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A SAMPLE PATH ANALYSIS OF THE DELAY IN THE M/G/C SYSTEM

SRIDHAR SESHADRI* New York University

Abstract

Using sample path analysis we show that under the same load the mean delay in queue
in the M/G/2 system is smaller than that in the corresponding M/G/1 system, when the
service time has either the DMRL or NBU property and the service discipline is FCFS.
The proof technique uses a new device that equalizes the work in a two server system
with that in a single sterver system. Other interesting quantities such as the average
difference in work between the two servers in the GI/G/2 system and an exact alternate
derivation of the mean delay in the A//M/2 system from sample path analysis are pre-
sented. For the same load, we also show that the mean delay in the M/G/C system with
general service time distribution is smaller than that in the M/G/1 system when the traffic
intensity is less than 1/c.
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1. Introduction

Using sample path analysis, in this paper we show that under the same load the mean
delay in the FCFS M/G/2 system is smaller than that in the M/G/1 system with a fast
server when the service time distribution has the DMRL or NBU property. The result
is new. Earlier known results of this form are for the GI/M/C queue (Cox and Smith
1961) and the GI/D/C queue (Mori 1975, Daley and Rolski 1984); see also the discussion
on p. 497 of Wolff (1989). In doing the sample path analysis we use a new method,
called the work equalization scheme, to compare the time average work in the single
and two server systems. Using the same method we prove that, if the traffic intensity is
less than 1/c, the mean delay in the M/G/C system with general service time distribution
is smaller than that in the M/G/1 system. This is an improvement upon the result of
Suzuki and Yoshida (1970). The method also yields interesting bounds for other quantities
and leads to a new way of determining the mean delay in the M/M/2 system without
actually solving balance equations. :

2. The M/G/2 system

Consider a two server and a single server system, both operating under the FCFS
discipline, which have common inter-arrival times but the service times in the two server
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system are twice as large as those in the single server system. Whenever only one server
is busy in the two server system, work is decreasing in that system at only half the rate
at Wthh it is decreasing in the single server system. Therefore, the work in the single
server system is smaller than half the work in the two server system at every time and
on every sample path. To equalize the work in the single server system to half that in
the two server system, on all sample paths and at all times, we slow down the rate at
which work is being done to half the normal rate in the single server system whenever
there is only one customer in the two server system. This increases the time average
work in the single server system, and we show that this increase in work can be computed
for the M/M /2 case and bounded from above for the M/G/2 case when the service times
have the DMRL or the NBU property. These estimates are then used to compute or
bound the mean delay in the two server queue. We now make the work equalization
argument precise. We shall call the two server system IL. The following definitions are
for 1I:

T,=time between arrival of the nth and (n+ 1)th customers.

{T,} =i.id. sequence with T, distributed exponential with parameter A.

28, =service time for the nth customer.

{2S,} =i.i.d. sequence with S, having mean 1/u.

We shall write S for S,. Assume that S has a finite second moment, ES>.

p=Alu=system load factor (assumed to be less than one).

B, =arrival epoch of the nth customer.

C,(2) =nth departure epoch. By convention, quantities subscripted by zero or negative
numbers are set to zero.

D, (2) =delay in queue of the nth customer, when FCFS scheduling discpline is used.

d(2)=mean delay in queue=lim,_ . (Z\., D,(2)/n).

W(2, 1, t)=larger component of the work vector at time ¢ (under FCFS).

W (2, 2, ) =smaller component of the work vector at time ¢ (under FCFS). Note that
we have D,(2)=W(2, 2, B,).

w2, H=hm,_, f W(2,1,0dilr and W(2,2)=lim,_, f W(2,2, dtlt, the corre-
sponding time averages of the two components.

The FCFS scheduling discipline will be used in the two server system. It will be
assumed that sample paths are continuous from the left, and have right-hand limits.
Thus the sample path quantities at arrival instants are what a customer finds on arrival.
Consider now a single server queue with the same inter-arrival sequence of customers,
but service time sequence {S,}. This will be called the fast server system. We shall modify
the dynamics of the fast server system such that the time average work in the modified
system will be exactly half that in II. The modified system will be denoted by 1. The
systems I and 11 will be run concurrently. We assume that arrivals occur in pairs, one
customer going to I and the other to I1. On each arrival using the distribution of S; we
randomly draw a service time and assign that sample value to be the service time of the
customer going to 1 and twice the sampled value to the one going to 1I. Assume that
both systems start off empty. The modifications for / are as follows. Let
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I(0, n)=indicator of the event the nth customer on arrival finds system II empty.
I(1, n)=indicator of the event the nth customer on arrival finds a single customer in
system I1.

These two cases will be called generically cases (0) and (1). Define C,(1), D,(1), d(1),
and W(1, 1, 1) analogous to the quantities defined for system II. Here W(1, 1, 1) is the
virtual delay in 1, Let,

A,,:%(W(Z, 17 Bn)_ W(z’ 2’ B”))

@ = half the difference in work in II found by the nth arrival.
A, =W (2, 1, C,_2)YI(0, n)

2

2 +EW2, 1, C,_y(2))~HB,— CoesNNB, — C, (NI, n).

We shall show that A4, is the extra area to be added to account for the different rates
of working when only one server is occupied in I1. This area is called the padded area.
The dynamics of 1 are modified as follows:

(3) DH(I)Z(D)1—1(1)+S11~1 ~7—;1~!)+(] Hl(lu )’l))+%](1, H)W(Z’ 17 Bn)‘

The recursion (3) for the delay in I is as usual, but with one exception. As long as there
is work for both servers in II, the work in I will decrease at the rate of one unit per unit
time. However, as given by (3), whenever only one server is busy in II and a customer
arrives before that server has completed service, the sample path of work in I will jump
to increase the delay. A way of visualizing the dynamics is to imagine that, when only
one server is busy in Il, the server in I will serve at half the usual rate. This is depicted
in Figures 1 and 2, and discussed in Lemma 2. With this modification, whenever an
arrival finds a single customer in 11, the customer going to I will be delayed by half the
work found in system II. This ensures that the sample path of work in I is exactly
centered between W(2, 1, 7) and W(2, 2, r) when both servers are busy in II. We shall
prove these statements below.

Lemma 1. D,,(l)=D,l(2)+é(W(2, ,B)~W(2,2,B)); n=1,2,3,--

Proof. Let the lemma be true for n. If II has only one customer at time B,,,, then
the claim is true for (n+1) by (3). Else if II has emptied then so has I by the induction
hypothesis. Else,

D,.()=D,()+8,~T,=D,(2)+3(W(2, 1, B,)-W(2,2, B)+S,-T,
:%(( W(27 1’ Bn)m ﬂ1)+(W(29 23 Bn)+2Sn~ Y"n))
‘=D”+'1(2)+%A”+].

Lemma 2. When both servers are busy in 11, W(1,1, t)z%(W(Z, Lo+WwWQ2,2,n).
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Figure 1. Case 2(a) Tx, = Sk

Proof. Consider the time interval between the instant the nth customer enters service
in II until the next customer arrives. If both servers are busy in II during this time
interval then (D,(2)+2S,—T,) is non-negative. This implies (D, (1)+S,—T,) is non-
negative by Lemma 1. Therefore the sample path of work in both systems is a straight
line during this interval. Again using Lemma I, the assertion of Lemma 2 follows.

The work equalization construction adds the padded areas as defined in (2) to the nth
customer. Let ¥, be the instant the nth customer commences service in 1. With this
padding of areas, we have:

Lemma 3. By adding Zi_, 4, to the area under the work curve in I we guarantee

‘*}n n 2 \Pn
2 (J W, 1, nde+ A,,): Y J W2, i, dt.
0 i=1 i 0

=1

Proof. Because of Lemma 2, we need only be concerned when some server falls idle
in 1. There are two cases to consider.
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Figure 2. Case 2(b) Trq, < Sgy

Case (i) is when an arrival finds system II empty. In this case, at time C,_.(2),
W(Z, 1, C,_x2)) is twice as large as W (1, 1, C,_5(2)). So by (2), the padded area is set
to s W(2, 1, C,_»(2)).

Case (ii), when only one customer is found by an arrival in 11, is more complicated.
First, for notational ease, define:

28z =W(2, 1, C,_5(2)) =the residual work at the last departure instant in system 1II.
Triy= B, — C,_»(2) =the residual inter-arrival time since that last departure.

There are two subcases to consider, the first when Tk, is greater than Si, and the
other when this is reversed. Call these cases 2(a) and 2(b). In the Figures 1 and 2 we
assume that the nth customer on arrival finds one customer in II.

Case 2(a). Ty, 2 Sk, Refer to Figure 1. Note that the area padded has a rail
because the modified recursion in (3) creates extra work that has to be finished. The tail
area is termed the carry forward effect. The total area padded equals the area added to
account for the different service rate while only one server is busy in 1, called the area
added when the server is idle plus the tail area. These albeit loose terms help in fixing
the cause for the two components. The padded area is equal to
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%Slz{(l)+%(%SR(I)+SR(!)’—%TR()))(TR(I)hSR(I))‘{‘]E(SR(I)"‘%TR(I))Z

Uy ———
( 4) carry forward effect

1 12
-ESR(I)TR(U“gTR(l)‘

Case 2(b).  Tryy< Sk Refer to Figure 2. The area is now given by:
%TI%(I)‘*'%[(SR(I)—"%TR(I))E—(SRU)—TR(l))z]:%SR(l)TR(I)"%TI%H)'

(%)

carry forward effect

The time average work in II is given by (see Wolff (1989), for example):
(6) W2, D)+ W(2,2)=20wd2)+2,ES*.

Define £A =lim,_ . Xi_, 4;/B,, where EA is the unconditional expectation of the padded
area added as per (2). To compute the time average ‘work’ in I (in quotes because it
includes the padded area), the nth customer’s contribution to ‘work’ can be written as
S.(D,(2)+A,)+A,+57/2. But S, and A, are independent. Using this fact and applying
H = 4G (see WolfT (1989), for example) we can write the time average ‘work’ in I as

i

Bl! i
lim (J W, 1, Dde+ Y. An> | B,
0 i=1]

B /

(7
=MES(d2)+3(W(2, 1)— W(2,2)) + H(EA+ ES?/2).

Equating 2 times (7) to (6) by using Lemma 2, and manipulating: 21ES’=
AES?+2.EA+p(W(2, 1)— W(2, 2)), which gives

(8) W2, 1)~ W(2,2)=uES*—2uEA.
Remark. (8) holds for the GI/G/2 queue also.

The next step is to derive an expression for d(2) in terms of d(1). Using (6), (7), (8),
work equalization and PASTA we obtain:

2W(2,2) =, 2d(2)=2pd(2) + 2/ES?—uES*+2uEA,
which gives

JES? 1
21=p) 2(0—=p)

d(2)= [(u—A)ES*+2uEA]

©) N
:d(l)—<~;£ d(1)—uEA/(] -p)> .

Letpy=lim,_ . Zi., I{i, {)/nand p,=lim,_,,. ', I(i, 2)/n be the fraction of arrivals (equal
to the fraction of time) that see an empty II and a single customer in II respectively.
By equating the fraction of idle servers to the sum of these probabilities we get



262 SRIDHAR SESHADRI

(10) 2py+pi=2(1-p).
EA can be written, using these probabilities, as
3] EA=pyE(A, | case(0))+p, E(A, | case(1)).

Digression.  Let us check (9) for the M/M/2 case. In case (ii) the value of S, can be
written as (5 Txq+S). This allows us to write the area in case (ii) as s Tain +3STrg-
Therefore, the compensating factor for the delay in the M/M/2 queue can be written
using (9) as

~U-p) 2 2 u R W S B L B
p 20=pypt (A=p) [ \BQA+w2y  2u(A+w2)) u 40+ wW2)} |1+p
(12)

1 N (M/z + A+ ui2) + u2/4) 1 p 1

T w(+ 2y I+p  l+pu

which checks out correctly.

Next we show that the mean delay in queue in the M/G/2 system is smaller than that
in the M/G/1 system when the service time distribution has either the decreasing mean
residual life property (DMRL) property (i.e. E(S—1t/S>1) decreases in 7) or the NBU
property (i.e. (S—1/S>1)< S). Define S, and Ty, analogous to the definitions used
for case (1). Consider the terms other than the delay in the M/G/1 system in (9). After
simplification, we need to show that

(13) —3(1—=p)ES* + GpiESkayTry +00ESkoy — L0 ET ) <0.
For this purpose a lemma is required.

Lemma 4. Let X be a non-negative random variable with finite second moment and
distribution function G. Let Y be a random variable independent of X and distributed
exponential with parameter a. Then E[(XY —; YAI{2X 2 Y]+ E[X I{2X < Y}]SiEX?

Proof. After manipulation we must show that E[((X— Y)z——%Yz)I{ZX zYi]=0.
However standard integration yields

J [(x—y)—iy*lae~“dy
i}

=(1—e ™) (x*—2xla+2/a*) —[—2x%e ™ —2x/ae™ " + 1/a*(1 —e~2)]
2 (1 —e ) (x—1/ay’ =0.

Proposition 1. The mean delay in the queue in the M/G/2 system is smaller than
that in the equivalent fast single server system under DMRL or NBU service times.

Proof. Jofntly condition on whether case (0) or (1) occurs, i.e. isolate the last customer
in service in II. To be specific, if case (0) or (1) occurred when customer » arrived, then
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the last customer in service in II is the one who departs at time C,_,(2). Denote the
residual service time of this customer when a server in system II was last idle as 2S;.
To be specific, in the example above this is W(2, 1, C,_,). Let Tk (which is independent
of Sz) be distributed exponentially with parameter 1. Using Lemma 4, we obtain

(14) E((GSrTr—3 TR (Tr<2Sp) +; Sk I(Tr 2 2Sr)) <3 ESk.

Using the DMRL property and Proposition 1.6.1 in Stoyan (1983), or by definition of
NBU, we can bound the right-hand side of (14) by ; ES”. Similarly

(15) E(1S}| Tr=2Sp)<1ES”.

Using (14) and the fact that P(T,=2Sg) and P(Tx<2Sg) are in the ratio of p, and p,
gives
(%PI ESR(I)TRU)‘f‘%PoESJZe(o»—%PlET/zm))é%(Po'*‘Pl)ESz'

Unconditioning (15) gives: ;p, ESko <;po ES®. Adding these two inequalities and using
(10) gives (13).

3. The M/G/C system

In this section we use the work equalization construction to equate the work in the
standard M/G/C queue with that in a single server queue. The following definitions are
required for the C server system:

{T,} =1.1.d. sequence with 7; distributed exponential with parameter A.

CS, =service time for the nth customer.

{CS,} =1.i.d. sequence with S, having mean 1/u.

A= p=system load factor (assumed to be less than one).

B,=arrival epoch of the nth customer.

C,(C)=nth departure epoch. By convention quantities subscripted by zero or negative
numbers are set to zero.

D, (C)=delay in queue of the nth customer, when FCFS scheduling discipline is used.

d(C)=mean delay in queue.

W(C, i, t)=ith largest component of the work vector at time ¢ (under FCFS),
i=1,2,-, C.

W(C, C, t)=virtual delay.

V(C, t)y=total work in the system at time ¢.

W(C, i)=time average of W(C, i, 1), i=1,2,--, C.

V(C)=X, W(C, i)=time average work in the system.

W*(1, 1)=modified work at time ¢ in the single server system.

‘We shall be using a construction similar to the one used for the two server case to equate
the time average work in the C server system with that in a modified single server system.
However, instead of the detailed construction and justification (as in Lemmas 1 to 3)
we shall only indicate the main steps below. Let Z be an instant such that at time Z~
either (k+1) or (k—1) servers were busy, and at time Z exactly k servers are busy. This
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event can happen either due to a service completion or the arrival of a customer. Here
k can take values between 1 and (C—1). Each such value will constitute a case. Assume
that at time Z, W*(1, Z)=V(C, Z)/C. Let T, be the residual inter-arrival time at time
Z. For easier notation we shall let X = min[7,, W(C, k, Z)]. At time (Z+ X) the next
event, either a customer arrival or departure occurs. For equating the work in the single
and C server systems (and for continuing this construction) we shall be setting
W, (Z+X))=Zk, (W(C, |, Z)—X)/C. This (as in the two server system) will add
an extra area under the work curve of the single server system, which will be denoted
by A(k). To compute A(k) we need to consider two cases.

Case (). V(C,Z2)IC= X:

k

A(k)=—é(§j1 (W(C, i, Z)-%X)X) —(V(C,Z2)Ic-tx)x

f=

1

(16) +%{—5<i W(C, i, Z)-«X)J—~§(V(C, Z)IC—XY

C—k .
=== (V(C. Z)X—1kX?),

Case (it). V(C, Z)/IC<X:

k

A(k)=%(2 (W(C, i, Z)—%X)X) —iV(C, Z)IC?

i=

-

171 /& _
(17) +5[€(; W(C, i, Z)-»X)J

-k _iry?
==z (V(C. Z)X —1kx*),

We shall use EA(k) to denote the conditional expectation of the area A(k) given that
case k has occurred. Note that, as found in the two server case, (16) equals (17). Moreover,
the expression in parentheses in (16) is the area under the work curve during the time
[Z, Z+ X] in the C server system. This interpretation will be used in the following. Let,

I(k, i, n)=the indicator of the event that case (k) happened, and the next customer
to arrive was customer n who saw i customers in the system. Here i=0,1,2,---, k.

Then the expected value of the padded area EA, attached to customer n can be
written as

C—1C—1

(18) Ed,=Y Y EUAKIK, i, n))—}—ci] E(A()I(k, 0, n)).
i=] k=i k=1

Also define the time averaged (over the whole time line) area under the work curve
during the time when there are 1 through C—1 customers in the C server system, as
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(19) Ay= 4 ,Z'; B;EA()) (E:;)

where, f; =limy_, £, £/, I(j, i, n)/N and the subscript I is used to denote that this
1s the area when some server is idle. Note that the equality in (19) is from an application
of H= 4G, because the expression on the right-hand side of (19) is A times the customer
averaged area under the work curve as seen by an arriving customer when there are 1

through C—1 customers in the system. It follows from (18) and (19) that

Cc—1
(20) <~C—) A = JEA,.

By the work equalization argument (or by a constructive proof) we have that the
mean delay in the modified single server system is ¥ (C)/C, and the average con-
tribution to the area under the work curve by a customer is ( %ESZ—FEA” ). Therefore,
using H=1G,

V(C)IC=pV(C)IC+IES*+EA,)

@D < V(C)IC=d,+IEA,I(1— p).

Let the time averaged (over the whole time line) area under the work curve in the C
server system when all C servers are busy be Ay, where the subscript B stands for busy.
We have

(22) A+ Ay=V(C).
We also know that
(23) V(C)IC=pdc-+3CLES?.

If A4, is less than {C?ZES*(1—p) then from (23), i.e., the expression for ¥(C)/C, (20)
and (21):

V(C)IC=pd. +1CIES*<d, +1(C—1)AES?
<d- <d,.
On the other hand, if 4, 2 C*AES*(1 - p)/2, then from (22) and (23):
Cde < Ay < Cpde +1pC*AES* = d < (Cp)d,.

The first inequality follows from the fact that the total work in the system in the C
server system when all C servers are busy, when time averaged over the entire time line,
1s surely larger than Cd.. Thus we have:

Proposition 2. For the M/G/C system when the traffic intensity is less than or equal
to 1/C, the mean delay in queue d, is less than that in the M/G/1 system operating
under the same load.
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4. Conclusions

We have shown that the mean delay for the M/G/2 queue is smaller than that for the
fast server M/G/1 queue under the FCFS scheduling discipline and either DMRL or
NBU service time distribution. For the general M/G/C system we have a limited result
for traffic intensities smaller than 1/C, which strengthens the bound of Suzuki and
Yoshida (1970). We intend to extend this result using the work equalization argument
to show that, under the same load, the mean delay is decreasing in the number of servers.
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