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We consider a single stage production system with Poisson demand and exponential processing times. After producing a good item,
the production process can shift to an “out-of-control” state with a given probability and start producing bad items. The state of the
process is known only when the next stage (or customer) receives the item. Once an out-of-control process is detected, process
correction is instantaneous. Customers arriving to an empty system get backlogged. In this framework, we examine FIFO (First In
First Out) and LIFO (Last In First Out) issuing policies. The objective is to minimize the total expected discounted or average costs
over an infinite time horizon. We characterize the structure of the optimal production policy for FIFO and LIFO, show that LIFO is
better than FIFO and, in general, better than a large class of issuing policies. A numerical example illustrates that savings up to 20
percent can be obtained from using LIFO over FIFO. We also derive conditions under which maintaining zero inventory is optimal,
and show that zero inventory is more likely to be optimal when either the backlogging cost or arrival rate of customers is small, and
when the inventory carrying cost or the processing rate or the probability of getting a good item is large.

he goal of an ideal production system is producing
right the first time. This goal is often not achieved in
practice in many situations because of process uncertain-
ties, leading to loss of yield, rework, and starvation of
downstream stages. Our focus in this paper is to determine
how to control a production system with an imperfect pro-
duction process when there is delay in getting information
about its state. In this framework, we bring out the rela-
tionships between process quality, the optimal production
policy, and the method of issuing items to the customer.
We model a single stage production system with Poisson
demand. The demand could be from external customers or
the downstream stages. The items require exponential pro-
cessing times, and are stored in an output buffer and is-
sued when demanded. If there is no item in the buffer, the
demand gets backlogged. The production process is as-
sumed to be imperfect, i.e., after producing a good item,
the process can shift from the in-control-state to the out-
of-control state with a given probability, as in Porteus
(1986). Once the process shifts to the out-of-control state,
it remains in that state producing defective items until
discovered. Due to technological constraints, the detection
of process shifts cannot be performed on-line, and the
quality of the items is known only when the subsequent
stage receives the item. Once the discovery is made, the
process is corrected immediately.
This problem is motivated by practices in the semicon-
ductor, as well as other industries where there is delay in

transmitting the information about the quality of the items.
For example, in semiconductor manufacturing a wafer can-
not be tested till subsequent operations are performed.
Also see Porteus (1986) for other examples where the de-
tection of process shifts cannot be done on-line. (A differ-
ent modeling approach is to assume that the manager has
to live with a random yield, i.e., the process quality cannot
be controlled; see Yano and Lee (1989) for a survey of the
random yield problem:) Our model will also fit (though
not directly) into Taguchi’s framework (Taguchi et al.
1989), where the items, even if inspected and found to be
within the process control limits, might result in increased
cost in the downstream stages due to deviation from the
target quality characteristics.

In systems such as ours, there is an interaction between
production and process control. We do not want to keep
too much stock, as many of the items in the buffer could be
defective, nor do we wish to keep too little stock because
that may result in excessive backlog. Apart from this trade-
off, it also becomes important to ask which item from the
output buffer should be issued to the customer. We discuss
two methods of issuing items, namely FIFO (First In first
Out) and LIFO (Last In First Out). In FIFO, the item
produced first is issued to the customer, whereas in LIFO
the most recently produced item is issued. Due to the
difference in issuing policies, LIFO provides information
about the state of the system faster than FIFO, and in
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general any other issuing policy (and thus LIFO is ex-
pected to dominate any issuing policy).

The objective is to minimize the long run (discounted or
average) expected total costs, where the costs included are
processing cost, inventory carrying cost, scrap cost arising
due to production of defective items, and backlogging cost.
Our interest is in obtaining the structure of the optimal
policies for the FIFO and LIFO issuing methods and in
comparing the benefits of using LIFO. For FIFO, we show
that there exists an upper threshold level on inventory, up to
which it is optimal to produce and above which it is opti-
mal to stop producing. For LIFO such an upper threshold
level is characterized by a pair of numbers. We also nu-
merically investigate the benefits of using LIFO.

With the advent of new manufacturing ideologies such
as Single Minute Exchange of Dies (SMED) and Zero
Defects, much attention has been focussed on zero inven-
tory. Bielecki and Kumar (1988) show that an optimal zero
inventory policy may exist even when there is uncertainty
and derive conditions in which zero inventory is optimal
for a failure prone manufacturing system. For our model
we derive conditions in which maintaining zero inventory
is optimal. We show that zero inventory is more likely to
be optimal when either the backlogging cost or arrival rate
of customers is small, and when the inventory carrying cost
or the processing rate or the probability of getting a good
item is large.

Our modeling assumptions (e.g., Poisson demand, expo-
nential processing time, and geometric process shift) per-
mit us to use Markov decision theory along with a novel
use of sample path analysis to infer the structure of opti-
mal control policies. These assumptions also allow us to
use dynamic programming to compare the FIFO and
LIFO issuing policies. While the modeling assumptions are
restrictive, the insights provided by the model are general:
(i) LIFO is better than FIFO, and numerical examples (see
Section 6) indicate that the long run average cost of using
LIFO can be about 20% lower compared to using FIFO in
some cases. (ii) When LIFO is used the structure of the
control policy has to be thought through as explained in
Section 1. (iii) Insights obtained from the Markovian
model can then be used for the design and control of
manufacturing systems as done in Buzacott and Shanthiku-
mar (1993) under most general modeling assumptions. (iv)
It appears that LIFO permits the use of much larger in-
process inventories than FIFO. The implications seem to
be that with process uncertainties reduced, the focus shifts
to reducing backlog.

FIFO and LIFO issuing policies have been analyzed in
other contexts such as perishable inventory management,
accounting, and tax valuation. For perishable goods, FIFO
is the optimal issuing policy over a wide range of assump-
tions, particularly where the issuing organization has com-
plete control over issuing actions; see Nahmias (1982) and
Silver and Peterson (1985). (However, where the customer
makes the selection, for example in retail food distribution
where the expiration date is shown on each unit, the LIFO

policy is likely to be observed.) In the context of tax valu-
ation, Cohen and Pekelman (1979) examine the effect of
LIFO and FIFO accounting systems on inventory control
policies. They observe that the optimal inventory policy
does not vary greatly with the valuation scheme but does
depend on the explicit inclusion of taxation. Based on our
results in this paper, apparently LIFO is superior in several
instances due to its impact on process quality. The ramifi-
cations of this finding on accounting policies are discussed
in Section 4.

Porteus (1986) models a single stage production system
that is similar to ours except that the demand rate is con-
stant and there is a setup cost for production such as in the
EOQ model. The main decision variable in his setting is
the lot size. The process can be inspected after finishing the
production of a lot. Porteus shows that reducing lot sizes
can improve quality levels. In contrast, we look at the
structure of the optimal control policy under stochastic
demand and in addition examine the effect of issuing pol-
icies. In a single stage (M/M/1) queue setting, Tapiero and
Hsu (1987) present numerical results for different inspec-
tion schemes such as full or 100-percent inspection and
barrier inspection (i.e., inspect if the number of items in
the system is less than a critical number). Hsu and Tapiero
(1992) model the production system as an M/G/1 queue,
which may shift to a substandard processing state in ran-
dom time. They evaluate various sampling schemes such as
no quality control, full sampling, and random sampling,
and examine the impact and sensitivity of system parame-
ters numerically. These papers do not address.the produc-
tion control and issuing problems. To the best of our
knowledge, the optimal policy structure and the benefits of
using LIFO have not previously been addressed in the
quality management literature.

The rest of our paper is organized as follows. Section 1
discusses the basic model and the assumptions. Section 2
analyzes the FIFO issuing method and presents optimal
control policies for the discounted and the average cost
problems. Section 3 analyzes LIFO. Section 4 compares
FIFO and LIFO and shows that LIFO is optimal over all
class of issuing policies, in which an arriving customer does

‘not wait for the item under process, if any, to be com-

pleted if there is already inventory in the output buffer.
Section 5 examines the conditions for zero inventory. Sec-
tion 6 presents a numerical example comparing FIFO to
LIFO. Section 7 discusses the conclusions and some
extensions.

1. MODEL DESCRIPTION

Consider a single stage manufacturing system producing
items with abundant supply of raw materials. We identify
the random demand from the subsequent stage as a ran-
dom “customer” arrival to the system. We model the de-
mand process as Poisson with rate A. Processing times are
assumed to be ii.d. and exponentially distributed with
mean 1/u. We assume that there is a processing cost that is
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Figure 1. The production system under FIFO and LIFO
issuing.

directly proportional to the time taken to produce the
item, and that after producing a good item, the process
may shift with probability p from being in the in-control
state to the out-of-control state. This is termed a geometric
process shift. After the process reaches the out-of-control
state it remains in that state until detected and corrective
action has been taken. Items produced in the out-of-
control state are of poor quality and scrapped at a cost.
The out-of-control state is detected when the subsequent
processing stage (or customer) finds a defective item. Once
the process shift is detected the correction is assumed to
be instantaneous and the machine is as good as new after
correction. We assume that the item under process, if any,
can be reprocessed at no extra cost whenever an arrival
detects the out-of-control state of the machine.

This demand model is applicable in PULL manufactur-
ing systems, or when supplying to a bottleneck station or in
some instances even supplying to customers. Examples in-
clude preparation of molds prior to pouring of metal in a
foundry, supply of completed wafers from wafer fabrica-
tion to testing/probing stage in semiconductor manufactur-
ing and supply of components from one plant to another.

FIFO and LIFO methods of issuing the items from the
output buffer are operationalized by stacking differently in
the output buffer and letting the customer pick from the
top of the stack (Figure 1). In FIFO the item produced
first will be on top of the stack. An example where FIFO is
used could be a two-stage system with stages intercon-
nected by an automatic conveyor. In LIFO, the most re-
cent item is placed on top of the buffer stack.

If there are no items in the output buffer when a cus-
tomer arrives, the customer waits (gets backlogged). If
there is an item in the buffer, she picks up the first item in
the stack for use. If the item is found to be bad, she
informs the system instantaneously. The customer then
picks up the next item and so on until she either finds a
good item or gets backlogged. We assume that all these
actions occur instantaneously. In the case of LIFO, we also
assume that if the machine is processing an item at the
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instant an arrival takes place and if there are items in the
output buffer stack, then the customer does not wait but
takes the topmost item (last produced) in the stack.

As stated earlier, our objective is to find the optimal
production control policy for minimizing the total ex-
pected discounted costs over the infinite time horizon for
FIFO and LIFO. Define A = A + w and let

hA = inventory carrying cost per unit per unit time,
rA = processing cost per unit time,
bA = backlogging cost per unit per unit time,

s = scrap cost per unit, and

a = rate of discount.

Il

Consider the FIFO stacking policy. If a customer picks
up a bad item, then all the items in the output buffer are
defective and the process is in the out-of-control state. If
the item is good, then the inventory in the output buffer
reduces by one. We assume that the processing of an item
can be switched on or off at any stage of processing (and
later show that this is not a restriction in practice). The
state of the system will be represented by a single number
n, with positive n representing the inventory of items in the
output buffer and negative n the number of backlogged
customers. The state space is {--+, =1, 0, 1, 2, - - -}. With
this state representation and an admissible control policy
(described below), the evolution of the system under FIFO
is a Markov process.

On the other hand, the LIFO stacking policy needs a
different state representation, because even if the item on
top of the stack is bad it is possible to have some good
items below. Therefore, we represent the state of the system
as a pair of numbers (n, m), where n denotes the number of
good items in the stack and m denotes the number of grey
items, i.e., items that may be either good or bad. The n
good items are at the bottom of the output buffer stack,
whereas the m grey items are on top of the n good items.
The controller, based on the past history, knows which »
are good and which m are grey (see Figure 1), whereas
the arrivals do not have this information. (For example, the
controller can keep a signal kanban in the buffer stack
to separate the good from the grey items as in Monden
1981).

As in FIFO, we assume that the processing of an item
can be switched on or off at any stage of processing, and
later show that the optimal policy corresponds to the case
when the machine is never switched off while processing an
item. Recall the assumption that the customer will always
take an item from the output buffer stack if there are any,
and not wait until the processing of the item (if any) on the
machine is completed. On customer arrival, if k out of m
grey items are good with k£ < m, then the new state (n +
k — 1, 0) is reached, and (m — k) bad items are scrapped.
This event has probability g*p, where ¢ = 1 — p. If all the
m grey items are good then the new state (n + m — 1, 0)
is reached, and the probability of this event is ¢”*. The
state space under the LIFO stacking policy is {(n, m), n €
{---1,0,1,---}yme {0,1,2,---} and m = 0 when
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n < 0}, where negative n represents the number of back-
logged customers.

The control decision available in state i (for any issuing
policy) is simply whether to produce or not. We denote
this decision by:

1  if we decide to produce when the state of the
system is i,
0  otherwise.

u(i) =

We say that the control u(i) is admissible if it does not
use information about the future evolution of the system.
We have a continuous time Markov process under both
the FIFO and the LIFO stacking policies when admissible
controls are used. Using the technique of Lippman (1975),
we shall uniformize the transitions in this continuous pro-
cess using a fast Poisson process of rate A and then pose
the problem of optimally controlling a discrete time
Markov chain.

2. FIFO

In this section we characterize the optimal control policy
for the FIFO stacking policy for minimizing the discounted
cost over the infinite time horizon. We assume that u(n) =
1 for all n < 0, for otherwise running such a production
system is meaningless. Likewise, asking a customer to wait
when there is inventory in the buffer is not desirable.
These cases are considered in Nurani et al. (1995), where
we provide sufficient conditions for the Vahdlty of these
assumptions.

Define g(n, u(n)) to be the one step cost of being in
state n and applying the controls u(n). Here, one step is
equal to one transition in the fast Poisson process with rate
A. Using the indicator function I(.), g(n, u(n)) can be
written as

9(n, u(n))=-A—1_—}_—a-n‘b+Aﬁan+h

+ a’iﬁspl(n < 0)

A+ a
un)A A
+A+ar+A+ansP1(n>0) @
where n™ = max(n, 0) and n~ = max(—n, 0). The first

term on the right-hand side (rhs) is the cost of customers
backlogged at the beginning of the transition, the second
term is the carrying cost of items in the buffer that were
present at the beginning of the transition, the third is the
cost of scrapping if a defective item is produced when
there is backlogged demand, the fourth term is the pro-
cessing cost incurred if the decision is to produce in the
state n, and the fifth term on the rhs is the cost of scrap-
ping all items if an arrival finds a defective item (recall that
the customer gets backlogged).

Let V(n) denote the minimum expected total discounted
cost over the infinite time horizon starting from the state
n. Then we have

V(n) = u(rf}lei[%,u {g(n, u(n))

u(n)u

[I( =0)V(n+1)
+ I(n <0{qV(n + 1) + pV(n)}]

-+

A i - [I(n>0){gV(n—1)

+pV (=1} +I(n<0)V(n — 1)]

A - -A
ST R A ) @
In=0) . .
=A(n) + AT o minf uV(n), Ar + uV(n + 1)], (3)
where
An) = A - A 0t H:
n)—A+ nb+A+ h+ spl(n<0)
+;\~;~—nsp1(n =0) + A[}}— a[(n <0)
t it a E—[I(n < 0){gV(n + 1) + pV(n)}]
+ A—r [I(n>0){gV(n — 1) + pV(-1)}

+I(n<0)V(n - 1)].

Consider the states n
duce in state n if

= 0. From (3) it is optimal to pro-

Vin+ 1) - Vim) < -4 @

We prove below that there exists a number z;(=0) such
that it is optimal to produce at all levels below z, - z; is
called the upper threshold level. It can be either a finite
positive number or positive infinity. Such a policy is called
a threshold type policy.

Theorem 1. Consider a single stage system with Poisson
demand, exponential service times and geometric process
shifts with FIFO stacking in the buffer and where the objec-
tive is to minimize the expected discounted costs over the
infinite time horizon. Then there exists an upper threshold
level z; (=0) such that it is optimal to always produce when
the inventory is below z, and not to produce when the
inventory exceeds this level.

Proof. Consider two systems, labeled I and II. Let n = 0
and let systems I and II start with initial inventory in the
output buffer of (n + 1) and (n + 2) items, respectively.
Label the items in the order in which they were produced.
Assume that the machine states were and will be the same
in both systems when producing the ith item. This ensures
that the marginal distributions of the first (n + 1) items in
both the systems are identical. If initially there is even one
bad item in system I, then the number of bad items in
system II will be one more than the number of bad items
in system I. Arrival epochs are assumed to be the same for
both the systems. It is assumed that the service time



for producing the ith item in system I and the service
time for the (i + 1)st item in system II are identical.
Assume that the optimal control policy is used in system
II. For system I we use the control policy used for control-
ling system II. The two systems are now said to be coupled.
We stop the coupling either when systems I and II hit the
states n and (n + 1) respectively or when both of them hit
the state —1. Under this coupling arrangement, we pass
information about the future evolution of system I only
when there is one item in system II and none in system I
and an arrival occurs. This cannot happen because we
would have already stopped the coupling before such a
state is reached (as n = 0). Therefore, we do not pass on
information about the future to the controller of system I,
and the control policy of II (till the coupling ends) is ad-
missible for system I.

Let P(y) where y € {I, II} be the expected cost ob-
tained using these control policies over the infinite time
horizon in system y. Then

V(n+2)—V(n+ 1) =PI — P(I), 5)

as we are using a suboptimal policy for system I, ie.,
P(II) = V(n + 2), Pd) = V(n + 1). Define P(y, [t;, t,], B)
to be the expected cost obtained in system y over time
[t1, t,] on the set of events {B}. Consider the following
possibilities.

1. System II never hits the state (n + 1), and system I
never hits the state n. Call the set of events on which
this happens as {B,}. Since system II started with one
more extra item:

P(Ila [0’ OO]7Bl)~P(I5 [0, 00],31)30. (6)

2. There are defective items in system I and system II, and
both of them hit the state —1 before hitting the states »
and (n + 1), respectively. Call the set of events on
which this happens as {B,} and the time at which this
happens as 7_;. Then as above:

P11, [0, 7_1], B,) — P, [0, 7_1], B,) = 0. 0

3. On the set (B,UB,)° system I hits the state » and system
IT hits the state (n + 1), say at time 7,,. Let the number
of transitions of the fast Poisson process in time 7, be 7
and E(p") be the expected discount factor, where p =
A/(A + a). We have:

P(Ila [Oa Tn]a (BIUBZ)C) - P(I’ [0, Tn])
(B1UB,)“) = 0. ®)

The coupling stops at time o« on {B;}, at time 7_; on {B,}
and at time 7, on {(B,UB,)°}. Define 7 = « on (B,;UB,).
Using this definition the difference in cost obtained after
time 7, can be concisely written as E(p")[V(n + 1) —
V(n)] (because E(p"I(B,UB,)) is zero). Since system I fol-
lows a suboptimal policy and system II follows the optimal
policy and using (6) and (7) we have:
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Vin +2)—Vn+1)={PUl,|0,,], B1UB,)°)
— P, [0, 7,], (B1UB>)°)
+E@EIVn +1) = Vi)l )

The first two terms on the rhs of this equation represent
the cost of carrying one extra item of inventory for 7 tran-
sitions. To obtain an expression for this cost, define ¢, to
be time the (k — 1)th transition took place. The expected
cost of carrying one item from #, to #, ., discounted contin-
uously is

tev1 A k+1
—at —
e [ eea = 2)

We can now express the expected carrying cost of one item
for r transitions on the set (B UB,)‘ as:

PUI, [0, 7,], (B1UB,)) — P(1, [0, 7,], (B1UB>)*)

hA S(A)
=mE[[((BIUBz) )Eﬂ (a n A) ]

_hA
B a

Using (9) and (10):

Vin+2)—Vin+1)

[Pr((B1UB,)) — E(p"I((B,UB,)%))].  (10)

> {’% [Pr((B,UB,)¢) — E(p")]

+E(OV(n + 1) - V(n)]}. (11)

When in state (# + 1), by considering the suboptimal
policy of setting aside one item by incurring the carrying
cost for that one item forever, we have:

Vin+1) = V(n) < ha—A, (12)

where (hA/a) is the cost of carrying one item forever.
Substituting this in (11) we get

Vin+2)—-Vn+1)
=[V(n + 1) - V(n)][Pr((B,UB,)°)]. (13)

From Equations (4) and (13) it is clear that if it is optimal
to produce in the state (n + 1) then it is optimal to pro-
duce in the state n also. Thus the existence of the thresh-
old level z,(=0) is proved. []

Remarks. (i) As we never stop producing when the inven-
tory in the system is below z;, the assumption that we can
switch on or switch off the production at any stage of
processing an item becomes equivalent to the assumption
that we never switch off the processing of an item till the
production of the item is complete. (ii) By adding an in-
ventory carrying cost to the processing cost, we can model
the carrying cost of the item under process.

As a result of the above theorem, production control
decisions are made simple if we know the threshold level
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z;. Successive approximation can be used to solve the cost
functions V(n) and the optimal policy. An efficient compu-
tational procedure for the average cost case (based on
determining the stationary probability distribution of the
controlled Markov chain) is given in Nurani et al. (1995).

3. LIFO

The state of the system is given by a pair of numbers, (7,
m). The number of good items in the output buffer is
denoted by n. The status of the other items in the output
buffer is not known until an item is withdrawn by the
customer. These items are called grey items and are de-
noted as m. These m grey items are on top of the #» good
items in the output buffer stack. We assume that: (i) if
there are items in the output buffer the customer will se-
lect the top most item in the output buffer stack (and not
wait for the machine to finish processing an item, if any),
and (ii) production can be switched on or off at any stage
of processing an item. We justify (i) in Nurani et al. (1995)
and (ii) can be justified based on the structure of the
optimal policy (see Remark (i) in Section 2).

The dynamic programming recursion equations are for-
mulated below for LIFO. The one step cost g(n, m, u(n,
m)) incurred in state (n, m) by using the control u(n, m) is
given by:

+m)+
Ara MR,

uln, m)A
A+ta |

g(n, m, u(n, m)) = (n+m)”*

B =
+A+aspl(n<0,m 0) +

el (5 o ws)i=0n=o]. o

In this expression, the first term accounts for the cost of
backlogged items present at the beginning of the transi-
tion, the second term is the cost of carrying the inventory
of items present in the output buffer at the beginning of
the transition, the third term is the cost of scrapping if a
defective item is produced in a backlogged state, the
fourth term is the processing cost, and the fifth is the cost
of scrapping items when a grey item is drawn from the
output buffer and a defective item detected.
The cost function V(n, m) can then be written as

u(n, m)u

V(n, m) = min
A+ a

u(n,m)€l0,1]

X [Vn,m + DI(n = 0) + {gV(n + 1,0) + pV(n, 0)}

{g(n, m,u(n, m)) +

X I(n <0,m = 0)] +

m—1
oV +k—1,0
A+aL§qp(n )

+q™"V(n +m - 1,0)]I(n>0,}n>0) +
A+ a

X Vn—-1,0XIn>0m=0)+VHn—-1,0)
(A —u(m, m)u — 1)
At a

X I(n <0,m = 0)] + nmmﬂxw)

Rewriting this equation we get

, In=0
V(n, m) =Bn, m) + —(I—_;a—) min [V (n, m),
Ar + pV(n, m + 1)1, (16)
where
Ab Ah
= +m)” + +m)*
B(n, m) A+a(n m) A+a(n m)
I
+ I(n < =0) + In<0
A+aSp(n 0, m ) A+« (n )
m—1
+ k —k)l =0, >0}
A4_a[(h0qp0n )s | 1(n m > 0)
+ —E[igVn + 1, 0) + pVin, 0)}(n < 0, m = 0]
At a
m—1
+ kp 1 +k—-1,0
A+aL%qp<ﬁ )

+q"Vin+m—1, O)}I(n =0,m>0)

A
A a

AV —1,0[n<0,m=0)]

+

[Vin—1,0)(n>0,m = 0)

The next step is to obtain the structure of the optimal
policy for LIFO. The results of the following three lemmas
lead to the structure of the optimal policy given in Theo-
rem 2. The proofs of the lemmas are given in the appendix.

Lemma 1. V(n, 0) is convex in n, ie., V(n + 2, 0) —
Vin +1,0)=V(n +1,0) — V(n, 0) forn = -1, 0, 1,
2,...

Lemma 2. If it is optimal to produce in the state (n, m +
1) then it is optimal to produce in the state (n, m) for n =
0.

Lemma 3. If it is optimal not to produce in the state (n, m)
then not producing in the state (n + 1, m) is optimal.

Theorem 2. Consider a single stage system with Poisson
demand, exponential service times and geometric process
shifts with LIFO stacking and where the objective is to
minimize the expected discounted costs over the infinite
time horizon. The structure of the optimal policy is such
that:

(i) There exists upper threshold levels of the form z, = (n,
m) = (n, f(n)), such that for a given number, n, of good
items, it is optimal to produce when the number m of grey
items is below m = f(n). Moreover, the function f is nonin-
creasing in n.

(ii) n + f(n) is nondecreasing in n.

Proof. (i) From Lemma 2, as it is optimal to produce in
the state (n, m) when it is optimal to produce in the state



(n, m + 1), the existence of a function f such that we
produce in all states € {(n, m) : m < f(n)} follows. In
Lemma 3 we showed that if it is not optimal to produce
in the state (r, m) then it is not optimal to produce in the
state (n + 1, m). Therefore the function f is seen to be
nonincreasing in #.

(ii) We need to prove that if it is optimal to produce in
the state (n, m) then it is also optimal to produce in the
state (n + 1, m — 1). The construction and the proof are
similar to Lemmas 2 and 3 and are therefore omitted (see
Nurani et al. 1995). []

Remarks. (i) Like in FIFO, the optimal policy corre-
sponds to never halting production during the processing
of an item. (ii) The carrying cost of an item under process
can be added to the processing cost.

4. LIFO VS. FIFO

It is generally a good practice to use the FIFO policy when
using the item at the subsequent stage provides no informa-
tion about the current state of the process. However, intu-
itively speaking, when the state of the process can be inferred
(and this information utilized) it is better to issue items using
LIFO. In the following theorem we prove this intuitive result
that LIFO is better than FIFO for our model.

Theorem 3. Under the same operating conditions, LIFO is
better than FIFO for minimizing the expected average or
discounted costs over the finite or infinite time horizon.

Proof. Consider two systems I and II. For system I use
the optimal FIFO production policy. For system II use the
production policy of system I, but use the LIFO issuing
policy. Assume that the machine states are the same in
both systems, and if the failure of the machine is detected
in system II, we do not produce in system II until failure
is detected in I and corrected (failure in system I will be
detected later because the bad items will be at the bottom,
whereas in the LIFO stacking policy they will be on top of
the stack). Then the following are true.

1. On every sample path system II has lower inventory
than system I and the same level of backlogged demand.

2. The evolution of the state of system I can be deduced
from that of system II.

To prove (2), assume that there are x good items and y
grey items in LIFO and x + y items in FIFO. On customer
arrival, the state of LIFO becomes (x +y — 1, 0) if all the
grey items are good. If only y,(=0) of the y grey items are
good then the bad item is detected immediately and the
state reached on customer arrival is (x + y; — 1, 0). On
the other hand, the state of FIFO system will be (x + y —
1). If y;(=0) of the y grey items are good then the bad
state of the machine will be detected only after (x + y, —
1) more arrivals. During the time when system II is idle
waiting for system I to detect the bad item, system I is
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producing bad items. This argument can be extended to
show that the state of system I can be traced using the past
history of production, detection of failures and customer
arrivals. This also shows that system I will have higher
inventory than system II. The policy used for controlling
system II is admissible, as it uses information only about its
past. Conclusions 1 and 2 imply that FIFO is inferior to
LIFO. []

Theorem 4. LIFO is optimal over all issuing policies.

Proof. In the construction given in Theorem 3 just substi-
tute any nonanticipative policy for FIFO. Let system I be
controlled using any nonanticipative policy. In system II
use the LIFO policy. Whenever system I initiates produc-
tion so does LIFO. Whenever a defective item is found in
LIFO, all items are inspected and bad items discarded.
The system controlled using LIFO does nothing till the
defect in the other system gets corrected. Note that pro-
duction and arrival events are the same in both systems. So
the only uncertainty is regarding when a defective item
gets issued to a customer. In LIFO this happens earlier
than in any nonanticipative policy. So the LIFO controller
has more information than the other controller at all
points of time. Therefore the policy used in system I is
admissible for system II. Finally system II always has less
or equal inventory compared to system I. The conclusion
follows. []

Remark. Theorem (4) holds under the assumption that if
there is a cost for scrapping defective items and if there is
inventory then when a customer arrives, she does not wait
for the machine to finish processing the item (if any) but
takes the item from the output buffer stack as per the
issuing policy.

The above results can be extended beyond the setting of
our model, provided the items produced do not deterio-
rate with time. In the case of perishable inventory (Nah-
mias 1982), due to perishability, it is natural to use the
FIFO scheme for the issuing organization whereas if
the customer has control over issuing, LIFO will be fol-
lowed. In the case of tax valuation schemes, LIFO has
marginal benefits over FIFO (Cohen et al. 1978). It is
possible that good accounting practices dictate the use of
FIFO or weighted average costing methods for inventory
valuations (Fogarty et al. 1991). In such situations the ac-
tual valuation of the inventory can indeed be done on a
basis that is different from the physical issuing policy. For
example, the inventory can be valued on FIFO basis and
the material issued on LIFO basis.

5. ZERO INVENTORY

In this section, we find conditions when zero inventory is
optimal. Let J(0) and J(1) be the long run average costs
(per transition) obtained using the zero threshold policy. If
it turns out that J(1) — J(0) + Ar/u = 0, then the zero
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inventory policy is optimal. We compute J(1) — J(0) using
a coupling argument and derive conditions for the opti-
mality of zero inventory.

Consider two systems I and II. Initially system I and
system II are assumed to be in the states 0 and 1, respec-
tively. System I uses zero as the threshold level. System II
starts from state 1 and also follows the zero threshold
production policy. The states of system I and II will be
referred as a pair with the first element of the pair repre-
senting the state of system I and the second element rep-
resenting the state of system II. We define (—1, —1) and
(0, 0) as the absorbing states when the two systems couple.
From the initial states, on customer arrival the systems
couple with probability p as they reach the absorbing state
(—1, —1) from (0, 1) and the mean time for this transition
is 1/A. With probability g they reach the state (—1, 0). The
next coupling can take place only when they reach (0, 0).
Till then the pair of states evolve as a Markov chain with
transition probability matrix

abs abs (-1,0) (=2,-1) (=3, =2)
(-1, 0) 1 0 0 0
(=2, 1) (ng/A)  (up/A) (A/A) 0
(=3, =2) 0 (ng/A)  (pp/A) (A/A)
(ng/A) (mp/A)

0 0

where abs denotes the coupling or absorbing state.

Let 6, denote the mean time for the systems to couple
from the state (—1, 0). Note that system II has one less
customer backlogged than system I until the systems cou-
ple. Define N to be the mean number of visits to state (—1,
0) starting from (—1, 0) before absorption (coupling). Ev-
ery time the state (—1, 0) is visited, the conditional proba-
bility of incurring a loss due to scrap, given that the
systems do not couple, is up/(up + A), and the mean
number of visits in which scrap cost might be incurred is
(N — 1) because the systems couple on the final visit to
(—1, 0). Thus we can write

J(1) = J(0) = f% + ps — gbAB, — gNr — q(N — 1)

X (%)s. 17)

In this equation, the first term is the carrying cost of one
item for mean length of time 1/A, the second term is the
scrap cost if that item is defective, the third term is
the cost of backlog for mean time 6, the fourth term is the
processing cost incurred while processing in state (—1, 0),
and the last term is the cost of scrapping if the item pro-
duced in state (—1, 0) is defective. It can be verified that
N = A(pq).

Now we need to know 6,. Define 6; to be the mean time
for the two systems to couple from the state (—i, —i + 1) for
alli € {1, 2, 3, - --}. Then we can write

o1 Mg, HP g
01_)\+M+,\+M6’—1+)\+M01
A .
+m9i+1 fori=1. (18)

This set of equations can be solved by setting up a set of
difference equations in w; = (6; — 6,,,) (see Karlin 1975
for details). Using the assumption that ug > A we obtain
6, = 1/(ug — A). Let B = (Mpgq) denote the load on the
system. Then 6, can be written as B/(A(1 — B)).

Lemma 4. Zero inventory is optimal when h = (gbB/(1 —

B))-

Proof. Substituting 6, = B/(A(1 — B)) in the Equation (17)
and using the condition J(1) — J(0) + Ar/u = 0 gives the

(=4, =3)

desired result. []

Rewriting the condition for zero inventory as 4 = b/(u/A
— 1/g) it can be noted that having zero inventory becomes
more attractive when the backlogging cost b or arrival rate
of customers A, is small, and when the inventory carrying
cost h or the processing rate, u or the probability of get-
ting a good item, g, is large. The condition & = (gbB/(1 —
B)) does not involve processing and scrap costs, because in
the states below zero, processing and scrap costs do not
play a role in the control. They have to be incurred to
satisfy demand and the trade off is only between the carry-
ing and backlog costs.

6. NUMERICAL EXAMPLE

An example is presented in this section to provide some
insights into the relative advantage of LIFO. Table I gives
the long run average cost (per transition A = A + u) for
both FIFO and LIFO for different system parameters. The
column under % Imp. gives the % improvement of the
LIFO issuing policy over FIFO. As p increases, the benefit
of using LIFO initially increases and then decreases. This
phenomenon is due to two conflicting effects discussed
below.

Tables II and III present the threshold levels for FIFO
and LIFO. The upper threshold level z, represents states
up to which it is optimal to produce. Note that the upper



Table I
Comparison of FIFO and LIFO Average Costs
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Table III
Upper Threshold (z,) Level for FIFO and LIFO

Parameters: h = 0.02; r = 0.05; s = 0.025; b = 0.1
A=10,u =15 A=20,u=235
p FIFO LIFO % Imp. FIFO LIFO % Imp.
0.025 0.1426 0.1313 7.9 0.1025 0.0975 4.9
0.05 0.1666 0.1436 13.8 0.1141 0.1044 8.5
0.1 0.2245 0.1769 21.2 0.1408 0.1221 13.3

0.2 0.4487 03427 236  0.2225 0.1820 18.2
0.3 1.7640 1.5305 132 04223 03589  15.0

threshold levels z; for LIFO are represented by pairs with
the first number in the pair denoting the number of good
items and the second denoting the number of grey items. It
can be verified for LIFO that the optimal threshold of the
number of grey items is nonincreasing in the number of
good items, and if it is optimal to produce in the state (n,
m), then it is optimal to do so in the state (n + m, 0) (but
not necessarily vice-versa). Also, LIFO gives higher opti-
mal positive inventory levels than FIFO. This is because
the danger of items getting scrapped is more in FIFO than
in LIFO. This is rather surprising because reducing the
level of process uncertainty (by using LIFO) leads to larger
inventories. The process quality, p, seems to have two op-
posing effects on inventory. (i) Suppose p is large, i.e., the
process has poor quality. This means that the expected
scrap cost due to producing a grey item increases rapidly
with the level of grey items in the inventory. This effect
favors less inventory of grey items. (ii) On the other hand,
the utilization of the process B = A/ug becomes larger
which favors keeping more inventory (including grey
items). These opposing effects result in an increase in ben-
efits from LIFO with increasing p, due to lower scrap
costs. Later when the load (utilization of the process) in-
creases with p, LIFO is forced to maintain high inventories
leading to smaller benefits. When m = 0, the threshold
level of n for stopping production is increasing in p, since
only the utilization factor is relevant in this case, and the
scrap cost is unimportant.

Table II
Upper Threshold (z;) for FIFO and LIFO

Parameters: h = 0.02; r = 0.05; s = 0.025; b = 0.1; A = 10;

n =15
FIFO LIFO
Pz z; = {n, f(n)} = {good, grey}
0.025 (0,3), (1,2), (2,1), (3,0)

3

005 3 (04), (L3), (22), (3,1), (40)

0.1 2 (0’4)’ (153)> (2a3)7 (372)’ (471)’ (5’0)

02 2 (0.7), (17, (26), (3.6), (45), (5.5), (6:4), (7.4),
(8,3), (9.2), (10,2), (11,1), (12,1), (13,0)

03 3 (0,10), (1,10), (2,10), (3,10), (4,10), (5,10), (6,10),
(7,10), (8,10), (9,10 - -, (49,5), (50,5), (51,5),
(52,5), (53.4), - - -

Parameters: h = 0.02; r = 0.05; s = 0.025; b = 0.1; A = 20;

=235
FIFO LIFO
Pz z; = {n, f(n)} = {good, grey}
0.025 2 (02), (1,1), (2,0)
0.05 2 (0,2), (1,1), (2,0)
01 1 (0’2)’ (172)7 (2’1)’ (3’0)
0.2 1 (03), (1,3), (2,2), (3,1), (4,1), (5,0)
0.3 1 (0’5)7 (1>5)> (2’4)’ (3’4)’ (4’4)’ (5’3)’ (6’3)’ (7’3)’

(8,2), (9,2) (10,2), (11,1), (12,1), (13,0),
(14,0)

7. CONCLUSIONS AND EXTENSIONS

In this paper we considered a single stage manufacturing
system subject to random process shifts. There is delay in
getting information about the state of the process because
the process quality cannot be measured on-line due to
technological limitations. In this setting we analyzed opti-
mal production policies for FIFO and LIFO methods of
issuing items to the customer. We proved that LIFO is
optimal over all issuing policies when an arriving customer
does not wait for the processing of an item, if any, to be
completed if there is inventory in the output buffer. A
numerical example suggests that up to 20% cost savings
can be obtained from LIFO over FIFO. We also derived
conditions in which maintaining zero-inventory is optimal.
The model and the results presented in this paper can be
extended to the following cases (Nurani et al. 1995): (i)
When customers can be turned away at a cost (instead of
incurring the cost of backlogging), the optimal policy is
characterized by an additional lower threshold level (z,).
Below this level of backlogged customers, it is optimal to
turn away customers. (ii) When a customer arrives, if there
is no inventory in the buffer then the subsequent customer
arrivals could get stopped. This is equivalent to a pull
manufacturing system where the downstream line is
stopped if there are no kanbans.

APPENDIX

Proof of Lemma 1. We start with two systems, namely
system I and system II, having initial states of (rn + 1, 0)
and (n + 2, 0), respectively. System II is assumed to be
optimally controlled. System I follows the control policy of
system II. The machine states and the occurrence of pro-
duction and arrival events are assumed to be the same in
both systems until time 7, defined below. It may be verified
that the control policy is admissible for system I as random
events occur together on these systems. Let 7, be the first
time system II hits the state (n + 1, 0) and {4} be the set
of events where {7, < «}. Denote the number of transi-
tions during the time [0, 7,] as 7. We have
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Vin+2,00-V(n+1,0)
= P11, [0, «]) = P(I, [0, «])

- fl&{\. {[1 = Pr(4)] + [Pr(4) — E(p" ]}

+ E(p)[V(n + 1, 0) — V(n, 0)]
=[1-E()][V(n+1,0) - V(n, 0)]
+E(p)[V(n + 1, 0) — V(n, 0)]

=V(n +1,0) — V(n, 0).

The first inequality follows from the fact that AA/a =
V(n + 1, 0) — V(n, 0). Note that the proof will go through
for n = —1 because of our assumption that we always
produce in a backlogged state, i.e., V(n + 1, 0) — V(n, 0)
< —Ar/fpforn < 0. [ :

Proof of Lemma 2. Define C(r, 4) to be the expected
discounted cost of carrying one unit for 7 transitions on the
set of events {4}. Define 7 = o on the set A°. From
Equation (10) we have C(r, 4) = (hA/a)[Pr(4) —
E(p'I(A))]. This definition is needed for simplifying the
equations. We will prove this lemma by contradiction. As-
sume that the optimal policy is to produce in the state (n,
m + 1) and not to produce in the state (n, m). These
assumptions and the equation for the optimal cost function
give
Vin,m+2)—Vin,m+1)<Vn,m+1)—Vn, m),
(19)

Ar (20)

V(n,m+2)——V(n,m+1)s—TL—

As before, we start with two systems I and II, having initial

inventory of (n, m + 1) and (n, m + 2) respectively.
System I follows the control policy of system II. System II
is assumed to be operated using the optimal policy. If
there is a bad item in system I then we assume that the
number of bad items in system II is one more than that of
system I.

To formalize and justify this assumption assume that the
distributions of the first (m + 1) items (from bottom of
the output buffer stack) in both systems are identical. If
any of these items is bad then let the (m + 2)nd item to be
bad and the machines to be in the out-of-control state in
both systems. The two systems will hit the same state, i.e.,
(n — 1, 0) when an arrival occurs. If none of these items is
bad, then generate a random number, say z, between [0, 1].
If this number is less than p then set the (m + 2)nd item
to be bad in system II. Now wait for the next transition in
the uniformizing Poisson process to occur. When it occurs,
generate a random number to decide whether the next
event will be a production event or an arrival. If it is a
production event, add one bad item to both systems and
set the machines to be in the out-of-control state for both
systems. (This does not benefit system 1.) If the next event
is an arrival, then the two systems will couple. If z is
greater than p, set the (m + 2)nd item to be good, and

assume that the machine states are the same in both sys-
tems till a random time to be specified next. The coupling
will stop when the states of the systems are the same (an
event that occurs if there is a bad item in system II to
begin with) or when systems I and II hit the states (n + m,
0) and (n + m + 1, 0), respectively (which can happen
only if all the (n + m + 2) items are good in system II). It
can be verified that the control policy for system I is. ad-
missible and the only time there is gain in producing in the
state (n, m + 2) is when all the (n + m + 2) items are
good. -

If there is at least one bad in system II, then the two
systems hit the same state at the instant of the next arrival.
The time for hitting the same state is exponentially distrib-
uted with mean 1/A. Let n denote the number of transi-
tions needed for the systems to hit the same state through
the detection of a defective item and {D,} be the set of
events on which it happens. In other words, Pr{D;} de-
notes the probability of having at least one bad item in
system II. Until the systems couple system II incurs addi-
tional cost due to the extra item. Next, consider the case
when all the initial items are good in both systems. Let
{G;} be the set of events on which this happens. Let 7, be
the time for the systems I and II to hit the states (n + m,
0) and (n + m + 1, 0), respectively, with 7, = o if that
event never occurs, and let T be the number of transitions
during 7,,. We have

Vin,m+2)—V(n,m+1)
> P(IL [0, =]) - P, [0, )
=C(n, Dy) + C(r, G1) + E(p"1(G))
X[Vin+m+1,0) = V(n+m,0)]. (21)

The next step is to get a bound for V(n, m + 1) — V(n,
m). To do this, we consider two more systems, called III
and IV, starting with the initial inventory (r, m) and (n,
m + 1), respectively. Assume that system III is optimally
controlled and hence we do not produce in the state (n, m)
according to our assumption. Let system IV follow the
control policy of system III. As done before, if there are
bad items in system III assume that the system IV has one
more bad item than system III, and that the states of the
machines in the two systems are the same till the random
time specified below. To formalize this, let the distribution
of the first m items be the same in both systems, and also
be the same as that in systems I and II. If any of these
items is bad assume that the machines are in the out-of-
control state in both systems and let the (2 + 1)st item be
bad in system IV. (This does not benefit system IV.) Else if
all m items are good generate a random number z between
[0, 1]. If this is less than p let the machines be in out-of-
control states in both systems and the (m + 1)st item be
bad in system IV. Else let the (m + 1)st item be good and
the machine states in both systems be the same. System IV
has more information than system III, and therefore the
control policy of system III is admissible for system IV.



As before, if a bad item is found in one of the systems
then they hit the same state at the instant of the next
arrival, and this time is exponentially distributed with
mean 1/A. Thus 7 is the number of transitions needed for
the systems to hit the same state and let {D,} be the set of
events in which this happens. However, until such a time
system IV incurs additional carrying cost due to the extra
item. Next, consider the case when all the items are good.
Let {G,} be the set of events on which this happens. Let
v, be the time for systems IIT and IV to hit the states (n +
m — 1,0) and (n + m, 0), respectively, with v, = o if that
event never happens. Note that since we do not produce in
the state (n, m) in system III, v, is also exponentially
distributed with mean 1/A. Let m (once again) be the num-
ber of transitions. (Note 7 is the same on D;, D, and G,
because the coupling time is the time for the next arrival.)
Then we have

Vin,m+ 1) — V(n, m)
< P(1V, [0, «]) — P(III, [0, «])
= C(n, D) + C(n, G3) + E(p"(G2))
X[Vin+m,0)=Vn+m-1,0)]. (22)
Using Equations (19), (21), and (22) we get
C(m, Dy) + C(m, G,) + E(p"(G2))
X[Vin+m,0)=V(n+m-1,0)]
=C(n, D1) + C(r, G1) + E(p"I(G1))
X[V(n+m+1,0)—V(n+m,0)]. (23)

The probability of there being one more bad item in
system II compared to system I is greater than the proba-
bility of having one more bad item in system IV compared
to system III, because even when all the items are good in
systems III and IV, the probability that there is a bad item
in system II and none in system I is positive. Thus we have:

Pr{D,} + Pr{G} = Pr{D,} + Pr{G,}, (24)
Pr{D,} = Pr{D,}, (25)
Pr{G,} < Pr{G,}. (26)

The time taken to hit the states (n + m + 1, 0) and (n +
m, 0) by systems I and II cannot be less than the time for
the next arrival in systems III and IV, because we may
produce in the state (n, m + 1) in system I and do
not produce in the state (n, m) in system III. Hence

T=gm. 27

By Equations (24)—(27), and the fact that the coupling
time is the same on D;, D, and G, we get:

C(m, D3) + C(n, G3) — C(n, D) < C(n, G1)

< C(r, Gy), (28)
and
C(n, D3) + C(n, G3) < C(n, Dy) + C(1, Gy). (29)
Combining (23) and (29) we get:
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E(p"(G))[V(n +m, 0) =V(n +m -1, 0)]
=E(T(G)[Vin +m+1,0) - V(n+m,0)]. (30)

Vin + m + 1,0) — V(n + m, 0) < 0 from Equations (20)
and (21). Using this fact in Equation (30) and using
(26) and (27) it follows that (30).is a contradiction of
Lemma 1, that V(n, 0) is convex in n. []

Proof of Lemma 3. The proof is by contradiction and is
similar to Lemma 2. We sketch this proof. For more de-
tails refer Nurani et al. (1995). Assume that the optimal
policy is not to produce in the state (r, m) and to produce
in the state (n + 1, m). Consider one pair of systems I and
I, having initial inventory of (n + 1, m) and (n + 1, m +
1), respectively. System I follows the control policy of sys-
tem II. System II is assumed to be operated using the
optimal policy. Assume that the distribution of m grey
items is the same in the two systems, and if there is a bad
item in system I then the number of bad items in system II
is one more than that in system I. Define 7 to be the
number of transitions needed for these two systems to hit
the same state through detection of a defective item and
{D;} to be the set of events on which it occurs. Let 7, be
the time for systems I and II to hit the states (n + m, 0)
and (n + m + 1, 0), respectively, and 7 be the number of
transitions. Let {G{} be the set of events on which this
happens. We have

Vin+1,m+1)—-Vn +1,m)=PUI, [0, «])
— P(I, [0, ©]) = C(m, Dy) + C(7, Gy) + E(p"I(G))
X [Vin+m+1,0) —V(n+m,0)]. (31)

Consider two more systems, called system III and IV,
starting with the initial inventory (n, m) and (n, m + 1),
respectively. m is the number of transitions needed for the
systems to hit the same state through detection of a defec-
tive item, and let {D,} be the set of events in which this
happens. Next, let v, be the time for system III and IV to
hit the states (n + m — 1, 0) and (n + m, 0), respectively.
Let {G,} be the set of events on which this happens. Then
we have

Vin,m+ 1) — V(n, m)
< PV, [0, »]) — P(III, [0, *])
=C(n, D3) + C(n, G3) + E(p"[(G3))
X[Vn+m,0) —Vin+m-—1,0)]. (32)
As in Lemma (2), we can show:
C(n, Dy) + C(m, Gy) < C(m, Dy) + C(7, Gy), (33)
and also that
Pr{G.} < Pr{G,}, (34)

because the probability of having all the items good is the
same in systems II and IV. Also we have

T >st "7’ (35)
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because we do not produce in systems III and IV, whereas
we may produce in system II in the starting state (n + 1,
m + 1). Using (31), (32), (33), (34), (35), and the assump-
tions we get:

E(p"(G)[V(n+m,0) = V(n+m—1,0)]
=E(T(G)Vn+m+1,0) - V(n+m,0)]. (36)

Vin +m+ 1,0) — V(n + m, 0) <0 from the assumption
that we produce in the state (» + 1, m) and (31). Using
this fact in (36), and using (34) and (35) it follows that (36)
is a contradiction of lemma 1 that V(n, 0) is convex

inn. []
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