-
lish upper bounds for the expected delay of each class of customer in an MONQ under
the assumption that the external arrival processes have i.i.d. inter-arrival times, the
routings are deterministic, and the i.i.d. service times are bounded from above. In an
intermediate step, we also obtain upper and lower bounds for the delay in a tandem
queueing system without requiring the service times to be bounded. These delay
bounds for MONQs are useful, as it has been shown in the literature that under a num-
ber of service disciplines the delays may be infinite; here, we show that, for this par-
ticular class of rules, there is a closed form expression for an upper bound on the delay.

The SSBP class of rules belongs to a larger class of rules that is of interest for

several reasons. This larger class, called the shortfall-based priority (SBP) rules,
contains the classic nonpreemptive priority rule introduced by Cobham [10] and
analyzed by many researchers (see Kleinrock [25] and Buzacott and Shanthikumar
[6]). According to this classic priority rule, customers of a higher priority class
always have nonpreemptive priority over customers of a lower priority class. Cus-
tomers within the same class are served according to FCFS. The class of SBP rules
is of interest because an SBP rule enables the user to control the allocation of service
time over the various priority classes. For example, consider a queue with two pri-
ority classes. Assume that 99% of the arrivals are of the higher priority class and 1%
of the arrivals are of the lower priority class. The low priority customers always have
to wait for the system to be free of high priority customers. Not only do the low
priority customers have a large expected waiting time, there is also a large variance
in their waiting time. An SBP rule may allocate the time of the server to the different
priority classes in such a way that the mean as well as the variance of the waiting
times of the lower priority customers are kept within limits. -
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2. RELATED LITERATURE

Bounds for the expected delay in queueing systems fall into two categories, namely
bounds for single-stage systems and bounds for networks. The books by Buzacott
and Shanthikumnar [6] and Wolff [37] contain a number of bounds for single-stage
systems. For results in the context of networks, we refer to the surveys by Harrison
and Nguyen [22] and Dai [14]. In what follows, we give a brief overview of the
results in the literature on MONQs.

There have been a number of negative results that indicate that MONQs need
not be stable under certain scheduling rules, see, e.g., Bramson [2,3], Dai and Wang
[15], Seidman [32], and Whitt [36]. In most of these papers, both the arrival and
service processes are not stochastic, which makes the phenomenon of instability
even more surprising. The recent work of Dai [14] links Harris recurrence to the
stability of queueing networks by using fluid limits. Dai’s definition of stability
under a scheduling rule is based on the underlying Markov process of the network
dynamics being positive Harris recurrent. The network is modeled by Dai using
three assumptions: (i) the interarrival times as well as service times are mutuaily
independent i.i.d. sequences, (ii) the interarrival times as well as service times have
finite expectations, (iil) the interarrival times are unbounded and spread out. As an
example, Dai shows that muiticlass feed-forward networks are stable under these
assumptions. We conjecture that, under the class of scheduling rules proposed in our
paper, the feed-forward assumption can be dropped and the MONQ remain stable. In
what follows, we prove this conjecture under the additional assumption that all the
service times have an upper bound. Chen and Yao [9] recently showed that under the
condition of “acyclic class transfer” (i.e., an MONQ in which customers can switch

classes, but with no loops in class transfers) a simple priority rule can be identified
- under which MONQs are stable given that the maximum station utilization is less

than unity. Chen and Yao also use the link with Harris recurrence to prove their
result. In contrast to the approaches described above, we define a network to be
stable under a given rule when the arrival rates of customers equal the corresponding
departure rates (see Buzacott and Shanthikumar [6] and Stidham and El-Taha [34]),
we develop a scheduling rule that leads to stability of the class of MONQs modeled,
we use sample path analysis to provide delay bounds under certain assumptions,
and we indicate how stable processor sharing rules can be used to control the MONQ.
Our stability results hold when service times-are bounded, and they continue to hold
without this condition but with an additional restriction on the growth rate of the
supremum of the service times, as indicated in Remark 4, Section 5.

Another direction of research was initiated by Bramson using fluid flow models
(see [4] and [5]). In [4], he introduces a rule called head-6f-the-line proporticnal
processor sharing (HOLPPS). This rule works like processor sharing in the sense
that at each instant the service given to a class is proportional to the number of
customers present in that class. However, unlike processor sharing, the HOLPPS
server provides the entire service allocated to a class to the first customer in that
class. It is shown that the (fluid model of the) MONQ is stable under HOLPPS under
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the usual traffic conditions. Bramson conjectures that the stability results extend to
the processor sharing case. Our results bear out the conjecture for MONQs with
bounded service times (see also Section 5) and deterministic routing. In [5], Bram-
son proves stability of a fluid model of an MONQ under the FIFO rule when the
service times at a station do not depend on the class of the customer.

Cruz [11,12] shows how to compute the delay in the context of telecommuni-
cations networks. The ideas used by Cruz have been seminal to several other papers
dealing with the estimation of network delays in the context of telecommunication;
see, €.g., Chang [7], Cruz and Liu [13], Parekh [28], and Parekh and Gallagher
[29,30]. In these papers the arrival processes are assumed to be deterministic. To the
best of our knowledge, the ideas of Cruz have not been used for the construction of
delay bounds for either tandem systems or MONQs when the arrival processes are of
the renewal type. Parekh [28] introduced a scheduling rule called generalized pro-
cessor sharing (GPS) and states that under certain conditions GPS is identical to the
Fair Queueing rule proposed by Demers, Keshav, and Shenker-[16]. Parekh used his
GPS rule to compute upper bounds on the mean delay in netwarks with arbitrary
topology assuming deterministic arrival processes (see [29] and [30]). Parekh char-
acterizes the arrival processes by the maximum burst size and the long run average
rate of traffic flow, as defined in Cruz [11]. A key aspect of the bounds given by
Parekh (and also by Cruz {11,12]) is that arrival patterns can be found that achieve
the worst case bound on the queue size and delay. As these results apply to deter-
ministic nerworks, determining the worst case delay is equivalent to showing that
the number of customers in the system-over any time interval is uniformly bounded.
This statement could serve as a definition of stability for such networks (see aiso the

.discussion in Section 5). ' .

Subsequent work related to GPS provides tight bounds on the delay and on the
number of packets (customers) in the system (see Georgadis et al. [18,19]1). Zhang,
Towsley, and Kurose [39] obtained bounds for the delay under the Generalized Pro-
cessor Sharing rule using the so-called exponentially bounded burstiness (E.B.B.)
model introduced by Yaron and Sidi [38]. The SBP class of rules are somewhat
similar to those of GPS, but they also differ in at least two ways: SBP rules are
nonanticipative, whereas GPS needs information about the service times of custom-
ers in the system, and SBP rules are less cumbersome to implement than GPS rules.
Another stream of research on the stability of MONQs goes back to the work of
Perkins and Kumar [31]. They examined the stability of MONQs with respect to
several scheduling rules (see Kumar and Seidman [26] and Lu and Kumar [27] for
examples). In these papers, stability is established using sample path arguments and
recursive relations. The methods we use for obtaining the sample path inequality in
Section-3 are similar. To the best of our knowledge, these ideas have not been used
before to obtain bounds on the mean delay in MONQs.~ '

" Our proof techniques use some ideas that have appeared in the literature. Chang,
Thomas, and Kiang (8] demonstrated the stability of open Jackson networks using
the concept of scaled service times. We developed this idea of scaled service times
independently, and use it in the Appendix to obtain a bound for the mean delay in a
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tandem system of single-server queues. In Section 3, we define the shortfall-based

" scheduling rules. We then combine the bounds derived for a single-server queue in
Section 3 and the delay bounds for tandem systems to derive a closed form expres-
sion for the delay in an MONQ.

3. BOUNDS FOR DELAY IN A SINGLE-SERVER QUEUE

In view of the negative resulits with regard to the stability of MONQs, it is of interest
to define scheduling rules that enable us to obtain bounds on the expected delays in
MONGQs. In what follows we define a broad class of rules that are nonanticipative,
nonpreemptive, and work conserving. We refer to.this class of rules as the shortfall-
based priority rules. We further restrict ourselves to a sub-class of SBP, called the
stable shortfall-based priority rules, and compare the performance of a rule from this
subclass to the performance of FCFS.

- Consider a single-server queue with C classes of customers. The arrival pro-
cesses are arbitrary. The service times sequence of each class is given by an i.i.d.
sequence of random variables. The service times are assumed to be bounded both
from above and below, i.e., away from zero. The following notation and terminology
is used.

. A i(2) = number of customers of class i that arrive during time [0, ¢].

* A, i =1,2,...,C, are finite, strictly positive, constants. In the next section
they will be mterpreted as arrival rates. In this section, however, they are jdst
fixed numbers subject to a constraint given below.

* Sion=12,...,is a sequence of i.i.d. service times, where S,  is the service
time of the nth customer of class i, i = 1,2,...,C.

e pi=ANE(S;)), pi>0,i=1,2,...,C, and z,i,, pi=p<l

c0<L;=8,=U;<o,i=12,...,C. ’

*» U=max;=;,_

* 8;,i=12,...,C are constants used to specify a rule in SBP. The fraction 6, is
to be interpreted as the proportion of the busy time that must be dedicated to
serving class i customers. A rule in SBP will be referred to as SBP(8).

* D;{o,t) = number of departures of class i customers from the queue during
[0, 1] under scheduling rule o.

* Ni(o,1t) = A{t) — D,(o,1), is the number of class i customers in the system at
time ¢, when scheduling rule o is used.

In order to define the rule we need the following notation. Let

sup{s = 0:N,(SBP(9),s) = >0} if N;(SBP(9), s) = 0 for some s € [0,
- otherwise - - ’

L(1) =
- M

So the value of /;(t) is the last instant prior to time ¢ under SBP(#) with no class i-
customers present. At that point in time a customer of class i arrives and finds no-
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body of class { in the system. This customer starts a busy period of class i customers
that lasts until the current time 7. Let

Y:(t) = (t_ li(’))ei’ = 1121""C' (2)

Y,(t) may be interpreted as the fraction of time that should have been devoted to class
i customers during the time [/;(¢),¢] under the SBP(@) rule. The Y; and 6; processes
are quantities similar to those defined in Wein [35]. Let

Vi(o,a,b) = the work done during the time interval [a, b] on class i customers,
i = 1,2,...,C, under scheduling rule o.

P(2)={i: N;(SBP(8),¢) > 0}, the set of customer classes present at time ¢ under
SBP{4).

- DEerFINITION 1: The SBP(8) Rule. If a customer service is completed at time t, then
the next service is initiated without any delay providing at least one customer is
waiting in queue, and the next customer to be served thl be from the (head of the
line of ) class

arg max{¥;(r) — V,(SBP(8),1;(1),0)}.
i€P(1)
Customers within a class are treated on an FCFS basis and, once a customer service
is started, it will not be interrupted until its completion.

The SBP(8) rule is work conserving, i.e., the server is not idle when there is work to
be done. The rule is also nonanticipative and nonpreemptive, i.e., the server does not
interrupt the service of a customer (Wolff [37]). In other words, the SBP(#) rule
keeps track of the work that should have been done on each class of customer. This
quantity is compared to the actual work done on that class and priority assigned to
the class most behind with regard to shortfall. The class SBP is very broad. It can
mimic FCFS by treating all classes as one, and it can imitate strict priority disci-
plines by assigning a high-value to 8, a value one order of magnitude smaller to 6,,
etc. The choice of the values of 6, can be used to control the amount of service
provided to each class of customer, and the delays of different classes of customers
can be traded off against one another.

In order to ensure stability, however, some restrictions have to be placed on the
parameters. To this end, given that p; is the utilization of the server by class i, define
the class of stable shortfall-based priority rules as follows.

DEFINITION 2: The SSBP Subclass of Rules. This is the collection of rules that
‘belong -to SBP, and for which $E.6, = 1and 6, > p; for all i. A rule from the
- subclass SSBP will be referred to as SSBP(6). -

DEeFINITION 3: The Fair Processor Sharing (FPS) Rule The SSBP(G) rule wzrh 6
set equal to p;/p for each class i, will be called the fair processor sharing rule. This
. rule is said to be “fair,” because the server’s capacity is allocated in proportion to
server utilization by each class.
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It is important to see the necessity for a bookkeeping device that tracks the
“shortfall”—it ensures fairness in a multiclass system. For example, under FCFS,
the bursty arrival of one class of customer can make the server unavailable to other
classes arriving after the burst. The departure process of each class of customer can
also become extremely bursty under FCFS. As shown in Whitt [36], this burstiness
can be aggravated to such an extent that the MONQ becomes unstable (also see Cruz
[12]). The avoidance of bursty departures (see Theorem 1 below) is another appeal-
ing feature of SSBP. The reason for imposing the stability conditions that define the
subclass SSBP will become obvious in Theorem:-1 below.

The reader will observe that the SBP class of rules (developed independently by
us) is closely connected to the head-of-the-line processor sharing rule (HOL-PS).
Parekh used his scheduling rule, the generalized processor sharing (GPS) rule to
mimic HOL-PS. GPS was designed to control the amount of service performed on
each class under HOL-PS. The idea behind GPS is to assign a positive number g; to
each class i. Denote the service provided to class j-during [z,,2,] as S;[#,2,]. Then,
if class i is continuously backlogged during an interval [z, 1], GPS ensures that

Silt,12] @i
————— 2 ——.
Sj[[ht?_] @j

In order to implement GPS without having to share the processor, Parekh in-
troduced a scheme called the packet-by-packet generalized processor sharing (PGPS)
rule. PGPS tracks the order in which GPS would have scheduled the customers and
implements the GPS schedule in a nonpreemptive manner. This implementation of
PGPS has properties similar to SBP. PGPS needs information about the service of
the customer before the service is completed, and therefore does not satisfy our
‘nonanticipation criterion. (This requirement for PGPS is met in ATM networks where
the packet length is known upon arrival.) Moreover, some simulation is required to
track the order in which GPS would have scheduled customers. This computational
burden is avoided under SBP. As a historical note, GPS is a generalization of the
processor sharing and the FB scheduling algorithms discussed in Kleinrock [25] and
the weighted fair queueing rule presented in Demers et al. [16].

In what follows, we analyze the performance of an SSBP (@) rule with respect to
system departures of class 1 customers only. For ease of notation define

HAD) = Y.(1) — V/(SSBP@), L,(1),0),  i=12,...,C. 3)

The H,(1) has to be regarded as the shortfall in the work done on class i cus-
tomers at time f. By the definitions of [;, ¥;, and H;, H,(1) equals zero (regenerates)
every time the SSBP(8) system gets rid of all its class i customers, i=12,...,C.

' - To analyze the performance of the SSBP(6) rule, we use another single-server
queue. We shall refer to this second system as the FCFS system and to the original
one as the SSBP(6) system. Only class 1 customers arrive at the FCFS system, and
their arrival process is given by A,(r). This arrival process is identical to the arrival’
process of class 1 customers in the SSBP(#) system. The service times of the nth




336 S. Seshadri and M. Pinedo

customer in the FCFS system are set equal to S, ,/6,, n = 1,2,.... This slows down
the server of the FCFS system. Moreover, if the p; were the load brought in by the
various customer classes, the load on the server in the FCFS system would be
AE(81,,)/0, = py/6, < 1. We shall first establiish a sample path inequality for the
work done in the SSBP(8) system.

LeMma 1: If
(o
> H,{(0)* = CU,
i=1

then

C
ZH:'([)‘S-CU, forr=0, (@)
i=1

where A™ denotes the positive part of A.

Proor: Fixxsuchthat0=x=S§, . Let the nth customer of class  start its service at
time ¢. In the interval [, 1 + x], V, is nonincreasing fori # /. By Eq. (2), ¥, (¢ +x) = ¥;(1)
is less than or equal to x§;. Therefore,

Hir+x) < H(1) + x6,, foralli# /. 5)

_As work is being done on class j during {1, 1 + x], 7 »
, Hi(t+x) = H;(t) —x(1—8). 6
If H(t) = x(1 — 6;), we obtain from (5) and (6)

i=1 i=]

H(t+x)" = H(1)” +x8;, foralli#}j, @)
Ht+x)"=H(1) —x(1-6)=H{(n)" —x(1 = 6). t))
By using (7), (8), and the fact that ¥, 9, = 1, we get k
c c
SH(t+x)" = ZHi(t)*. 9)

Otherwise, if H;(1)< x(1 — 6,), then
x(1-6)>H =H,i€P(1) (10

- because the SSBP(8) rule chose to serve the customer class with the largést value of
H:(t), i € P(t). For customer classes not present at time ¢ )
L(t+x)>1 foralli@ P(r)= Y(t+x) =x6;, foralli& P(r)

= H(t+x) = Y,(t + ) = V,(FPS, L,(r + x),1)

=xf, foralli€ P(r). ‘ (11)
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Using (5), (10), and (11) we obtain

> HE+nt= 3 (H@)"+x8)

i€P(t)inf {EP(1),i*f
=P -Dx(1-6)+ 2 6, (12)
IEP(1), i)
S H+x)"= Y x6, a3)
EPL() 1EP(r}

where | P(¢)] is the cardinality of the set P(z). By the assumption for this case,
Hi(t+x)" =0. (14)
Combining (12)-(14) we finally have

c
S H(t+x)*" =< |P(t)— 1x(1 —6) + > x6, = CS;, = CU. (15)
=1 i=)

Inequalities (9) and (15) complete the proof of the lemma. The steps in the proof can

be examined to conclude that the bound in (15) does not depend in any way on the

stochastic nature of either the arrival processes or the service times. n

In the next theorem we compare two single-server systems operating under
different scheduling rules. The first system is a single-server queue subject to C
arbitrary customer arrival processes A,(r), i = 1,2,...,C, and a set of strictly positive
numbers A;, i = 1,2,...,C. Class i customers have i.i.d. service times §; ,, n = 1,
2,..., which are bounded from abdve by U and from below by L;, i = 1,2,...,C. The
system operates under an SSBP(4) scheduling rule. The second system is a single-
server system that operates under the FCFS rule. It has only one class of customer
arriving according to A, (¢). The service time sequence in the FCFS system is given
by 81,./01, n=1,2,..., with 6; > p,.

THEOREM 1: ;
D, (FCFS,t) — D,(SSBP(#),t) = CU/L,, r=0.

Proor: Note that the server is working more slowly in the FCFS system than in the
SSBP(#) system.-Therefore, if the server in the FCFS system works for one unit of
time, then the work done by that server will be counted as §,. It suffices to show that

(Vi\(FCFS,0,r) — V,(SSBP(8),0,1)) = CU. ' (16)

Provirg inequality (16) is equivalent to showing that, with regard to class 1
customers, the work done in the FCFS systent cannot exceed the work done‘in the
SSBP(6) system by more than CU. Using the definition of H,(t), we have

H,(1) = 6,( = L,(1)) = Vi(SSBP(8). Li(1), ) |
= V,(FCFS, [,(r),r) — V,(SSBP(6),1,(1),1), . an
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because the server in the FCFS system need not always be busy during [/,(¢),¢], and
is slowed down by a factor of 8,. Inequalities (4) and (17) imply that

(Vl(FCFSs ll(t)a [) - Vl (SSBP(H)) ll (!)7 t)) = CU. (18)
By the definition of [,(r),

N,(S8SBP(6),1,(1)) = 0. a9
As A (1) is the same for the two systems, Eq. (19) implies that
V,(SSBP(8),0,1,(t)) = V,(FCFS,0,!,(2)). 20)

Finally, using (18) and (20), we have
(V,(FCFS,0,1) — V;(SSBP(6),0,1))
< (V,(FCFS,0,1,(1)) - V,(SSBP(8),0,,(1)))*
+ (V,(ECES, 1,(1),1) — V,(SSBP(8), [,(1), 1))~
<0+ CU=CU. @1

Remarks:

i. It is important to note that the bound in Theorem 1 does not depend on the
stochastic nature of arrivals. The only common elements between the FCFS
and the SSBP(8) systems are the single common arrival process A (¢), the
common values of §; ,,n = 1,2,..., and the value of the parameter §,.

ii. The condition that 6; > p; is necessary for stability; otherwise, the deceler-
ated single-server system becomes unstable. Further generalizations of the
class SSBP are discussed in the conclusions.

We now relax the assumption that the arrival processes in the two systems are
the same. We state a corollary of the theorem, which will be used in the next section.

COROLLARY 1: If in Theorem 1 the arrival processes of class | customers are

AFCES (1), and ASSBPE)(1), and if (ATCFS(r) — ASBPO) (1)) = 0,1 = 0, then
(g+O)u
L,

ProoF: Instead of using inequality (20) (as we did in Theorem 1), we use the as-
sumption that (AF°F3(z) — A$SBP®) (1)) < Q,+ = 0, and the fact that there are no class
1 customers in the system at time /,(7) to conclude that -

D\(SSBP(6), 1,(1)) = ATS®P@)(1,(1)) — N,(SSBP(8), (1)) = ATEPO(1,(1))
| = AFSFS(J (1)) = Q = D,(FCFS, L,(1) — Q.

This implies - - ; -

V,(FCES,0,1,()) — Vi(SSBP(6),0, (1) = QU. (22)

D‘(FCFS, t) ~ D (SSBP(8),1) = t=0.
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As inequality (18) still holds, using (22) we obtain.
D,(FCFS,t) — D,(SSBP(9),1)

_Qu+ (V((FCFS, L,(1),1) = Vi(SSBP(9),1i(1), )" _ (@ + C)U
- Ly L

23
n

4. MULTICLASS OPEN QUEUEING NETWORKS
WITH BOUNDED SERVICE TIMES

In this section we use the results from the previous section to construct an upper
bound for the average delay in the system for an MONQ with deterministic routing,
uniformly bounded and i.i.d. service times at each step of every customer route, and
i.i.d. interarrival times for each class of customers. For simplicity of exposition, we
shall carry out the analysis for the fair processor sharing rule, i.e., the SSBP(6) rule
with 8; set equal to p;/p for each class i. The extension to the entire SSBP subclass
is straightforward. ‘

The notation is complex, but it will help the reader to know that only the route
of class 1 customers will be analyzed in detail. There are C classes of customers
arriving at d single-server stations in the MONQ. Each class has a deterministic
route assigned to it. A route is a sequence of station numbers that the customers have
to visit in the given order. On completion of the route the customer departs the
network. The MONQ is defined as follows:

« T,,=interarrival time between the nth and (n + 1)st class i customer to arrive
at the MONQ. T, ,,n = 1,2,... is an i.i.d. sequence, with E(T; ;) = 1/A;, and
the squared coefficient of variation of T}, is given by ci,i =1,2,...,C.

o k0P with £ € {1,2,...,d}, | =5 = n; denotes the route fol-

lowed by a customer of class i,i = 1,2,...,C. A class i customer arrives at
station r,~“); after being served there it gbes to station r,-m, and so on, until it
exits the system after being served at station r,-(""> (n; is said to be the number
of steps in this route).

. S,-{ , is the service time at the jth step of the route of the nth customer of class
i. Itis assumed that {S,»{ .»n=12,...}is an i.i.d. sequence and independent of
all else in the network as well as the external arrival processes of custorners.
We assumne that all the service times are uniformly bounded from above by the

constant U.

In order to apply the results of the previous section, we need to ensure that the »
service times are bounded from below (i.e., establish the value of L, in Theorem 1).
To that end, we modify the service times of a customer from class i as follows:
5 Sia+ (1= ME(SIN/QA) i8], = (1= ME(SL))/2A)
I 7 otherwise
n=12,...; j=12,..,n. (24)

.l
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Note that the modified service time has a bar over the S. One way of implementing
the new service times is by allowing the (corresponding) server to take that much
longer to serve customers. In the rest of this section we shall use only these modified
service times. Define:

. céij = the squared coefficient of variation of §7,,j=1,2,...,n;;i=1,2,...,C.

. cij = the squared coefficient of variation of S,»fl J=L2,n5i=12,...,C.

. p,/.'_m, =AE (5,’ 1) is the average load due to the jth processing step in the route
of class i customers at station r,-(”,j =12,...,n;;i=12,...,C.

¢ pm=ZC I, H{r{” = m}pl ,is the total load on station m,m = 1,2,...,d.
We assume that p,, < 1 for all m.

¢ Pmax = MaX,{pm}-

« A7 = the arrival instant of the nth customer of class i to the jth step, i.e., to
station r,-ff,) when the scheduling rule o is used at all stations, j = 1,2,...,n;;
i=12,...,C;in=1.2,....

. A{-"a(t) = sup{n: A{jf =t} is the number of arrivals of class i customers during
{0,1] on the jth step of their route, when the rule o is used at all stations.

. D,’: = the departure epoch of the nth customer of class i at the jth step, i.e.,
from station rf”, when rule o is used at all stations, j = 1,2,...,n;; i =
L,2,...,Con=1,2,...:

. D{""(t) = sup{n: D,{";f' = r} is the total number of class i customers who have
finished the processing of their jth step during [0, ¢], when rule o is used at all

stations.

With these modified service times, the load due to class i customers at their jth
processing step is given by

Pi',‘f’,,- = AiE(gi{l) = /\:‘E(Si{n + (1 - AE( .{1))/(2/\:‘)) =(1 + A E(S!))/2.
(25)

Denote the maximum load at any station in the network prior to the modification
of service times by-

[og n;’ .
P& = max [221{M=m};\i5(sz‘)}. (26)

m=12,..., di j=1j=1

Then

. o c '"i B i
C Pmax = (1 + max {2 S = m}/\iE(S,{,)jD/2
- m=12,....d i=1j=1

=1 +p20/2. i @n
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We see from Eq. (27) that if the maximum load was less than one prior to the
modification given in (24), then the modified network also has a maximum station
load less than one. The special form in (27) is worth noting. It implies that

1 __ 2 |
(1= Pmax) ~ (1= paax)’

~ To apply Theorem 1, we may now use the values of (1 = p;» ;)/(2A;) for the
lower bounds on the corresponding sequence of service times. We compare two
“systems,” namely the route of a class 1 customer and a (single class) tandem system
with n; stations that have single-servers. The MONQ operates under the FPS rule.
The tandem system operates under the FCFS rule. The external arrival process at the
tandem system is A}¥7>(1). The reader will notice that this quantity does not depend
on the scheduling rule, but the superscript underscores the fact that the external
arrival processes of class 1 customers are the same in both systems. Define the
quantities

6= pln,/pr,  j=12,.,n,. (28)

The service time of the nth customer at the jth station of the tandem system is
_distinguished by a hat and is

§i.=8./8, j=12,..,n5n=12,... (29)

In (28) and (29), the reader recognizes the parameters used to define the FPS
rule. This is not the only possible choice of §; parameters—the MONQ will be stable
(under the usual traffic conditions) for any rule in SSBP. Let A{'FCFS(t),D{‘FCFS(t)
denote the total number of arrivals at and departures from the jth station in the
tandem system during the interval [0, ¢].

In our next theorem we again compare two systems. The first system we con-
sider is an MONQ), with d single-server stations, C customer classes, with each class
of arrivals having i.i.d. interarrival times and arrival rates A; > 0,i=1,2,...,C, with

deterministic routes {r,”’, Jj=1,2,...,n;}, i.i.d. sequences of service times

oy i i ; (1“/\1'5(5-'/.;))
{Si{n = Si{n + I{Sljn = (1 - AlE(ijl))/(z/\l)} :‘_—_—2:‘—-—’” = 1’2’3’--- }
for the jth processing step of the class i customers that are-uniformly bounded from
above by U, infinite buffer capacity at all stations and operating under the FPS
scheduling rule. The second system we consider is a tandem system with n, single- -
server stations, that is only subject to arrivals of class 1 customers, with the service
time of the nth customer at the jth station equal to
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c
(2 E I{"i(” = rl(j)}/\iE(Sil.x))

= (=1

Sia — , i=12,...,n;n=12,....
' X EGL) ! ‘
THEOREM 2:
DIvFPS(p) = pmeFeRS (1) — 0, forallr= 0 (30
where
i 20U )f
o=cxl\T=resnn/ GV

Proor: The proof is obtained by one application of Theorem 1 and repeated ap-
plications of Corollary 1. Consider the first step in the processing of class 1 cus-
tomers in the MONQ and consider the first station of the tandem system. For the
purpose of comparing the departures of class 1 customers from their first process-
ing at the first station in the two systems, we can verify that all the conditions of
Theorem 1 are satisfied. In particular: (i) the arrival process of class 1 customers
is the common external arrival process AF7>(r); (i) the A,'s are equal to the
arrival rates (in Theorem 1 we only needed these to be strictly positive numbers);
(iil) because of (24), we may also set the value of the lower bound for the pro-
cessing times of class 1 customers equal to (1 — A, E(S Li))/2A . We then obtain,
using Theorem 1, :

20U

LECFS(,) . [yLFPS( \\+ il D
(b = b ([))"C<(1.~/\1E(Sl‘.x))

), forall t = 0. (32)

For the remaining stations, we use induction on j and Corollary 1 to conclude that if

(DIFS (1) = DI (o)) = Cﬁ(——-—zﬁ‘—[—j——-—) forallt=0
. - . TEN = A ESL)
fﬁen
: ) jxl 20U !
pJ*TVECFS(, __D/+LFPSt r<C (_______________’)’ forallr = 0. -
(DI = DO = €2\ TR EGY) i

In the next theorem we assume that the conditions stated for Theorem 2 hold and-
that there exists either a limiting distribution or a time average for the total delay of
class 1 customers in the MONQ. Let the average delay.in queue for class 1 customers -
_ be E(TD)). » -
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THEOREM 3:

E(TDl) = Al — pgax) + '\_l /=2| 1- /\1E(S{.1))
(33)

where c? is the squared coefficient of variation of the interarrival time and (:g{, Jj=
1,2,...,n, are the squared coefficient of variation of the S{’s, and

-1 »
2n, + 3'+2( 3,>+ ~) .
m( n; T ,gl Cs Cs C(n,( 2A,U j
( b

Cc
Prax =  max d{ZZl{r‘f)=m}/\iE(Sfx)}.

i=1 j=1

PROOF: We first bound the mean delay in the tandem system. The maximum load in
the tandem system is less than or equal to p,,, because

C A
(Z 2 1{"1”) = ":J)}/\iE(jil.l)) n
- =) =] - -
ME(S]) TEGI) =2 S 1" = MES])

Ma

i

= PrP S Prax-

The assumptions stated for Theorem 2, and the fact that the maximum station
load is less than 1 in the tandem system, allow us to use Theorem Al given in the
Appendix in order to bound the total mean delay in queue in the tandem system,
denoted by E(TD ™) as follows: '

-1

E(TDPem) <, (an +ei + 2( 2 C;;) + cé,m) / QA1 = pas))s (34)
=1
where the c_%(’ s stand for the squared coefficient of variations of the modified service
times. But the squared coefficient of variations of the modified service times are
smaller than those of the original service times due to the shift away from the origin
(see (24)). Using this observation and (27), and accordingly modifying the bound in
(34), provides the first expression on the right-hand side of the inequality in (33).
The second expression on the right-hand side of (33) follows from the sample path-
wise bound of Theorem 2 and the use of Little’s law. n

5. REMARKS -

" The following remarks are in order. -

_ 1. It is well known that the first-come, first-served (FCFS) discipline is the
fairest from the perspective of an individual customer. When it comes to fairness
with respect to a class of customers, however, the head-of-the-line processor sharing
(HOL-PS) rule has been singled out by researchers as the rule that provides the most
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equitable treatment between classes. Greenberg and Madras [20] state that this rule
“provides an appealing paradigm for the fair sharing of a service.” Demers et al.
analyze fairness in an axiomatic setting and show that HOL-PS achieves max—min

fair throughputs. The definition of max—min fairness can be found in Gafni and
Bertsekas [17], and a discussion of the concept can be found in Chapter 6 of Bert-

sekas and Gallagher [1]. Under this definition, an allocation is considered to be fair ~ *
when (i) no class receives more than what it has requested, (ii) no allocation scheme

that satisfies condition (i) has a larger minimum allocation, and (iii) the conditions

given in (i) and (ii) continue to hold when the minimum allocation is removed.

2. The FPS rule is intended to work in situations where the total demand of all
classes does not exceed the capacity of any node. It is easy to show that the network
is stable when this condition is met along with other standard conditions for the
stability of a single-stage queueing system. Stability of a system in this discussion is
defined to be the arrival rates being equal to the departure rates for each class of-
customers. This definition is equivalent to rate stability (see Lemma 5.58) in Stidham
and El-Taha [34]. For example, Buzacott and Shanthikumar [6] give three condi-
tions for the stability of a single-stage system: (a) the number of customers that
arrive by time 1, A(¢), has a uniform limit, A = lim,_,,A(t)/¢; (b) the service times,
S,, have a uniform limit 1/u = Iimk_,c,‘,(Zf=l S§;)/k; and (c) A < .

3. For stable systems, FPS automatically achieves max—min fair throughputs.

4. Let the longest route in the MONQ have n™** steps. If service times are either
bounded or such that for each i, sup; ,S; , grows slower than k'/*"™", then from equa-
tion (15), Theorems 1 and 2, and Corollary 1, the stability of the network follows
from the stability of each stage of the slowed down FCFS system.

5. An open question is to compare the performanée of the FPS system-with that
of a weighted fair queueing or generalized processor sharing rule. The FPS rule as
defined in this section does not fully mimic HOL-PS. The main reason is-that the
definition of the work that should be done on each class is predicated on setting aside
capacity for each class. When that class of customers is absent, however, HOL-PS
dedicates the extra available capacity to serving other classes that might be present
at that time. To make FPS more compatible with HOL-PS (or GPS), it is necessary
to redefine the “share” of service, 8;. One possible redefinition is to set, 8;(z) = 6,/(
2erwn §;). The shortfall in work can then be expressed as

- t °

H(r) = f 8:(¢) dr — Vi(1(1), ).
1,’(‘)

The condition for stability becomes limy_o [q 6;(2) dt/T > p;y i = 1,2,...,C. It can

be shown that Theorem 1 continues to hold with this definition. Moreover, if all

classes of customers are almost always present, then SSBP rules perform similar to

the corresponding GPS rules. ' :
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APPENDIX
Bounds on the Delay in Tandem Queues
with Single Servers

In this appendix, we establish upper and lower bounds on the mean delay in a tandem queue-
ing system. Consider a tandem queueing system in which there are K single-server stations
and infinite waiting room at all stations. All customers are of the same class and arrive at
station 1. After being served in a first-come, first-served (FCFS) order at station i,i =
1,2,...,K — 1, customers proceed to station { + 1. After being served at station X, customers

leave the system. Define the following quantities for the tandem system: .

+ Let S¥ denote the service time of the nth customer served at station k. The service times ,
at station k are i.i.d.; the service time distribution has a finite second moment and a
squared coefficient of variation, denoted as ¢;.

e Let{T,,n = 1,2,3,...} denote the sequence of i.i.d. mteramval times of customers at
the first station, where T, is.the time between the arrivals of the ath and the (n + 1)st
customer. Let E(T}) = 1/A. The interarrival time distribution has a finite second mo-
ment, and a squared coefficient of variation, given by ¢2.

e e e e gy
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» Let pp = AE(S}), k= 1,2,..., K, denote the utilization of station k, k = L,2,....,K. We
assume that p;, < 1, for all k.

* Let W} and D denote the time spent at the kth station and the delay in queue at the kth
station as experienced by the nth customer. Set Wy = D& = 0.

e Let

TSk = 3 SETSE=0,  n=12,..;k=12,...K,

TT,= 3 T;Thh=0,  n=12,...;k=12,.,K

i=] -

Bt = TSk~ TT,, n=12,...;k=12,..,K,

k
TWr=SWiTWs=0, n=12,...;k=12,.,K,
i=1

k
TDk =3 Di; TDé =0, n=12,..:k=12,... K
=1

In these definitions, 7S is the sum of the first 2 service times at station k, TT, is the sum
of the first n interarrival times to the first station, TW, is the total time spent by the ath
customer at the first & stations, and TD? is the total delay experienced by the nth customer at

-the first k stations. We are interested in TDX, the total mean delay in queue in the system. It is
shown by Harrison [21] that '

W, = max ((Bf —B:_)+ (BT = BEZD) + -« + (Bl = BL)) + 5%, (1)

iy . [ i fg—y
0sipsiysor Sip=n—1 et A k-2

where the quantity B¥ represents the position of a random walk with increments S — T,.
Furthermore, if the station loads are strictly less than one, then as n — oo, the random vector
(TW,,TWZ,..., TWX) converges in distribution to a nondefective random vector (see Thm. 1,
Harrison [21]).

From Egq. (1), a lower bound for the delay in queue in the system. can be obtained.
Consider the delay in queue in a modified system in which the service times at all stations
except station k have been set to zero. Denote the delay in queue of the nth customer in this
modified system by D,’,‘ . We assume that the sequence of interarrival times, T,,n= 1,2,..., and
the sequence of service times, S$¥,n = 1,2,..., are the same in the original as well as the
modified system. Then using (1) it can be shown that TD;” = D¥, for all K = m = k. Thus we
have ‘

E(TDF) = max E(DF). )]
t=k=K

We now derive an upper bound on the total delay in the tandem system. The relation for
the delay experienced by the (n + 1)st customer at station & can be written as

iy- | Sn

D¥,, = max (TW,™) — TWA + BS— B )

i

n

(DX + Sk = (TWES) + T, — TWE))T, B
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where (TWE! + T, — TWE™') is the interarrival time between the nth and the (n + 1)st
customers to the kth station (to see this, set time to be zero when the nth customer arrives, then
the nth customer reaches station & at time TW*~!, and the (n + 1)st customer reaches station
k at time TWX! + T,). Rewritten in this form, (3) is the standard Lindley recursion for the
delay in a single-server queue (e.g., see Wolff [37]).

The {n + 1)st customer has to wait for a time at least equal to (TW™! — T,), i.e., the total
time spent by the nth customer at the first (k — 1) stations less the interarrival time between the
nth and the (n + 1)st customer, before being served at the (k — 1) st station. The service time at
the (k - 1)st station when added to (TWt™' — T,) gives a lower bound for the flow time
Twnk: ll :

TWS =2 TWE = T, + Sixl. @

We shall now construct a modified system to obtain an upper bound for the mean delay
in the system. Denote all modified quantities in this new system by a bar over the correspond-
ing quantities in the original system. Let

Pmax = max (E(S{)/E(T))).
IsksK

In the modified system, retain the sequence of interarrival times for the original system,
but scale the service times at station i with constants az, & = 1,2,..., K, such that

(K—k)
K

aE(SH)/E(T) = proax + (1 = Prmax)- - ®

" In other words, the new service times are S = a, SX, n=1,2,...; k= 1,2,..., K. Note that
all the a;’s are greater than or equal to one. We also see that if ppmax < 1,.then

(K-1) ‘

Identities (5) and (6) show that even with the scaling of the service times, the largest
station load in the modified system does not exceed unity if the largest station load without the
scaling was less than one. This, in turn, implies that under the assumption pm,, < 1, there
exists a limiting distribution for the delay in queue at each station in this modified system (see
Harrison [21]). It can be shown, using a sample path construction as given in Shanthikumar
and Yao [33], that the total mean delay in queue in the modified system is larger than that in
the original systern. While, the device of scaling the service times in a queueing system to
demonstrate stability has been used previously by other authors, for example, see Chang et al.
(8], our construction and the choice of scaling factors are new. We observe that by equation
(5), fork=273,... K,

E(Sf - 5::;)/5(7'1) = akP_k“‘ A1 Pr-1 -

- _ . (K — k)
= Pmax K

(K—k+1) .
(1 = pmax) — (pmax + '_-_7(— (1- pmax)>

= ‘—(1 - pmax)/K, (72)
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and

(k-1

E(S) = Tt VE(T) = proax + (1= pmax) = 1= =(1 = ppu)/K. (7b)

Using relations (3) and (4) for the modified system (and bars as noted before when
referring to the modified system), we obtain that -

Dy = (Dr+TW,™ = TWE! + 8= T)* =< DX+ 55~ 51|, k=23, K

®
Dl 2(5;+77Wn0“ﬁn0+1 +5,.‘—TI.)+S!5£+5..' = Toril, 9)
D, =0. (10

k—1

The delay in quene at the kth station, D%, is independent of ($* — $421), fork = 2,3,...K.
Using this fact, squaring both sides of (8), dividing by E(T)), using the identities (7), and
rearranging, we obtain

(EUD2.*) ~ (DY) 2E(D5)(1 = puar) _ IS = SEEI12
E[T] X - E[n]
k=23,...,K. (11

Similarly, as_ﬁ,} is independent of (§! — 7,..,), we obtain

(E[(Dar)*]1 = E[(D})?]) . 2E[D,J(1 = prax) _ES-T.P

E[T] _ 3 = TEm)
THEOREM Al: There exist upper and lower bounds, U(pmax) and L( Pmax) for the mean num-
ber of customers in a tandem queueing system, E[Nr], that are functions of the first and

second moments of the service times and the interarrival time. The values of the upper and
lower bounds can be chosen as

(12)

KQK+c2+2(ct+ci+---+ci )+ cd) X

T + 2 A= E[N;]= Lipnan)

Ulpmax) =

_RE(st-1))? &
e + 2 P

k=]

X Pr, and 1/A is the mean interarrival time.

.......

ProoF: Denote the stationary total mean delay in queue in the original system as E(TD* }and
the stan'_onary mean delay at the kth station in the original and the modified system as E(D*)
and E(D*). From inequality (2) and equation (22) of Wolff [37, p. 478], we obtain,

E(TD*) = Amax E((St = T,)*)%/(2(1 - p) Z AE((SY = T)))YQ(L = ppay)).  (13)

) The lower bound for the total n;meer of customers in the system now follows from
adding the méan service times at all stations to the lower bound for delay in (13) and using
Little’s law,
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X K
E(Nr) = A<E(TD") +2 E(S(‘)) = NE((SY — TN Y20 ~ pu)) + 3, o

k=1 k=1

Combining inequalities (11) and (12), and using the fact that the delays in queue at each
station converge to a stationary distribution, we obtain

- E@SH + E(Ef“)z>
E(D¥) = E(D*) = =
(D*) < E(D%) AK( 20 =) s k=2,3,...K, (14)
~ E(5))* + E(TF))
Y < 1y < P .
E(p)..E(D)-AK( 70 =) 15)

From Eq. (5), E[($})?] = aZE[(S})?]

K-k 2 E(T)*? 1
= (( mu+( )(1 —pm)) T) )E((S{‘)zlsx;(l +ci).

K E(St)?
(16)
Using (14), (15), and (16), we obtain
X K{2K+c2+2ct+ci+---+ck ) +ck
E(TDX) = E(D% = -—( 17
ZEPN =3 200 = po) an
Using (17) and Little’s law
X
E(IN) = /\(E(TDK) + 2 E(S{‘))
k=1
2K+ c2+2(ct+ci+ -+ k) c,%) X
=K - + . .
( 2(1 = Proas) 2P

Remark: The delay bounds are tight if the utilization of the stations is decreasing and the
interarrival times have the DMRL (decreasing mean residual lifetime) property. In particular,
if the service times are equal (or nonincreasing) and deterministic at all stations, then the
difference between the upper and lower bounds for the average number of customers in the
system is less than one. ) -

These bounds are similar to Kingman's [24] bounds for the delay in the GI/G/1 queue.




