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‘We present 2 method for obtaining approximations to the distribution of flow times of cus-
tomers in arbitrary queueing systems. We first propose approximations for uni-variate and
multi-variate distributions of non-negative random variables. Then using a closure approxima-
tion, we show that the distribution of flow time can be calculated recursively. Computational
results for the single server, multi-server and tandem queues are encouraging, with less than 5%
average error in the mean flow time in most cases. The average error in the variance of flow
times is found to be less than 10% for the more regular distributions.
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1. Introduction

In many applications understanding the transient behavior of queueing systems
is at least as important as obtaining steady state results. Examples of such applica-
tions in manufacturing include due-date setting, performing dynamic load calcula-
tions, predicting congestion levels based on changing resource availability and
computing exit time distribution of jobs based on current shop status. The lack of
tractable analytical models or approximations for analyzing transients is currently
a drawback; and to date, simulation has been the most convenient tool used for
this purpose. In this paper, we present a method for obtaining approximations for
the flow time of customers in an arbitrary queueing system. We first propose
approximations for uni-variate and multi-variate distributions of non-negative
random variables. Then based on a closure approximation, we show that the distri-
bution of the flow time can be computed in an arbitrary network of queues.

The problem of computing the distribution of flow times is known to be compu-
tationally difficult and there is a trade-off between accuracy of the results and the
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time required to obtain them. Manufacturing data is never exactly accurate. It is
also not useful to carry out calculations to greater degree of precision than the data.
So, we arbitrarily chose an error of £10% in the expected value of the flow time
and up to +£15% in the variance as acceptable in our context of due-date settingin a
manufacturing shop. But we required that the computing time should be signifi-
cantly smaller than that needed for simulating the system to obtain comparable
error bounds.

Closed form transient results for the single server queue have been known for
the special case of birth-death processes [6, p.53] and it is possible to work with
transforms and inversion techniques for characterizing transients in several var-
iants of the M/G/1 queue. However, obtaining the transform of say the number in
the system for the general GI/G/1 case is not possible. But by approximating the
service and arrival distributions and thereby working with a continuous time Mar-
kov chain we can obtain differential equations for the time dependent probabil-
ities. Because of the difficulty in working with a large system of differential
equations, researchers, such as Kotiah [7], Leese and Boyd [8], and Rothkopf and
Oren [13], have used approximations (truncation) of one form or the other to sim-
plify the calculations. These approaches numerically solve a system of differential
equations either directly or through transform inversion techniques. Such techni-
ques however do not meet our computational objective, as calculating the steady-
state distribution can itself take from several seconds to minutes on a computer.
Diffusion approximations have been used in transient analysis, extensively so by
Newell [12]. These approximations however need special traffic conditions before
they can be applied. Finally we are not aware of reported results pertaining to tran-
sient quantities in multi-server queues or general queueing systems.

We therefore wanted to devise an approximation technique for a general queue-
ing system, to compute the flow times of the first, second, third, . .. customers suc-
cessively, where each recursion uses just the additional information generated at
the previous step. This way the computational requirements can be kept minimal.
Secondly, we wanted the same algorithm to be applicable for different service and
inter-arrival distributions. So a primary requirement was to approximate distribu-
tions of random variables using a common functional form. There are two approx-
imation techniques available that can serve the purpose; namely through the use
of bi-lateral phase-type distributions [16] or the Laguerre transform [5]. However
we did not find ways to handle the calculations involved in keeping with the compu-
tational objectives set our earlier. Hence we have used approximation schemes
that are tailored to permit efficient calculations.

The basic ideas used in the proposed closure approximations are the assump-
tions: (i) of a functional form for approximating the distributions of random vari-
ables from limited and easily computed information; and (ii) that under the
operations of scaling, adding, finding extrema and computing the positive part of
random variables, the resulting distribution can be re-cast in the same functional
form. In this schema, a positive values random variable is represented as a mixture
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of a unit mass at zero, and two other random variables distributed as Erlang of sui-
table degree and rate. This representation is based on the first three moments of
the random variable and the value of the Laplace-Stieljes transform at the inverse
of the mean. For multi-variate distributions, we additionally use the covariance
matrix and represent the distribution as a mixture of independent vectors of ran-
dom variables, each component of which is distributed as Erlang of high degree. In
the uni-variate case we show that the relevant parameters can be obtained through
an efficient search procedure. In the multi-variate case, we use a pre-specified grid
and a linear program with a column generation scheme to obtain the representa-
tion. We have performed tests for the single server and tandem queues. The average
error in the expected waiting time for a wide range of arrival and service distribu-
tions was less than 5% in most cases and the average error in the variance was less
than 10% for the more regular distributions. However, the computing time appar-
ently increases exponentially with the number of random variables jointly approxi-
mated in a recursion. So our method as currently implemented is not competitive
with simulation for four or more random variables, for example the GI/G/4
queue.

The major drawback in applying the closure approximation is the time required
to compute transients in a system with four or more servers, and two or more
classes of customers. The main computational issue is solving the linear programs
for deciphering distributions in an efficient manner. Even here, it is not the linear
program itself, but the non-linear program that has to be solved for generating col-
umns, which takes most of the time. Improving the solution procedure for the
non-linear program is an area for future research. Secondly, the error generated by
the approximation needs analysis. Thirdly, it is possible to add a few more con-
straints to the linear program without significantly affecting the solution time.
Determining the nature of additional constraints that will improve the estimates of
the variance of the flow times is another area for future work. Finally, the methods
outlined in this paper need testing for priority queues and situations where there is
feedback. The presentation is in three sections, covering the single server, the
multi-server queues, and the tandem case.

2. Single server queues

We consider the standard GI/G/1 queue. The service time of the nth customer
is S, where the {S,} form an i.i.d. sequence of random variables. The inter-arrival
time between the n-1st and the nth customers is T,, where {T,} forms an i.i.d.
sequence. The closure approximation for uni-variate distributions is outlined in
this section and then the computational aspects of the recursion are given, followed
by numerical results.

The proposed closure approximation
We propose the following simple approximating scheme for non-negative uni-
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variate distributions that can be used to carry out the recursion in the manner men-
tioned above. We define a class = of random variables. = contains non-negative
random variables that can be expressed as a mixture of a unit mass at zero and two
other random variables with the Erlang distribution. Given X, ¥ € =, the follow-
ing properties are assumed:

A. Representation: The distribution of X can be approximated by a mixture of a
unit mass at zero and two random variables with the Erlang distribution.

B. Determination: The parameters of the mixture can be obtained from the first
three moments of X and the value of its Laplace-Stieljes transform (LST) at the
inverse of the mean of X

C. Closure: Under the operations of addition (X + Y), determining the positive
part of the difference ([X — ¥]*), computing the maximum or minimum
(max(X, Y), min(X, Y)), or scaling; the resulting random variable belongs to
E. In other words Z'is closed under the five operations.

The use of the first two moments and the Erlang distribution in approximations
is in no way new. For example see Sevcik et al. [15] and Shanthikumar and Sumita
[17]. The hyper-exponential form has also been used by Seelen et al. in producing
the Tables for Multi-Server Queues [14].

We include the unit mass at zero, because the positive part operation is critical
in carrying out the Lindley recursion [9] for the GI/G/1 queue. The Laplace-
Stieljes transform value helps in determining this mass, because a larger value indi-
cates a larger mass at zero. The choice of the point at which we evaluate the trans-
form has been dictated by computational convenience.

Finally, the third moment has been included to control the variance. For exam-
ple the variance of the steady state delay in the M/G/1 operated under the FCFS
discipline depends on the third moment of the service time distribution [19,
p.394].

We test the closure approximation in the experiments described below. In one
set of cases we begin with service and inter- arrival time distributions in the class =
and use the closure assumption to calculate the flow time distributions of succes-
sive customers. In another set of experiments, we first approximate the distribution
of the service and inter-arrival time by using the representation of this class, and
then use the closure approximation.

Computational scheme for single server systems

There are two parts to carrying out the recursion for the GI/G/1 queue. At
each stage we need to decipher the parameters of the delay distribution. Once the
distribution is deciphered, the calculations for the next step in the recursion need to
be carried out. In deciphering a distribution say of a random variable X, we are
given the first three moments, EX, EX? EX3 and the value of the LST at the
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inverse of the mean, LSTx(1/EX). For notational convenience we shall call these
four dataitemsa, b, ¢, and d. The form of approximation sought is either

X~ —a—0)Up+a-Ee(r) + B+ E(r)

or
X~ -a-p0)Uy+a-E(r)+ B-Es),

where Uj represents a unit mass at zero and Ei(r) the Erlang distribution of degree
k and rate r. The form chosen will depend on the one that gives the minimum error
for the third moment. A search scheme is used to determine the parameters «, 3,
and k. The computation proceeds as follows:

ALGORITHM FOR DECIPHERING A DISTRIBUTION GIVENa, b,d, ANDd

Step 0: Select an error limit for the third moment (e). Select a step 4. Set
err = 1000 and op = 0.
Note: oy is the current value of (1 — a — 3). §is set to 0.01 usually.

Step 1: Dowhileerr>4; :
Step 1.1: Normalize the moments and value of the LST using oy, i.e. by set-
ting f =1 ag;a1 = a/f;b1 = b/f;¢1 =c/f;andd; = (d — ) /f.
Step 1.2:Setz = b;/ af. If z>2; thendo step 1.4. Else
Step 1.3:Setk—1=1,2,3,...,10. Compute the error in the LST value.
Choose the k that minimizes the error in the LST value. Go to step 1.5.
Note: We allow the degree to be at most 11 and also require k<z/(z — 1).
The calculations are: x =k/z; y = (2 — x(k = 1))*%; n=1 -k +x+y;
and if n< 1 then trial = x + y; test = (trial/(trial + 1))*™" - k/(trial + 1);
error = |(d; — test)/test|
For the k that gives minimum error; set a = (1—15)-f; 8=n-f; and
r=(k—1+4+n)/a
Step 1.4: If di>z/(z+2)ord<0.5 go to step 1.6. Else; p=1/a;;
o=2z/2~d-(z/2+1);x=2-p?-d; — p?)/o;y = b1 - x/(2a1) + p;
root = (32 — 4x)"7; rootl = (y + root)/2; root2 = (y — root) /2;n = (a1 -x
—rootl) /(root2 — rootl).
Seta=n-f;6=(1-n)-f;r=root2;s =rootl andk = 1.
Step 1.5: Compute the error err in the third moment.
Step 1.6: a9 = o + 6.
Enddo;

Step 2.0: Output the result.

END

It can be shown that we always obtain a suitable representation. However the
value of the step size, 6, would need to be small and the starting value of oy set close
to one for some extreme cases. The choice of § = 0.01 sufficed for determining the
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parameters of all the distributions of service and inter-arrival times reported in
this paper.

For the second part of calculations, let D, be the delay in queue of the nth custo-
mer. Then we have Dy = 0; and

Dpp1 = [Dp+ Sy~ To]Y, n=1,2,3,....

The convolution is straightforward. To compute the positive part, it is enough to
consider the case [Y — X]*; where X is distributed as Ey (r) and Y as Ej(s). For cod-
ing purposes, it is easiest to work with the generic integral:
] xk—l I‘k 0 yl—-l sl
— —~rX S P a8y
L(k,r,1,s) /0 T : e dydx.

The first integral is with respect to the inter-arrival distribution. The second
involves the remaining work at the queue. Both the distributions are Erlang and are
of suitable degree as well as rate. Using a function that returns the value of 1,, we
can calculate the moments of [¥ — X]*, and also the value of the LST}y_y+ at the
inverse of the mean. For example, the first moment and the value of the transform
are given by

E(Y -X)" =§Ip(k,r,l+ 1,s) -I;I,,(k+ 1,r,1,5),

E(e"M(Y—X)+) = <(r : ,u,))k<(s :_ #))llp(k, r—pl,s+p).

When computing the value of the transform, suitable modifications are required
to guarantee against overflows. The overall algorithm for the GI/G/1 case is as fol-
lows:

ALGORITHM FOR THE GI/G/1 RECURSION

Step 0: Set D; = 0; number of customers = N;i = 2.
Step 1: Dowhilei<N
Step 1.1: Decipher the distribution of D;_;.
Step 1.2: Compute the first three moments and the transform value of
D;=[Di +S-T]".
Step1.3:i:=i+1.
Enddo.
END

Numerical results for the GI/ G/ 1 case

The algorithm for the GI/G/1 queue was coded in 77 and implemented on the
network of SUN machines in the Industrial Engineering and Operations Research
Department, U.C. Berkeley. The numerical results for different service and inter-
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arrival distributions are shown in table 1. The distributions with squared coeffi-
cient of variation (scv) greater than one are hyper-exponential. The formula used
for the distribution function of a hyper-exponential random variable T with scv Cc2
is (cf. (15)in[17]):

PIT<t]=1-aexp{—rt} — (1 —a)exp{—st}, 1>0;

‘1=%(1*\/(C%—1)/(C%+1)); r=%; S=——-——~2(2;a).

The calculations for the first 200 customers took less than 8 seconds in all cases.
The running time for the simulation was four to five minutes on the average for
10000 replications. Note that the flow time distribution had to be tracked in the
simulations. The simulation results in table 1 are based on 10000 replications. The
columns give the mean of the expected waiting time (W) and variance of the wait-
ing time (var(W)) for the last ten customers. Note that we obtain an approximation
to the steady state value for the cases where the load (p) is less than 0.5. In the exam-
ples given in the table, the queues have not yet stabilized when p = 0.9. The mea-
sure of error we have used is the mean absolute deviation of the computed values
from the simulated ones over all the customers. The error in the expected waiting
time is less than 2% in all but one case, where the error is 2.524%. The error in the

Table 1
Transient flows in the GI/G/1 queue.
System Mean W last ten ® Mean % Var(W) last ten ® Mean %
abs abs
Simul. Comput. error Simul. Comput  error
M/M (tho= 0.5) 2.04+0.06 2.00 1.48 405+ 0.59 3.99 1.60
M/M (tho=0.9) 1556 £0.43 1548 1.13 205.05+ 2775  216.41 4.66
M/E; (tho= 0.5) 1.78+£0.04 175 1.47 2.08+ 0.33 194  4.68
M/E; (tho= 0.9) 12.65:£0.34 12.80 1.33 127.524+ 17.88  118.63 3.07
M/CS4 (tho=0.5) 3.48+0.16 3.50 1.35 29.18+ 4.36 2996  2.23
M/CS4 (tho = 0.9) 28.49+0.89 28.13 1.21 870.50:£121.59  913.49 3.20
M/CS8 (tho = 0.5) 5.534+0.30 5.50 1.67 102.76 + 14.49 99.79 342
E,/E4 (tho=0.5) 1.30+£0.02 1.28 1.95 056+ 0.11 056  3.99
E,/E4 (tho= 0.9) 7.40+0.19 7.52 1.08 4063+ 6.14 32.61 1048
E,/CS2 (tho=0.5) 2.13+0.08 2.08 1.99 7.694+ 1.11 6.68 1081
E,/CS2 (tho = 0.9) 17.714+0.54 17.73 1.74 329.51+ 43.72 34798 645
CS2/CS4 (tho=10.5) 4.19+0.19 4.08 2.00 39.54+ 5.60 3730 3.16
CS2/CS4 (tho=0.9) 36.29+1.11 36.08 1.76 1372.64£172.69 146429  6.64
CS4/CS8 (tho=0.5)  7.314+0.36 7.19 1.97 147.44+ 2045  141.57 3.52
CS4/CS8 (tho=0.9) 56.99+1.78 55.41 2.52 3502.644+438.98 366334  3.02

2) CS2, CS4 and CS8 stand for scv of 2, 4, and 8.
) 999/, confidence intervals are also averaged over the last ten customers.
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variance is less than 7% in all but two cases, in which it is less than 11%. The approx-
imation is therefore seen to be robust over different load conditions and for differ-
ent values of the squared coefficient of variation of both arrival and service
distributions. Figures 1 and 2 show the plots of the waiting times and variance of
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the waiting time for two cases where the load is 90%. The simulated values and
the confidence bounds are plotted along with the computed values. The slow rate of
convergence to the steady state values as seen in these plots is an important reason
for conducting transient analysis of queueing systems.

3. Multi-server queues

In this section, we consider the standard GI/G/C queue, operating under the
FCFS discipline. The main result in this section is the proposed approximation for
multi-variate distributions and the resolution of computational issues in obtaining
the approximate distribution.

Firstly, the GI/G/1 queue is known to be a difficult problem area (for example
see the discussion related to the PH/PH/C system in [11]. A review of the approxi-
mations and exact results for steady state quantities is given in Hoorn and Seelen
[3]). We are not aware of any results pertaining to transient analysis of this system.
Secondly, there are no suitable approximations in the literature for multi-variate
probability distributions. For example, in the bi-variate case, Gumbel’s bi-variate
exponential distribution [2] allows a range of correlation between —0.40365 and 1,
and the Marshall and Olkin bi-variate exponential distribution [10] only positive
correlation between the two variables. In fact, most bi-variate extreme value distri-
butions suffer from this drawback (see for example chapters 40 and 41 of Johnson
and Kotz [4] and chapter 8 of Springer [18]). The multi-variate phase-type distribu-
tions are conceptually the extension to the uni-variate phase-type distributions
(see Assaf et al. [1]). But it is not easy to obtain a representation given the data for a
distribution.

However, the multi-variate phase-type distributions provided the idea for the
proposed scheme given below. Consider the representation of the remaining work
vector in the GI/G/C queue. If we intend to use the usual GI/G/C recursion [19,
p.494], then the vector should be maintained in an ordered fashion. The phase-type
representation of this vector will then be in the form of a rate matrix with blocks
on the diagonal. Therefore it seemed reasonable to seek an approximation of the
work vector W of say C components, in the form of mixtures of vectors of indepen-
dent random variables distributed as Erlang of suitable degree and rate. For-
mally,

W = (Wl) WZ:"‘aWC)T = Zaj'(levXZja"'7XC})T’
J

where
X ~ Eyj(r;) or X;~ U, and Zaj =1.
J

From a density type of argument, keeping the degree of the Erlang distributions
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the same and very large seems preferable (k; = k;, > 1). With this motivation, we
propose the following closure approximation.

Closure approximation for multi-variate distributions

Define a class A of multi-variate distributions on the non-negative orthant that
have finite moments up to the order three. Given X and Y e A, with support on the
non-negative orthant of R, the properties assumed for this class are:

A. Representation: On a suitable grid G* = [(a11,a12, - - -,au) X (a21,a22, - - -, ay)
X ... % (@1, @2, - - -, k1)), X canbe written as a mixture of vectors of Erlangs of
degree m with mean a;; (or a unit mass at zero). The formal representation is:

1
1 1 1
XNE aj* | Ex{l— |, Emnl— |, -  Em|—] )
- ail 7] Aik

where with some abuse of notation, the E,(.) represent independent random
variables distributed as Erlang of degree m and corresponding rates. If the
mean is zero (infinite rate), then we have a unit mass at zero.

B. Determination: The distribution of X can be obtained from the first three mo-
ments, the value of the LST at the inverse of the mean and the co- variance ma-
trix of the components of X

C. Closure: The class A is closed under scaling, addition, taking the positive part
and computing extreme values, similar to =.

Assumption A is based on the reasoning given previously. Assumption B is in
the same spirit as B for =. And C permits the recursion. The degenerate distribu-
tions satisfy the closure assumption. And multi-variate normal distributions can be
approximated by this class and could satisfy the closure assumption as a good
approximation. The empirical evidence given below shows that these assumptions
lead to a good approximation for the remaining work vector in queueing systems.

Computational scheme for multi-server systems

The number of grid points will need to be reasonably large to permit this scheme
to work for any arbitrary distribution. Even with just 25 points per dimension, the
number of points in the grid becomes very large for small k (the number of dimen-
sions). Leaving alone the problems of efficiency, we have far fewer constraints
than variables for fitting a given distribution. It was this consideration that led to
the use of a fixed grid as against allowing the grid points to be parameters. We can
use an optimization approach for determining the probabilities ¢; in any case. But
with a fixed grid, linear programming can be used. This gives two advantages,
namely, a good algorithm (permitting column generation) and a compact represen-
tation. The latter because the basic solutions to the linear program given below
have at most (1 + 4k + k(k — 1)/2) non-zero components. Lastly, experiments
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with the degree m of the Erlang distributions, convinced us that but for a problem
with stability (discussed later), we can use point masses in the approximations. The
details of the linear program and the column generation scheme are given in the
next subsection. And following that we discuss the recursion.

Deciphering a given distribution

We are given data on W a k-dimensional non- negative random vector. The data
consists of the first three moments (EW;, EW2, EW}?,i = 1,2,...,k), the LST value
of each component at the inverse of the mean (LSTw,(1/EW;),i =1,2,...,k),and
the product-moment matrix (EW;W;,i =1,2,...,k;j=1,2,...,k; i #J).

We construct the grid G* on the rectangle ([0, u1] % [0,u2] X ... x [0,u4]), where
theu;,i = 1,2,...,k, are pre-specified constants. There are p points in the interval
[0, 4;] and these are equally spaced. Thus the points in the grid are:

(xl,inx2,iz’ ce 7xk,ik)7 i11i21 .. 7ike{172, s )p}’

xj,1=0§ (xj,l—'xj,l—l):uj/P7 j=1,2,...,k, l=2,3,...,p.

We shall index these points as {1,2,...,p}. Let N = p*. The point with index j
has coordinates {j1, s, - - .,k Obtained from the expansion of j in the base (p). The
linear program on this grid, P(G, W), is set up to minimize the fitted error in the
third moments and the values of the LST. We found it convenient to use the given
values of the third moment and LST as upper bounds. The program can then be
written as:

k
P(G,W): Min Z(Sy + 84)

=]
N
st. (DY yn=1
n=1
N
@Y X yn=EW, j=12,... .k
n=1
N
(3)ijz,n]yn=EW,21 j:172"--7k
n=1
N
DY x5, yntsy=EW;, j=12,... .k
n=1

N
EW, 1
(5)§:e"%f/EWf-y,,Jrs,,-:LSTm(W), j=12..k
J

n=1
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N
O % 51m-yn = EW; Wi, 1=1,2,.. i #1

n=1
and Y1,V > Vi 531,532, - - - S35 811,802, - - -, Sk 2 0.

This linear program has typically far too many columns than rows. So a column
generation scheme was devised to speed up the solution process. The procedure
begins with artificial variables assigned to constraints (1), (2), (3) and (6). These
and the slacks in (4) and (5) constitute the initial solution. Let B be the current
basis. Let the costs of the variables in the current basic solution be Cg. Then
Cg - B! is the vector of row multipliers.

To find an entering variable (if one exists) that will improve the solution, we
need to find a point j in the grid such that

CB -Bnl -aj_<0,

where, the elements of a;. are obtained from the coefficients in the constraints (1)—
(6). It is possible that one of the slacks is a good choice of an entering variable, in
that case a suitable modification is made. To obtain the index j; we solve a non-lin-
ear program, P,(Cg - B~1, G¥):

Py(Cp-B~,G¥):argminj:[Cp- B -q; :je{l,2,...,N}].

A grid refining method is adopted in the search procedure used for solving Py.
Experience in solving the problem P, indicates that the following are crucial to
obtain a solution within 100 or less iterations when k = 3:

Scaling: Suitable scaling of the right hand side (rhs) coefficients in (2), (3), (4)
and (6) improves the rate of convergence to the desired solution. We found that
scaling the rhs of variable j by the maximum of [(E sz)l/ 2 (E Wj3)1/ 3] gave good
results.

Upper Bounds: The upper bounds »; need careful setting. In the implementa-
tion they were set at the value of the mean plus three times the standard deviation
and in some cases to five times the standard deviation, when the linear program
did not converge within 300 iterations.

Tolerance: Finding the optimal solution to the linear program is too time con-
suming. So, the linear programs were not solved to optimality. Instead a toler-
ance level, in terms of the percentage error with respect to the starting value of
the objective function, was specified. The values used were 0. 1% and 1%. Thelat-
ter was used if the linear program did not converge with the initial conditions
(see below).

Number of sub-divisions p: We found that using 25 subdivisions gave the best
trade-off between accuracy and running time.
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As can be seen from the discussion, the process of deciphering the distribution
is not simple as in the case of uni-variate distributions. The linear programs nor-
mally converge within 30 iterations for & = 2, and 80 iterations for k = 3. 80-100
iterations imply that the approximations were taking almost as much or more time
to calculate as doing simulations; and so in keeping with out initial objectives we
restricted the numerical experiments to k less than or equal to 3. The overall algo-
rithm for deciphering a multi-variate distribution can now be stated.

ALGORITHM FOR DECIPHERING A MULTI-VARIATE DISTRIBUTION

Input: The first three moments, LST values, and covariance matrix of a k-dimen-
sional r.v. The number of sub-divisions p, upper bound factor f,,, and tolerance % e.
Also scale factors s, and s, to be used if the linear program was found to be infeasi-
ble or did not converge within 300 iterations. Finally a tolerance level § for the
non-linear program (usually set to 10~7).

Step 0: Scale the right hand sides of (2), (3), (4), and (6) as discussed under scal-
ing. Create the initial basis, the starting solution (by adding artificial variables)
and compute the initial value zg of this solution. Note: The artificial variable cor-
responding to (1) was given a weight of 100 and those associated with (2), (3)
and (6) a weight of 1 in the objective function. Set Flag= 0.

Step 1.0: Do while the number of iterations less than 300; and the current value
z of the objective function is greater than €% of zy.
Step 1.1: Calculate C.B~!. Check if any slack variable can enter the solu-
tion. If not,
Step 1.2: Solve the non-linear program P, and if the solution is > 4§ do step
1.4. Else,
Step 1.3: Increase the upper bounds temporarily by a factor of 1.25. If the in-
creased bounds are less than s,.f, thendo step 1.1. Else do step 3.
Step 1.4: Revise the basis, the basic solution and value of the objective func-
tion.

Enddo
Step 2: Output the solution and return.

Step 3: If Flag= 1, then return “Problem infeasible”. Else revise the factors f,,
and the error tolerance by s, and s,.. Set Flag= 1. Do Step 1.

END

GI1/ G/ C recursion calculations
There are two different recursion schemes available for determining the remain-
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ing work vector in the GI/G/C queue. In the first one, we simply keep track of
which queue the arrival joins. This scheme was tried and did not do very well. The
other scheme involves keeping the work vector in an ordered fashion. This proved
to be better as it gave lower error in the approximated mean flow times. As in the
case of the GI/G/1 queue, at each stage we have the representation of the work vec-
tor. The basic data required for the next step are the three moments, the LST values
and the product moment matrix. Once this data has been obtained, it can be fed
into the linear program to get the representation, etc. To obtain this data, it is ade-
quate to consider the generic integral:

x —lrk
= Y ~ry
I(k,r,x) _/0 = 1)!6 dy

The integral is with respect to the inter-arrival distribution. As per the closure
approximation, the remaining work is a point mass (at x in the integral above).
Once this integral has been coded, computing the moments and LST values is
through suitable calls to this function. Observe that by using point masses in the
approximation, it is only required to sort the representation of work to keep the
vector of work ordered. This was the basic consideration that led to the choice of
point masses. This has certain drawbacks as explained in the following section. The
details of the overall algorithm for the GI/G/2 case are given below. The general
case is similar.

ALGORITHM FOR THE GI/G/2 QUEUE

Input: The first three moments and the LST value at the inverse of the mean for
both the service time S and the inter-arrival time T distributions, the number of
customers N, and the tolerance specifications required for solving the linear pro-
gram,

Step 0: Decipher the distributions of the service and inter-arrival times using the
three moment approximation used for the GI/G/1 queue. Initialize the work vec-
tor W1 as (S,0). Note: The linear program is difficult to solve with one variable
having too small a mean. So for small values (less than 0.001) of the mean we set the
random variable equal to one that is exponentially distributed with mean 0.001.
Seti=2.

Step 1: Do while i< N;

Step 1.1: Decipher the work vector W#~! using the linear program. Note: The
outputis at most 10 pairs of numbers, i.e. point masses, and the probability asso-
ciated with each pair. Let the number of pairs be n, the associated probabilities
pj, and the numbers themselves (x;,y;),j = 1,2,...,n.
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Step 1.2: For each pair of point masses (x;, y;), order the pair as (s,/) (small,
large); and computer the first three moments of (s — 7)* and ( — T)" using sui-
table calls to the generic integral. Then compute the value of LST(,_g+(1
/(E(s — T)*)) and LST;_5+(1/(E(I - T)™)), again via the same type of inte-
gral.

Step 1.3: Add the service time Sto (s — T)" using the approximation technique
for uni-variate distributions.

Enddo
END

Numerical results for the GI/ G/ 2 and GI/ G/ 3 queues

The results for the two server and the three server queues are shown in tables
2(a) and (b). The format is the same as that of table 1. The mean absolute percen-
tage error in the computed expected waiting times (W) of customers is less than 8%
in all but two cases. The largest errors of nearly 14% are in the case where the ser-
vice distribution has an scv of eight and the inter-arrival distribution an scv of four.
As for the variance of W, the mean error is less than 15% in almost all cases. The
exceptions are in the two cases mentioned above and also for the uniform distribu-
tion. With the uniform distribution (for the service time) we get a large error in
the computed variance because the service times were approximated as Erlang dis-
tributions and so have a larger third moment. However the accuracy of the
expected flow times does not get affected.

Some of the error in the variance is due to the tolerance levels set for the linear
program. With very large third moments, there is a gradual loss in precision as the
iterations progress. For the more variable service distributions, we have tried to
correct the variance alone by scaling the point masses (usually up) to avoid loss of
precision. This possibly accounts for the larger variances in these instances.

Figures 3 to 5 show the plots of the expected waiting time (W) and variance of
W versus the customer number for typical cases. Another problem becomes evident
from these plots, the delays do not increase monotonically. This is termed instabil-
ity and has been referred to in two places earlier in the paper. We have used solid
lines in the figures to show the computed values to highlight this problem. One rea-
son for this instability is the use of point masses in the approximation. Preliminary
testing with Erlang distributions of degree eight instead gave better results. The
other reason for the instability is that we are not solving the linear program to
optimality. The instability becomes more pronounced towards the end, when the
queues are beginning to stabilize and the errors tend to compensate each other;
thereby causing the swings. In fact, this self-correction is so important that when
we tried to solve the successive linear programs starting with the solution obtained
in the previous iteration, the mean waiting times kept increasing. A final observa-
tion in this regard is that a smooth curve drawn through the calculated values will
track the simulation results rather well.
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Table 2(a)
Transient flows in the GI/G/2 queue.
System Mean W last ten ® Mean % Var(W) last ten Mean %
abs abs
Simul. Comput. error Simul. Comput error
M/E; (tho=0.5) 1.26+0.03 1.29 1.70 0.76 + 0.12 0.83 7.49
M/E; (tho=0.9) 6.42+0.16 6.57 1.91 2821+ 4.18 34.78 15.73
M/M (rho = 0.5) 1.33+004 136 1. 60 147+ 0.21 1.48 2.56
M/M (rho = 0.8) 4244012 432 1.87 1518+ 2.16 16.51 9.06
M/UNI (tho=09) 12444030 11.81 4.57 96.86 + 14.76 118.21 2222
E,/E; (tho= 0.9) 4924012 481 1. 89 15474 2.36 13.59 9.80
E,/E4 (tho=0.9) 418+0.09 4.39 4.91 886+ 149 9.51 9.50
M/CS4 (tho = 0.5) 1.75+0.08 1.64 5. 00 7.82+ 1.38 6.37 13.56
M/CS4 (tho = 0.9) 13.07+042 14.15 5.92 199.47 4 25.06 250.67 20.24
CS4/CS8 (tho=0.9) 20.89+0.71 21.62 14.40 543.04 +66.71 618.36 11.45
) CS2, CS4 and CS8 refer to scv of 2, 4, & 8; and UNI to the uniform dist.
b) 999, confidence intervals are also averaged over the last ten customers.
Table 2(b)
Transient flows in the GI/G/3 queue.
System @ Mean W last ten ® Mean % Var(W) last ten ® Mean %
abs abs
Simut. Comput. error Simul. Comput error
M/E; (rho = 0.66) 2.65 + 0.06 2.67 221 338 + 0.55 3.30 6.19
M/E; (tho= 0.90) 6.94 + 0.16 7.19 4.15 2848 + 4.39 34.27 11.48
M/M (tho = 0.66) 2.85 £ 0.08 2.89 3.03 652 + 092 6.33 9.03
M/UNI (tho=0.90) 6.69 + 0.15 7.26 5.74 2348 £ 3.78 28.74 20.27
E,/CS2 (rho = 0.66) 2.87 4+ 0.10 3.03 5.75 11.76 + 1.98 11.70 7.25
E,/CS2 (tho = 0.90) 8.83 + 0.27 8.76 4.13 77.76 £ 10.37 74.68 8.50
E,/E4 (tho = 0.66) 2.26 £ 0.03 2.24 1.57 131 + 0.28 1.26 4.57
E»/E4 (tho = 0.90) 485 + 0.09 5.08 4.06 9.19 + 1.68 9.26 591
CS2/CS4 (tho=0.66) 4.30 + 0.18 4.31 7.78 3581 £ 5.77 33.92 11.91
CS2/CS4 (tho=0.90) 14.29 + 0.46 14.99 6.67 23240 + 29.59 21211 11.80
CS4/CS8 (tho=0.66) 5.80 + 0.28 6.32 13.12 88.02 + 15.20 96.15 21.38
CS84/CS8 (tho=0.90) 19.57 + 0.68 19.87 6.87 518.72 £+ 6542  499.72 14.16

3 CS2, CS4 and CS8 refer to scv of 2, 4, & 8; and UNI to the uniform dist.
Y 99%, confidence intervals are also averaged over the last ten customers.
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Instead of directly trying to improve stability, we are now working towards
speeding up the solution to the linear program. To calculate the flow time distribu-
tions of 200 customers for the GI/G/2 queue now takes about 5 minutes; and for
the GI/G/3 queue about 25 minutes. Almost all of the computational work is in
solving the linear programs.

4. Tandem queues

In this section, an outline of the computations in the case of a tandem queue is
given. The system consists of poisson arrivals to a single server queue that feeds
work to a two-server queue. The FCFS discipline is used at both queues. The inter-
arrival time between customers n and n+ 1 to the system is 7,,. The service time
sequence at the first queue (#1) is {S,, ,n=1,2,...,}, where the S( ) arei.i.d. ran-
dom variables. Similarly, the service times sequence at the second queue (#2) is
{S,, ,n=1,2,...,}. The two sequences are independent of one another. The delay
D§, ) of the nth customer at queue # 1 follows the usual recursion:

DY =P +s0 - Ty D=0, n=1,2,...,

The delay D of the nth customer at queue # 2 will depend on the idle time at queue
# 1. The recursion for this quantity can be simplified by writing out the inter-depar-
ture times from queue #1. Let T,sl) be the inter-departure time between the nth
and the (n + 1)st customer from queue # 1. Then the delay at queue #2 can be calcu-
lated once these quantltles are known, by using the GI/G/2 recursion equation.
Unfortunately, the T, ,S )>sarein general no longer independent of one another. The

P

equation for 7’ in terms of “known’’ quantities is
T, = max[SO, (DY + 5O - T,)7 1+ 88, TV =850, n=1,2,....

Let (R, 1, R,2) be the remaining work vector at queue #2, after the nth customer
has joined that queue. If the joint distribution of DY and this vector is known, then
the recursion can be carried forward for the entire system. (In general, if the joint
distribution of the remaining work at the arrival epochs (to each queue) is known,
than the recursion calculations are quite simple.) With this idea in mind, we can
“reduce” the entire computational work to the evaluations of two generic integrals.
The first integral has to do with the work at queue # 1 and is given by

wl o k-1 o yl—l
i 1) = —-rx -5y
IT,l(k:ra $, W ) /0 (k_l)le A (Z_l)'e dydx

[o] xk—l o] yl-l
— —pX A —Sy
*/wl CEDN /o A

where w1 is the work (a point mass at wl) at queue # 1 after the last customer joined
that queue. The first integration in each of the repeated integrals above is with
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respect to the inter-arrival distribution. The second integration accounts for the
service time at queue # 1.

Similarly, if (1, r2) is the work vector at a server in queue # 2 after the last custo-
mer joined it, then the second generic integral is

wl -1 n yl-l
—_ —rx —sy
Ira(k,r,1,5,11) /0 (k—l)!e /0 _——(l—l)!e dydx

ri+wl xk-l ry+wl-—x -1
—rx Y —sy
A= A = TR

where wl is the remaining work at queue #1 and r) represents a component of the
work vector at queue #2. The integrators are the same as in I7 ;. When the inter-
arrival time is smaller than the remaining work at queue # 1, there is no idle time.
Therefore the first part of the expression in I7;. When there is idleness, the inter-
arrival time to the second queue is larger by that amount, and so the rest of I fol-
lows. (This last expression is cumbersome and involves a binomial expansion
when the algebra is written out in full. There is another form of the recursion for the
tandem queue; that involves two approximations using the linear program for
each recursion. The resulting form is easier to code, but requires more running time
on the computer.)

The detailed algorithm for the tandem queue is similar in structure to the GI/
G/C routines; therefore only the numerical results are given. Table 3 shows the
results for a few test cases. In all the systems tested, the mean absolute error in the
expected total flow time through the system, W, was less than 5%. The correspond-
ing errors at the two queues are shown alongside. The error in the expected flow
time at the single-server queue was less than 2%, in keeping with the GI/G/ 1 results
given earlier. The contribution of error from the two-server queue, is larger (4—
8%). The variance of flow times, Var(W), has a mean error between 9 and 25%.
However, the worst case occurs when the service time distribution at queue #2 has
an scv of 4, and is shown in fig. 6. The larger values of error are also due to the cor-
rection we have made to retain precision (see the discussion in section 3).
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