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Abstract

We detail the basic theory for regression models in which dependent variables are censored

or underlying distributions are truncated. The model is extended to models for counts, sample

selection models, and hazard models for duration data. Entry-level theory is presented for

the practitioner. We then describe a few of the recent, frontier developments in theory and

practice.
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19.1 Introduction

The analysis of censoring and truncation arises not from a free-standing body

of theory and economic/econometric modeling, but from a subsidiary set of results

that treat a practical problem of how data are gathered and analyzed. Thus, we

have chosen the title ‘‘Censored Data and Truncated Distributions’’ for this

chapter, rather than the more often used rubric ‘‘Limited Dependent Variables’’
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(see, e.g., Maddala, 1983) specifically to underscore the relationship between the

results and this practical issue. The results that we examine here arise because

otherwise ordinary data are censored between generation and observation. Like-

wise, truncation arises because of something the analyst or the sample-generating

mechanism specifically does to the data-generating process that produces the data

in hand. Formally, censored data arise through a transformation of a variable of

interest, say y�, through the many to one transformation y¼T(y�). (It is the data on

y� that are censored.) Perhaps the most familiar example is the latent regression

interpretation of binary choice; e.g., where y
�

designates a one-dimensional

representation of a voter’s preferences and y denotes which of two parties the voter

chooses in an election, so that Tðy�Þ ¼ 1ðy� > aÞ; an analogous representation

might describe labor force participation y as a reflection of y�, the difference

between an underlying (and unobserved) reservation wage and an offered wage.

Truncation likewise is a feature of the data-gathering (as opposed to -generating)

mechanism. When data are drawn from a clearly defined subset of a larger

population, the probability distribution that applies to the observed data will arise

as a conditional distribution within that of the larger population – hence the

‘‘truncation’’ will usefully be analyzed in the framework of conditional prob-

abilities. Consider, for example, modeling the probabilities of visits to recreation

sites based only on individuals who visited those sites at least once. Likewise, we

consider modeling family size by analyzing only families with at least one child.

In this instance, while we might have interest in the characteristics of the popu-

lation at large, f(y�), what we have direct access to via familiar tools to f ðy�jTðy�ÞÞ,
the relationship between this and f(y�) remains to be established.

This chapter will survey the basic theory and a few recent developments in

models based on censoring and truncation. It has numerous precedents, notably

Maddala (1983) and Dhrymes (1986), as well as numerous more recent treatments

such as Long (1997) and DeMaris (2004). Terra firma in this literature is the

classical linear regression with normally distributed disturbances; indeed, most

of the early development focused on this exclusively. Standard analyses examined

the (undesirable) properties of least squares and the (more desirable) behavior of

the maximum likelihood estimator. More recent treatments have examined less

fragile specifications based, for example, on semiparametric specifications. We are

also interested in models that extend beyond the linear regression platform, such

as models for counts, ordered choice, and so on. We begin on terra firma, with a

review of the firmly established results in the standard models. As noted, we are

interested in more robust model specifications and estimators. We will also

examine the special features of applications to panel data. This being an applied

literature at its core, we will also be interested in the situations and modeling

frameworks that give rise to problems of censoring and truncation.

We need to draw two distinctions to define the analytical arena of interest in this

survey:

(a) The estimation and inference problem. Interest will be on a specific class of

models, defined by the conditional density of a response variable y, conditioned
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on a set of variables x and unobservable characteristics, e. The problems

analyzed here arise from censoring, truncation, or selection with respect to y, not

x, that is, ultimately, on the unobservables, e. Since the model is defined with

respect to the conditional distribution, problems, though they may apply to

observed data on x, will not affect our estimation problem, since the conditional

model will apply to the observations that remain. Problems such as they are will

apply to analysis of the marginal distribution of x, but that will generally not be of

concern here.

(b) It is important to make the distinction between censoring and truncation.

Censoring is a feature of the data-gathering mechanism. Truncation, whether

direct or indirect, is a characteristic of the population under study, and its

relation to the population that has generated the data in hand. The distinction is

occasionally loose. Indeed, the second condition can be created from the first.

The most pedestrian example, long a staple of the pedagogical literature, is that in

which the analyst holding a data set in which some observations are censored,

discards the censored observations. The distribution of the uncensored data which

remain in hand is truncated with respect to the population of interest. It is useful,

as well, to draw a second distinction with respect to certain types of censoring – we

will treat both types in this study. In certain cases, the data gathering process

produces censoring. Greene (2003) suggests the example of ticket sales to sporting

events, in which the actual latent demand is censored in translation to ticket sales

because some events will sell out, that is, fill the facility to capacity. In other cases,

the censoring is actually a natural part of the data generating mechanism. Dura-

tion data behave this way – when one observes spells of unemployment, for

example, the survey period may end while some individuals under study remain

unemployed. There is a possibly unwarranted assumption that were the survey

period long enough, the spell would in fact, eventually end. But this need not be

the case. We will consider the implied ‘‘split population’’ models below.

This survey proceeds as follows: section 19.2 will present results for truncated

distributions. In terms of the received literature, this part of the theory is less often

used. However, the central distributional results here are extended to produce the

more common censored data models. These will be developed in section 19.3.

Section 19.4 will present the central features of models of sample selection. Since

Heckman’s (1979) seminal work, a vast literature on this subject has appeared, and

continues to draw a large amount of attention. We will present little more than a

simple gateway to that literature. Section 19.5 presents some of the model

extensions that are made possible by panel data. Some conclusions are drawn in

section 6.

19.2 Truncation

In their pioneering study of income and education, Hausman and Wise (1977)

make the strong distinction (as we do) between censored data which are ‘‘piled up’’

at a censoring point and truncation, which occurs when a relevant subset of the
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population which generates the data is unobserved. The foundation of this class of

models, and our departure point, is a classical linear regression model with

uncorrelated normally distributed disturbances,

yi
� ¼ x0

ibþ ei, ei � N½0, s2
, i ¼ 1, . . . , N: ð19:2:1Þ

It follows, then, that the regression of yi on xi is E[yi
� jxi]¼xi

0b. The log likelihood

for this model is

ln L ¼
XN

i¼1
�1

2
ln 2p� ln s� 1

2
ððyi

� � x0
ibÞ=sÞ

2

� �
ð19:2:2Þ

In this basic foundation, all the familiar properties (finite sample and asymptotic)

apply to the usual least squares estimators, b and s2. (All the results that will

interest us here will be asymptotic, so we will ignore degrees of freedom correc-

tions in what follows.)

Consider, then, analysis of the subset of the population defined by

yi ¼ yi
� if yi

� � 0

yi is unobserved if y�
i < 0:

ð19:2:3Þ

(The choice of zero as the truncation point is innocent if xi contains a constant

term, which we assume here. The choice of lower truncation is a minor compli-

cation which we will deal with in passing below.) The truncation mechanism

implies that for the observed data,

ei � �x0
ib ð19:2:4Þ

so the normal distribution assumed above is inappropriate. The regression is also

inappropriate since, using known results for truncation in the normal distribution

(Greene, 2003, ch. 22),

E½yijxi
 ¼ E½yi
�jxi, yi

� � 0
 ¼ x0
ibþ E½eijei � �x0

ib


¼ x0
ibþ s

fð�x0
ib=sÞ

1 � Fð�x0
ib=sÞ

:
ð19:2:5Þ

where f(.) and F(.) are the standard normal density and cdf, respectively. If we

write this as E[yi jxi]¼xi
0bþ sli where

li ¼
fð�x0

ib=sÞ
1 � Fð�x0

ib=sÞ
¼ fðx0

ib=sÞ
Fðx0

ib=sÞ
, ð19:2:6Þ

we can see immediately that linear regression of yi on xi will omit a variable that is

surely correlated with xi (See Heckman, 1979). (The variable li is called the inverse

Mills ratio.) The implication is that linear least squares regression of yi on xi will

produce a biased and inconsistent estimator of b. (An early thread of the literature

on this model considered the possibility of nonlinear regression of yi on xi which
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would produce consistent estimators of b and s. The NLS estimator here would be

demonstrably inefficient (compared to MLE), very inconvenient, and not robust to

any violations of the model assumptions. So, we will not consider it any further.)

The magnitude and direction of the bias in the least squares estimator will be data

dependent, so little can be said analytically. For reasons that will be suggested

shortly, the often observed empirical regularity is that the least squares estimator

in this setting is attenuated (biased toward zero), approximately by the relationship

plim b  b½1 � alðaÞ � lðaÞ2
 ð19:2:7Þ

where a would be approximated by ��xx0b=s (see Greene, 1983). The bracketed term

is strictly bounded by zero and one, so we expect b to be attenuated as an estimator

of b. (An exact result due to Cheung and Goldberger (1984), which parallels this,

states that if E[xi j yi] is linear in yi, then plim b¼bt for some proportionality

constant t. The condition is unlikely to hold in practice – most models contain

dummy variables, for example – but it does provide a commonly observed

approximation.)

Estimation of the parameters can be accomplished by maximum likelihood. We

write the log likelihood function for the untruncated case as

ln L ¼
XN

i¼1
ln

1

s
f

yi
� � x0

ib

s

� �� �
: ð19:2:8Þ

The density for the truncated random variable must be scaled to integrate to one

over the range ei > �xi
0b, so for the truncated case,

ln L ¼
XN

i¼1
ln

ð1=sÞfððyi � x0
ibÞ=sÞ

Fðx0
ib=sÞ

� �
: ð19:2:9Þ

Maximization of this log likelihood is fairly straightforward – it is preprogrammed

into several widely used commercial software packages. The analytical first and

second derivatives are very cumbersome (e.g., Wooldridge (2002, p. 526)) but are

made vastly simpler by Olsen’s (1978) transformation, which is a useful device for

many models of this sort. Let y¼1/s and g¼ (1/s)b. Then, the log likelihood

function and its derivatives become

ln L ¼
XN

i¼1
�1

2
ln 2pþ ln y� 1

2
ðyyi � x0

igÞ
2 � lnFðx0

igÞ,
q ln L

qg
¼

XN

i¼1
ðyyi � x0

igÞxi � lixi,

q ln L

qy
¼

XN

i¼1
½�ðyyi � x0

igÞyi þ ð1=yÞ
,

q2 ln L

qgqg0
¼

XN

i¼1
�dixix

0
i, 0 < di ¼ 1 � ðx0

igÞli � l2
i < 1,

q2 ln L

qgqy
¼

XN

i¼1
xiyi,

q2 ln L

qy2
¼

XN

i¼1
½�y2

i �ð1=yÞ2
:

ð19:2:10Þ
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After estimation of g and y, the original parameters are recovered from s¼1/y
and b¼ (1/y)g. The asymptotic covariance matrix for the estimators of (b,s) is

derived from that for g and y via the delta method

Asy:Var½ðb̂b0, ŝsÞ0
 ¼ G � Asy:Var½ðĝg0, ûuÞ0
 � G0, G ¼
1
y I �1

y2 g

00 �1
y2

" #
: ð19:2:11Þ

For later reference, we note in q2ln L/qgqg 0 the appearance of di¼ 1� aili� li
2.

This quantity appears at various points in the analysis of models with censoring

and truncation, and derives from

Var½eijxi, ei � �x0
ib
 ¼ s2di: ð19:2:12Þ

As (it has been shown elsewhere, for example, as in Maddala (1983)) we have that

0 < di < 1, and it follows that the truncation has the effect of reducing the

variation in the truncated population.

Since this ‘‘truncated regression model’’ is also a nonlinear regression, the slopes

(derivatives of the conditional mean function) are not equal to the parameters.

Returning to the conditional mean function, we find that E[yi jxi]¼xi
0bþ sli.

Differentiating with respect to b and using the results we have above, we find (not

surprisingly) that

qE½yijxi

qxi

¼ bdi ð19:2:13Þ

Note that the approximate result for the least squares estimator mimics this result

for the true marginal effects.

This set of results has been widely applied to models with continuous dependent

variables, such as hours equations and earnings models in finance. Another

common application of truncation modeling occurs in analysis of data on counts.

A particular application is counts of site visits, taken on site; see Shaw (1988).

Consider recreation site ‘‘q,’’ and we are interested in the number of visits that

individual i makes to that site in a given period (year, for example). Survey data

taken on site that ask the respondent for numbers of visits are truncated by

construction – since they are there to answer, the response must be at least one.

The Poisson regression model is commonly used for this application. Under the

assumptions just made, the appropriate model for on site responses would be

Prob½yi ¼ j
 ¼ expð�miÞm
j
i

j!Prob½yi � 1
 , mi ¼ expðx0
ibÞ

¼ expð�miÞm
j
i

j!f1 � Prob½yi ¼ 0
g

¼ expð�miÞm
j
i

j!f1 � expð�miÞg
:

ð19:2:14Þ
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As before, estimation is not complicated. But we do note that the force of the

truncation is likely to substantially change the estimated coefficients. The mar-

ginal effects are obtained from

E½yijxi
 ¼ mi=½1 � expð�miÞ
: ð19:2:15Þ

After some tedious algebra, we find

qE½yijxi

qxi

¼ E½yi jxi
f1 þ Prob½yi ¼ 0 j;xi
E½yi jxi
gb ¼ kib: ð19:2:16Þ

It is unclear how this compares to the derivative of the original conditional

mean, mib.

Truncation of this form is straightforward to build into the model – assuming

that the larger population can be characterized. We label this form of truncation

‘‘direct.’’ It takes the form of a reduction in the range of variation of the observed

variable of interest. As we’ve seen in the two examples described, building it into

the regression model of interest, and into the likelihood for estimation purposes, is

accomplished by using the laws of probability; if yi
� is the ‘‘untruncated’’ random

variable and yi is observed counterpart,

E½yijxi
 ¼ E½yi
�jxi, yi

� is in the observed range
 ð19:2:17Þ

and

ln f ðyijxiÞ ¼ ln f ðyi
�jxiÞ � ln½Probðyi

� is in the observed rangejxiÞ
 ð19:2:18Þ

When these have known forms, modification of regression functions and the log

likelihood function is straightforward. Note, however, that in terms of these

marginal effects of interest, the attenuation result of the linear model is not

general – even in the simple Poisson model, the magnitude of the marginal effects

can change substantially.

19.3 Censored data and the censored regression model

In terms of received applications, censoring is much more common than

truncation; applications can be found throughout and beyond all the social

sciences. (There are numerous surveys, beginning with Maddala (1983) and more

recently, Long (1997) and DeMaris (2004).) Here, we will establish a few of the

essential elements of a model with censoring, then point toward some more

elaborate specifications and methods of analysis.

As before, we depart from the classical normal, linear regression model,

y�i ¼ x0
ibþ ei, ei � N½0, s2
, i ¼ 1, . . . , N: ð19:3:1Þ
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In this setting, the observed data, yi are obtained by a many to one transformation

of yi
�,

yi ¼ SJ
j¼1djTjðyi

�Þ ð19:3:2Þ

where Tj(yi

�
) partitions the range of yi

�
into J ranges and maps the values of yi

�
in the

specific range into a specific value and dj equals one if yi

�
falls in range j and zero

otherwise; dj¼ 1[yi

�
is in range j]. The most familiar case [the tobit model, from

Tobin (1958)1] has J¼2, where the first range is �1 to 0, which is mapped to 0

and the second range is 0 to 1 where yi

�
is mapped to itself. (Thus, we formalize the

simple case of censoring values below zero to zero.) Another familiar case with J¼2

is the same as the first, save that the second range is mapped to one – the probit

model for binary choice. The case of sellouts at sporting events represents a case in

which actual ticket sales are a censored version of true demand. Another form of

the data generating mechanism which is not censoring but which produces pre-

cisely the same specification is the corner solution model (Wooldridge, 2002), in

which, for example, zero emerges as the choice outcome in one circumstance

while a continuous yi

�
emerges in another. The choice of insurance coverage that

one chooses might be such a case – zero amounts to a specific choice, not a cen-

sored value of some latent negative value. In the model as stated, censoring may be

incomplete, when one or more of the ranges is uncensored (Tj(yi

�
)¼ yi

�
), or it may

be complete, as in the binary choice model just mentioned.

For simplicity, we consider the simplest case first; censoring at zero a range of

values. In order to form the quantities of interest in this model, we apply the laws

of probability to the underlying regression model. Thus, the model that applies to

the observed data in this case is

yi ¼ maxð0, yi
�Þ ð19:3:3Þ

(that is, d1 ¼ 1ðyi
� < 0Þ, d2 ¼ 1ðyi

� > 0Þ, T1ðyi
�Þ ¼ 0, T2ðyi

�Þ ¼ yi
�Þ. The conditional

mean function in this model is

E½yijxi
 ¼ Prob½yi
� < 0jxi
 � 0 þ Prob½yi

� � 0jxi
E½yi
�jxi, yi

� � 0
: ð19:3:4Þ

We obtained the necessary parts in our discussion of truncation. Using the

probability and conditional mean function obtained there, we have

E½yijxi
 ¼ Fðx0
ib=sÞ � ðx0

ibþ sliÞ: ð19:3:5Þ

(Note that in this partially censored data case, F(xi
0b/s) is the probability attached

to the uncensored region.) The conditional mean function for this model is

noteworthy. Figure 19.1 shows the function for the standard case. Referring back

to the linear specification for yi
�, we see that yi

� and E½y�
i jxi
 can take either sign.

However, x0
ib cannot serve as the regression model for the observed yi, which is

either zero or positive. The function E½yijxi
 given above is always positive, even
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when x0
ib is negative. As in the truncation model examined earlier, the non-

linearity of the conditional mean function suggests that linear regression of yi on xi

is unlikely to produce an estimate that resembles b. Indeed, a surprising result

emerges. Marginal effects are obtained by using our earlier results and, to some

advantage, the Olsen transformation of the parameters;

qE½yijxi

qxi

¼ F
x0

ib

s

� �
b: ð19:3:6Þ

That is, the partial effect in this model is equal to the coefficient times the prob-

ability attached to the noncensored region. Greene (1999, 2003) shows that this

result extends to the ‘‘two-tailed’’ censoring model – that is below zero and above

some positive value – and is not specific to the normal distribution but occurs

regardless of the distribution of ei as long as it is continuous. On reflection, it

should make sense. In the uncensored region, E½yijxi
 responds to changes in xi

directly in measure b, but in the censored region, we have a range of values for

which changes in the value of xi do not induce changes in yi.

Faced with substantial censoring in the data, the researcher might be tempted

simply to discard the ‘‘limit’’ observations and apply conventional techniques,

for example, least squares, to the observations that remain. But, assembling the

parts above, we see that the nonlimit observations are governed by the truncated

regression model of the preceding section. This does not solve the problem;

it merely moves it to a different modeling platform. Dionne et al. (1998) apply this

principle to an ‘‘incomplete’’ panel of cost data on Canadian trucking firms.

In their application, the specification is further complicated because the incom-

pleteness of the data set results from ‘‘attrition,’’ a form of sample selection that we

consider in section 19.5.
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Conditional Mean for Censored Regression

Figure 19.1 Conditional mean function for the censored regression model
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19.3.1 Estimation and inference

Though linear least squares estimation of the tobit model is inappropriate, max-

imum likelihood estimation is no more difficult, and is preprogrammed in every

contemporary econometrics computer program. The log likelihood is a non-

standard mixture of discrete and continuous parts;

ln L ¼
XN

i¼1
ln d1ðy�

i ÞF
�x0

ib

s

� �
þ d2ðy�

i Þ
1

s
f

yi � x0
ib

s

� �� �
: ð19:3:7Þ

Amemiya (1978) showed that this nonstandard problem in maximum likelihood

could be handled with standard techniques. (Again, Olsen’s (1978) transformation

proves extremely useful here.) Analysis of this log likelihood is, in fact, amenable

to standard techniques, e.g., with inference based on the standard battery of LR,

LM and Wald. The tobit model, like the truncated regression model and censored

data models generally, is also amenable to the ‘‘missing data’’ treatment used to

great advantage in the EM algorithm (Dempster, Laird, Rubin, 1977; Fair, 1977).

Here, we note, if the censored observations were not censored, the appropriate

estimator for b would be least squares. Given the actual data, we can compute the

expectations of the missing data, as

E½y�
i jxi, yi ¼ 0
 ¼ x0

ibþ s½�fð�x0
ib=sÞ=Fð�x0

ib=sÞ
: ð19:3:8Þ

The EM algorithm proceeds, with minor modification, by using this expression to

compute the estimates for the missing observations, then using least squares based

on the partially reconstructed sample. (This is the algorithm proposed in Fair

(1978), though he did not treat it as an EM method.) Not surprisingly, the Bayesian

MCMC estimator of the tobit model with data augmentation (see Chib, 1992) is,

with trivial modification, the same computation.2

Construction of fit measures and predictions in this model are less straightfor-

ward than in the linear regression case. There is no counterpart to R2 since one is

not using OLS (with a constant term). Simply computing a prediction using x0
ib̂b is

unsatisfactory since, for some of the sample, the linear predictor is being used to

predict observations known to be zero, and none can legitimately be predicted to

be less than zero. Likewise, the correlation between yi and this prediction will give

a misleading indication of how well the model fits the data. For prediction, the

estimated conditional mean, ÊE½yijxi
 ¼ Fðx0
ib̂bÞ½x0

ib̂bþ ŝsl̂li
 makes more sense. Even

with this predictor, however, summarizing the fit of the model to the data in an

R2-like measure is problematic because of the ambiguity of the limit observations.

There is no consensus on how fit should be measured in this setting. Many

contemporary researchers report the ‘‘pseudo-R2.’’

pseudo-R2 ¼ 1 � ln L= ln L0 ð19:3:9Þ

where ln L is evaluated at the unrestricted maximum likelihood estimates and

ln L0 is computed for a model which contains only a constant term. Whether this
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is truly useful as a fit measure is debatable as the log likelihood is not maximized to

optimize ‘‘fit.’’ It does have the virtues of lying between zero and one, and it does

increase as variables are added to the model.3

19.3.2 Specification analysis

The corner solution interpretation of the model raises a question about the model.

Under the assumptions already made, the probability that a corner solution

emerges, i.e., Prob½y�
i < 0
, has the same underlying specification as the regression

model applied in the nonlimit case; in both cases, the index function in the

density is x0
ib. One might be interested in whether the impact on the limit prob-

ability is different from that on the regression model given that it is not a limit

case. To analyze this possibility, we write the log likelihood (using Olsen’s trans-

formation) for the corner solution model in the form

ln L ¼
X

yi¼0
lnFð�x0

igÞ þ
X

yi>0
lnfyf½ðyyi � x0

igÞ
g

¼
X

yi¼0
lnFð�x0

igÞ þ
X

yi>0
lnFðx0

igÞ

þ
X

yi>0
lnfyf½ðyyi � x0

igÞ
g �
X

yi>0
lnFðx0

igÞ

ð19:3:10Þ

Note that the second form is obtained simply by adding and subtracting the

nonlimit probability. The first line is the log likelihood for a binary probit model

for the probability of the corner solution. The second line is the log density for the

observation conditioned on their having a nonlimit solution. It is also precisely

the log density for the truncated regression model discussed in the preceding

section. A natural specification test for whether the impact of the regressors is the

same in the probability equation and in the conditional regression equation is a

test of whether the coefficients in an independently estimated probit equation are

the same as those in the truncated regression model for the nonlimit observations.

Fin and Schmidt (1984) proposed a Lagrange multiplier test for this specification

based on the results of the tobit model. A simpler computation which requires

only that it be possible to compute the MLEs for all three models is the LR statistic

LR ¼ 2 ½ln Lprobit þ ln Ltruncated regression � ln Ltobit 
: ð19:3:11Þ

The test statistic will have a limiting chi-squared distribution with degrees of

freedom equal to the number of variables in xi.

The preceding might be extended a step further to allow for different specifi-

cations in the probability equation in the regression. This produces a simple ver-

sion of the hurdle model (Cragg, 1971). Estimation of this form of the model is quite

simple, though again it requires estimation of the truncated regression model.

Indeed, computation of the likelihood ratio statistic defined above actually

requires fitting this hurdle model with the additional restriction that the regressor

vectors are the same in the two equations. This is not required, of course.

Two extensions of the hurdle model are also useful. Having bifurcated the model

into the ‘‘participation’’ equation (the probability model) and the regression
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model, we are no longer required to specify a linear regression model for the

‘‘regression’’ equation. Jones (1994) analyzes a model of this sort in which the

participation equation is a conventional probit model while the regression equa-

tion is a count (Poisson) model for smoking behavior. A second extension involves

the underlying unobservables in the structural equations. A model which produces

the hurdle log likelihood function

z�i ¼ w0
i þ ui, ui � N½0, 1


zi ¼ d1ðz�i Þ ¼ 1ðz�i > 0Þ ða probit modelÞ
y�i ¼ x0

ibþ eijei � N½0, s2
, zi ¼ 1:

ð19:3:12Þ

The model considered so far includes the assumption that ui and ei are uncorrelated

(independent). If they are allowed to be correlated (bivariate normally distributed),

then this form of the hurdle model produces the sample selection model that is

discussed in section 19.4, below.

19.3.3 Heteroskedasticity

Since these models are typically employed with microeconomic data, two other

specifications, heteroscedasticity (heterogeneity in scaling) and omitted hetero-

geneity (unobserved heterogeneity in the levels). In the linear regression model,

conventional estimation and inference techniques are (more or less) robust to

these failures of the model assumptions. Here, the estimators are not robust to any

of these failures. (Nor, by and large, are they to any other failures of the model

assumptions, which calls into question ‘‘robust’’ estimators. We turn to this issue

below.)

Consider, first, a tobit model with heteroscedasticity. The modification of the

model is straightforward. We define the model in terms of the log likelihood;

ln L ¼
XN

i¼1
ln d1ðy�i ÞF

�x0
ib

si

� �
þ d2ðy�i Þ

1

si
f

yi � x0
ib

si

� �� �
: ð19:3:13Þ

Conventional ML (or Bayesian MCMC) estimation of the model parameters that

ignores the heteroscedasticity is not robust to this failure of the model

assumptions. Assuming that si is a function of xi (or variables that are correlated

with xi), conventional estimators are not consistent, and nothing can be said

about the magnitude or direction of the bias. There is no counterpart to White’s

robust, heteroscedasticity corrected estimator for the linear model either; the often

cited Huber–White ‘‘sandwich’’ estimator, H�1ðG0GÞH�1 where H is the negative of

the inverse of the Hessian and G is the matrix (row by row) of first derivatives of

ln L, does not solve the problem; it is merely a ‘‘robust’’ covariance matrix for an

inconsistent estimator. (Robustness is a moot point.) Extension of the tobit model

to allow for heteroskedasticity is straightforward, though it does require the ana-

lyst to specify the heteroskedasticity. For a model such as

si ¼ s� expðx0
iÞ ð19:3:14Þ

706 Censored Data and Truncated Distributions



the log likelihood or posterior can simply be augmented to include the additional

parameters. (We have written the scedastic function in terms of the same xi that

appears in the regression purely for convenience as will be clear below. Appro-

priately placed zeros inb and/ord can produced the desired different specifications.)

With a formal specification in place, a test for heteroskedasticity in the tobit model

can be based on the Wald or LR statistics by fitting the model with heteroskedasticity

or by using an Lagrange multiplier statistic as shown in Greene (2003, p. 769).

(Note that the ML statistic does not free the analyst from the necessity of specifying

precisely what variables must appear in the scedastic function.) Partial effects in

the model with heterosedasticity are (after some tedious algebra)

qE½yijxi

qxi

¼ FðaiÞbþ sifðaiÞ, ai ¼ xib=s: ð19:3:15Þ

For variables which appear in both the mean and variance components of the

model, we see that both sign and magnitude of the partial effect can differ from

those of the coefficients in b. This suggests some care is called for in the inter-

pretation of the estimated model components.

19.3.4 Unobserved heterogeneity

Unobserved heterogeneity in the tobit model that is uncorrelated with xi is, sur-

prisingly, benign. There is no need to prove the result analytically. If the model

changes from

y�i ¼ x0
ibþ ei, ei � N½0, s2
, i ¼ 1, . . . , N: ð19:3:16Þ

to

y�
i ¼ x0

ibþ ci þ ei, ei � N½0, s2
, ci � N½0, t2
, i ¼ 1, . . . , N, ð19:3:17Þ

then the heterogeneity simply becomes part of the disturbance, which now has

variance s2þ t2. This simple result doesn’t arise, for example, in the probit model

because here, unlike the probit model, the sample data contain information on the

scale of the latent yi
� whereas in the binary choice model, they do not.

19.3.5 Distribution

The specification of the tobit model, thus far, hangs crucially on the assumption of

normality. How fragile the model is because of this is unknown; the only received

results are (and will almost surely be) based on Monte Carlo studies of very limited

generality. For better or worse, the normal distribution has provided the platform

for nearly all the research on this model. One can, of course, specify an alternative

distribution – we will explore how below. Of course, the resulting model is no less

fragile than the censored normal model. A preferable alternative would be a less

heavily parameterized, more robust estimator, such as Powell’s (1981, 1984) least

absolute deviations estimator. (See Melenberg and van Soest, 1996 for an appli-

cation and Duncan, 1983, 1986; Newey, Powell and Walker, 1990; Lee, 1996; and

Lee, 2002 for further theoretical development.)
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Though estimation with an alternative model is computationally complicated,

testing for the normality assumption remains worthwhile.4 Several approaches

have been devised, including a Hausman test that compares the robust LAD esti-

mator to the tobit/normal estimator (Melenberg and van Soest, 1996), LM tests

(Bera and Jarque, 1981, 1982) and conditional moment tests (Nelson, 1981; Chesher

and Irish, 1987; and Pagan and Vella, 1989). The LM and conditional moment and

LM tests require a set of residuals that contain information about the distribution –

and nonnormality in particular. As noted above, the conventional residual, yi –

anything, has a built in problem whenever yi equals zero. Chesher and Irish (1987)

proposed the generalized residual for models such as this one. For the tobit (and

many other models), the generalized residual can be computed as the derivative of

the log-density with respect to the constant term, computed at the maximum

likelihood estimators. Using the Olsen form of the log likelihood, we have

ei ¼ d1
�fð�x0

igÞ
Fð�x0

igÞ
þ d2ðyyi � x0

igÞ ð19:3:18Þ

This residual has expectation and sample mean zero and accounts for the cen-

soring.5 A chi-squared test of the normality assumption (actually a test of whether

the residual moments conform to what would be expected from a normal dis-

tribution) is computed using

LM ¼ i0MðM0MÞ�1M0i ð19:3:19Þ

where i is a column of ones and M is N�Kþ 3, where each row contains

m0
i ¼ ½eix

0
i, bi, e3

i , e4
i � 3
 ð19:3:20Þ

bi ¼
1

2
fd1½ðyyi � x0

igÞ
2 � 1
 þ d2½x0

igfð�x0
igÞ=Fð�x0

igÞ
g ð19:3:21Þ

(Pagan and Vella (1989) propose a variety of similar conditional moment tests for

the tobit model.) Skeels and Vella (1999) have examined the behavior of this test in

an extensive Monte Carlo study. The same style of specification test is extended

to tests for the sample selection model examined in section 19.4 below by

Vella (1992).

19.3.6 Other models with censoring

Censoring is found in many different types of applications. To suggest the range of

possibilities, we note a few of them here. As in the tobit model above, the general

approach to estimation and inference is generally to formulate the model in terms

of the ‘‘latent’’ data, then deal with the censoring in the likelihood function or

posterior density in the case of a Bayesian approach by using the basic laws of

probability to modify the model.

The logical limit of the censoring model set out at the outset occurs when data

are completely censored – none of the transformation functions T(yi

�
) is one to one
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as it is in the uncensored region of the tobit model. Perhaps the most familiar case

is the binary choice model noted at the outset,

y�i ¼ xibþ ei, ei � N½0, s2
, i ¼ 1, . . . , N

yi ¼
X2

j¼1
djTjðy�i Þ, d1 ¼ 1ðy�i < 0Þ, T1ðy�i Þ ¼ 0, d2 ¼ 1 � d1, T2ðy�

i Þ ¼ 1:
ð19:3:22Þ

A less extreme case is the ordered probit model, which maps ranges with unknown

boundary points to the integers 0,1, . . . , J. The second equation in the structure

above is

Prob½mj�1 < y�i � mj
 ¼ F½mj � x0
ib
 � F½mj�1 � x0

ib
, mj > mj�1, j ¼ 0, . . . , J,

ð19:3:23Þ

with normalizations m�1 ¼ �1, m0 ¼ 0, mJ ¼ þ1. Familiar applications include

opinion measures, where the strength of opinions or preferences are expressed on a

scale (usually zero to four). Another natural application (which remains to be

explored at length) is self reported health status, such as the variable contained in

Winkelmann(2004). In theordered probit model, information about the scale of the

dependent variable is lost – in the case of latent preference, it would have no

meaning in any event. When data are censored to mask within range variation, the

observed response may be interval censored. In Bhat (1994) a latent income variable is

reported only in ranges. The structural model is identical to that of the ordered

probit, except that the threshold parameters are known. This obviates the normal-

izations, and reveals the scaling information, so that an estimate of s can be com-

puted with the estimate of b. As a consequence, the density for yi is redefined to be

Prob½yi ¼ j
 ¼ F
aj � x0

ib

s

� �
� F

aj�1 � x0
ib

s

� �
: ð19:3:24Þ

Each of these represents a method of modeling censoring in the context of the

classical normal linear regression model. Two other leading cases of censored data

are in models of counts and in duration data. In the count data model, we have the

generic structure

Prob½yi ¼ jjxi
 ¼ f ðj;bÞ

(The parameter vector may include other ancilliary parameters, such as the over-

dispersion parameter in the negative binomial model.) The most familiar case is

the Poisson (loglinear) regression model,

Prob½yi ¼ jjxi
 ¼
expð�miÞm

j
i

j!
, mi ¼ expðx0

ibÞ, j ¼ 0, 1, . . . ð19:3:25Þ

Data may be censored at either end, though the leading case is top coding, in which

the censoring takes the form of piling all values above a limit value into that value

(see Terza, 1985). An example is Fair’s (1978) study of extramarital affairs in which
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the reported count was censored at 12.6 The censored Poisson model follows

naturally from the definitions. For example, for censoring at upper limit C, we

would have the model

Prob½yi ¼ jjxi
 ¼
expð�miÞm

j
i

j!
,mi ¼ expðx0

ibÞ, j ¼ 0, 1, . . . , C � 1,

Prob½yi ¼ Cjxi
 ¼ 1 �
XC�1

j¼0

expð�miÞm
j
i

j!
:

ð19:3:26Þ

The conditional mean is altered in an expected fashion (see Greene, 2000);

E½yijxi
 ¼ mj �
X1

j¼C
ðj � CÞProb½yi ¼ jjxi


¼ C �
XC�1

j¼0
ðC � jÞProb½yi ¼ jjxi
:

ð19:3:27Þ

The marginal effects also change;

E½yijxi

qxi

¼
XC�1

j¼0
ðj � CÞðj � miÞProb½yi ¼ jjxi


h i
b: ð19:3:28Þ

These can be substantially smaller than their uncensored counterparts, mib.

The foregoing illustrate the effect of censoring on regression models, that is in

models in which the conditional mean function and its derivatives is the central

focus. A vast variety of other models, in which some variation of the regressand is

masked by censoring, are all handled similarly and similar results emerge. Cen-

soring, which masks variation brings predictable changes in the location of the

mean, generally reduces marginal effects because in the censored region changes in

the stimuli (independent variables) are not associated with changes in the response.

Another leading class of models in which censoring is an important feature

is models of duration. In this setting, we model the length of time, t, from a

‘‘baseline’’ until a ‘‘transition’’ takes place (see Kiefer, 1985 for a survey). Familiar

applications include the time until business failure, length of a spell of unem-

ployment or the lengths of the intervals between children at the household level,

or between wars at a global level. In all cases, what is typically of interest is not the

length of time, but the hazard rate, which is roughly the probability that the

transition takes place in interval t to tþDt given that it has not taken place up to

time t. We consider a few of the formalities of hazard models to illustrate an

extension of our class of censored data models.

For the random variable t, the time until an event occurs, t � 0, the density, cdf

and survival function are denoted f(t), F(t) and S(t)¼1� F(t). The probability of an

event occurring at or before time t is F(t). The conditional probability that an event

occurs in the interval t to tþD given that it has not occurred by time t is

hðtÞ ¼ Probðevent occurs in time t to t þ Dj event occurs after time tÞ

¼ Fðt þ DÞ � FðtÞ
1 � FðtÞ :

ð19:3:29Þ
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As D!0, the function ½Fðt þ DÞ � FðtÞ
=½Dð1 � FðtÞÞ
 converges to f(t)/S(t), which

is called the hazard function, often denoted l(t). (This is not to be confused with li

as used in the preceding discussions, though there is clearly a relationship for the

normal distribution.) Note that Dl(t) equals the probability sought, Prob

½t � T � t þ DjT � t
. The hazard function is a descriptor of the probability dis-

tribution, as are the pdf and cdf. Indeed, we see the simple relationship

lðtÞSðtÞ ¼ f ðtÞ. There are many different specifications that can be used to model

the hazard for the duration variable T. The simplest is a function with ‘‘no

memory;’’ that is, one with a constant hazard rate. For this model, we would have

lðtÞ ¼ l, a constant. It follows from the definition that the hazard follows the

simple differential equation lðtÞ ¼ �d ln SðtÞ=dt. The solution to �d ln SðtÞ=dt ¼ l
is SðtÞ ¼ K expð�ltÞ, where K is the constant of integration. The boundary condi-

tion S(0)¼1 implies K¼1, which leaves SðtÞ ¼ expð�ltÞ. This is the exponential

density,

f ðtÞ ¼ l expð�ltÞ, l > 0, t � 0: ð19:3:30Þ

This is the most basic hazard function model. Some other candidates are

Weibull: lðtÞ ¼ lpðltÞp�1, p ¼ 1 implies exponential,

log logistic: lðtÞ ¼ lpðltÞp�1=½1 þ ðltÞp
,
log normal: lðtÞ ¼ f½�p lnðltÞ
=F½�p lnðltÞ


ð19:3:31Þ

Figure 19.2 shows the behavior of these hazard functions for a standard data set on

strike duration (see Kennan, 1985).

Note that the hazard for the Weibull model declines monotonically – this is

known as negative duration dependence. Over some ranges, the lognormal and log

logistic have positive duration dependence, while the exponential model has no

duration dependence.

The counterpart to the familiar regression models in this context would be the

accelerated failure time models, in which the hazard function is modeled as a func-

tion of covariates. A familiar example is the loglinear model. For the Weibull

model, this would be

lðtjxÞ ¼ expðx0bÞp½expðx0bÞt
p�1 ð19:3:32Þ

Most data sets have incomplete observations. The observation consists of the time

of the measurement and the indication that the transition (business failure, death,

warranty exercise, next insurrection, next child) has not yet occurred. Such

observations are censored at time t, the same as the censoring phenomenon

observed earlier.

We now construct the log likelihood for a sample of duration data. For an

uncensored observation, the contribution to the likelihood is the density. For a

censored observation, it is the survival function. (Note that this is precisely the
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format the likelihood takes for the regression model with right tail censoring that

was discussed above.) Let d be a noncensoring indicator; d¼0 for a censored

observation and d¼ 1 for an uncensored observation. We will also use the result

noted earlier, f ðtjxÞ ¼ lðtjxÞSðtjxÞ. Then, the log likelihood for a sample that

contains both censored and uncensored observations is

ln L ¼
XN

i¼1
di ln½lðtijxiÞ
 þ ln SðtijxiÞ ð19:3:33Þ

For the parametric models shown earlier, this is now a standard problem for

maximum likelihood estimation and inference. To close the loop here, so to speak,

we note that the preceding shows how different distribution could be used for a

censored regression model. We used the normal distribution in our earlier dis-

cussion. This derivation shows how the exponential, Weibull and other models

could be used. Moreover, to use this template to accommodate our standard model

with left censoring at zero, we can simply use � ln t as the dependent variable (see

Greene, 2000 for discussion).

19.4 Incidental truncation and sample selection

The results of the preceding sections have been extended to a ‘‘two-part’’ model

that extends the hurdle model. Consider an observation mechanism that departs
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from the familiar regression model,

y�i ¼ x0
ibþ ei, ei � N½0, s2
, i ¼ 1, . . . , N: ð19:4:1Þ

and adds a ‘‘sample selection mechanism’’ to a binary probit model;

d�
i ¼ z0

ia þ ui

Tðd�
i Þ ¼ 1ðd�

i > 0Þ
Tðy�i jd�

i Þ ¼ y�
i if d�

i > 0, y�i is unobserved otherwise.

ð19:4:2Þ

This is a modification of the truncated regression model discussed in section

19.2, where d�
i ¼ y�

i . Here, d�
i is another variable in this two equation model. If ui

and ei are correlated, then the observed values of y�i are unusual compared to the

full population. Hence we use the term ‘‘incidental truncation’’ for this specifi-

cation. Applications of this sort of model abound in the literature, beginning

with Heckman’s pioneering work (e.g., 1979) on labor supply.7 Some examples,

in addition to this one, include analysis of returns in long time series of financial

data (‘‘survivorship’’ effects), analysis of program participation where observation

at the end of the program is affected by attrition of the participants, count

models of recreation site use, health care usage, and a vast catalog of other

settings.

In all cases, it is the relationship between the unobservables in the models that

exerts the impact on the estimation and inference procedures. Consider, in the

model above, the standard case in which ðeiuiÞ are bivariate normally distributed

with correlation r. In the observed data, we will have

E½yijxi, yi is observed
 ¼ E½y�i jxi, d�
i > 0
 ¼ E½y�

i jxi, di ¼ 1

¼ x0

ibþ E½eijdi ¼ 1

¼ x0

ibþ E½eijui > �z0
ia
:

ð19:4:3Þ

From results for the bivariate normal distribution, this is

E½yijxi; yi is observed
 ¼ x0
ibþ rsefð�z0

iaÞ=½1 � Fð�z0
iaÞ


¼ x0
ibþ kli

ð19:4:4Þ

where li ¼ fðz0iaÞ=Fðz0
iaÞ is the inverse Mills ratio discussed earlier. Two con-

clusions follow from this derivation, before we consider estimation. First, by dint

of the excluded variable, li, it is clear that linear regression of yi on xi in the

observed data will produce an inconsistent estimator of b if k is not equal to

zero (which we assumed) and if li is correlated with xi, which is almost surely

going to be the case, particularly if zi and xi have variables in common.

To underscore the point, consider a modification of the model, known as the
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treatment effects model, where

y�i ¼ x0
ibþ ddi þ ei, ei � N½0, s2
, i ¼ 1, . . . , N:

d�
i ¼ z0

ia þ ui, di ¼ 1½d�
i > 0


ð19:4:5Þ

and (y�
i , xi) is observed for all cases. In an intriguing recent example [Dale and

Krueger (1999)], consider the case in which yi
� is an income variable and di is an

indicator of whether the individual attended an elite college. Clearly in this model,

the ‘‘regressor’’ di is correlated with the disturbance ei, producing ‘‘simultaneous

equations bias.’’ With a bit of manipulation, we can recast this model as another

example of our selection model – at least it shares the fundamental features.

Returning to the original model, a second question arises; it is unclear whether b is

even the quantity of interest. Using the device we used before, assume that zi¼xi

(with appropriate zeros in b or a as needed). Then, again using our earlier results,

we find in this basic model,

qE½yijxi

qxi

¼ b� ðaili þ l2
i Þa: ð19:4:6Þ

We conclude that, even after dealing appropriately with the estimation issues,

some care is needed in interpreting the results.

There are two methods of estimating this model, two-step (not two-stage)

least squares and maximum likelihood. The two-step method was proposed

by Heckman (1979) (see also Greene, 1981, 2003). The logic of Heckman’s method

is strikingly simple. If li were observed, ordinary least squares would provide a

consistent (though not necessarily efficient) estimator of (b, k). Since the para-

meters in li can be consistently estimated by applying a binary probit model to

the model for di, and zi is observed, a ‘‘pointwise’’ consistent estimator of li is

obtained by using âa from the probit model. This is the first step of the two-step

estimator. The second step is least squares regression of yi on xi and l̂li. The con-

ventionally estimated asymptotic covariance matrix for this least squares esti-

mator is inappropriate for two reasons; first, the implied disturbance in the

regression is heteroscedastic and, second, it does not account for the variation in

the estimated parameter vector used to compute l̂li (see Murphy and Topel, 1985).

Expressions for computing the appropriate covariance matrix appear in

Heckman (1979) and Greene (1980, 2003). The treatment effects model is handled

similarly. In this case, the counterpart to ‘‘li’’ is the generalized residual from the

probit model,

l̂li ¼ di
fðz0

iaÞ
Fðz0

iaÞ
þ ð1 � diÞ

�fð�z0
iaÞ

Fð�z0
iaÞ

ð19:4:7Þ

After estimation, a ‘‘test’’ for ‘‘selectivity’’ is based on the estimate of k; a simple

‘‘t-test’’ of the significance of the coefficient on l̂li is equivalent to a test that

r equals zero.

The second estimator is maximum likelihood. The log likelihood function

for this model is constructed from the joint density for di and yi for those
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observations for which yi is observed. As usual, the Olsen transformation simplifies

the notation;

ln L ¼
X

di¼1
ln½yfðyyi � x0

igÞ
 þ lnF
rðyyi � x0

igÞ þ z0
iaffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 � r2
p

" #

þ
X

di¼0
lnF½�z0ia
:

ð19:4:8Þ

(There is yet another simplification possible by transforming r.) This is a compli-

cated (because of r) but otherwise standard problem in maximum likelihood

estimation. In addition to its theoretically greater efficiency, the MLE has another

advantage over the Heckman two step estimator. The variable li is a nonlinear

function of zi that is essentially linear in z0
ia over much of its range. This implies

that if there is not much difference between xi and zi – in many applications they

are the same – then there is the potential for serious multicollinearity in the

augmented regression. Most researchers seek to accommodate this problem of

‘‘weak’’ identification by ensuring that there is at least one variable in zi that is not

in xi and that has substantial variation.

We note an aspect of estimation here for the interested practitioner.

The appearance of Heckman’s ‘‘lambda’’ in the estimated selection equation has

produced a temptation to augment other kinds of selection models likewise and

thereby ‘‘take care of the selection problem.’’ This form of the model is specific to

the linear regression case. Notice, for example, that there is no inverse Mills ratio

in the log likelihood for the model. Thus, for example, it is not appropriate to

correct a Poisson regression model for selectivity by just adding an inverse Mills

ratio to the index function in the model. See Terza (1998) and Greene (1995, 1997,

2000) for applications of sample selection corrections to the Poisson regression

model. In these and other models, it is necessary to reconstruct the log likelihood

function, somewhat similar to the form as it appears above.

The literature on selection models and treatment effects is vast and varied. This is

an active and ongoing area of research in econometrics (see, for example, Angrist,

2001). The above discussion suggests only the most basic form of the model.

19.5 Panel data

Microeconomic data increasingly come in the form of extensive panel data sets,

such as the National Longitudinal Surveys of Labor Market Experience (NLS), the

German SocioEconomics Panel or the British Household Panel Survey (BHPS)

which, among many others, contain rich multiple wave surveys of individual

health and labor market behavior. Interesting response variables in these data sets,

such as income, fertility and labor market experience, often come in the form of

discrete, truncated, limited and otherwise range restricted variables to which the

methods described here apply. We consider a few of the basic issues in analysis of

panel data in the censoring and truncation models considered here. The issues are

relatively common across modeling platforms, so to present the essential results,
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we will focus on the tobit model, and add some details about panel data and

sample selection at the end of the section.

Thinking about incorporating individual heterogeneity in models such as the

tobit model usually focuses on the two standard approaches, fixed and random

effects. We modify the basic model to include the heterogeneity as

y�
it ¼ ai þ x0

itbþ eit , ei � N½0, s2
, i ¼ 1, . . . , N,

yit ¼ maxð0, y�
itÞ:

ð19:5:1Þ

Conventional wisdom about the model is guided by the linear model with

individual heterogeneity. As we will see, some of that wisdom is useful, while

some is not.

19.5.1 Estimating fixed effects models

The fixed effects model in the preceding specification allows correlation between ai

and xit. It is useful to digress briefly to explore the practical implication of the

assumption, Cov[xit , ai
 6¼ 0. Suppose individual i is observed Ti times (where Ti

may vary across individuals). Let Xi denote the Ti � K matrix of observations on

the regressors and let jai denote the Ti � 1 column of observations (repeated) on

the individual heterogeneity, ai; j is a column of ones. Consider, then, the ‘‘esti-

mator’’ of the covariance,

Est:Cov½ai;xit 
 ¼
PN

i¼1

PTi

t¼1 xitaiPN
i¼1 Ti

¼
PN

i¼1 aiTið1=TiÞ
PTi

t¼1 xitPN
i¼1 Ti

¼
PN

i¼1 TiaixiPN
i¼1 Ti

¼
XN

i¼1
wiaixi

!Cov½ai, xi
:

ð19:5:2Þ

(The weights in the sum, wi, 0 < wi < 1,
PN

i¼1 wi ¼ 1, accommodate an unbalanced

panel. If Ti is the same for all i, then wi ¼ 1=N.) This suggests that the relationship

between the invariant ‘‘effect’’ and the exogenous variables will be reflected in

covariation between the effect and the group means. (We will employ this idea

below with the ‘‘Mundlak (1978) correction’’ for the random effects model.)

For reasons that will soon become clear, typically no distribution is assumed in the

fixed effects model. The random effects model, in contrast, begins with an

assumption that the effect, ai and the data, xit are uncorrelated. Also, it is typical to

assume that the random effect is normally distributed with zero mean and con-

stant variance. We will explore this issue in more detail below.

The fixed effects model is estimated by including in the model a set of N group

dummy variables, di¼ the dummy variable indicating membership in group i.

With this specification, the model becomes

y�
it ¼ SN

i¼1ditai þ x0
itbþ eit , ei � N½0, s2
, i ¼ 1, . . . , N,

yit ¼ maxð0, y�itÞ:
ð19:5:3Þ
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The log likelihood function for the tobit model with fixed effects is

ln L ¼
XN

i¼1

XTi

t¼1
ð1 � citÞ lnFð�Zi � x0

itgÞ þ cit ln½yfyit � Zi � x0
itgÞ
 ð19:5:4Þ

where cit¼1 if yit>0 and 0 otherwise and, as usual, we employ the Olsen trans-

formation so that Zi¼ ai/s. In practical terms, there are two problems with appli-

cation of the fixed effects model in limited dependent variable models such as the

tobit or truncated regression model. First, the number of individuals, N, is typically

large, which implies that it is necessary to estimate a potentially very large number

of parameters. In the linear model, this difficulty is handled by transforming

observations to deviations from group means or by using first differences. In the

Poisson model, there is a transformed likelihood that can be constructed that is

free of the dummy variable coefficients. None of these approaches work here; since

yit is observed only after transformation, deviations of yit from group means

produces deviations in the transformations, not deviations in y�
it . There is no

transformation of the log likelihood that removes the dummy variable coeffi-

cients. In order to fit this model by maximum likelihood, it is necessary to estimate

all NþKþ1 parameters simultaneously.8 This can, in fact be done – our example

below includes estimates of 7,293 dummy variable coefficients – using the method

described, e.g., in Greene (2005). Before turning to the theoretical shortcoming of

the fixed effects estimator, we note one additional complication. It is easy to show

that for any individual for which all observations are censored, the parameter Zi is

inestimable. (For such an individual, the derivative of the log likelihood with

respect to Zi is St � fð�Zi � x0
itgÞ=Fð�Zi � x0

itgÞ, which is always negative and hence

cannot be equated to zero.) Note, finally, another shortcoming of the fixed effects

model is that like the linear regression model, it is not estimable if xit contains any

time invariant regressors.

The practical issue has discouraged use of the fixed effects estimator.9 However,

the more vexing problem is the incidental parameters problem of the maximum

likelihood estimator in the presence of fixed effects (Neyman and Scott, 1948).

Note that in the log likelihood function above, the number of parameters increases

with N – each individual specific constant term is estimated with Ti observations.

Since Ti is fixed, one can expect a problem with consistency of the estimator. This is

generally expected to introduce a ‘‘small sample bias’’ into the parameter esti-

mator. The thinking on this issue has long been guided by some well established

results on binary choice models. It has been shown analytically (Andersen, 1970;

Abrevaya, 1997) that in the binary logit model, the MLE of b in the presence of

fixed effects, is biased by a factor of two (plim b̂bMLE ¼ 2bÞ.
A long history of Monte Carlo work (for example, Greene, 2004) has suggested

that the essentially the same result applies to the binary probit model – it has not

been shown analytically. Analytic results for T greater than 2 have not been shown

for any model, but, again, the Monte Carlo studies suggest, as intuition might also,

that the bias in binary choice estimators diminishes as T increases, but relatively

slowly – it remains substantial for T as large as 10. Until recently, analysis of this
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sort was limited to binary choice models, but it was, by and large, taken as a given

(see, for example, Wooldridge, 2000) that similar results apply to other models. In

fact, this appears not to be the case. Table 19.1 shows the results of an analysis of

the tobit model under the specification,

y�
it ¼ ai þ xitbþ zitdþ eit

yit ¼ maxð0, y�itÞ
ð19:5:5Þ

The two regressors are a continuous variable xit and a dummy variable zit. The R2 in

the latent regression is about .77 and about 40 percent of the observations are

censored. The values in the table are the percentage biases against the known true

values of the items shown; the true values of b, d and s were all one. The results are

strongly at odds with the conventional wisdom. First, there is essentially no bias in

the estimated slope parameters (far less then one percent), but there is some bias in

the estimated marginal effects (at the data means), but not very much in view of

what is known about the binary choice models. The results do suggest that

estimated standard errors are biased downward somewhat. As noted, these results

are not consistent with those for the binary choice models. They are consistent

with the original Neyman and Scott results, who found that the bias in the MLE of

s2 in the linear model was downward, by a factor of (T�1)/T.10 Surprisingly, and

in conflict with our intuition, the results above seem not to extend to the trun-

cated regression. The same study produces the results in Table 19.2. Note, in this

case, everything is biased toward zero, rather than away.

The end result would seem to be that estimation of fixed effects models with

censoring and truncation presents no practical obstacle. The incidental parameters

problem is to be reckoned with, but if the Monte Carlo results given here have any

Table 19.1 Tobit model: effect of group size on estimates

Estimate T¼2 T¼3 T¼5 T¼8 T¼12 T¼15 T¼20

� 0.67 0.53 0.50 0.29 0.098 0.082 0.047
� 0.33 0.90 0.57 0.54 0.32 0.16 0.14
� �36.14 �23.54 �13.78 �8.40 �5.54 �4.43 �3.30
MEx 15.83 8.85 3.65 1.30 0.44 0.22 0.081
MEz 19.67 11.85 5.08 2.16 0.89 0.46 0.27
S.E.(�) �32.92 �19.00 �11.30 �8.36 �6.21 �4.98 0.63
S.E.(�) �32.87 �22.75 �12.66 �7.39 �5.56 �6.19 0.25

Table 19.2 Truncated regression model: behavior of the MLE/FE

Estimate T¼2 T¼3 T¼5 T¼8 T¼12 T¼15 T¼20

� �17.13 �11.97 �7.64 �4.92 �3.41 �2.79 �2.11
� �22.81 �17.08 �11.21 �7.51 �5.16 �4.14 �3.27
� �35.36 �23.42 �14.28 �9.12 �6.21 �4.94 �3.75
MEx �7.52 �4.85 �2.87 �1.72 �1.14 �0.94 �0.67
MEz �11.64 �8.65 �5.49 �3.64 �2.41 �1.90 �1.53
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generality, then the IP problem in this setting is far less severe than in the binary

choice case.

19.5.2 Estimating random effects models

In the random effects model, the heterogeneity is assumed to be uncorrelated

with the regressors. This suggests an altogether different approach to estimation

and inference. The conditional log likelihood in the presence of the random

effect is

ln LC ¼
XN

i¼1

ln
YTi

t¼1

½Fð�twi � x0
itgÞ


1�cit ½yfðyyit � twi � x0
itgÞ


cit ð19:5:6Þ

where t¼ sa/s and wi�N[0,1]. Estimation of the model entails estimation of the

unknown parameters g, y and t. Since the conditional log likelihood function

includes the unobserved random effect, it cannot serve as the basis for estimation.

The unconditional log likelihood function is

ln L ¼
XN

i¼1
ln

Z 1

�1

YTi

t¼1
½Fð�twi � x0

itgÞ

1�cit ½yfðyyit � twi � x0

itgÞ

citfðwiÞdwi

ð19:5:7Þ

Estimation of the random effects model can be done by Gauss–Hermite quad-

rature as designed by Butler and Moffitt (1982) or by Monte Carlo integration

(Greene, 2000).

The random effects form of the model is much more manageable than the fixed

effects form. Here, however, one trades the difficulty of the incidental parameters

problem and the practical complication of time invariant regressors in the fixed

effects case for the possibly unpalatable assumption that the effects are uncorre-

lated with the regressors in the random effects model. A path between the horns of

this dilemma (see Wooldridge, 2005, for example) is suggested by the Mundlak

idea outlined at the beginning of this section. Suppose in either the fixed or ran-

dom effects specification, we project the unknown effect on the means of the time

varying variables; then,

y�it ¼ ai þ x0
itbþ eit , eit � N½0, 2
,

ai ¼ �xx0
ipþ wi, wi � N½0, 1
,

yit ¼ maxð0, y�
itÞ:

ð19:5:8Þ

This produces a random effects model which can be estimated by either method

mentioned above and in which, one hopes, the effect of correlation between the

unobserved effects and the regressors, is picked up by the group means.

19.5.3 An application of fixed and random effects estimators

To illustrate a few of the models discussed above, we will fit and analyze the data

used in Winkelmann (2004). This is an unbalanced panel survey of health care
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utilization of 27,326 German individuals. The sample contains 7,293 individuals

observed from one to seven times in the panel. Counts for the group sizes are

1,525, 1,079, 825, 926, 1,051, 1,000 and 887 for Ti¼1, . . . ,7, respectively. We have

fit a model for household income as a function of age, education, marital status

and whether there are children in the household. Descriptive statistics for the data

are given in Table 19.3. The raw income data in the survey range from zero

(a handful of observations) to about 2. We have ‘‘top coded’’ (‘‘for privacy’’) the

income variable at 0.35, thus censoring 12,369 observations, or 45.4 percent of

the sample. Assuming that a linear regression model applies to the raw data, the

tobit and truncated regression models should likewise be appropriate for the

censored data.

Table 19.4 presents least squares and maximum likelihood estimates for several

approaches.11 The OLS estimates, compared to their ML counterparts, clearly

Table 19.3 Panel data on income and sociodemographic variables. N¼27,326

Variable Mean Standard deviation Minimum Maximum

Income .288208986 .0754686019 0 0.35
Age 43.5256898 11.3302475 25 64
Education 11.3206310 2.32488546 7 18
Married .758618166 .427929136 0 1
Children in household .402730001 .490456267 0 1

Table 19.4 Estimates of model parameters

Estimator Constant Age Education Married Children �

OLS Nonlimit
Data

0.1772 �0.0006 0.004497 0.05341 �0.0018 0.0633

Logl¼20012.91 (0.0044) (0.00005) (0.00029) (0.00126) (0.0012)
MLE Truncation 0.1699 �0.0008 0.00641 0.07070 �0.0011 0.0756
Logl¼21110.15 (0.0064) (0.00007) (0.0004) (0.00177) (0.0018)
OLS All Data 0.1931 �0.0007 0.0073 0.0602 �0.01025 0.0698
Logl¼33965.22 (0.0031) (0.00004) (0.0002) (0.0011) (0.0010)
MLE Tobit 0.1169 �0.00071 0.01599 0.09105 �0.0176 0.1117
Logl¼2745.94 (0.0058) (0.00007) (0.00037) (0.0019) (0.0018)
Tobit Fixed Effects 0.02406 0.03043 0.1553 �0.0657 0.0832
Logl¼17957.33 (0.00027) (0.00230) (0.00365) (0.0027)
Tobit RE (B&M) 0.03662 0.00098 0.0180 0.07426 �0.0207
Logl¼7133.42 (0.00697) (0.00008) (0.00047) (0.00164) (0.0015) 0.0706
su0:09117
Tobit RE (MSL) 0.03073 0.00119 0.01798 0.07345 �0.02103
Logl¼7167.50 (0.00285) (0.000034) (0.00018) (0.0008) (0.0009) 0.0693
su ¼ 0:09708
Tobit RE-Mundlak 0.1668 0.00905 0.01641 0.07107 �0.02223
Logl¼8325.72 (0.0008) (0.00015) (0.00121) (0.0020) (0.0017) 0.0662
su ¼ 0:08609 �0.01041 �0.00220 0.01643 0.0119

(0.00018) (0.0032) (0.00319) (0.0031)
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illustrate the attenuation effect noted earlier. The remaining results are for the

tobit model. Comparing either the random effects or the fixed effects results to the

restricted MLE, the difference in the log likelihoods strongly suggests that some

model with unobserved heterogeneity is appropriate. As for choosing between the

fixed and random effects models, there is no simple test with known properties.

A Hausman test of the random effects alternative against the fixed effects null

hypothesis would appear to be inappropriate. Whether the MLE slope estimator

with fixed effects is consistent or not remains to be established – based on the

Monte Carlo study, it appears to be consistent – but there is little doubt that the

variance estimator for the MLE of b in the fixed effects model is inconsistent when

T is small. Note, as well, that the sample standard deviation of the 7,293 estimated

fixed effects (dummy variable coefficients) is 0.58 compared to a random effects

estimate of the standard deviation of the effects of about 0.086 in the final set of

results. There is far more variation in the fixed effects estimates, doubtless due to

the small samples (one to seven observations) used to estimate them. The random

effects estimator is consistent and efficient under the alternative hypothesis.

The final set of results in the table use the Mundlak correction to accommodate

correlation between the unobserved effects and the regressors. In the limited range

of this study, these would probably be the preferred estimates.

19.5.4 Sample selection models for panel data

The development of methods for extending sample selection models to panel data

settings parallels the literature on cross-section methods. It begins with Hausman

and Wise (1979) who devised a maximum likelihood estimator for a two-period

model with attrition – the ‘‘selection equation’’ was a formal model for attrition

from the sample. The subsequent literature on attrition has formally drawn the

analogy between attrition and sample selection in a variety of applications, such as

Keane et al. (1988) and Nijman and Verbeek (1992). A formal ‘‘effects’’ treatment

for sample selection was first suggested in complete form by Verbeek (1990), who

formulated a random effects model for the probit equation and a fixed effects

approach for the main regression. Zabel (1992) criticized the specification for its

asymmetry in the treatment of the effects in the two equations, and for the like-

lihood that neglected correlation between the effects and regressors in the probit

model would render the FIML estimator inconsistent. His proposal involved fixed

effects in both equations. Recognizing the difficulty of fitting such a model

(as noted above), he then proposed using the Mundlak correction. It is useful to lay

out the model in full: (The original notation has been changed slightly to conform

with the preceding.)

yit
� ¼ Zi þ x0

itbþ eit , Zi ¼ �xx0
i þ twi, wi � N½0, 1


d�
it ¼ yi þ z0

itaþ uit , yi ¼ �zz0idþ ovi, vi � N½0, 1


ðeit , uitÞ � N2½ð0, 0Þ, ðs2, 1, rsÞ
:

ð19:5:9Þ
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The ‘‘selectivity’’ in the model is carried through the correlation between eit and uit.

The resulting log likelihood is built up from the contribution of individual i,

Li ¼
Z 1

�1

Y
dit¼0

F½�z0
ita � �zz0

i � ovi
fðviÞdvi

�
Z 1

�1

Z 1

�1

Y
dit¼1

F
z0

ita þ �zz0
i þ ovi þ ðr=sÞeitffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 � r2
p

" #
1

s
f

eit

s

� �
f2ðvi, wiÞdvidwi

eit ¼ yit � x0
itb� �xx0

i � twi

The log likelihood is then ln L ¼ Si ln Li. The log likelihood is formidable, and does

require integration in two dimensions for any selected observations. We do note,

however, that the bivariate normal integration is actually the product of two

univariate normals, because in the specification above, vi and wi are assumed to be

uncorrelated. Vella (1998) notes, ‘‘given the computational demands of estimating

by maximum likelihood induced by the requirement to evaluate multiple inte-

grals, we consider the applicability of available simple, or two step procedures.’’

Before we examine a few of those, we note that with simulation methods devel-

oped since this survey, the likelihood function above can be readily evaluated

using relatively straightforward (and available) techniques. (Vella and Verbeek

(1999) do suggest this in a footnote, but do not pursue it.) To show this, we note

that the first line in the log likelihood is of the form Ev[
Q

d¼0F( . . . )] and the

second line is of the form Ew[Ev[F( . . . )f( . . . )/s]]. Either of these expectations can

be satisfactorily approximated with the average of a sufficient number of draws

from the standard normal populations that generate wi and vi. The term in the

simulated likelihood that follows this prescription is

LS
i ¼

1

R

XR

r¼1

Y
dit¼0

F �z0ita � �zz0i � ovi;r

� �
� 1

R

XR

r¼1

Y
dit¼1

F
z0ita þ �zz0i þ ovi;r þ ðr=sÞeit;rffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 � r2
p

" #
1

s
f

eit;r

s

� �
eit;r ¼yit � x0

itb� �xx0
i � twi;r

Maximization of this log likelihood with respect to (b, s, r, a, d, p, t, o) by con-

ventional gradient methods is quite feasible. Indeed, this formulation provides a

means by which the likely correlation between vi and wi can be accommodated in

the model. Suppose that wi and vi are bivariate standard normal with correlation

rvw. We can project wi on vi and write

wi ¼ rvwvi þ ð1 � rvw
2Þ1=2hi ð19:5:12Þ

where hi has a standard normal distribution. To allow the correlation, we now

simply substitute this expression for wi in the simulated (or original) log like-

lihood, and add rvw to the list of parameters to be estimated. The simulation is

then over the still independent normal variates, vi and hi.
12
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Notwithstanding the derivation above, much of the recent attention has focused

on simpler two-step estimators. Building on Ridder (1990) and Verbeek and

Nijman (1992) (see Vella, 1998, for numerous additional references), Vella and

Verbeek (1999) propose a two-step methodology that involves a random effects

framework similar to the one above. As they note, there is some loss in efficiency

by not using the FIML estimator. But, with the sample sizes typical in con-

temporary panel data sets, that efficiency loss may not be large. As they note, their

two-step template encompasses a variety of models including the tobit model

examined in the preceding sections and the mover stayer model noted above.

The Vella and Verbeek procedures require some fairly intricate maximum like-

lihood procedures. Wooldridge (1995) proposes an estimator that, with a few

probably but not necessarily innocent assumptions, can be based on straightfor-

ward applications of conventional, everyday methods. We depart from a fixed

effects specification,

y�
it ¼ Zi þ x0

itbþ eit ,

d�
it ¼ yi þ z0itaþ uit ,

ðeit , uitÞ � N2½ð0, 0Þ, ðs2, 1, rsÞ
:

ð19:5:13Þ

Under the mean independence assumption E½eit jZi, yi, zi1, . . . , ziT , vi1, . . . , viT ,

di1, . . . , diT 
 ¼ ruit , it will follow that

E½yit jxi1, . . . , xiT , Zi, yi, zi1, . . . , ziT , vi1, . . . , viT , di1, . . . , diT 


¼ Zi þ x0
itbþ ruit :

ð19:5:14Þ

This suggests an approach to estimating the model parameters, however it requires

computation of uit . That would require estimation of yi which cannot be done, at

least not consistently – and that precludes simple estimation of uit . To escape the

dilemma, Wooldridge suggests Chamberlain’s approach to the fixed effects model,

yi ¼ f0 þ z0
i1f1 þ z0i2f2 þ � � � þ z0iT fT þ hi: ð19:5:15Þ

With this substitution,

d�
it ¼ z0itaþ f0 þ z0

i1f1 þ z0
i2f2 þ � � � þ z0

iTfT þ hi þ uit

¼ z0itaþ f0 þ z0
i1f1 þ z0

i2f2 þ � � � þ z0
iTfT þ wit

ð19:5:16Þ

where wit is independent of zit , t ¼ 1, . . . , T. This now implies that

E½yit jxi1, . . . , xiT , Zi, yi, zi1, . . . , ziT , vi1, . . . , viT , di1, . . . , diT 
 ¼ Zi þ x0
itbþ rðwit � hiÞ

¼ ðZi � rhiÞ þ x0
itbþ rwit :

ð19:5:17Þ

To complete the estimation procedure, we now compute T cross-sectional

probit models (reestimating f0, f1, . . . each time), and compute l̂lit from each one.
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The resulting equation,

yit ¼ ai þ x0
itbþ rl̂lit þ vit ð19:5:18Þ

now forms the basis for estimation of b and r by using a conventional fixed effects

linear regression with the observed data.

19.6 Recent developments

As with all areas in econometrics – one of the most active and heavily populated

fields in economics – many researchers are extending the models we have dis-

cussed here in many directions. Space hardly allows even a cursory review of the

literature. What follows is a small sampler chosen more or less haphazardly from

the vast recent literature.

We note, first, consistent with other areas, recently developed simulation

methods, the Gibbs sampler and Markov Chain Monte Carlo methods, have

enabled researchers to extend classical methods into Bayesian frameworks. For

example, Bayesian techniques have been developed for the sample selection

model, including those by Li, Poirier and Tobias (2004) and Li (1998). The first of

these examines a type of sample selection model sometimes called the mover-stayer

model,

d�
i ¼ z0

iaþ ui, di ¼ 1½d�
i > 0


yijðdi ¼ 1Þ ¼ x0
ib1 þ ei1

yijðdi ¼ 0Þ ¼ x0
ib0 þ ei0

ei1, ei0 � N2½ð0:0Þ, ðs2
1,s2

0,rs1s0Þ
, i ¼ 1, . . . , N

ð19:6:1Þ

The name of the model derives from studies of migration, in which income is

analyzed after migration or nonmigration. There are two intriguing aspects of the

model that Poirier and Tobias examine. First, a crucial parameter, r, is not iden-

tified in the observed data. Second, the model specification suggests an interesting

problem of predicting the outcome variable on the road not taken. (This theme

figures prominently in the treatment effects literature, where the question of how

the treatment would affect those not treated if they had taken it for example,

job training, assistance, drug). The authors use the model to study incomes of

high school students, some of whom drop out before their third year. Li (1998)

examined a treatment effects model

y�
i ¼ x0

ibþ ddi þ ei, ei � N½0, s2
, i ¼ 1, . . . , N

yi ¼ maxð0, x0
ibþ ddi þ eiÞ

d�
i ¼ z01aþ ui, di ¼ 1½d�

i > 0

ð19:6:2Þ

with the added complication that the outcome variable is censored. This precludes

two-step least squares based estimation strategies, and mandates a likelihood based
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procedure instead. Li uses a Bayesian, MCMC procedure to estimate the parameters

of the model. The technique is applied to a sample of times in default for firms who

declare bankruptcy.

The strict normality assumptions that underlie the familiar tobit, probit, trun-

cated regression and Heckman’s sample selection model have perhaps attracted

the most attention of contemporary researchers. Moon (1989) reconsidered the

nonlinear least squares estimators mentioned earlier. The conditional mean

function defined for the tobit model,

E½yjx
 ¼ Fðx0
igÞs½x0

igþ lðx0
igÞ
 ð19:6:3Þ

is amenable to nonlinear least squares. However, it is no less reliant on the

normality assumption than is the likelihood function, so it has no advantage over

the MLE and one shortcoming – it is less efficient. Moon (1989) examines ways to

relax the assumptions to produce a more robust estimator that can be estimated by

nonlinear least squares.

Many recent studies, both theoretical and applied, have proposed semipara-

metric estimators that rely on fewer or less stringent distributional assumptions.

Powell (1984, 1986) is an early contribution. The censored least absolute devia-

tions estimator (CLAD),

b̂b ¼ arg minb

XN

i¼1
jyi � maxð0, x0

ibÞj ð19:6:4Þ

is consistent even in the absence of normality – it requires only that the condi-

tional median of y�i be zero. There are several practical problems in implementing

the CLAD estimator, including the possibility of multiple optima. Bilias et al.

(2000) proposed a bootstrapping method that they argue is better behaved.

The programming problem is asymptotically equivalent to

b̂b� ¼ arg minb

XN

i¼1
jyi � x0

ibj � 1ðx0
ib0 > 0Þ ð19:6:5Þ

where b0 is the true value of b, that is, the parameter we are trying to estimate. We

do note that, if we had the true b that we were trying to estimate, this mini-

mization would be unnecessary. The authors suggest substituting Powell’s con-

sistent estimator for b0, then using a bootstrapping procedure to sharpen the

estimator of b. Chen and Khan (2000) further extend Powell’s approach to allow

for unspecified heteroscedasticity. Moon’s (1989) proposed estimator is not

unrelated to this, and he, as these authors do, takes the CLAD estimator as a

benchmark for comparison. Honore (1992) suggests how the CLAD estimator can

be extended to accommodate panel data models with fixed effects. (It is worth

noting that these estimators focus on estimation of a constant multiple of b.

Without information about scaling, further computation of partial effects and/or

predictions is not possible. Since the models are ‘‘robust’’ to heteroscedasticity, no

such information will be forthcoming.) An empirical exploration of the semi-

parametric estimators is given in Chay and Honore (1998).
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One extension of the semiparametric methods is to the panel data models of

sample selection. Several studies have pursued this, including Kyriazidou (1997),

Honore and Kyriazidou (2000) and Lee (2001). (See Vella (1998) for a lengthy

survey of these and other semiparametric and nonparametric approaches to

modeling selection.) In general, the recent applications have considered the

assumptions under which first differences of yit and xit can be used for adjacent

pairs of ‘‘selected observations’’. Kyriazidou’s (1997) estimator builds on a fixed

effects model,

y�it ¼ x0
itbþ Zi þ eit , eit � N½0, s2
, i ¼ 1, . . . , N, observed when dit ¼ 1:

d�
it ¼ z0

ita þ yi þ uit dit ¼ 1ðd�
it > 0Þ:

ð19:6:6Þ

Minimal assumptions are made about the conditional distributions – that is, the

point of the semiparametric approach. The estimator proceeds in two steps. At the

first, a robust (semiparametric) estimator of u in the binary choice model is

obtained (Manski’s (1985, 1986, 1987) maximum score estimator or Klein and

Spady’s (1993) semiparametric estimator). At the second step, the estimator is

weighted least squares using adjacent (both selected) observations,

b̂b ¼
XN

i¼1
DiĉciðDxiÞðDxiÞ0

h i�1 XN

i¼1
DiĉciðDxiÞðDyiÞ0

h i
ð19:6:7Þ

where D creates the first differences of the observations, Di equals 1 if dit ¼ di;t�1

(that is, if the two adjacent observations are both selected) and zero otherwise, and

ĉci is a weight that declines to zero as the magnitude of jzi, t âa� z0i, t�1âaj increases; the

author suggests a kernel function for the weight. Honore and Kyriazidou (2000) and

Lee (2001) explore various aspects of this estimator. Note that the use of differ-

ences eliminates the- time-invariant effect from the equations, so it has the virtue

of obviating any strong assumptions (such as random effects). On the other hand,

using first differences removes any interesting time invariant independent vari-

ables, as well. Another interesting aspect of this class of estimators is that it allows

the use of pairs of observations that are not adjacent in time. This exchangeability

aspect is pursued at length in the papers mentioned. Rochina-Barrachina (1999)

and Dustman and Rochina-Barrachina (2000) proposes a similar estimator based

on differences of the selected observations.

The semiparametric approach has been applied to a variety of settings. Gurmu

(1997) has used a hurdle/Poisson model with a semiparametric framework for

unobserved heterogeneity in a model for the number of doctor visits in a sample of

Medicaid patients. Lee (2004) also examined a count response variable; like

Gurmu, he examined the number of doctor visits in a sample on health and

retirement (see Lee (2004, p. 332) for discussion). In his study, the Poisson model is

extended to accommodate an endogenous treatment effect, the amount of exer-

cise. The treatment here is an ordinal variable – high, medium, low – so this model

is a bit different (and somewhat more complicated) than the usual case in which

the treatment is simply on or off, a binary variable. The hurdle model for counts in
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a study of health care outcomes is a frequent subject of analysis. Winkelmann

(2004) (the source for the data in our application above) is another application.

The programming estimators considered here are ‘‘direct’’ estimators based on

minimizing a particular criterion function, either the sum of absolute values or,

in Moon’s (1989) case, the sum of squares. A number of authors have approached

the problem from the direction of moment based (GMM) estimation. Lee (2002)

suggests an approach to estimation of the basic censored regression model, while

Honore (2002) and Kyriazidou (1997, 2001) extend the model to the sample

selection specification. In these cases, the estimators are highly robust, but at the

high cost of limiting attention to the T¼2 case. Research on this type of estima-

tion methodology is ongoing.

The models discussed above are all static – there are no considerations of

dynamic behavior thus far. That is a moot point in the cross-section variants of the

models considered, but a crucial assumption of the panel data approaches

described in section 19.5.13 The issue of dynamics in panel data models is a vast

literature in itself – at this late juncture, we eschew even a hint at a survey style list.

The form in which dynamics should be introduced into the model (any model) is,

itself, not a simple issue. Wooldridge (2005) proposes the following general spe-

cification for the tobit model (among several he considers) with unobserved time

invariant effects.

yit ¼ maxð0, x0
itbþ gðyi, t�1Þrþ ai þ eitÞ

eit jxit , ai, yi, 0, yi, 1, . . . , yi, t�1 � N½0, s2
:
ð19:6:8Þ

where g(�) is some transformation of the lagged observed value – it will usually be

yi, t�1 itself – and yi, 0 is the observed initial condition. (We have changed

the notation slightly to conform to ours, and limited attention to a single lagged

value (as he actually does as well).) Wooldridge explores the conditions under

which we may write the density for the observed variable (using the Olsen trans-

formation as usual), as

ln f ðyi, t jxi, t , ai, yi, t�1Þ¼1½yi, t ¼ 0
 lnF x0
i, tgþ yi, t�1mþ saai

h i
þ 1½yi, t > 0
 ln yf ðyyi, t � x0

i, tg� yi, t�1m� saaiÞ
h i ð19:6:9Þ

We have isolated the standard deviation of ai, and consistent with the

normalization of the model by 1/s, what we have labeled sa above is actually

Var½a1
1=2=s. The crucial step in Wooldridge’s analysis is the assumptions that

allow projection of ai on known information; he writes

ai ¼ a0 þ a1yi, 0 þ x0
ia1 þ wi ð19:6:10Þ

where xi is (a bit ambiguously) defined to include some or all observations on xit ,

and wi is normally distributed with zero mean and constant variance. (Asymptotics
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and other technical details may be found in Wooldridge’s study.) Inserting the

equation for ai into the density for yi, t , and summing the logs produces, as he

notes, a ‘‘simple solution’’ to the initial conditions problem in a dynamic tobit

model. The end result is a tobit random effects model, precisely the one we

examined in section 19.5.14

19.7 Summary and conclusions

The preceding sections has outlined the basic modeling frameworks that are used

in analyzing microeconomic data when the response variable is truncated, cen-

sored, or otherwise affected by transformation before being observed. The essential

models for truncation, censoring and sample selection have provided the starting

points for a vast array of applications and theoretical developments. The full set of

results for the fully parametric models based on the normal distribution are well

established. Ongoing contemporary research is largely focused on less parametric

approaches, on panel data, and on different kinds of data generating mechanisms,

such as models for counts and for discrete choices.

Appendix: LIMDEP Commands for Model Estimation

? Generic – File will be loaded from the File menu on the desktop

? Load ; File ¼ Health.lpj $

Namelist ; xt¼age,educ,married,hhkids$

? Censor the income data

Create ; income¼hhninc;if(income>.35)income¼.35$

Dstat ; rhs¼income,xt$

Reject ; income >¼ .35$

? Pooled OLS nonlimit data

Regress ; lhs¼income;rhs¼one,xt$

? Pooled truncation using nonlimit data

Truncation ; lhs¼income;rhs¼one,xt;limit¼.35;upper$

? Restore full sample

Sample ; All $

? Pooled OLS using full sample

Regress ; lhs¼income;rhs¼one,xt$

? Pooled tobit using full sample

Tobit;lhs¼income;rhs¼one,xt;limit¼.35;upper$

? Tobit with fixed effects. Retain dummy variable coefficients

Tobit ; lhs¼income;rhs¼one,xt

;limit¼.35 ;upper;pds¼numobs;fem;parameters$

Sample ; 1–7293$

Create ; ai¼alphafe$

Calc ; list ;sdv(ai)$$

Sample ; all$

? Tobit with random effects using quadrature

Tobit ; lhs¼income ; rhs¼one,xt ; limit¼.35 ; upper;pds¼numobs$

? For MSL program convert to a zero censored variable

Create ; income35¼.35�income$

? Tobit with random effects using Monte Carlo integration.

? Need to reverse signs of coefficients and adjust constant

? Appropriate constant is .35–b0. Reported in Table 4.
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Tobit ; lhs¼income35;rhs¼one,xt;pds¼numobs

;rpm;fcn¼one(n) ; Halton draws ; pts¼50 $

? Get group means for Mundlak correction

Matrix ; meanx¼gxbr(xt,id)$

Create ; xbage¼meanx(id,1)$

Create ; xbeduc¼meanx(id,2)$

Create ; xbmarr¼meanx(id,3)$

Create ; xbkids¼meanx(id,4)$

? Random effects model with group means added to the model

Tobit ;lhs¼income;rhs¼one,xt,xbage,xbeduc,xbmarr,xbkids

;limit¼.35;upper;pds¼numobs$

Notes

1. The origin of the model’s name, ‘‘tobit’’, is the subject of some speculation. Popular lore
has it as a play on ‘‘Tobin’s probit’’, in reference to Tobin (1958) and his model’s con-
nection to the probit (binary choice) model. However, a deeper look into the archives
uncovers the same James Tobin’s appearance as Tobit, the midshipman ‘‘with a mind like
a sponge . . . ’’ in Tobin’s Columbia friend, Herman Wouk’s (1951) classic work, The Caine
Mutiny. (http://www.economyprofessor.com/theorists/jamestobin.php).

2. The differences between these estimators is illusory. In all cases, they are equivalent to
gradient methods each using its own weighting matrix. Some, e.g., Newton’s method,
are more efficient (computationally) than others (e.g., the EM method).

3. Surprisingly, this fit measure has become a required standard in some fields in some
journals. This fit measure bears only a slight connection to the fit of the model to the
data, even in the linear regression model. For the linear model, a little algebra shows it
to equal lnðs2=s2

0Þ=½lnðs2=s2
0Þ þ 1 þ ln 2pþ ln s2

0Þ
, which can be distressingly low even in
models that have ‘‘excellent fit.’’ Note that it is a function of the scale of the data. In a
simple experiment, we used a random number generator to generate 1000 standard
normal observations on xi and ei, then, yi ¼ xi þ ei. Linear regression of yi on xi and a
constant produces an R2 of .5193 and a pseudo-R2 of .20602. Multiplying yi by 10 and
repeating the exercise leaves R2 unchanged (of course), but reduces the pseudo-R2 to .09.
To cite another example, in the author’s experience, values of .02 appear to be routine
in ordered probit models for which conventional prediction procedures based on the
estimated model give the correct value for the dependent variable 90% of the time.

4. We note that, among the other shortcomings of most semiparametric estimators of
the censored regression model, they are estimated ‘‘up to (an unknown) scale.’’ Some are
even robust to heteroscedasticity. This is not a virtue – it precludes prediction and
estimation of partial effects.

5. The counterpart for the truncated regression model is ei ¼ ðyyi � x0
igÞ � li.

6. The dependent variable analyzed in Fair (1978) was a reported count that was censored in
several ranges. The reported count variable was transformed to 0,1,2,3,(4–10)¼7, (any-
thing else)¼12. Fair analyzed this count variable with the tobit model discussed above as
if it were continuous, and treated the censoring as having occurred at the zero point.
These data obviously fall more naturally into the corner solution interpretation
(see Wooldridge, 2002). See Greene (2003, chapter 22) for a reanalysis of these data using
the censored count data model suggested here.

7. Vella (1998) is a thorough, excellent survey of this topic recounted clearly from a prac-
titioner’s viewpoint.

8. Heckman and MaCurdy (1981) suggested an iterative procedure whereby, given initial
estimates of the parameters, the dummy variable coefficients be estimated conditionally,
one at a time each based on Ti observations, then with estimates of ai in hand, the slopes
be estimated, then back and forth until convergence. Because the Hessian is not block
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diagonal – the parameter space cannot be partitioned – this procedure does not maximize
the full log likelihood function. It can only be done directly, by ‘‘brute force.’’

9. The computational method for fittting the model with large numbers of dummy vari-
ables appears not to be widely known.

10. The exact expected value of the variance estimator in the linear model with fixed effects
is easy to find with elementary matrix algebra – see any graduate-level textbook in
econometrics, for example.

11. All computations reported were done using LIMDEP Version 8.0. Readers who wish to
replicate (or extend) the results will find the data on the Journal of Applied Econometrics
data archive website for 2004. They are also stored in the forms of an ExcelTM spreadsheet
and a LIMDEP project file on the author’s website at http://www.stern.nyu.edu/
�wgreene/Econometrics/healthcare.lpj (and .xls). The commands for LIMDEP are given
in the appendix.

12. The estimator is contained in the current version of LIMDEP (Econometric Software,
2006).

13. There are very few strict time series applications of the models discussed in this chapter.
Censoring and truncation are generally viewed as signature features of microeconomic
(cross section and panel) data. However, Lee (1999, 2004) does consider a time series
specification of the tobit model, extending it to a GARCH framework. This extension is,
as one might expect, extremely complicated. Relevant applications remain forthcoming.
Lee (1999) cites a number of natural candidates involving, for example, intervention in
foreign exchange markets intended to limit movement of exchange rates.

14. In an application with more than a trivial number of periods and a substantial number of
regressors, the expression for ai is likely to have an excessive number of terms. As a useful
approximation, one might want just to use the Mundlak approach, and replace the full
set of vectors xit with the group means of the time-varying variables.
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