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1. Introduction
This paper reexamines the use of early demand informa-
tion in a multiperiod inventory system setting following the
work of Eppen and Iyer (1997). In this context, specif-
ically, we investigate the intuitively appealing statement
that “when you observe a higher demand in the past it is
likely that you will observe higher demand in the future.”
Also, Lariviere and Porteus (1999, p. 359) state, “If a
large demand is observed, the retailer assesses the under-
lying demand distribution as being larger, so another large
demand is more likely than it was before observing the pre-
vious large demand.” Formally, these statements are equiv-
alent to the statement that the distribution of demand in the
future is stochastically increasing in the demand that has
been observed in the past. We name this property “Condi-
tional Monotonicity” (CM). In this paper, we derive nec-
essary and sufficient conditions for the CM property to
hold. Eppen and Iyer (1997) showed that this property is
pivotal for allowing a retailer to order more for the rest of
the season if demand seen so far is higher than what was
expected.
Understanding how to use early demand information is

essential in today’s competitive environment, in which cus-
tomers are offered many innovative and short-life-cycle
products (Fisher and Raman 1996, Lee 1996, Mahajan and
van Ryzin 1998). Eppen and Iyer (1997) provide a model
that firms can use to manage inventory based on progres-
sive demand information. They model a multiperiod fashion
retail inventory system where the problem in each period is
to determine how much to increase inventory or how much
to decrease inventory based on the observed demand as
well as the forecasts for the remaining periods. First, they
show that the decision to order more or to sell off excess
inventory can be reduced to computing upper and lower
bounds on the inventory. If the on-hand inventory level
is below the lower bound, it must be increased up to the

lower bound, and if it is above the upper bound, it should
be decreased to the upper bound. These bounds are set at
the beginning of the selling season. Then, as new demand
information becomes available, the bounds are updated.
Eppen and Iyer (1997) show that if CM holds, then the
bounds increase or decrease with increase or decrease in
the observed demand. The CM property is appealing to
decision makers because they feel that they can order more
inventory for the next period if the observed demand for
the current period is high and do the opposite if the demand
is low (Eppen and Iyer 1997). We show in this paper that
despite its appeal, the CM property relies on certain strong
necessary and sufficient conditions that must be verified to
hold before the property is used.
We first present a summary of the notation used in Eppen

and Iyer (1997). Then, we list the main assumptions made
by Eppen and Iyer to obtain their results. After that, we
describe the four theorems proved by them. It will become
clear that their Theorem 3 establishes CM, which is then
used to prove Theorem 4. Eppen and Iyer use the monotone
likelihood ratio (MLR) property to establish CM in Theo-
rem 3. However, this is a strong assumption. We examine
how much we can weaken this assumption and still be able
to prove Theorem 3. To that end, we show that a weaker
property called the Sequential Monotone Likelihood Ratio
(SMLR) property is both necessary and sufficient for Theo-
rem 3 to hold. The SMLR property is intimately connected
to CM, and thus it is of independent interest in itself.

2. Model
The decision maker in Eppen and Iyer (1997) is a catalog
merchandiser. The buying season for this decision maker is
divided into N time periods. At the beginning of each time
period, she has to decide whether to buy more, sell off (liq-
uidate) inventory, or do nothing according to the observed
demand and forecast for the remaining time periods. The
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item sells for a constant price of $r per unit throughout the
season. The decision maker incurs an initial purchase price
$c per item. Holding cost of $ht is incurred on the inven-
tory held at the end of period t. When there is a selloff
(inventory reduction) decision, $rt is obtained per item liq-
uidated. Apart from the initial purchase price, it costs the
decision maker $ct for each additional unit purchased at the
beginning of period t. This model assumes lost sales, so
there is no backorder cost. Unit penalty cost of � per unit is
incurred when lost sales occur. The notation used is given
below.

N = number of periods in a season.
t = 1�2� � � � � T = index for time periods.
i= 1�2� � � � � I = index for pure demand processes.
dt = demand observed in period t.
Dt = d1 + d2 + · · · + dt = cumulative demand observed

through periods 1 to t.
Pi1 = prior probabilities over the set of pure demand pro-

cesses at the beginning of Period 1.
�i� �j� k��x� = probability that demand in periods j

through k is equal to x for pure demand process i.
�i��j� k��x� = cumulative probability distribution of

demand in periods j through k for pure demand process i.
�t�x � Dt−1� = probability that demand in period t is x

given Dt−1.
�t�x �Dt−1�= probability that demand in period t is� x

given Dt−1.
Pit�Dt−1�= probability that the demand is generated by

pure demand process i given that the observed cumulative
demand up to time �t− 1� is equal to Dt−1.
We now list the main assumptions used in Eppen and

Iyer (1997).
• Demand is generated by one of several pure demand

processes. The decision maker has a prior distribution over
these demand processes. She updates this distribution at the
end of each period using Bayes’ formula (Box and Tiao
1973) after observing the demand for that period.
• Demand in each period for each pure demand process

is independent of the demands in other periods as well as
independent of the other pure demand processes. The fact
that demand is independent of demands in other periods is
not stated in the paper, but is used in the Bayesian updating
formula.
• The demand processes are assumed to have the follow-

ing four properties: (1) family consistency, (2) sum suffi-
ciency, (3) stochastic dominance, and (4) the MLR property.
We shall use labels 1 to 4 to refer to these properties.
Family consistency, or Property 1, means that for each

pure demand process, the distribution of demand in adja-
cent periods must be members of the same family. Sum
sufficiency, the second property, means that the sum of
demands for periods 1 to t is sufficient to determine
the posterior distribution of the processes that generated
the observations. For Property 3 to hold, pure demand
process k+ 1 should be stochastically larger than the pure
demand process k (i.e., �k+1� �i� i��x���k��i� i��x� for k= 1

to I − 1 and 1 � i � N ). Finally, for Property 4 or the
MLR property, the ratio �k+1� �i� i��x�/�k� �i� i��x� must be
nondecreasing in x for each k= 1 to I−1 and 1� i�N . In
this paper, we examine how to weaken Property 4 without
affecting CM.

3. Analysis
Eppen and Iyer (1997) provide a dynamic programming
formulation to determine the optimal solution. Four the-
orems are used by them to describe this optimal solu-
tion. In Theorem 1, they show that the cumulative demand,
i.e., Dt , is a sufficient statistic to forecast the demand in
periods t+1 through N . In Theorem 2, they prove the exis-
tence of a pair of lower and upper control bounds, namely
Lt�Dt−1� and Ut�Dt−1�. In period t, the decision maker
compares the on-hand inventory level with these bounds.
If on-hand inventory It−1 is less than Lt�Dt−1�, then she
orders the difference �Lt�Dt−1�− It−1�. Otherwise, if It−1
is larger than the upper bound, then she sells the differ-
ence �It−1 −Ut�Dt−1��. When the inventory is between the
bounds, she does nothing. Observe that this theorem does
not rely on Properties 1, 3, or 4. It therefore defines the
inventory control policy regardless of whether CM holds or
fails to hold.
After the first two theorems, Theorems 3 and 4 become the

main theorems of interest. In Theorem 3, the authors estab-
lish the CM property, namely that d�t+1�x �Dt�/dDt � 0,
by using the stochastic dominance and MLR property. As
pointed out by a referee, the assumption of stochastic dom-
inance is redundant, because the MLR property implies
stochastic dominance (see Shaked and Shanthikumar 1994,
Theorem 1.C.1, p. 28). The authors use the CM property in
Theorem 4 to show that the bounds behave intuitively, i.e.,

if Dt−1 �D′
t−1�

then Lt�Dt−1�� Lt�D
′
t−1� and Ut�Dt−1��Ut�D

′
t−1��

This is the monotonicity result mentioned in the intro-
duction. The solution is easy to implement and also to
explain to managers, as described in Eppen and Iyer (1997)
and Lariviere and Porteus (1999). The MLR condition used
by Eppen and Iyer to prove Theorem 3 is sufficient, but not
necessary. In what follows, we state the SMLR property
and establish that it provides the necessary and sufficient
conditions for CM.

Sequential Monotone Likelihood Ratio (SMLR) Prop-
erty. Demand processes i= 1 to I , with density functions
�i� �1� t��y�, are said to possess the SMLR ��1� �2� � � � � �I �
property if

∑i
j=1�I−i+j�I−i+j� �1� t��y�∑I−i

j=1�j�j� �1� t��y�

is nondecreasing in y, for i= 1 to I − 1.



Haksöz and Seshadri: Monotone Forecasts
480 Operations Research 52(3), pp. 478–486, © 2004 INFORMS

Theorem 1. Given I pure demand processes and also
that Properties 1, 2, and 3 (i.e., family consistency,
sum sufficiency, and stochastic dominance) hold, then
d�t+1�x � y�/dy � 0 if and only if they are ordered accord-
ing to the SMLR �P11� P21� � � � � PI1�.

Proof. The unconditional probability that the demand dur-
ing periods 1 to t is equal to y is given by

Pr�Dt = y�=
I∑

i=1
Pi1�i� �1� t��y�� (1)

By assumption, the probability that the demand in periods 1
to t is equal to y and demand in period t + 1 is less than
or equal to x is given by

Pr�Dt=y∩dt+1�x�=
I∑

i=1
Pi1�i��1� t��y��i��t+1� t+1��x�� (2)

Then, from (1) and (2), the conditional probability

Pr�dt+1�x �Dt=y�=�t+1�x �y�

=
∑I

i=1Pi1�i��1�t��y��i��t+1�t+1��x�∑I
i=1Pi1�i��1�t��y�

� (3)

The conditional probabilities that the demand in period t+ 1
is less than or equal to x given Dt = y can be written as

Pr�dt+1 � x �Dt = y�

=
∑I

i=1 Pi1�i� �1� t��y��i� �t+1� t+1��x�∑I
i=1 Pi1�i� �1� t��y�

� (4)

Similarly,

Pr�dt+1 � x �Dt = y+ 1�

=
∑I

i=1 Pi1�i� �1� t��y+ 1��i� �t+1� t+1��x�∑I
i=1 Pi1�i� �1� t��y+ 1�

� (5)

Thus, for CM to hold, we require from (4) and (5) for any
x ∈Z and y ∈Z,∑I

i=1 Pi1�i� �1� t��y��i� �t+1� t+1��x�∑I
i=1 Pi1�i� �1� t��y�

�

∑I
i=1 Pi1�i� �1� t��y+ 1��i� �t+1� t+1��x�∑I

i=1 Pi1�i� �1� t��y+ 1�
� (6)

In Lemma 3 in the Appendix, let fi be �I−i+1� �t+1� t+1��x�,
let ai be Pi1�i�y+ 1�, and let bi be Pi1�i�y�. Observe that
�I−i+1� �t+1� t+1��x� is nondecreasing in i due to Property 3
(stochastic dominance). Therefore, the fis are nondecreas-
ing, as required in Lemma 3. Then, using Lemma 3, we
obtain ∑I

i=1 Pi1�i� �1� t��y�∑I
i=1 Pi1�i� �1� t��y��i� �t+1� t+1��x�

�

∑I
i=1 Pi1�i� �1� t��y+ 1�∑I

i=1 Pi1�i� �1� t��y+ 1��i� �t+1� t+1��x�
�

or, equivalently,

∑I
i=1 Pi1�i� �1� t��y+ 1��i� �t+1� t+1��x�∑I

i=1 Pi1�i� �1� t��y��i� �t+1� t+1��x�

�

∑I
i=1 Pi1�i� �1� t��y+ 1�∑I

i=1 Pi1�i� �1� t��y�
(7)

holds for every �I−i+1� �t+1� t+1��x� that is nondecreasing in i
if and only if

∑I−i
j=1 Pj1�j��1� t��y+ 1�∑I−i

j=1 Pj1�j��1� t��y�

�

∑i
j=1 P�I−i+j�1�I−i+j� �1� t��y+ 1�∑i

j=1 P�I−i+j�1�I−i+j� �1� t��y�
(8)

for i= 1 to I − 1 (see (17)). Thus,

∑i
j=1 P�I−i+j�1�I−i+j� �1� t��y�∑I−i

j=1 Pj1�j��1� t��y�

has to be nondecreasing in y, or CM is obtained if and only
if the SMLR �P11� P21� � � � � PI1� property is satisfied. �

Remark 1. When I = 2, then SMLR is MLR.

Proof. We show that (8) reduces to the MLR property for
I = 2. Let i= I − 1. We can rewrite (8) as follows:

∑1
j=1 P�1+j�1�1+j� �1� t��y�∑1

j=1 Pj1�j��1� t��y�
�

∑1
j=1 P�1+j�1�1+j� �1� t��y+ 1�∑1

j=1 Pj1�j��1� t��y+ 1�
�

After some manipulation, we obtain

�2� �1� t��y�

�2� �1� t��y�+ �d/dy��2� �1� t��y�
y

�
�1� �1� t��y�

�1� �1� t��y�+ �d/dy��1� �1� t��y�
y
� (9)

Cross multiplying, cancelling equal terms, and passing to
the limit gives

�2� �1� t��y�
d

dy
�1� �1� t��y���1� �1� t��y�

d

dy
�2� �1� t��y�

or

d

dy

[
�2� �1� t��y�

�1� �1� t��y�

]
� 0� (10)

This inequality is the MLR property. �

Corollary 1. If the SMLR property has to hold over
all possible prior distributions �P11� P21� � � � � PI1�, then the
demand distributions must be ordered as per MLR.
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Proof. It follows from Remark 1 by letting all but two
adjacent P ’s be positive. �

As pointed out by a referee, Corollary 1 implies the
following:
(a) If the decision maker is unsure about the prior prob-

abilities and CM has to hold for all possible priors, then
the demand distributions have to be ordered as per MLR.
(b) On the other hand, if the decision maker knows the

prior probabilities and wants to gather more data as time
goes on to collect additional demand information, then
choosing among distributions that satisfy the SMLR prop-
erty is sufficient for CM to hold. In other words, knowing
the prior gives more flexibility in choosing the distributions
of the pure demand processes.

Remark 2. (a) Eppen and Iyer (1997) assume that the
sum sufficiency property holds in their model. We also
assumed that this property holds to establish the necessary
and sufficient conditions for CM. The SMLR property can
be extended with some effort when sum sufficiency does
not hold.
(b) We do not explicitly require family consistency to

hold, but dropping this assumption will require that in most
practical instances we have to drop the sum sufficiency
assumption as well.

Remark 3. In a two-period setting, we can immediately
extend and compare our results with other models that
apply Bayesian forecasting to inventory models. For exam-
ple, in most of the past work, such as Scarf (1959), Iglehart
(1964), and Azoury (1985), the MLR property has been
fundamental to obtaining the CM property. Scarf used the
MLR property to show that CM holds for the exponential
family. The sufficient statistic for this family is the sum
S = ∑n−1

i=1 Di. Iglehart extended the results for the range
family, where the sufficient statistic is S =max1�i�n−1�Di .
Later, Azoury showed that CM holds for the uniform, the
Weibull, and the gamma distributions. In contrast, SMLR
allows one to weaken some of the distributional require-
ments. We illustrate this weakening with a numerical exam-
ple in Remark 6.
In addition to the examples (normal, Poisson, and neg-

ative binomial) given by Eppen and Iyer (1997), we note
the following situation when sum sufficiency holds.

Remark 4. Let the density of pure demand process i be
a truncated normal distribution with mean !i, standard

Table 1. Numerical example �I = 3�.

Demand Process 1 Demand Process 2 Demand Process 3 Eppen and Iyer (1997) MLR SMLR
�!1�"1�!1/"

2
1 � �!2�"2�!2/"

2
2 � �!3�"3�!3/"

2
3 � Condition Condition Condition

Case 1 �1�0�70�2�04� �2�0�70�4�08� �3�0�70�6�12� Holds Holds Holds
Case 2 �1�0�70�2�04� �2�0�85�2�76� �3�1�10�2�47� Fails Fails Holds
Case 3 �1�0�70�2�04� �1�0�70�2�04� �2�0�99�2�04� Fails Holds Holds
Case 4 �1�1�00�1�00� �1�2�00�0�25� �1�3�00�0�11� Fails Fails Fails

deviation " , and density given by

Kie
−�1/2�%�x−!i�/"&2 where x� 0 and

Ki =
"√

2�
[∫ �

0 e−�1/2�%�x−!i�/"&2 dx
] �

Then, both sum sufficiency and SMLR (and MLR) proper-
ties hold. Please see the Appendix for the proof.

Remark 5. Let the number of periods N = 2. Let the
demand processes be as given in Remark 4, except that in
the first period process i demand has standard deviation "i,
then SMLR (and MLR) is obtained in the second period
when

"i � "i+1 and
!i

"2
i

�
!i+1
"2

i+1
�

Please see the Appendix for the proof.
When the pure demand processes have the normal distri-

bution, this condition relaxes Eppen and Iyer’s requirement
that the processes have the same standard deviation.

Remark 6. With additional work, we can further weaken
the conditions of Remark 5. Please see the Appendix for
details. Table 1 displays four different cases for I = 3. The
prior probabilities are assumed to be equal (i.e., P11 = P21 =
P31 = 1/3). The condition in Eppen and Iyer (1997) holds
for Case 1. MLR holds for Cases 1 and 3, yet fails in
Cases 2 and 4. In Cases 2 and 3, the SMLR property allows
us to relax the variance requirement of Remark 5. However,
in Case 4, when large variances are chosen, both SMLR
and MLR properties fail to hold.

Case 1. !1 � !2 � !3 and "1 = "2 = "3, thus !3/"
2
3 �

!2/"
2
2 �!1/"

2
1 ; see Remark 5.

Case 2. !1 � !2 � !3 and "1 � "2 � "3, !1/"
2
1 �

!3/"
2
3 , !1/"

2
1 � !2/"

2
2 ; violates Remark 5 condition but

satisfies weaker condition based on SMLR given in the
Appendix.
Case 3. !1 � !2 � !3 and "1 � "2 � "3, !3/"

2
3 =

!2/"
2
2 =!1/"

2
1 ; Remark 5 conditions hold.

Case 4. !1 � !2 � !3 and "1 � "2 � "3, !3/"
2
3 �

!2/"
2
2 � !1/"

2
1 ; violates Remark 5 and also weaker con-

ditions given in the Appendix.

Remark 7. It can be shown that the CM property is
obtained in the general linear model of Bayesian fore-
casting; such models are described in West and Harrison
(1989).



Haksöz and Seshadri: Monotone Forecasts
482 Operations Research 52(3), pp. 478–486, © 2004 INFORMS

4. Analysis of SMLR Property
Distributions that are ordered according to SMLR inherit
some properties from the MLR order as described below.
In our exposition, we restrict ourselves to continuous
distributions with differentiable density functions. Let
X1�X2� � � � �XI be continuous random variables with densi-
ties g1� g2� � � � � gI and distribution functionsG1�G2� � � � �GI ,
respectively. Let X1�X2� � � � �XI be ordered according to
SMLR ��1��2� � � � ��I �. Also, let �i > 0 ∀i.
Theorem 2. Define two random variables Y1 and Y2 such
that Y1 =Xk with probability �k/

∑i
j=1�j , k= 1� � � � � i, and

Y2 = Xk with probability �k/
∑I

j=i+1�j , k = i + 1� � � � � I .
Then, Y1 is smaller than Y2 in (a) MLR order, (b) hazard
rate order, and (c) the usual stochastic order.

Proof. (a) Follows from the definition of SMLR.
(b) Follows from Theorem 1.C.1 (p. 28) of Shaked and

Shanthikumar (1994).
(c) Follows from part (b) and Theorem 1.B.1 (p. 14) of

Shaked and Shanthikumar (1994). �

Theorem 3. (a) When I = 3, i.e., X1, X2, X3 satisfy the
SMLR ��1��2��3� property, then X1 is smaller than X3 in
the MLR order.
(b) Given that X1, X2, X3 satisfy the SMLR ��1��2��3�

property, they also satisfy SMLR ��̃1� �̃2� �̃3) when the per-
turbed priors are given by

�i� �̃1 =�1 + ,� �̃2 =�2

(
�2 +�3 − ,

�2 +�3

)
�

�̃3 =�3

(
�2 +�3 − ,

�2 +�3

)
� ,� 0�

�ii� �̃1 =�1

(
�1 +�2 − ,

�1 +�2

)
� �̃2 =�2

(
�1 +�2 − ,

�1 +�2

)
�

�̃3 =�3 + ,� ,� 0�

�iii� No other perturbation in ��1��2��3� preserves
SMLR without additional assumptions.

(c) In general, when there are I pure demand processes,
the allowed perturbations in the priors are

�i� �1 + ,� �i

(∑I
j=2�j − ,∑I

j=2�j

)
� ,� 0� i= 2� � � � � I �

�ii� �i

(∑I−1
j=1 �j − ,∑I−1

j=1 �j

)
�

i= 1� � � � � I − 1 and �I + ,� ,� 0�

(d) For k � l, let Y1 = Xi with probability �i/
∑k

j=1�j

and Y2 = Xi with probability �i/
∑I

j=l �j . Then, Y1 is
smaller than Y2 in the MLR order.

Proof of �a� and �b��ii�. Let

�̃1 =�1

(
�1 +�2 − ,

�1 +�2

)
�

�̃2 =�2

(
�1 +�2 − ,

�1 +�2

)
�

and �̃3 = �3 + ,, , � 0. When I = 3, by the SMLR prop-
erty, both

�2g2�y�+�3g3�y�

�1g1�y�
and

�3g3�y�

�1g1�y�+�2g2�y�

are nondecreasing in y.
Therefore, differentiating ��2g2�y� + �3g3�y��/�1g1�y�

with respect to y yields

�2g
′
2�y�+�3g

′
3�y�

�2g2�y�+�3g3�y�
�

g′
1�y�

g1�y�
� (11)

On the other hand, differentiating �3g3�y�/��1g1�y� +
�2g2�y�� with respect to y yields

g′
3�y�

g3�y�
�

�1g
′
1�y�+�2g

′
2�y�

�1g1�y�+�2g2�y�
� (12)

Observe that inequality (12) continues to hold when �1

and �2 are substituted with �̃1 and �̃2. In essence, each
term of the left-hand side of the inequality is multiplied by
the same term ��1 +�2 − ,�/��1 +�2�. Thus, cancelling
this term gives us the same inequality. Second, we prove
by contradiction that inequality (11) continues to hold.
Assume

�̃2g
′
2�y�+ �̃3g

′
3�y�

�̃2g2�y�+ �̃3g3�y�
<

g′
1�y�

g1�y�
�

We have two cases to consider:
Case 1. Assume g′

3�y�/g3�y� � g′
1�y�/g1�y�. Let / =

��1+�2−,�/��1+�2�. Note that /� 1. After substituting
�̃2 =�2/ and �̃3 =�3 + ,, we obtain

�2/g
′
2�y�+ ��3 + ,�g′

3�y�

�2/g2�y�+ ��3 + ,�g3�y�
<

g′
1�y�

g1�y�
�

Rearranging terms,

�2/g
′
2�y�+�3/g

′
3�y�+ ��3 + ,−�3/�g

′
3�y�

�2/g2�y�+�3/g3�y�+ ��3 + ,−�3/�g3�y�
<

g′
1�y�

g1�y�
�

Dividing each term by /, we obtain

�2g
′
2�y�+�3g

′
3�y�+�1//���3+,−�3/�g

′
3�y�

�2g2�y�+�3g3�y�+�1//���3+,−�3/�g3�y�

<
g′
1�y�

g1�y�
� (13)

We know that ��3 + , − �3/�// > 0 and g′
3�y�/g3�y� �

g′
1�y�/g1�y�. Thus, this inequality and (13) cannot both
hold by Lemma 2. Therefore, g′

3�y�/g3�y� should be less
than g′

1�y�/g1�y�.
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Case 2. Let g′
3�y�/g3�y� < g′

1�y�/g1�y�. If g
′
3�y�/g3�y��

g′
2�y�/g2�y�, then by the analysis of Case 1, we have

g′
1�y�/g1�y� > g′

3�y�/g3�y� and g′
1�y�/g1�y� > g′

2�y�/g2�y�.
However, then inequality (11) cannot hold. Therefore,
g′
3�y�/g3�y� < g′

2�y�/g2�y� and g′
3�y�/g3�y� < g′

1�y�/g1�y�
should simultaneously hold. In that case, inequality (12)
fails to hold. Thus, g′

3�y�/g3�y� � g′
1�y�/g1�y�. Therefore,

this gives us the desired contradiction; hence (11) contin-
ues to hold. Thus, the SMLR property is preserved for the
perturbations of the priors shown in part (b)(ii).
Moreover, we have also shown that g′

3�y�/g3�y� �

g′
1�y�/g1�y�. This implies that g3�y�/g1�y� is nondecreas-
ing in y. Thus, X1 is smaller than X3 in MLR order. This
proves part (a). �

Proof of (b)(i). Observe that for the given perturbation of
priors, inequality (11) continues to hold by the same argu-
ment used for (12) in part (b)(ii). To prove (12) holds, let

/=
(
�2 +�3 − ,

�2 +�3

)
and �̃1 =�1 + ,�

�̃2 =�2

(
�2 +�3 − ,

�2 +�3

)
� �̃3 =�3

(
�2 +�3 − ,

�2 +�3

)
�

After rearranging, we obtain

�̃1g
′
1�y�+ �̃2g

′
2�y�

�1g1�y�+�2g2�y�

= �1//���1 + ,−�1/�g
′
1�y�+�1g

′
1�y�+�2g

′
2�y�

�1//���1 + ,−�1/�g1�y�+�1g1�y�+�2g2�y�
�

By Lemma 2 and the fact that g′
3�y�/g3�y� � g′

1�y�/g1�y�
from part (a),

�1//���1 + ,−�1/�g
′
1�y�+�1g

′
1�y�+�2g

′
2�y�

�1//���1 + ,−�1/�g1�y�+�1g1�y�+�2g2�y�
�

g′
3�y�

g3�y�
�

Thus, (12) continues to hold. �

Proof of (b)(iii). Without additional assumptions, we can-
not definitely say whether g1�y�/g2�y� or g2�y�/g3�y� is
nondecreasing in y. Thus, due to part (a), perturbations that
are of the form

�i� �1 − ,� �2

(
�2 +�3 + ,

�2 +�3

)
�

�3

(
�2 +�3 + ,

�2 +�3

)
� ,� 0�

�ii� �1

(
�1 +�2 + ,

�1 +�2

)
� �2

(
�1 +�2 + ,

�1 +�2

)
�

�3 − ,� ,� 0�

�iii� �2 ± ,� �1

(
�1 +�3 ± ,

�1 +�3

)
�

�3

(
�1 +�3 ± ,

�1 +�3

)
� ,� 0�

could violate (11) or (12). We can also show that any per-
turbation in priors can be represented as a sum of perturba-
tions of the form in parts (b)(i) or (b)(ii) and perturbations
which are of the above three forms. Thus, without addi-
tional assumptions, no other perturbations can be assumed
to preserve the SMLR property. �

Proof of (c). Similar to part (b). �

Proof of (d). After grouping the pure demand distribu-
tions into three subsets �X1� � � � �Xk�, �Xk+1� � � � �Xl−1�, and
�Xl� � � � �XI�, the desired result follows by using part (a). �

Remark 8. Unlike MLR, we are unable to show that the
SMLR property implies that Property 3, i.e., stochastic
dominance, holds. However, we conjecture that Property 3
is not redundant when SMLR is assumed instead of MLR.

It is worth contrasting Theorem 1, Theorem 3, and
Corollary 1. Even though all of them pertain to whether CM
is obtained when the prior distribution gets perturbed, they
differ significantly. Theorem 1 implies that even though
the priors at the beginning of each period are updated as
more information becomes available, the conditional dis-
tribution of the demand in each period still satisfies CM.
Thus, CM is always obtained regardless of the actual evo-
lution of demand. In contrast, Theorem 3 states that if we
were to perturb the original priors, then only certain per-
turbations will preserve the SMLR property. The two are
different statements: The first pertains to updating the pri-
ors over time; the second to changing the priors before
demand information is obtained. Finally, Corollary 1 states
that if CM is required to hold for any initial priors, then
the MLR property is necessary. Like Theorem 3, this is a
statement about perturbing priors before any demand has
been observed.

5. Conclusions
CM is a useful property to have when interpreting early
demand information. It justifies the prediction of higher
demand in the future based on larger sales in the past. How-
ever, CM cannot be assumed to hold automatically. In this
paper, we derived the necessary and sufficient conditions
for CM to hold in the Eppen and Iyer (1997) model. There
are stronger conditions given in the literature under which
CM holds. The interested reader is referred to the work of
Cohen and Sacrowitz (1993, 1995) as well as the chapter on
multivariate stochastic orders in Shaked and Shanthikumar
(1994), for further details.

Appendix
Lemma 1. If a> 0, b > 0, c > 0, d > 0, 0> 0, then

0a+ c

0b+d
� ���

a

b
(14)

if and only if
c

d
� ���

a

b
� (15)
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Proof. If (14) holds, then (15) is obtained by cross-
multiplying terms, canceling 0ab from both sides and rear-
ranging the remaining terms. If (15) holds, then there exists
a 1> �<�1 such that 1c/d= a/b. Thus, we obtain

0a+ c

0b+d
� ���

0a+ 1c

0b+d
= a

b
� �

Lemma 2. If a/b � ���c/d, a/b � ���e/f , and b > 0,
d > 0, f > 0, then a/b� ����e+0c�/�f +0d� for 0� 0.

Proof. Cross-multiplying a/b � ����e + 0c�/�f + 0d�,
we obtain af +0ad� ���be+0bc. This inequality holds
when af � ���be and ad � ���bc both hold, which
can be obtained by cross-multiplying a/b � ���c/d and
a/b� ���e/f . �

Lemma 3. Let ai, bi, i = 1�2� � � � � n be greater than zero.
Then,∑n

i=1 ai∑n
i=1 bi

�

∑n
i=1 fiai∑n
i=1 fibi

(16)

for all 0� f1 � f2 � · · ·� fn if and only if∑i
j=1 aj∑i
j=1 bj

�

∑n
j=i+1 aj∑n
j=i+1 bj

(17)

for every i= 1 to n�

Proof. We shall establish this lemma by use of induction.
Let n= 2. Then,

f1a1 + f2a2
f1b1 + f2b2

= f1�a1 + a2�+ �f2 − f1�a2
f1�b1 + b2�+ �f2 − f1�b2

�

Then, either f2 − f1 > 0 or f2 − f1 = 0. If the latter case
holds, we have equality in (16). If the former case holds,
then applying Lemma 1 we see that (16) is equivalent
to (17). Thus, for (16) to be true it is necessary and suffi-
cient that (17) holds.
Let the lemma be true for n. Assume that (17) holds for

i= 1 to n. Then,∑n+1
i=1 fiai∑n+1
i=1 fibi

= f1�a1 + a2�+
∑n+1

i=3 �fi − f2 + f1�ai + �f2 − f1�
∑n+1

i=2 ai

f1�b1 + b2�+
∑n+1

i=3 �fi − f2 + f1�bi + �f2 − f1�
∑n+1

i=2 bi

� (18)

In (17), let i= 1. Then,

a1
b1

�

∑n+1
j=2 aj∑n+1
j=2 bj

� (19)

which implies by Lemma 1,

∑n+1
j=1 aj∑n+1
j=1 bj

= a1 +
∑n+1

j=2 aj

b1 +
∑n+1

j=2 bj

�

∑n+1
j=2 aj∑n+1
j=2 bj

� (20)

Let i= 2. Then, by (17),

a1 + a2
b1 + b2

�

∑n+1
j=3 aj∑n+1
j=3 bj

� (21)

Let e= a1 + a2 and f = b1 + b2. Then, (17) is satisfied by

e+∑i
j=3 aj

f +∑i
j=3 bj

�
e+∑n+1

j=i+1 aj

f +∑n+1
j=i+1 bj

(22)

for every i= 2 to n+ 1.
Moreover, using (22) and the fact that Lemma 3 holds

for n,

e+∑n+1
i=3 ai

f +∑n+1
i=3 bi

�
f1e+

∑n+1
i=3 �fi − f2 + f1�ai

f1f +∑n+1
i=3 �fi − f2 + f1�bi

� (23)

because 0� f1 � f3 − f2 + f1 � f4 − f2 + f1 � · · ·� fn+1 −
f2 + f1.
We know by (20) that∑n+1
i=1 ai∑n+1
i=1 bi

�

∑n+1
i=2 ai∑n+1
i=2 bi

(24)

or∑n+1
i=1 ai∑n+1
i=1 bi

= 2�f2 − f1�
∑n+1

i=2 ai

�f2 − f1�
∑n+1

i=2 bi

� 2� 1� (25)

Then, by Lemma 1 and (23),∑n+1
i=1 ai∑n+1
i=1 bi

�
2�f2 − f1�

∑n+1
i=2 ai + f1�a1 + a2�+

∑n+1
i=3 �fi − f2 + f1�ai

�f2 − f1�
∑n+1

i=2 bi + f1�b1 + b2�+
∑n+1

i=3 �fi − f2 + f1�bi

�
f1�a1 + a2�+

∑n+1
i=3 �fi − f2 + f1�ai + �f2 − f1�

∑n+1
i=2 ai

f1�b1 + b2�+
∑n+1

i=3 �fi − f2 + f1�bi + �f2 − f1�
∑n+1

i=2 bi

=
∑n+1

i=1 fiai∑n+1
i=1 fibi

�

This shows the sufficiency of (17) for n+ 1.
To establish the necessity of (17) we have only to pro-

duce a single 0� f1 � f2 � f3 � · · ·� fn+1 for which (16)
does not hold when (17) does not hold. Let the inequality
in (17) fail to hold for some i. In this case, set f1 = f2 =
f3 = · · · = fi = 0, and the rest of the f s equal to one. Then,
due to the fact that (17) fails to hold for i,∑i

j=1 aj∑i
j=1 bj

<

∑n+1
j=i+1 aj∑n+1
j=i+1 bj

�

Therefore, by Lemma 1,∑i
j=1 aj +

∑n+1
j=i+1 aj∑i

j=1 bj +
∑n+1

j=i+1 bj

<

∑n+1
j=i+1 aj∑n+1
j=i+1 bj

=
∑n+1

j=1 fiai∑n+1
j=1 fibi

�

which is the desired contradiction. �
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Condition for Remark 4. Let the demand observed in
periods 1 to n be x1� x2� � � � � xn. Let x̄=∑n

i=1 xi/n. Then,

Pr�d1 = x1�d2 = x2� � � � � dn = xn � distribution is i�

=Ki exp
[
−1
2

n∑
j=1

(
xj −!i

"

)2]

=Ki exp
[
−1
2

n∑
j=1

(
xj − x̄

"

)2

− n

2

(
x̄−!i

"

)2]

=MKi exp
[
−n

2

(
x̄−!i

"

)2]
� (26)

where

M = exp
[
−1
2

n∑
j=1

(
xj − x̄

"

)2]
�

The value of M is independent of distribution i. Hence,

Pr�distribution is i�

= Ki exp
[−�n/2�

(
�x̄−!i�/"

)2]
∑I

i=1Ki exp
[−�n/2�

(
�x̄−!i�/"

)2] � (27)

Thus, x̄ is the sufficient statistic. Similarly, it can be verified
that SMLR (and MLR) hold.

Condition for Remark 5. Consider the case when I = 2.
Let the densities of the demand in the first two periods be

A�x�=K1e
−�1/2�%�x−!1�/"1&

2
and B�x�=K2e

−�1/2�%�x−!2�/"2&
2

respectively. If SMLR ��1��2� holds, then ��2B�/��1A�
should be increasing in x. We differentiate ��2B�/��1A�
with respect to x to obtain

d

dx

[
�2K2e

−�1/2�%�x−!2�/"2&
2

�1K1e
−�1/2�%�x−!1�/"1&

2

]

=
(
�2

�1

)[
B′

A
− BA′

A2

]
=
(
�2

�1

)
B

A

[
x−!1

"2
1

− x−!2

"2
2

]
� (28)

Observe that
1. %�x − !1�/"

2
1 − �x − !2�/"

2
2 & is increasing in x if

1/"2
1 � 1/"2

2 .
2. Thus, at x = 0, %�x − !1�/"

2
1 − �x − !2�/"

2
2 & =

!2/"
2
2 −!1/"

2
1 � 0 is necessary and sufficient for SMLR

��1��2� to hold.
3. It can be shown by induction that when I = n we

need

1
"2
1

�
1
"2
2

� · · ·� 1
"2

n

and
!n

"2
n

�
!n−1
"2

n−1
� · · ·� !2

"2
2

�
!1

"2
1

�

Condition for Remark 6. Let

I = 3 and C�x�=K3e
−�1/2�%�x−!3�/"3&

2
�

Let "1 � "2, "1 � "3, and !1/"
2
1 � !3/"

2
3 , !1/"

2
1 �

!2/"
2
2 .

Observe that for SMLR to hold (I = 3, i= 2 in (8)), we
need ��2B + �3C�/��1A� to be increasing in x. This is
guaranteed by the conditions stated in the previous remark.
We also need (I = 3, i= 1 in (8)) �3C/��2A+�1B� to be
increasing in x. After differentiation with respect to x, this
simplifies to requiring

�2B

[
x−!2

"2
2

− x−!3

"2
3

]
+�1A

[
x−!1

"2
1

− x−!3

"2
3

]
� 0

or

�2B

�1A

[
x−!2

"2
2

− x−!3

"2
3

]
+
[
x−!1

"2
1

− x−!3

"2
3

]
�0� (29)

Therefore, if

x−!2

"2
2

�
x−!3

"2
3

as
[
x−!1

"2
1

�
x−!3

"2
3

]

by assumption for all x, the result is trivial. But we know

�2B

�1A

[
x−!2

"2
2

− x−!3

"2
3

]
+
[
x−!1

"2
1

− x−!3

"2
3

]
� 0�

when x�
!2"

2
3 −!3"

2
2

"2
3 −"2

2

� (30)

Therefore, as ��2B�/��1A� is increasing, it is sufficient if

sup
x∈%0� �!2"

2
3−!3"

2
2 �/�"

2
3−"2

2 �&

(
�2B

�1A

)[
x−!2

"2
2

− x−!3

"2
3

]
x=0

+
[
x−!1

"2
1

− x−!3

"2
3

]
x=0

� 0� (31)

This condition is weaker than MLR. Table 1 was con-
structed using this inequality. �
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