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1. INTRODUCTION

A large number of applications such as multimedia
databases, document retrieval and scientific databases,
require high-capacity mass storage systems that can hold
multigigabytes or even terabytes of data. These systems
contain a hierarchy of storage devices typically consist-
ing of large robotic tape libraries, optical disks and
magnetic disks. In such systems, files are automatically
migrated across the storage hierarchy such that the more
frequently used files reside on the faster and more
expensive (in terms of dollars per byte) storage media. In
this paper we analyse data placement strategies on a
carousel type robotic tape library. Such devices are quite
commonly found in mass storage systems, for example
Magnus Jukebox Library and Lago Systems LS/300L
are carousel type devices that use 8 mm tape cartridges
with a total capacity of 270 GB (Ranade, 1992).

The, carousel type mass storage system is a configura-
tion found in systems catering for low to medium tertiary
storage requirements. The system usually has a number
of storage locations for cartridges arranged on the inner
periphery of a carousel (see Figure 1). The system
responds to a request for loading a cartridge by the
movement of the carousel to align the required cartridge
in front of a read/write head, and a robot does the actual
loading or unloading. The problem addressed in this
paper is the optimal allocation of cartridges to the
storage locations and files to the cartridges.

A similar problem has been solved recently in the
context of determining warehouse storage by Fujimoto
(1991). Using a Markovian model, Fujimoto proves the
optimality of the Organ-Pipe Arrangement when only
one cartridge is stored per location. An Organ-Pipe
Arrangement (OPA) is one in which cartridges, or more
generally items, are first sorted in the descending order of

the probability that they will be requested. The first item
is allotted to the central location (for a circular storage
device such as a carousel, the choice of this location is
arbitrary). Then the remaining items are placed
alternatively to the left and right of the central
location. The picture made by the graph of the
probabilities with respect to locations resembles an
organ-pipe. The model solved by Fujimoto is called
non-anticipatory based on a terminology introduced in
King (1990). In the non-anticipatory case the storage
device is not permitted to be repositioned between
requests even if time is available for doing so; whereas
in the anticipatory case the controller can reposition the
device between requests. In Fujimoto’s terminology
the mass storage carousel is a single dimensional
bi-directional system. Singe refers to the number of
cartridges per location and the carousel is called
bi-directional as it can be rotated in either direction.
Fujimoto gives an extensive literature survey in the area
of warehousing and also refers to papers on optimal
spatial permutations (Bergmans, 1972; Groosman
and Silverman, 1973; Yue and Wong, 1973 and Karp
et al., 1975). None of these directly address the specific
problem of allocation of storage space in carousels.
Fujimoto concludes that the closest paper that solves the
carousel problem is that of Lim et al. (1985), where the
optimality of OPA is proved based on Bergmans’
analysis. Fujimoto adds a missing step in Bergmans’
proof for the case when only one cartridge (item) can be
stored per location, and conjectures the optimality of the
OPA arrangement for the case when more than one
cartridge can be stored per storage location but does not
prove the optimality of this policy.

The case of a mass storage system is a bit different,
because depending on the load, it is possible to reposition
the carousel before another request arrives. This is the
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cartridge

FIGURE 1. A carousel with one read/write head.

anticipatory case as defined above. Anticipatory policies
for disk arm control are offered as a good strategy by
King (1990). A well known example of such a policy is
the greedy policy of ‘nearest head’ shown to be optimal
for a disk with two read heads by Hofri (1983). In that
work the head . which does not serve the current request is
allowed to ‘jockey’ to an optimal location in anticipation
of the next request.

In this paper, we use a Markovian model for the
carousel problem, and show that for both the anticipa-
tory and non-anticipatory versions of the problem, the
optimal arrangement is the Organ-Pipe Arrangement
when there is a single read/write head. The results are
then extended to the case when two heads are provided.
Finally we extend the results to the case where requests
arrive as per an arbitrary renewal process and show that
for the non-anticipatory case the OPA arrangement
minimizes both the mean queueing delay as well as the
average time spent in the system by the requests.

2. MODEL

The carousel is modeled as having n storage locations.
One cartridge can be placed in each of the locations. We
will assume that there are at most n cartridges to be
loaded (else the problem will need to incorporate
caching). When extending the results to file allocation
we will model the cartridge as capable of accommodating
at most m files. This is a simplification because file sizes
need not be the same and file migration policies could
dictate the size distribution of files found in the mass
storage system. However the simplification enables the
solution of a problem which otherwise will have to
contend with random and non-stationary sizes of files
and bin packing type of limitations. From experience
however, it is seen that storing larger files in the tertiary
system leads to a better retrieval performance. So the
file migration policies may tend to even out the size
distribution. In any case, the operating policies described
below can be extended to the case of continuous
variables representing the items stored and thus are not
necessarily of limited usefulness in practice.

In order to model the demand process, it is assumed
that the probability a particular cartridge will be

_requested next is independent of the past requests

Thus the request pattern forms a Markov chain with
state probabilities, p;, the probability that the next
cartridge requested will be i and X' p; = 1. If the number
of cartridges is less than n then the remaining
probabilities are set to zero. Unless specified, in a]
cases the number of read/write heads is one. A similar
model will be used for the file allocation problem. The
Markovian assumption is reasonable considering that
the mass storage system does not actively participate in
user processing and is more like a library or repository in
its functions. In the non-anticipatory case, called case I,
the carousel cannot be moved to a specific location in
anticipation of a request—whereas in the anticipatory
case, termed case 11, the carousel can be repositioned
between requests. It will be assumed that the travel time
is linear and the shortest distance to travel will be
realized. The objective throughout is to minimize the
mean delay to service a request and except in proposition
7, it 1s always assumed that requests do not interfere with
one another. The last assumption is reasonable for mass
storage systems and the ability to reposition in between
requests is physically possible but not found in current
systems.

Number the locations on the carousel as 1 through .
Assume that cartridge (i) is stored in location i. In case
I, as we have a finite state space for the Markov chain, it
follows that there exists a unique stationary distribution
of the position at which arriving requests find the
carousel (see Wolff, 1990 for example). Direct verifica-
tion shows that the (stationary) probability that a
request will find the read head at location i is equal to
the probability, py(;), that the cartridge stored at location
i will be requested.

In dealing, with the file allocation model in case II,
there are two levels of decision. First the files must
be allocated to cartridges. Then the cartridges must be
arranged in storage locations. Once the file allocation has
been carried out, the request probability for a particular
cartridge is fixed by the sum of the probabilities of
requests for files allotted to the cartridge. It follows
that the above stationary distribution holds good
once the request probability for cartridges has been
computed.

In case I, using the above notation, cartridge «(i) is
stored in location i, the expected travel distance,
ED(x), per request is given by (see Wolff, 1990 for

example):
ED(m) = peiy O Pripyd(ij)
i J

where d(i,j) is the shortest rotational distance between
locations i and j. By substituting any function f of the
distances d(i,j) in the above formula we also obtain the
expected value of that function, i.e.

Ef[D) = > Pxgiy O_ Pxisy S (a0, )]
i J

This fact will be used in proposition 1.
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In case II, we do not need to use the Markov chain
at all. This is because in the anticipatory case it is
assumed that the read head can be positioned very
quickly to a given position before a request arrives.
Given that requests are independent of one another, the
optimal repositioning strategy will be stationary and
deterministic. Therefore the read head will always be
positioned at the same place before a request arrives; a
fact that allows us to search within this class of policies in
determining the optimal allocation scheme. Thus, if the
read head is always repositioned between requests at
location i, then the expected distance traveled per request
(ignoring the repositioning distance) will be given by:

ED(“) = Zpt(_])d(laj)
J

Note that the expected repositioning distance is also
equal to the above value.

3. THE OPTIMALITY OF THE ORGAN-PIPE
ARRANGEMENT

An Organ-Pipe Arrangement is one in which the
cartridges are placed in an alternating arrangement.
The cartridges are ranked in descending order as per
their request probability. Let cartridge #i be the one with
the i'® largest request probability and let the storage
locations be numbered in clockwise fashion. Then
cartridge #1 is placed in location / cartridge #2 in
location 2, 3 in location n, #4 in location 3, #5 in location
(n—1) etc. This arrangement proves to be optimal under a
variety of modeling assumptions as described in this
section.

The basic condition for optimality of an arrangement
is obtained by imagining that a line of symmetry (of any
orientation) is drawn across the carousel, see Figure 2.
Let the sum of request probabilities for cartridges on the
left side of this line be larger than the sum on the right
fignoring the location(s) bisected]. Let i and j be the
cartridges stored in mirror image location on the left and
right sides of the line respectively. Then intuitively
speaking we expect that the request probability for
cartridge i should be larger than for cartridge j in the
optimal arrangement. This property is called the pairwise
Majorization Property (PMP) by Fujimoto. In case |, in
fact a necessary and sufficient condition for an arrange-
ment to be optimal is that PMP holds over all symmetry
lines. And not very coincidentally the OPA possesses this
property. A sketch of the proof (partly provided by
Fujimoto) follows but with a strengthening of the result.
The strengthening is in the sense that if we start out
initially with the stationary distribution of the Markov
chain, then OPA minimizes the distance traveled at each
transition in the sense of stochastic order. By definition,
if X and Y are random variables, then X is larger or
equal to Y in the stochastic ordering sense, denoted by
X>,7, if Prob (X > 1) <Prob(Y >¢) for all 1. In
Wolff (1990) it is shown that X = Y is equivalent to the
condition that for any non-decreasing function, f,

E[f(x)] 2 E[f/(V)].

[ SYMMETRY
LINE

LEFT SIDE

gl

FIGURE 2. The pairwise majorization property.

Proposition 1. (Bergmans, 1972 and Fujimoto, 1991.
The OPA arrangement is optimal in case I and also in the
stochastic sense described above.

Proof. Let there be a line of symmetry over which the
pairwise majorization property is violated. We will call
the side that has the higher sum of probabilities as the left
side. Assume that the symmetrical dividing line is
vertical. Denote a violating assignment to be one where
a cartridge on the left side has a lower request probability
than the one in the mirror image location on the right.
For example, the fourth cartridge on the left of the
symmetry line has a smaller request probability
compared to the fourth one on the right side of the line.

We will show that this arrangement can be improved
by interchanging all pairs of violating assignments
simultaneously. This helps because (i) the cost with
respect to the un-interchanged cartridges considered by
themselves is unchanged, (ii) the cost with respect to the
interchanged cartridges by themselves is unaffected,
while (iii) the interaction between the interchanged and
un-interchanged cartridges leads to lower cost. The case
(iii) can be proved by the following argument: fix an
un-interchanged cartridge location. The distance by
which a cartridge has moved away from this location
due to the interchange is exactly the distance by which
another cartridge has moved closer to this location. The
argument can be formalized by denoting the locations on
the left of the symmetry line from which the cartridges
must be interchanged to be {/1,/2,/3,...,/k} and the
mirror image locations on the right (where they must be
placed) to be {r1,r2,r3,...,rk}. Let u and ru stand for
the mirror image locations of two uninterchanged
cartridges, on the left and right sides of the symmetry
line. Consider the impact of cost in (iii) with respect to /u
and ru. The change in cost with respect to these two
locations is given by:

k k 7
Pxih) [/pr(l,)d(h‘a B+ pepdlu,r))| -
=1 J=1 4
k k i
Pri) LZ Prip @, ) + > pegyyd (i, )
=1 J=1 J

k k 1
Dxiru) I;Zpﬁl’)d(lu, Ij) + Zp,(,/)d(lu, rj) —_
=} Jj=1
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k k
Pr(ru) LZPx(r,)d () + Zl’xﬂ,)d (lu,r;)
=1 Jj=1

k
= (Pa) = Prtr) 9_( Patt) — Pary) (A0, )
j=1

—d(lu,r))) >0

The last step follows from the fact that py) < py(,) as
PMP is violated at the symmetric locations /; and r; by
assumption, pa(n) = Px(r) @ the cartridges in these two
positions satisfied PMP, and d(lu, ;) < d(lu,r;).

Fujimoto argued as above. However the above
argument holds when the distances are substituted by
any increasing function of the distance. To verify this
substitute each distance d(x, y) by the function fd(x, y)]
in the proof given above. This shows that the interchange
reduces the distance traveled at each transition in the
sense of stochastic order. In our case, this implies that all
the arguments carry over to the carousel rotational time
rather than rotational distance, because the time is an
increasing function of the distance. The importance of
starting out with the stationary distribution for
demonstrating this ordering must be noted. This artifice
does not affect costs averaged over a long period of time,
and will be used in a queueing context in proposition 7.

Next it is necessary to show that only-an OPA has the
PMP over all symmetry lines. Here we deviate from
Fujimoto and use a proof by induction. Order the
cartridges in decreasing value of request probabilities.
Place cartridge #1 in location 1. If cartridge #2 is not
placed in location 2 or n then pass a symmetry line
adjacent to the location in which #2 has been placed such
that #1 is on the opposite side of #2. Let #1 be on the left
side. Then that side has to have the larger sum of
probabilities else PMP will be violated. But #2 can be
interchanged with the cartridge immediately on the left
of the symmetry line which is a contradiction. Let the
first k cartridges be placed in OPA, starting with #2 in
location 2. If the cartridge #(k + 1) is not placed in OPA
label the cartridge placed in the OPA location instead as
#j. Draw a symmetry line such that #j and #(k + 1) are
in mirror image locations on this line. There are three
cases to consider. (i) If #/ is closer to cartridge #1, the
sum of probabilities on #js side of the line is greater.
This leads to a contradiction. (ii) If both #4/ and (#k + 1)
are equidistant from cartridge #1 then k must be an even
number. Draw a symmetry line through cartridge #1.
The sum of probabilities on #js side must be higher as k
is an even number and so cartridge #2 is on its side of the
line. (iii) The case where #(k + 1) is closer to cartridge
#1 cannot occur. This completes the proof of the
proposition

QED

Proposition 2. The OPA arrangement is optimal in
the anticipatory case too.

Proof. In the anticipatory case, by the independence

) property we will always position the head at the same

location between requests (ignoring ties). So each
cartridge is essentially assigned a travel distance on 3
permanent basis. By the inequality of Hardy et al. (1991),
given two sequences wy,...,w, and pj,...,p,, of al
permutations 7 of the p;’s, the one that minimizes the
sum: X7_;w; Py is the one that forms each term in the
above sum by multiplying the j largest value of the p/'s
with the j® smallest value of w;’s. If we fix the position of
the head at a particular location, exactly one cartridge
will be at distance 0 (distance measured in units of 27/n),
at most two at distance 1 etc. If we consider our sequence
of possible rotational distances as the weights w,, it
follows that the OPA arrangement is optimal and the
anticipatory position of the head should be at location i
with the maximum p,;).

QED

Remark. The proof assumes that either the move to
reposition the head is completed before the next request
arrives, or the move is always completed regardless of
whether a request has arrived. The latter case assumes no
interruptions are allowed during the rotation of the
carousel towards its anticipatory position.

In the next proposition we consider the case that each
cartridge can hold m equi-sized files and request
probabilities are given for each file. This is analogous
to Theorem 1.3.1 of Wong83 which deals with records
and pages, however the method of proof here is different
as we use a direct interchange argument whereas
Wong83 uses Schur functions.

Proposition 3. The OPA policy is optimal for the
non-anticipatory case and when there are m files stored
per cartridge.

Proof. The OPA arrangement in this case is obtained
by sorting mn files in descending order of request
probabilities and grouping the first m in bundle #1, the
second m in bundle #2 etc. Then the bundles are placed in
OPA fashion. The proof of optimality is a straight-
forward extension of proposition 1. Let the OPA
property not hold for the optimal arrangement. But by
proposition 1 the property has to hold with respect to the
bundles of files. Without loss of generality let the
property not hold for files in two mirror image locations
say across a given symmetry line. Also let the sum of
probabilities on the left side of the symmetry line (as
before) be larger. Call these mirror image locations on
the left side i and that on the right j. What the violation
implies is that the probability that a cartridge in location
i will be requested can be made larger by interchanging
files between locations i and j. Without loss of generality,
label the files in location i as / through m and those in
location j as (m + /) through 2m. Label the sorted order
of these 2m files in descending value of request
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probability as /' through 2m'. Consider bundling /'
through m' into location i and the rest in location j. Note
that this interchange does not affect the cost of
interaction between other locations. Also the inter-
actions between other locations and interchanged files
Jeads to a decrease in cost as in (iii) of proposition 1. We
thus are left with comparing

m 2m m 2’
Sp Y pioand Y p > pi
i=1 i=m+1 i=1 i=n +1

The minimality of the second expression obtained from a
simple interchange argument. To see this, let p; < p,,,.;.
Then interchanging these two alone leads to the
difference:

m 2m 2m m
—Pm+lzpi—pl Z Pit Pm+i Z Pitpi ZP.‘

=2 i=m+42 {mm42 =2
2m m
~om-m( 3% - 3n) 0
i=m+2 i=2
m 2m
ZP;— Z P,‘?O and
i=1 i=m+1
2m m
Pmi1 > P = Z Pi-ZP1<0 )
f=m+2 i=2

(1) and (2) together with the hypothesis shows that the
interchange of the two files is beneficial. The proof then is
completed by showing that only by sorting the files and
bundling them can we avoid any violation of the OPA
arrangement as defined initially. But this is easy, because
(i) the files are first sorted and so the bundles have
descending sums of probabilities. So if two mirror image
locations violate the OPA property with respect to files
then all the files in the two locations need to be
interchanged. But the bundles are in OPA order leading
to a contradiction. And (ii) if the files were not sorted
then ar interchange is always possible.

QED

Proposition 4. The OPA order is optimal for the
anticipatory case when m files can be placed per
cartridge.

Proof. Similar to proposition 2.

Proposition 5. When there are two read heads placed
symmetrically opposite one another, the optimal
anticipatory policy is OPA on each half of the carousel.

Proof. We need to define this ordering and will do so
shortly. The basic idea is that the repositioning is the
same between requests. So the anticipatory action allots
a permanent distance to be traveled to each file. If the

FIGURE 3. A carousel with two read/write heads symmetrically
positioned.

number of storage locations is even, say 2x, then the
available values for the distance are 2m zeros, 2m
ones, ... By the Hardy, Littlewood, Polya inequality an
optimal arrangement is to order the files per descending
request probability and place files #1 through #m in
location 1, files #(m + 1) through #(2m) in location
(x +1) etc. In between requests, the strategy is to bring
the carousel with locations 1 and (x + 1) aligned with the
heads. The case of odd number of storage locations is
similarly solved.

QED

The case of two read heads and non-anticipatory type
of operations is more difficult. The problem is which way
should the carousel rotate? First, let us assume that there
are an even number of cartridge locations on the
carousel; in which case the direction of rotation is
immaterial as far as the next request is concerned. In the
next proposition we show that for even number of
cartridge locations the nearest head policy combined
with OPA on each half of the carousel will be optimal.
Interestingly, this is not optimal for odd number of
locations as we show in the next example.

Example. Consider the carousel schema of Figure 4
with five cartridge locations. In this case, to ensure that
the heads are aligned with some cartridge locations, the
smaller angle between the two heads is 47/5 (and the big
one 6m/5). Let us assume that each of the request
probabilities of cartridges at locations 1, 2 and 4 are a
and that of cartridges at locations 3 and 5 are each
0.5-3a/2. The carousel is currently at the position shown
in Figure 4a when a request to read cartridge at location
5 arrives. When the value of a tends to zero, it is clear
that rotating the carousel to the position of Figure 4c
(the black head serving the request) is optimal as the two
heads are now positioned such that with probability
1-3a, the expected rotational distance for serving the
stream of future requests is 0. On the other hand, the
nearest head policy will lead to oscillations between
positions of 4a and 4b at each future step with
probability arbitrarily close to 0.5.

Proposition 6. When there are an even number of
locations, OPA is optimal.
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(a)

(b) (c)

FIGURE 4. (a) Current position of carousel, when cartridge at location 5 is requested. (b) Nearest head policy, carousel rotates 2/5 in the clockwise
direction, grey head serves the request (c) optimal policy carousel rotates 4x/5 in the counter-clockwise direction, black head serves the request.

Proof. The nearest head policy is the optimal
rotational strategy. Therefore the problem can be
reduced to the case when there are n/2 locations to be
filled each capable of holding two cartridges. Proposition
3 provides the result.

QED

Remark. The optimality in propositions 3 and 6 can
be extended to hold in the stochastic sense as done in
proposition 1.

In many practical multiuser applications, the requests to
the mass storage system are queued and serviced on a first
come first served basis (FCFS). In the next proposition we
utilize two powerful theorems from Stoyan (1983) to show
that OPA is optimal in this case as well.

Proposition 7. _ For the non-anticipatory case, for any
of the three models of proposition 1, 3, and 6, when
requests arrive as per a general renewal process and they
are attended on a first come first served (FCFS) basis,
OPA minimizes the average queueing delay as well as the
time spent in the system.

Proof. The proof follows from the fact that by
propositions 1, 3, and 6, when starting out with the
stationary distribution, the time to serve a request is the
smallest in the stochastic sense under the OPA order. The
rest of the proof-can be found in theorems 5.2.1 and 6.2.1
(Stoyan, 1983).

QED

4. SIMULATION RESULTS

In this section we use simulation to (i) investigate the case
when successive requests for cassettes can be correlated
and (ii) determine how a repositioning (anticipatory)
policy performs when there is interference between
requests. As a by product of the analysis, we also
obtain answers to the questions of how much improve-

ment can be obtained by using the Organ Pipe
Arrangement over a random placement of cassettes in
the carousel and what is the extent of savings due to the
use of an anticipatory policy.

4.1. A Markov chain model for requests probabilities

Successive requests for cassettes will not be independent
in any practical situations. A plausible modeling
approach in such situations is to use a Markov chain
to model the dependence between successive requests.
We assume that given the current cassettes requested is i,
the probability that the next cassette requested will be j
will be given by p;;, where ¥j_p;; = 1. We assume that
the transition matrix P = (p;;) is irreducible and that the
steady state probability vector, p = (py,ps . - -, p,) for the
Markov chain is given by solving the equation p = pP. It
may be verified that if anticipation is not permitted, then
the optimal arrangement of cassettes is still OPA based
on p, and therefore all the previous results for the non-
anticipatory case will carry over. But the anticipatory
case is very different now, as it is possible to do state
dependent anticipation, i.e. depending on what the last
request was we can reposition the reading head optimally
for the next request. Moreover given the arrangement (of
cassettes) there is an optimal anticipation point which
can be determined simply by computing the expected
cost of travel using the transition probabilities. For
example if the cassette i were placed in the position
i=1,2,...,n, and if the last request was for cassette j,
then the optimal repositioning should be done at

mkin Epjid(ﬂ.k) 771)
i=1

where d(m, ;) is the distance between the locations at
which cassette k is placed and the location where cassette
i is placed. Unfortunately, determining the optimal
arrangement of cassettes is a very hard problem (it can
be shown to be in the class of NP-Complete problems).
Therefore we tackled the optimal arrangement problem
through simulation.
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We generated random transition matrices of size nxn,
n=25,6,17,8,9, 10. For each matrix of size n x n, we
generated n? uniformly generated random variables,
assigned these to be an n x n matrix and normalized their
sum across rows to be unity. To determine the optimal
arrangement of cassettes, we used brute force search over
the (n—/)! possibilities. This limited the size of the
matrices. To obtain the OPA arrangement for the case
when no anticipation was permitted, we solved for the
steady state probabilities through recursive convolution
of the transition probability matrix. This gave the steady
state vector p. We also wished to obtain a good lower
bound for the minimum cost as well as heuristics that can
be applied to larger problems (a typical carrousel would
have n =40 cassettes). A simple lower bound can be
obtained by assuming that the cassettes can be
rearranged between requests and put into the OPA
order depending on the state. For example, if the last
request was for cassette i, then we use the p;,
j=1,2,...,n to rearrange the cassettes. This clearly
provides us with a lower bound. We show this lower
bound in Tables 1(a—d). We also tested three heuristics:
(i) assume that the cassettes are placed in OPA order
based on p and reposition the reading head between
requests, called OPADYN for dynamic OPA (as against
using OPA and a non-anticipatory policy), (i) use each
of the vectors (py, j=1,2,...,n), i=12,...,n to
determine n different organ pipe arrangements, compute
the expected cost with repositioning between requests
being allowed and choose the best of these n arrange-
ments, denoted as GREEDY and (iii) using the OPA
based on p compute which request leads to the highest
cost, i.e. if the organ pipe arrangement is given by =,
i=1,2,...,n, then find

m]ax {Pj [mkin ijid (mg, i)] }
=]

call this row A. Then use an anticipatory policy and OPA
based on the transition probabilities, py;, 7 = 1,2,...,n.

25.00% 1

20.00% 1

This heuristic is calied HICOST. We investigate the case
where there is only one read head.

Tables la—d summarize our simulations. We con-
ducted 20 trials for n = 5, 6 and only 10 trials for the rest.
It is seen that the lower bound gets progressively worse as
n increases. The GREEDY heuristic performed well in
these experiments. In Table le we summarize these
findings. We see that the GREEDY heuristic performed
the best, and that the degree of sub-optimality is on the
average <3.2%. The worst case performance was aiso
below 5.5%. The other interesting finding from these
experiments was that an anticipatary policy can save on
the average 13—17% of travel time. These findings are
also summarized in Figure 5 showing the average sub-
optimality of the heuristics and the savings from using
the best heuristic arrangement and an anticipatory policy
over OPA without anticipation.

4.2. Effect of interference of requests on anticipatory
policies .

In proposition 7, we restricted our attention to non-
anticipatory policies. In practical situations it is of
interest to know when to use anticipatory policies when
requests arrive as per some random process. Reposition-
ing the reading head will add some overhead because of
the travel time for moving the head to an anticipatory
position, but repositioning saves on subsequent travel
time—so when does the trade-off between these two
effects favor repositioning? In the commercial systems
available today, it is not possible to change the command
for moving to a position while the command is being
executed. This creates a situation where we cannot
change our mind once having given a command to
reposition and request arrives before that command
is executed. There are several options available for
mitigating this effect. One method would be to reposition
one location at a time, for example if we are currently ata
position i and would like to reposition to location i + 2,
we could do the repositioning in two steps, first to

L
2 10.00% 1
g 500% 1 r.— -
.______._/ o
0.00% - - - - -
5 6 7 8 Q 10
Ske of Matrix

——-=—— Suboptimaiity —0— Sgvings over OPA

FIGURE 5. Performance of OPAbased heuristic.
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Percentoge Gain
hondoBR8R8EE8

Lood(%)wlfhrespecffoOPAStoﬂc

—%— REPOSO Gain over OPA Static —0—— OPA Static Gain over RANDOM

FIGURE 6. Performance of OPA static versus REPOS0 & RANDOM, number of locations = 10.

location i+ 1 and then to location i+ 2. Even such a
provision is unavailable today. We assume therefore that
once a command to reposition has been given, it has to
be executed and only then subsequent commands can be
taken up for execution. We also assume that requests are
served in the first come first served (FCFS) order. We
assume that the arrival process of requests can be
modelled by using a Poisson process. Given that a large
number of users will be making infrequent requests to a
tertiary storage system, this is a reasonable assumption
to make (for example see Gnedenko and Kovalenko,
1989). We assume that the cassette request probabilities
are such that 70% of the requests are for 10% of the
cassettes, 20% for 20% of cassettes and the remaining
10% for 70% of the cassettes. If files that are rarely
accessed are put into tertiary storage, then based on
practical experience this assumption would be valid.
We assume that the original model for cassette
requests holds, i.e. requests are independent of one
another and that the request probabilities do not change
over time. We investigate the case when there is only one
read head. Given these assumptions we ask: does
repositioning yield any benefits? How much benefit do

Percentage Gain
K-R-R-E-R-E-E-R-]

we get from using an OPA arrangement over a random
arrangement of cassettes?

We conducted several simulation experiments to
answer these questions and their results are summarized
in Tables 2a—d. In these experiments we varied the load
on the system from 30% to 95% and the size of the
carousel from 10 to 40 cassettes in steps of 10. The
request probabilities were assigned as follows: given
n = 10, 20, 30, 40 break up ninto high load class i.e. 10%
of n, medium load class, i.e. 20% of n and low load class
consisting of 70% of the n cassettes. We then assign
request probabilities uniformly within each class. As an
example, if n = 10, the request probabilities were set to
be: 0.7, 0.1, 0.1, 0.0142857, 0.0142857, 0.0142857,
0.0142857, 0.0142857, 0.0142857 and 0.0142857. The
reading time from the tape was assumed to be uniformly
distributed over [0,2] and the rotational time between
two adjacent locations to be 0.1. In Table 2a we show the
simulation results for the case n = 10. The cassettes are
arranged as per OPA in all except the columns labeled
RANDOM. Note that the average service time will
depend on the arrangement of cassettes as well as the
repositioning policy. In STATIC OPA, we do not allow

Looad (%) with respect to OPA Static

—— REPOS0 Gain over OPA Static —0—— OPA Static Gain over RANDOM

FIGURE 7. Performance of OPA static versus REPOS0 & RANDOM, number of locations = 20.
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FIGURE 8. Performance of OPA static versus REPOS0 & RANDOM, number of locations = 30.

repositioning and the system load is computed with
reference to this policy. In REPOS we always reposition,
which as seen from the table adds tremendous overhead
to the mean service time because the carousel always
rotates back to the cassette with the highest request
probability. In REPOSI, we reposition when there is one
request and give the repositioning command when that
cassette is taken up for service. That is at the time of
taking up for service the (lone) request we add a
command for repositioning, which is always executed.
This adds decreasing amount of overhead as the load
increases, as seen from Table 2a. In REPOSO we
reposition when the system is empty. This adds over-
heads once in a while, but that overhead is not shown in
the table as it was difficult to adjust the simulator to
compute the overhead added to the request that arrived
while the carousel was being repositioned. However note
that the mean service time increases with the load
because less and less repositioning gets done as the load
increases. (If repositioning is not done frequently we are
almost back to the STATIC OPA case, and on top of
that suffer a penalty whenever repositioning interferes
with the next request.) This demonstrates the trade off
between repositioning overhead and the reduction in the

120 T

Percentage Gain

mean service time. Finally, we generated 20 different
random arrangements of cassettes and assumed that no
repositioning was done in these 20 cases. We show the
results from these arrangements under RANDOM, and
give the mean, maximum and minimum of the average
number of requests over the 20 cases. For each policy/
arrangement we give the average number of requests in
the system over a suitable length of simulation. The
simulation runs were for 10000 to 9000000 time units.
The average number of requests in the system was
collected for each time interval of 1000 units to get a
standard error for the average number in the system over
the entire run. The run length of the simulations was
adjusted to keep this standard error within 1-2% of the
average number in the system for the entire length of
simulation. The standard errors are not shown in the
Tables. The simulation was coded in £77 and run on a
network of SUN workstations at the Leonard N. Stern
school of Business, New York University.

The results show that REPOS is not a good strategy.
REPOSO is the best strategy we have discovered. But
even REPOSO gave at the most 9% improvement over
OPA STATIC and that too at low loads. This is shown in
the graphs in Figures 6-9. The remarkable fact from

FIGURE 9. Performance of OPA static versus REPOS0 & RANDOM, number of locations = 40.
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mese simulations is that OPA STATIC outperforms
RANDOM significantly and as the carousel size
pcreases, the gain in performance becomes better and
petter.

The explanation for the improvement in performance
over RANDOM, lies almost entirely in the fact that the
e of OPA reduces the average service time. The extent
of the reduction in service time will depend on the size of
the carousel, because RANDOM has a greater chance to
jeviate from the optimal arrangement as the size
ncreases. Another factor that influences the percentage
eduction in the average service time is the ratio between
the average time to read from a cassette and the average
ravel time to move to the cassette location. This
ratio would get progressively small as the size of the
arousel increases. Thus the relative improvement in the
sverage service time will increase (by using OPA over
RANDOM).

5. CONCLUSIONS

In this paper we studied organization schemes of
artridges on a carousel .type robotic tape library. The
following Table summarizes the results:

Anticipatory Non-Anticipatory
One head/Single File Proposition 2 Fujimoto (1991),
Proposition 1
Two heads/Single File Proposition 5 Proposition 6
(even number of
locations)
One head/Multiple Files Proposition 4 Proposition 3
Two heads/Multiple Files Proposition 5 Proposition 6
(even number of
locations)

In addition, we showed that by using the concept of
stochastic ordering, all the above results can also be
extended to the queueing environment with FCFS
policy.

Some questions raised by this work are:

(i) Varying file sizes. In the file allocation problem we
assumed that the files are of equal size. If the file sizes are
not the same, we will have packing limitation based
on file size and cartridge capacity. This leads to an
NP-complete problem as shown in Wong83. Based on
the results in this paper a good heuristic can be
constructed by first ranking files as per the request
probability per unit of size and ordering them in OPA
based on these modified probabilities.

(it) Other queueing discipiines. We have ignored schedul-
ing problems in proposition 7 by assuming a FCFS

service discipline. When file sizes vary, there is some
advantage in attending to requests that need smaller files
on a priority basis.

(iii ) Analysis of other robotic devices. The carousel is only
one type of robotic device, other architectures include
cabinets with multiple shelves such as the EXB-120 (by
Exabyte Corporation) where the robotic arm picks
cartridges from the shelves and places them in up to
four parallel drives. Optimal arrangements of cartridges
in such architectures and efficient mount schedules of the
parallel drives are of interest.
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