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In this paper we study the allocation of production services (e.g., maintenance) to machining centers in a job shop when there is a
limited amount of resources for such services. Di�erent classes of jobs go through the shop. A job class is characterized by its route,
its processing requirements, and its priority. The problem we address is how to optimally allocate production services (the
resources) to machining centers so as to minimize the total Work-In-Process in the entire system. In order to analyze this problem
we model the job shop as an open queueing network. Assuming certain relationships between performances of machining centers
(i.e., speeds) and the amounts of resources allocated, we present methods for allocating the resources to the individual machining
centers optimally.

1. Introduction

In this paper we study the allocation of production ser-
vices to machining centers in a job shop environment.
Production services, such as material handling, provisions
of tooling and ®xtures, and maintenance and repair, have
a signi®cant impact on throughput. One of the basic as-
sumptions is that there is a limit on the resources that
provide these services. The shop ¯oor approach for
allocating these services is normally based on heuristics
that use bottleneck analysis and the values of the jobs
processed at the machining centers. It is clear that when
the manager actually allocates services to equipment, the
issues mentioned above require an integrated analysis.
To put the problem in perspective, consider the concept

of Total Productive Maintenance (TPM). The goal of
TPM is to achieve ideal conditions for a plant. Nakajima
[1], for example, has suggested that the following oper-
ating conditions should be achieved: (1) a machine should
be available for more than 90% of the time; (2) its per-
formance e�ciency should be greater than 95%; and (3)
its yield rate should be greater than 99%. To achieve
these operating conditions he focused on six sources of
productivity loss that may be present in a manufacturing
environment: (1) speed reductions; (2) idling and minor
stoppages; (3) set-up and adjustment times; (4) equipment
failures; (5) process defects; and (6) yield loss. These
losses can be broadly categorized into speed, downtime,
and quality related losses. The modeler is faced with the
problem of quantifying the losses and analyzing the costs
of corrective actions.
In this paper the cost of corrective actions is regarded

as the cost of providing production services. It may also

be that, in the long term, the losses due to downtime and
lower speed can cause additional Work-In-Process (WIP)
inventory that has to be maintained. Based on these as-
sumptions we build a model that is amenable to analysis.
The model is based on the fact that a machining center
performs better when more resources are allocated to it.
The relationship between the resource allocated and the
speed of the machining center is assumed to be continu-
ous. A machining center's performance is assumed to be a
continuous function that is increasingly concave in the
amount of resource allocated.
In this paper we show that well known techniques for

analyzing the performance measures of queueing net-
works, and recently developed methods for characterizing
these solutions using stochastic convexity concepts [2] can
be used to determine analytically the optimal allocation
in a job shop. We develop an open queueing network
model for a job shop, and based on this model address
three issues:

(1) How does the mix of products a�ect the allocation
of services?

(2) How does the arrival pattern of the jobs a�ect the
allocation?

(3) Can an algorithm be designed for solving this
problem?

In this paper, we consider for modeling purposes an ag-
gregate allocation of resources. The results can be applied
to all services that have an e�ect on processing rates at
the machining centers.
The notion of allocating services on an aggregate basis,

which is a key idea in this paper, is not new. Joshi and
Gupta [3], and Seshadri [4] have studied this in the context
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of allocating preventive maintenance set-ups within a
given planning horizon. More recently, Ashayeri et al. [5]
have used a mathematical program to decide whether or
not to schedule maintenance within a given planning
horizon. The tradeo�s in their model are between the cost
of preventive maintenance versus the costs of holding
inventory, costs of incurring backlog, and setup costs.
Dekker [6] has used a uni®ed approach to model the costs
associated with preventive maintenance. He also shows
how these cost functions can be used to plan maintenance
in coordination with production. These studies do not
consider the stochastic nature of job arrival times and
processing times and they restrict their attention to the
modeling of the breakdown and repair processes. Kayton
et al. [7] have described a study carried out at a semi-
conductor fabrication facility (fab) to determine the im-
pact of maintenance on the di�erent pieces of equipment
in the fab. They use a simulation model to demonstrate
that downtime at non-bottleneck equipment can a�ect the
throughput rate and thus the average WIP in the facility.
In relation to their work, we use an analytical model to
develop guidelines that will help a manager decide when
utilization alone is not a su�cient factor in deciding where
to concentrate maintenance e�orts, see Section 5.
Allocation problems in general have been studied ex-

tensively, see Ibaraki and Katoh [8]. Examples of work in
the context of systems' reliability provide stronger con-
clusions than our objective criterion of minimizing the
value of WIP, [9,10]. Liyanage and Shanthikumar [9] have
considered the stochastic allocation problem of deter-
mining how many units to allocate to each of M facilities.
The response of facility m is random and given by Xm�m�.
The system's response is a joint function,
h�X1�r1�;X2�r2�; . . . ;XM �rM��. The objective is to maximize
the expected utility E�g�h�X1�r1�; X2�r2�; . . . ; XM �rM����.
The budget constraint is that the sum of the allocations
should not exceed a value R. They identi®ed conditions on
Xm�rm� under which, with suitable restrictions on g, the
allocation can be determined in an easy manner. Shaked
and Shanthikumar [10] studied an allocation problem in
which they determined how to stochastically maximize the
lifetime of parallel and series systems. For examples of
similar work see Li [11] and Singh and Singh [12].
The modeling framework adopted in this paper is that

of an Open Queuing Network (OQN). It is useful to re-
view the work done on resource allocation within the
OQN modeling framework. Kleinrock [13] has reviewed
the early work done in the area of capacity assignment in
queueing networks. Kelly [14] has discussed several var-
iants of server allocation problems in an OQN. Wein [15]
also considers server allocation problems in open
queueing networks. However, all server allocation prob-
lems considered in the literature assume that the rela-
tionship between station performance and resource
allocated is linear. Another area of research that is
somewhat related to this problem is the allocation of

machines in a queueing network. Each machining center
in the network consists of a number of machines in par-
allel and there is a ®xed number of machines to be allo-
cated to the various centers. A signi®cant amount of
research has been done on the optimal allocation of
machines to machining centers in such a network. A
number of algorithms have been proposed for this dis-
crete optimization problem. For excellent surveys of this
area of research, see Buzacott and Shanthikumar [16] and
Bitran and Morabito [17]. Buzacott and Shanthikumar
provide a comprehensive review on resource allocation in
manufacturing systems.
In the literature dealing with Flexible Manufacturing

Systems, Vinod and John [18] have considered a closed
queueing network model of a two-stage repair set-up.
They have suggested integer programming to solve the
problem. They have modeled the dynamics of the actual
allocation rather than study the conjecture that an in-
crease in allocation improves performance. Similar com-
ments apply to the recent work of Widmer and Solot [19],
and Miriyala and Viswanadham [20], who also model
maintenance of a Flexible Manufacturing System. Thus it
is seen that the notion of aggregate planning of produc-
tion services in a multi-product job shop environment is a
research area that has not received much attention so far.
This paper is organized as follows. In Section 2 we

describe the basic model. In Section 3 we discuss some
results concerning open queueing networks. The ap-
proach for analyzing the problem is discussed in Sections
4 and 5 under two di�erent assumptions: (i) using ma-
chine processing rates that are only a function of the
amount of resource allocated; and (ii) using rates that are
a function of both the queue length and the amount of
resource allocated to the machine. Procedures for solving
the problem are also described. In the ®nal section we
present a qualitative appraisal of the results.

2. The model

The conceptual model of the problem is that the average
level of services provided a�ects the performance of
equipment (the service rate), and in turn the service rate
a�ects the work ¯ow. Taking this into account the deci-
sion-maker has to use these relationships to allocate and
prioritize the allocation of services or resources. The
modeling framework adopted is that of an open queueing
network with unlimited bu�er capacities at each node. In
this framework the major components are: (1) the num-
ber of product classes; (2) the arrival rate of each job
class; (3) the route of each job class and the associated
service requirements; (4) the number of machining centers
(which we will call machines); (5) the queue priorities; and
(6) the relationship between the allocation of the pro-
duction services and the service rates of machines. In such
a framework it is customary to make assumptions that
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lead to product form solutions [21±23]. The need for a
closed form expression for the expected value of the
Work-In-Progress (WIP) at a machine necessitates the
assumption that each queue is quasi-reversible [14]. The
assumptions are listed below.
Jobs of class i, i � 1; 2; . . . ;C, arrive according to a

Poisson process with a rate ki, have a ®xed (deterministic)
route structure si�j�, j � 1; 2; . . . ; ni, where at stage j of
the route machine si�j� is used. Jobs of class i have a value
wij at stage j of their route.
The service requirement of a class i job at machine m,

m � 1; . . . ;M ; has a mean amj. If quasi-reversibility is as-
sumed, then the means of the processing times of all jobs
on machine m have to be equal. If the priority rule at a
machine is according to a symmetric queue, then the ser-
vice time distributions can be arbitrary and class depen-
dent. In either case, the service requirements are assumed
to be independent of each other. Of a total resource R an
amount rm is allocated to machine m. If the queue length is
l, then machine m provides service at a rate /m�l; rm�. In
other words, /m�l; rm� is the amount of work done in one
unit of time. The exact manner in which the allocation rm
a�ects /m�l; rm� is described in the next section. The queue
priority, which is independent of the classes, is assumed to
be such that a product form solution is obtained (see the
assumptions at the end of this section).
The simplifying assumptions are quite broad in their

scope as far as the processing requirements of jobs are
concerned. First, as long as the queue priority leads to a
symmetric queue, the service requirement could be a
random variable with an arbitrary distribution. Second, if
we only assume quasi-reversibility then all the aij values
are equal to a constant and we may assume any of a range
of class independent priority rules (including ®rst come
®rst served) and obtain product form expressions for the
expected WIP at each machine, as is discussed in (Kelly
[14], Section 3.2). In what follows the expected value of
the WIP at machine m will be denoted by E�Vm�. A lim-
iting assumption is the one made regarding the arrival
pattern of jobs being Poisson. The assumptions regarding
the e�ect of service allocation on processing rates are
presented in detail in the next section. The assumptions
made are partly justi®ed by the fact that they permit an
analysis using closed form expressions for an otherwise
intractable problem, and partly by the intuitively ap-
pealing form of the solution obtained in Sections 4 and 5.
Given the model, the objective is to allocate service to

the machines so that the total average value of the WIP in
the system is minimized. This objective is subject to the
constraints that

(1) the required throughput is achieved;
(2) the resource constraint is satis®ed.

It should also be noted that the assumption of a deter-
ministic route structure permits the assumption that the
value of work-in-progress increases over the route of a

class of jobs, by assuming a di�erent value of wij at each
stage of processing.
One question concerns the types of service require-

ments we can incorporate into the model and still obtain
a product form solution. For example, assume that the
service requirements are exponentially distributed. Then
one issue that has to be investigated is whether inter-
ruptions of service due to machine failures can lead to a
signi®cant distortion or deviation from a product form
solution. A second issue that needs to be investigated is
the e�ect of the resource allocation on the service times.
In Appendix A we show the conditions under which
processing times of machines that are subject to break-
down and repair may be considered similar to an expo-
nential distribution. This condition is used below in
assumption A2. The e�ect of resource allocation on ser-
vice requirements is also derived in Appendix A and will
be used in Section 4.
Three di�erent ways of modeling the impact of

resource allocation and service time distributions are
discussed below. Consider the following three assump-
tions.

Assumption 1 (A1): one way of modeling the problem is to
assume that the service times are still exponentially dis-
tributed. This assumption can be justi®ed if the squared
coe�cient of variation c2v is close to unity. As shown in
Appendix A, the c2v will be close to unity if either the
service rate is smaller than the repair or failure rates, or
the failure rate is small relative to the repair rate (this
would partly justify the exponential assumption). The
assumption that the failure rate is small with regard to the
repair rate is justi®able if the machine availability is rel-
atively high. The assumption of exponential service times
is harder to justify in the context of job shops. The pri-
ority rule can be ®rst come ®rst served. If this is the case,
we assume that the processing rate at station m does not
depend on the queue length l, i.e., /m�l; rm� does not
depend on l. We then use the notation /m�rm� to analyze
this case. We assume that the processing rate /m�rm� is
increasing concave in the allocation rm.

Assumption 2 (A2): if the queue is a symmetric queue,
then a product form solution can also be obtained. Some
allowable priorities are: (1) last come ®rst served; and (2)
server sharing. The service time distribution may be ar-
bitrary but the service times have to be i.i.d. at each
machine and independent of everything else. In addition,
we assume that the processing rate does not depend on
the queue length and denote the rate as /m�rm�. The
processing rate is assumed to be increasing concave in the
allocation rm.

Assumption 3 (A3): an alternative approach is to assume
that each queue is quasireversible and that the service rate
at machine m is queue length dependent. Denote the
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service rate to be gm�l� when the queue length is l and the
machine is working at 100% e�ciency. Then de®ne the
e�ciency factor of machine m when rm of the resource is
allocated to it as gm�rm�. We assume that these two fac-
tors combine in such a way that

/m�l; rm� � gm�l�gm�rm�: �1�
The e�ciency factor gm�rm� is assumed to be increasing
concave in rm. In this approach the average service rate
includes both downtime and speed losses.
It is interesting to note that all three assumptions lead

to a similar solution and therefore warrant testing using
simulation. In the next section the OQN model is de-
scribed taking all the assumptions into account. In Sec-
tion 4 either A1 or A2 is assumed to hold. In Section 5 A3
is assumed to hold and gm�rm� is assumed to be increasing
concave in rm.

3. Preliminary results

In this section an expression for the expected value of the
WIP at machine m, E�Vm�, is derived. The equilibrium
distribution of the queue at machine m is given by [14]:

P �Nm � n� � pm�n� � bman
mQn

1 /m�l; rm� ; �2�

am �
XC

i�1
ki

Xni

j�1
I �si�j� � m�aij; �3�

bm �
X1
n�0

an
mQn

1 /m�l; rm�

 !ÿ1
; �4�

E�Vm� �
P1

n�1 npm�n�
ÿ �PC

i�1 ki
Pni

j�1 wijI�si�j� � m�aij

� �
am

;

�5�
where I �:� is the indicator function. Let E�Nm� denote the
expected number of jobs at machine m. De®ne fim to be
the contribution of a class i job to the value of the WIP at
machine m. Then

fim �
Xni

j�1
wijI�Si�j� � m�aij

 !
ki=am:

De®ne Um to be the expected value of the WIP per job in
the queue at machine m. The value of Um can be expressed
in terms of the fim as follows,

Um �
XC

i�1
fim:

With these de®nitions and the use of Equation (5), the
expected value of the jobs in WIP at machine m simpli®es
to

E�Vm� � UmE�Nm�:
The expected value of jobs in WIP in the shop is denoted
as E�V �. The optimization problem is:

min
XM
m�1

E�Vm�;

subject to

r1 � r2 � � � � � rM � R; �6�
r1; r2; . . . ; rM � 0: �7�

Two cases are analyzed separately in the following two
sections. Case I is based either on Assumption A1 or on
Assumption A2. Case II is based on Assumption A3.

4. Analysis of case I

Recall that under A1 and A2, the service rate, /m�rm�, is
increasing concave in rm. In this case the expression for

E�V � �
XM
m�1

E�Vm�;

is equivalent to

E�V � �
XM
m�1

Um
am

/m�rm� ÿ am

� �
: �8�

So

@E�V �
@rm

�ÿ Um
am/0m�rm�

/m�rm� ÿ am� �2
 !

; �9�

@2E�V �
@r2m

�ÿ Um
am/00�rm�

/m�rm� ÿ am� �2
 !

� 2Um
am/0�rm�2

/m�rm� ÿ am� �3
 !

: �10�

As /m�rm� is assumed to be increasing concave in rm,
the second derivative given in Equation (10) is non-neg-
ative and may be assumed to be strictly positive. It can be
veri®ed that if the failure rate cm�rm� is decreasing convex
in rm, it again follows, using Equations (A1) and (A2) in
Appendix A, that the second derivative of E�V �, Equa-
tion (10), is positive.
The objective function is a separable decreasing convex

function. There are several e�cient procedures available
for solving the problem for either case, when rm is re-
stricted to be integer or allowed to take on continuous
values as is discussed by Fox [24], Ibaraki and Katoh
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[8, pp. 15±20, 52±77], and Hochbaum and Shanthikumar
[25]. Even when there are more constraints, e�cient
procedures are available for solving large separable con-
vex optimization problems, as is discussed by Hochbaum
and Shanthikumar [25], Nemhauser and Wolsey [26], and
Hochbaum and Seshadri [27]. Only the nature of the
solution is characterized below. It is clear that the un-
constrained optimum is achieved when

Um
am/0m�rm�

/m�rm� ÿ am� �2
 !

� Um
am

/m�rm� ÿ am� �
� �

1

/m�rm� ÿ am� �
� �

/0m�rm� � K;

where K is a constant that depends on the structure of the
network. This expression is a product of four terms,
namely

(1) the expected value of the WIP for each job in the
queue (Um);

(2) the expected number of jobs in the queue (E�Nm�);
(3) the expected time a job spends at the machine

(waiting and being processed);
(4) the marginal increase obtained in processing rate

with an allocation increase.

In the optimal partition of resources over the network the
value of this product has to be the same for each machine.
We can interpret this result as follows: the higher the
average value of jobs ¯owing through a machine and the
greater the average number of jobs or ¯ow time at the
machine, the larger the allocation of resources will be.
In the constrained case a similar result holds. How-

ever, some machines may not get any allocation at all.
(This supports the traditional view that the bottleneck
analysis of machines should be combined with the value
of jobs ¯owing through them for purpose of allocating
priorities). As an example, when the resource allocations
can assume only integral values then the marginal
(greedy) allocation algorithm is optimal, as is discussed
in Fox [24] and Appendix A of Buzacott and Shan-
thikumar [16]. (As a historical note, Fox credits Gross
[28] for this result). As the name suggests, the algorithm
allocates one unit of a resource at a time. The unit is
allocated to that workcenter that stands to gain the
most from the allocation, see Section 6 for an example.
For our model, the marginal allocation algorithm
remains optimal even with given values for upper and
lower bounds (ub�m� and lb�m�), that is the individual
allocations have to be integers and also satisfy con-
straints of the form lb�m� � rm � ub�m�.
One can show for the unconstrained case, see Equation

(A4) in Appendix B, that by using the GI=G=1 approxi-
mation for the delay in queue, at high levels of server
utilization the optimal allocation must indeed be pro-
portional to

UmE�Nm� 1

�/�rm� ÿ k�/
0 �rm�:

The similarity of the expressions for allocating resources
under the di�erent assumptions forms the basis for a
greedy algorithm proposed in Section 6. The form of the
expression above is no coincidence as demonstrated by
Shanthikumar and Xu [29] who considered a single stage
queueing system with c heterogeneous servers. Customers
arrive according to a renewal process. The service times at
server i are i.i.d. random variables and each server has a
separate queue. There is a cost hi associated with having
customers wait in queue i. Customers are routed to queue
i with a ®xed probability hi. They used bounds for the
delay in a GI/GI/1 queue and derived the allocation of
work to the servers. Therefore the allocation that they
derived is similar in form to the formulae derived in this
paper. Moreover Shanthikumar and Xu showed that
their allocation is strongly asymptotically optimal, that is,
under heavy tra�c conditions (namely, utilization ap-
proaches unity) the ratio of the expected cost under their
allocation to the optimal expected cost converges to
unity. The method of analysis that uses bounds and ap-
proximations for the delay in the queue can be extended
to networks of queues, using the Generalized Jackson
Networks modeling framework, as is discussed in Buza-
cott and Shanthikumar [16] and Section 3.2.1 in Bitran
and Morabito [17]. Buzacott and Shanthikumar in their
review paper discussed the use of this approach in the
solution of a number of allocation problems in manu-
facturing. Note too, that when using the approximation,
E�Nm� depends on the variability of inter-arrival as well as
service times. The next section also shows the e�ect of
variability.

5. Analysis of case II

In this section we use for the service rate the expression in
Equation (1). Assume that A3 holds. Assume that the
e�ciency factor of machine m, gm�rm�, is increasing con-
cave in the allocation rm and assume that the service rate
gm�l� is increasing and concave in the queue length l at
machine m. Substitute gm�rm� by sm�rm�ÿ1, consider sm�rm�
as an arrival rate at the machine, and rewrite Equation (2)
as:

pm�n� � bmsm�rm�n
.Yn

l�1

gm�l�
am

� �
:

It follows from Theorem 5.5 of Shaked and Shanthiku-
mar [2], that the expected number in the queue is sto-
chastically increasing and convex in sm�rm�. (The power
of this Theorem is seen from the fact that we do not have
to resort to a single calculation of the derivative until the
next step!). Then writing E�Vm� as Vm�sm� we obtain
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@2Vm�sm�
@r2m

� ÿ @Vm�sm�
@sm

@2gm

@r2m

� �,
g2m

 !

� @
2Vm�sm�
@s2m

@gm

@rm

� �,
gm

 !2

� 2
@Vm�sm�
@sm

@gm

@rm

� �2
 !,

g3m:

Thus we see that, under the assumption that gm�l� is
increasing concave in l, and the assumption that gm�rm� is
increasing concave in rm, the objective function is a de-
creasing (separable) convex function. As noted earlier,
there are e�cient procedures available for computing a
solution to such a problem.
From Equation (A11) in Appendix C, it follows that

the allocation decision now depends on both the value as
well as the variability of the jobs queued at a machine.
Seen in this light, the result shows that simple bottleneck
analysis would not su�ce to plan the allocation of ser-
vices. This is particularly true when the service rates are
increasing concave functions of the line length, or when
the variability of the jobs awaiting processing at a ma-
chine is not too small. To bring this result in line with
those given in Section 4 as well as the results given in the
Appendices B and C, de®ne the ``average'' processing
rate, /m�rm�, in the queue length dependent case to be
such that

E�Nm� � a

/m�rm� ÿ a
:

Then, by di�erentiating this expression with respect to rm,
the optimal allocation in the unconstrained case should
be proportional to

UmE�Nm� 1

/�rm� ÿ a

 !
@/�rm�
@rm

;

as found in Section 4. Of course, we were able to use the
®rst order condition for obtaining the minimum because
we had earlier proved the convexity of E�Nm� with respect
to rm.
In this analysis, we have assumed that the service rate is

increasing concave in the queue length. In Appendix C,
we obtain conditions under which this assumption may
be dropped. The analysis in Appendix C is considerably
more complicated, because we have to resort to algebraic
manipulations to derive the results. A probabilistic ex-
planation of the results given in this appendix appears to
be a challenging problem.

6. The allocation algorithm

In order to illustrate the algorithm, consider a system
with two stations in series. All jobs are from the same

class. The jobs waiting or under service at the ®rst station
have a value w1, and the jobs at the second station a value
w2. Of course, w1 < w2. The speeds of the machines at the
two stations are, respectively, l1�r1�, and l2�r2�. The
processing time distribution at the ®rst station is expo-
nential while the processing time distribution at the sec-
ond station is arbitrary. The improvement functions /'s
are increasing concave. They are basically a power
function with a power that is less than 1, namely,

lm�rm� � lm�0� � cmrdm
m 0 < dm � 1; m � 1; 2:

The total budget is R, i.e., r1 � r2 � R. In the experiments
we have basically four sets of parameters, namely,

(1) the basic speeds of the two stations when zero re-
sources are allocated, lm�0� � 1, for m � 1; 2;

(2) the improvement functions corresponding to the
two machines

lm�rm� � lm�0� � cmrdm
m ; 0 < dm � 1; m � 1; 2;

(3) the squared coe�cient of variation of the process-
ing time distribution at the second station (c2v); and

(4) the weights at the two inventory points, w1;w2.

The results of these experiments are depicted in Fig. 1. (In
Fig. 1, scv denotes c2v .) From the ®gure it is clear that the
ratio of allocations, r2=r1 increases concavely in the ratio
w2=w1. (The ratio r2=r1 is also increasing in c2v , and it is
also slightly concave in this coe�cient). The monotonicity
and concave behavior can be explained intuitively as
follows. The monotonicity is obvious. The greater the
weight associated with inventories at the second station,
the higher have to be the resources allocated to the second
machine. However, we see that when w2=w1 increases, the
amount of resource that is shifted from the ®rst station to
the second station becomes less and less. The reason for
this is that any additional reduction in resource at station
1 has a more signi®cant impact than any of the past
reductions.
This particular example is analytically tractable. Larger

networks that give rise to a product form solutions (satis-
fying the assumptions stated in Section 2) can be analyzed
in a similar fashion. If we used the generalized Jackson
network model, the resource allocation problem can be
solved using non-linear programming. Interested readers
are refered to Bitran and Morabito [17] for examples.
However, networks with arbitrary processing times and

arbitrary servicing disciplines cannot be as easily ana-
lyzed, since they do not give rise to product form solu-
tions and may not be amenable to analysis even using
approximation techniques. For example, even if we as-
sume that the solutions of their steady state probability
can be approximated through one of the well-known
approximation techniques [30]; we will still be faced with
the problem of determining how the squared coe�cients
of the inter-arrival times would change with changing
allocation of resources. Therefore, with a larger network,
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or networks in which there are immediate feedback ¯ows,
set up times, lot sizing, machine failures and random
yields, we recommend an approach that combines simu-

lation with optimization. A simulation-cum-optimization
algorithm for production control is given in Glassey et al.
[31]. For allocating resources in a more complex setting, it

Fig. 1. Allocation of resources in a system with two stations in series.
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may be more natural to extend the allocation formula
developed in the previous sections in the following
straightforward manner:

Step 0. Start with zero allocations. Choose a step size,
DR, for incrementally allocating the budget R.

Step 1. Simulate the network with the given allocation,
r1; . . . ; rm.

Step 2. Determine the machine that has the largest value
of:

UmE�Nm�/0m�rm�=�/m�rm� ÿ k�:
Label this machine as i�.

Step 3. Allocate ri� � ri� � DR:
Step 4. If the budget is exhausted STOP. Otherwise go to

Step 1.

Two examples of applying this method are given in Tables
1 and 2. In the ®rst example, called Example 1, there are
three machines, M1, M2, and M3, and three products P1,
P2, and P3. The arrival rates, routing information, as well
as the mean service times of the three products are shown
in Table 1. The inter-arrival time and the service time
distributions are gamma, with c2v values of 1 and 0.3. We
have to allocate two units of resources. Each unit resource
will produce an acceleration of 5% in the speed of the
equipment. All machines have at the outset a speed of
one, i.e., they can perform one unit of work per minute.
The objective is to minimize the expected number of jobs
in the system. We show the improvement in terms of the

total mean ¯owtime in the system as experienced by each
of the three products. In Table 2, we show the e�ects of an
allocation according to three di�erent rules: (1) propor-
tional to the utilization; (2) proportional to the expected
number of jobs in the queue at the three machines; and (3)
according to the heuristic with a step size, DR, equal to 1.
The heuristic outperforms the other allocation schemes by
7% or better. In Example 1, because there is no means by
which the values of

UmE�Nm�/0m�rm�=�/m�rm� ÿ k�;
can be made equal for the three machines (or over even
two of them) using the available two units of resources, the
optimal solution is indeed the same as the heuristic solu-
tion, that is to allocate all the available resources to M3.
In Example 2, we provide an instance in which the

heuristic does not allocate all resources to a singlemachine.
The reduction in mean ¯ow time over the ``naive'' method
of allocating in proportion to utilization is over 25%.

7. Conclusions

It is evident from the results in Sections 5 and 6 that the
optimal allocation and partition of resources over the
network has to be such that for each machine the value of

UmE�Nm� 1

�/�rm� ÿ k�/
0 �rm�;

is equal to the same constant K.
In words, the four terms of the formula can be de-

scribed as follows. The ®rst term represents the expected
value of the WIP at machine m. The second term repre-
sents the expected number of jobs at machine m. The
third term represents a measure of the ¯ow time of a job
at machine m (waiting and being processed). This mea-
sure is also proportional to the length of the busy period
of the station. The last term represents the marginal in-
crease obtained in the processing rate of machine m with
an increase in allocation.
This condition is somewhat intuitive. The marginal

increase in processing rate obtained with any additional
resource allocation has a certain bene®t. The WIP at that
machining center will be less. The amount of WIP re-
duction will be proportional to the total amount of WIP
that is residing at that queue. The amount to be allocated
is also proportional to the expected length of time that a
job remains at a station, which makes sense since one can
view this also as proportional to the total expected pay-
out because of that customer.
The fact that the allocation is proportional to the mean

busy period needs some explanation. Let x jobs arrive
together at a server every �x� x=3� minutes. Let the
processing time of a job be 1 minute. The utilization of
the server is 0.75, independent of the value of x. Then the
busy period in this system has a duration of x, and the

Table 1. Routing information

Product Route Mean
service

time (min)

scv of
service
time

Arrival
rate per
day1

scv of
inter-arrival

time

Example 1
P1 M1 1 0.3 60 1

M2 2 0.3
M3 3 0.3

P2 M2 1 0.3 70 1
M1 2 0.3
M3 3 0.3

P3 M3 1 0.3 60 1
M2 2 0.3
M1 3 0.3

Example 2
P1 M1 1.7 0.3 75 0.3

M2 2 0.3
M3 3 1

P2 M2 1 0.3 55 0.3
M1 2 0.3
M3 3 1

P3 M3 1 1 75 0.3
M2 2 0.3
M1 3 0.3

1A day consists of 480 minutes.
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average waiting time in the system is given by �x� 1�=2. It
then follows that the improvement in waiting time for a
given increase in the processing speed of the server is
directly proportional to the busy period. The analogy of
this example can be carried over to a situation in which
arrivals are random and the arrival times of jobs are
una�ected by the change in processing speed.
The following question can now be raised. Do the re-

sults in Section 5 hold if we do not make any assumption
with regard to the service rate /m�l� at machine m, i.e., it
is not necessarily increasingly concave with the queue
length l? It turns out that the results obtained in Section 5
often hold under this weaker condition, but not always.
This is further discussed in Appendix C.
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Appendix A

In this appendix we analyze stations that are subject to
breakdowns. The service time requirements are assumed
to be exponentially distributed. We derive conditions

under which the time that a job occupies a machine can
still be regarded as close to the exponential.
Assume that the service time of a job on a machine is an

exponentially distributed random variable with parame-
ter l. Assume that the up and down times of the machine
are also exponentially distributed random variables with
parameters c and d respectively, [30]. Assume that the
processing of an interrupted job is resumed after a
breakdown. Let the random variable X denote the service
requirement of a job and let the random variable S denote
the total time spent on the machine by a job. Let the
random variable D denote the number of failures (down
times) during a service, and assume that each failure
requires a random repair time Rj, j � 1; 2; . . . ;D. So

S � X �
XD

j�1
Rj:

The Laplace transform of S is

FS�s� � l
l� s� cÿ �cd=�d� s�� ;

and the mean and variance of S are

E�S� � 1

l
� c

ld
;

and

Var�S� � 1

l
� c

ld

� �2
� 2

c

ld2
:

The squared coe�cient of variation c2v of S is close to
unity if

2
c

ld2

�
1

l
� c

ld

� �2

� 2l
c

�d� c�2 � 0:

This condition is used in assumption A1, see Section 2.
If we assume that the down times are not greatly af-

fected by the service provided (as in a well-maintained
system), then the ®rst and second derivatives of the av-
erage time spent by a job on the machine, with respect to
the maintenance service (i.e., the allocation rm) provided,
are given by

E
0 �S� � c0

ld
; �A1�

E00�S� � c00

ld
: �A2�

These two equations are used in Section 4.

Appendix B

Bounds for the expected number in the queue in a GI/G/1
queue are usually given in terms of the squared coe�cient
of variation of the inter-arrival time and the service time
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distributions. Denote these to be c2a and c2S respectively.
Denote the quantity of resources allocated to the server as
r. Let the arrival rate of customers be k and the service
rate be /�r�. Kingman's bound for the expected number
of jobs, N�r�, in the system is, [30]:

N�r� � k�/2�r�c2a � k2c2S�
2�/2�r� ÿ k/�r�� �

k
/�r� :

We can verify that: (1) if / > k, then /2=�/2 ÿ k/� and
1=�/2 ÿ k/� are convex functions of /; (2) that 1=/ is a
convex decreasing function of /; and (3) that N is a de-
creasing function of /. Therefore N is a convex decreas-
ing function of /. Now if /�r� is a concave non-
decreasing function of r, then

d2N�/�r��
dr2

� @N�/�r��
@/

d2/�r�
dr2

� @
2N�/�r��
@/2

d/�r�
dr

� �2
� 0:

The optimal allocation for minimizing the average num-
ber in the queue in the unconstrained case is given by,

@N�/�r��
@/

d/�r�
dr
� constant.

or

k�2/�r�c2a�
2�/2�r� ÿ k/�r��

 !
/
0 �r�

ÿ k�/2�r�c2a � k2c2S�
2�/2�r� ÿ k/�r��2 �2/�r�ÿk�
 !

/
0 �r�ÿ k

/2�r�

 !
/
0 �r�

� constant. �A3�
For relatively high levels of utilization, the second term in
the parentheses on the right hand side of equation (A3)
will tend to dominate. This term can be written as,

k�/2�r�c2a � k2c2S�
2�/2�r� ÿ k/�r��2 �2/�r� ÿ k�/0 �r�

� N�r� � 1

�/�r� ÿ k� � /
0 �r�; �A4�

thus yielding an expression similar to the ones obtained in
Sections 4 and 5.

Appendix C

In this appendix we consider the same problem as studied
in Section 5. The service rate is written as the product of
two functions, /m�l; rm� � gm�l�gm�rm�. However, now
the function gm�l� is not necessarily increasing concave in
the queue length l at machine m. However, the e�ciency
factor gm�rm� is still increasing concave in the allocated
resource rm.

Writing gm�rm� as sm�rm�ÿ1, we obtain analogous to
Equations (2), (3), (4), and (5):

/m�l; rm� � gm�l�gm�rm� � gm�l�=sm�rm�: �A5�

pm�n� � bm�rm�an
msm�rm�nQn

1 gm�l� : �A6�

bm�rm� �
 X1

n�0

an
msm�rm�nQn
1 gm�l�

� �!ÿ1
: �A7�

E�Vm� � Um

X1
n�1

bm�rm�an
msm�rm�nQn

1 gm�l� n;

� Umbm�rm�
X1
n�1

sn
m�rm�Cmnn; �A8�

where

Cmn � an
mQn

1 gm�l� ;

is a constant and bm�rm� is the normalizing constant.
Assuming di�erentiability of g�:�, and using Equations
(A7) and (A8), we obtain,

@E�Vm�
@rm

� Umbm�rm�
X1
n�1

sn
m�rm�Cmnn2

s
0
m�rm�

sm�rm�
� �

ÿ Umb
0
m�rm�

X1
n�1

sn
m�rm�Cmnn: �A9�

b
0
m�rm�

� ÿ
 X1

n�0
n

an
msm�rm�nQn
1 gm�l�

s
0
m�rm�

sm�rm�
� �!, X1

n�0

an
msm�rm�nQn
1 gm�l�

 !2
;

� ÿbm�rm�E�n� s
0
m�rm�

sm�rm�
� �

: �A10�

Thus using Equations (A9) and (A10), we obtain the
expression

@E�Vm�
@rm

� Um E�N2
m� ÿ E�Nm�2

� � s
0
m�rm�

sm�rm�
� �

: �A11�

A similar exercise results in

@2E�Vm�
@r2m

� Um E�N2
m� ÿ E�Nm�2

� � s
00
m�rm�

sm�rm�
� �

ÿ s
0
m�rm�

sm�rm�
� �2 !

� Um
@E�N2

m�
@rm

ÿ @E�Nm�2
@rm

 !
s
0
m�rm�

sm�rm�
� �

: �A12�

@E�N2
m�

@rm
� �E�N3

m� ÿ E�N2
m�E�Nm�� s

0
m�rm�

sm�rm�
� �

: �A13�
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@E�Nm�2
@rm

� �2E�Nm�E�N2
m� ÿ 2E�Nm�3� s

0
m�rm�

sm�rm�
� �

: �A14�

Using the fact that the e�ciency is an increasing function
of the resources assigned to the machine, we obtain

s
0
m�rm�

sm�rm� �
ÿg0m�rm�
gm�rm� � 0: �A15�

s
00
m�rm�

sm�rm�
� �

ÿ s
0
m�rm�

sm�rm�
� �2

�ÿg00m�rm�
gm�rm� �

g0m�rm�2
gm�rm�2

: �A16�

It immediately follows from Equations (A11) and (A15)
that,

@E�Vm�
@rm

� 0: �A17�

As e�ciency is assumed to be an increasing concave
function, we may ignore

ÿg00m�rm�
gm�rm� ;

in (A15). Thus using Equations, (A12), (A13), (A14),
(A15) and (A16), in order to test the sign of the second
derivative in (A12), it su�ces to examine the sign of the
expression

�E�N3
m� ÿ E�N2

m��3E�Nm� ÿ 1� � E�Nm�2�2E�Nm� ÿ 1��:
�A18�

Using the moment-inequality (Feller [33, 8.10, p. 153]),
we have the bound

E�N 3
m�E�Nm� � aE�N 2

m�2 a � 1: �A19�
Using (A19), and setting t � E�N2

m�=E�Nm�2, we can re-
write (A18) as,

aE�N2
m�2=E�Nm�ÿE�N 2

m��3E�Nm�ÿ1��E�Nm�2�2E�Nm�ÿ1�;

� aE�Nm�t2 ÿ t�3E�Nm� ÿ 1� � �2E�Nm� ÿ 1�ÿ �
E�Nm�2

: �A20�

Note that t is greater than or equal to unity. The ex-
pression given in (A20) is non-negative either: (1) if a � 1
and t � 1 or t � 2; or (2) a � 9=8.
Remark: in the former case, i.e., (1), the equation

E�Nm�t2 ÿ 3E�Nm�t � 2E�Nm� � 0;

has two roots at t � 1 and t � 2, and in the latter case,
(2), the equation

aE�Nm�t2 ÿ 3E�Nm�t � 2E�Nm� � 0;

has no real roots. The condition given in (2) is achieved
for constant (line independent) service rates and a can be
shown to be 1.5. Thus these conditions are not limiting,
and under either of them the objective function remains a
separable convex function. In general, it can be shown
that the expression in Equation (A8) is equal to

E��Nm ÿ E�Nm��3 � �Nm ÿ E�Nm��2�;
and is positive if the distribution of the number of jobs at
the machine is either symmetric or skewed to the right.
Note that we have not made any assumptions about the
service rates in this analysis, except that they are in-
creasing in rm.
It is also of interest to note that if we substitute the

moments of a gamma distribution of parameter r in
Equation (A18), we will be left with checking the sign of,

r�r � 1��r � 2� ÿ r�r � 1��3r ÿ 1� � r�r � 1��2r ÿ 1�
� r�r � 1��r � 2ÿ �3r ÿ 1� � �2r ÿ 1� � 2r�r � 1� � 0:
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