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Abstract

This study presents several extensions of the most familiar models for
count data, the Poisson and negative binomial models. We develop
an encompassing model for two well-known variants of the negative
binomial model (the NB1 and NB2 forms). We then analyze some
alternative approaches to the standard log gamma model for intro-
ducing heterogeneity into the loglinear conditional means for these
models. The lognormal model provides a versatile alternative speci-
fication that is more flexible (and more natural) than the log gamma
form, and provides a platform for several “two part” extensions, includ-
ing zero inflation, hurdle, and sample selection models. (We briefly
present some alternative approaches to modeling heterogeneity.) We
also resolve some features in Hausman, Hall and Griliches (1984, Eco-
nomic models for count data with an application to the patents–R&D
relationship, Econometrica 52, 909–938) widely used panel data treat-
ments for the Poisson and negative binomial models that appear to
conflict with more familiar models of fixed and random effects. Finally,
we consider a bivariate Poisson model that is also based on the lognor-
mal heterogeneity model. Two recent applications have used this model.



We suggest that the correlation estimated in their model frameworks
is an ambiguous measure of the correlation of the variables of interest,
and may substantially overstate it. We conclude with a detailed appli-
cation of the proposed methods using the data employed in one of the
two aforementioned bivariate Poisson studies.
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1
Introduction∗

Models for count data have been prominent in many branches of the
recent applied literature, for example, in health economics (e.g., in
numbers of visits to health facilities1) management (e.g., numbers of
patents2), and industrial organization (e.g., numbers of entrants to mar-
kets3). The foundational building block in this modeling framework is
the Poisson regression model.4 But, because of its implicit restriction
on the distribution of observed counts — in the Poisson model, the
variance of the random variable is constrained to equal the mean —
researchers routinely employ more general specifications, usually the
negative binomial (NB) model which is the standard choice for a basic
count data model.5 There are also many applications that extend the

* This study has benefited from the helpful comments of Andrew Jones on an earlier version.
Any remaining errors are the author’s responsibility.

1 Jones (2000), Munkin and Trivedi (1999), Riphahn et al. (2003). See, as well, Cameron
and Trivedi (2005).

2 Hausman et al. (1984) and Wang et al. (1998).
3 Asplund and Sandin (1999).
4 Hausman et al. (1984), Cameron and Trivedi (1986, 1998), and Winkelmann (2003).
5 The NB model is by far the most common specification. See Hilbe (2007). The latent class
(finite mixture) and random parameters forms have also been employed. See, e.g., Wang
et al., op. cit., Deb and Trivedi (1997) and Bago d’Uva (2006).
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116 Introduction

Poisson and NB models to accommodate special features of the data
generating process, such as hurdle effects,6 zero inflation,7 and sample
selection.8 The basic models for panel data, fixed and random effects,
have also been extended to the Poisson and NB models for counts.9

Finally, there have been several proposals for extending the Poisson
model to bivariate and multivariate settings.10 This list includes a sub-
stantial fraction of the received extensions of the basic Poisson and NB
models. There have, however, been scores of further refinements and
extensions that are documented in a huge literature and several book
length treatments such as Cameron and Trivedi (CT) 1998, Winkel-
mann (2003), and Hilbe (2007).

This paper will survey some practical extensions of the Poisson and
NB models that practitioners can employ to refine the specifications
or broaden their reach into new situations. We will also resolve some
apparent inconsistencies of the panel data models with other more
familiar results for the linear regression model.

• There are two well known, nonnested forms of the negative
binomial model, denoted NB1 and NB2 in the literature. (See
CT (1986)). Researchers have typically chosen one form or
the other (typically NB2), but not generally formed a pref-
erence for one or the other. We propose an encompassing
model that nests both of them parametrically and allows a
statistical test of the two functional forms against a more
general alternative.

• The NB model arises as the result of the introduction of log
gamma distributed unobserved heterogeneity into the log-
linear Poisson mean. A lognormal model provides a suit-
able alternative specification that is more flexible than the

6 See, e.g., Mullahy (1986), Rose et al. (2006) and Yen and Adamowicz (1994) on separately
modeling participation and usage.

7 See, e.g., Heilbron (1994) and Lambert (1992) on industrial processes, Greene (1994) on
credit defaults and Zorn (1998) on Supreme Court Decisions.

8 See, e.g., Greene (1995) on derogatory credit reports and Terza (1998).
9 See, again, Hausman et al. (1984) on the relationship between patents and research and
development.

10 See King (1989), Munkin and Trivedi (1999) and Riphahn et al. (2003).
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log gamma form, and provides a platform for several use-
ful extensions, including hurdle, zero inflation, and sample
selection models.11 We will develop this alternative to the
NB model, then show how it can be used to accommodate in
a natural fashion, e.g., sample selection, hurdle effects, and
a new model for zero inflation.

• The most familiar panel data treatments, fixed effects (FE)
and random effects (RE), for count models were proposed
by Hausman et al. (HHG) (1984). The Poisson FE model is
particularly simple to analyze, and has long been recognized
as one of a very few known models in which the inciden-
tal parameters problem (see Neyman and Scott (1948) and
Lancaster (2000)) is, in fact, not a problem. The same is not
true of the NB model. Researchers are sometimes surprised to
find that the HHG formulation of the FE NB model allows an
overall constant — a quirk that has also been documented
elsewhere. (See Allison (2000) and Allison and Waterman
(2002), for example.) We resolve the source of the ambigu-
ity, and consider the difference between the HHG FE NB
model and a “true” FE NB model that appears in the famil-
iar index function form. The true FE NB model has not been
used by applied researchers, probably because of the absence
of a computational method. We have developed a method of
computing the true FE NB model that allows a comparison
to the HHG formulation.

• The familiar RE Poisson model using a log gamma het-
erogeneity term produces the NB model. We consider the
lognormal model as an alternative, again, as a vehicle for
more interesting specifications, and compare it to the HHG
formulation. The HHG RE NB model is also unlike what

11 The Poisson lognormal mixture model has a long history, apparently beginning with
Pielou (1969) and Bulmer (1974), both of whom build on a Gaussian model proposed
by Preston (1948). Hinde (1982) describes the context of “generalized linear models.” It
appears in the econometrics literature with Greene (1994, 1995), Terza (1998), Million
(1998), Geil et al. (1997), and several recent applications including, e.g., Winkelmann
(2003), Van Ourti (2004), and Riphahn et al. (2003).
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might seem the natural application in which the heterogene-
ity term appears as an additive common effect in the condi-
tional mean. Once again, this was a practical solution to the
problem. The lognormal model provides a means of specify-
ing the RE NB model in a natural index function form. We
will develop this model, and, once again, compare it to the
HHG formulation.

• Two recent applications, Munkin and Trivedi (1999) and
RWM (2003), have used a form of the bivariate Poisson model
in which the correlation is introduced through additive cor-
related variables in the conditional mean functions. Both of
these studies have misinterpreted (and overstated) the corre-
lation coefficient estimated in their model frameworks. What
they have specified is correlation between the logs of the con-
ditional mean functions. How this translates to correlation
between the count variables themselves is quite unclear. We
will examine this in detail.

The study is organized as follows: Section 2 will detail the basic
modeling frameworks for count data, the Poisson and NB models and
will propose models for observed and unobserved heterogeneity in count
data. This section will suggest a parameterization of the NB model that
introduces measured heterogeneity into the scaling parameter. We then
develop the NBP model to encompass NB1 and NB2. Finally, we pro-
pose the lognormal model as an alternative to the log gamma model
that produces the NB specification. Section 3 will extend the lognor-
mal model to several two part models. Section 4 will examine the fixed
and random effects models for panel data. Section 5 will consider appli-
cations of the Bivariate Poisson model. The various model extensions
proposed are applied to the RWM panel data on health care utilization
in Section 6. Some conclusions are drawn in Section 7.

As documented in a vast literature, there are many aspects of
modeling count data. This study is focused on two large issues, first,
the accommodation of overdispersion and heterogeneity in the basic
count framework and, second, the functional form of the conditional
mean and the extension of models of heterogeneity to models for panel
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data and sources of correlation across outcomes. The first of these
is more straightforward. In principle, these are elements of the con-
ditional variance of the distribution of counts that can be analyzed
apart from the conditional mean. Robust inference methods for basic
models can be relied upon to preserve the validity of estimation and
inference procedures. The second feature motivates the development of
more intricate models such as the two part, panel and bivariate models
presented in what follows.



2
Basic Functional Forms for Count Data Models

This section details the basic functional forms for count data models.
The literature abounds with alternative models for counts — see, e.g.,
CT (1998) and Winkelmann (2003). However, the Poisson and a few
forms of the negative binomial model overwhelmingly dominate the
received applications. (See, as well, Hilbe (2007).) We will summarize
the basic forms of the model and propose a few extensions that provide
the departure point for more elaborate two part models in Part 3.

2.1 The Poisson Regression Model

The canonical regression specification for a variable Y that is a count
of events is the Poisson regression

Prob[Y = yi|xi] =
exp(−λi)λyi

i

Γ(1 + yi)
, λi = exp(α + x′

iβ),

yi = 0,1, . . . , i = 1, . . . ,N, (2.1)

where xi is a vector of covariates and, i = 1, . . . ,N , indexes the N obser-
vations in a random sample. For reasons that will emerge below, we
explicitly assume that there is a constant term in the model. (The
regression model is developed in detail in a vast number of standard

120



2.1 The Poisson Regression Model 121

references such as CT (1986, 1998, 2005), Winkelmann (2003) and
Greene (2008a), so we will refer the reader to one of these sources for
background results.) The Poisson model has the convenient feature that

E[yi|xi] = λi. (2.2)

It has the undesirable characteristic that

Var[yi|xi] = λi. (2.3)

This is the “equidispersion” aspect of the model. Since observed data
will almost always display pronounced overdispersion, analysts typi-
cally seek alternatives to the Poisson model, such as the negative bino-
mial model described below.1

Estimates of the parameters of the model using a sample of N
observations on (yi,xi), i = 1, . . . ,N , are obtained by maximizing the
log likelihood function,2

lnL =
N∑
i=1

[
yi(α + x′

iβ) − λi − lnΓ(1 + yi)
]
. (2.4)

The likelihood equations take the characteristically simple form3

∂ lnL/∂
(
α

β

)
=

N∑
i=1

(
1
xi

)
(yi − λi) =

N∑
i=1

(
1
xi

)
ei = 0. (2.5)

The partial effects in the Poisson model are

∂E[yi|xi]/∂xi = λiβ = gx. (2.6)

1 The case of underdispersion is of less empirical importance, though it has been studied
in both applied and theoretical treatments. Certain models, such as the gamma model
(see Winkelmann (2003)) and the generalized event count model (see, e.g., King (1989)).
A few applications are cited in Jones (2000). The models and applications discussed in
this study will not be concerned with this possibility.

2 The conditions on the data generating mechanism for xi that are necessary for the MLE
to be well behaved and to have the familiar properties of consistency, asymptotic nor-
mality, efficiency, and invariance to one to one transformations are all assumed, and will
not be treated separately. The assumptions are carried through to the other models dis-
cussed below. Aside from some complications arising from the need to approximate cer-
tain integrals by quadrature or simulation, the models examined here are all amenable to
straightforward maximum likelihood estimation.

3 Estimation and inference for the Poisson regression model are discussed in standard sources
such as CT (1998) and Greene (2008a).
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The delta method can be used for inference about the partial effects.
The necessary Jacobian is

J =
∂gx

∂(α,β′)
= gx(1,x′

i) + λi [0 I] , (2.7)

where 0 indicates a conformable column vector of zeros. The estimator
of the asymptotic covariance for gx evaluated at a particular (1,xi) (or
the sample mean, (1, x̄) would be

Est. Asy. Var[ĝx] = Ĵ(Est. Asy. Var[α̂, β̂])Ĵ′, (2.8)

where “∧” indicates a matrix or vector evaluated at the maximum
likelihood estimates. In the various developments below, we will present
the only elements of the Jacobians, J, for each estimator of the partial
effects. Computation of asymptotic covariance matrices follow along
these lines in all cases.

As noted in the introduction, many extensions of the count data
models preserve the functional form of the conditional mean function,

E[y|xi] = λi = exp(α + x′
iβ) (2.9)

even in the presence of unobserved heterogeneity (such as the NB
model). Under conditions that one could be expect to be met in most
applications, this would imply the moment conditions

E

[
(yi − λi)

∂λi
∂xi

]
= E [(yi − λi)λixi] = 0. (2.10)

Assuming strict exogeneity of the variables in xi, we can extend this to
the simpler condition

E

[
(yi − λi)

(
1
xi

)]
= 0. (2.11)

The empirical counterpart to (2.11) is

1
n

N∑
i=1

(
1
xi

)
(yi − λi) =

1
n

N∑
i=1

(
1
xi

)
ei = 0, (2.12)

which implies that the estimator defined by (2.12) is a GMM esti-
mator for a broader class of models than just the Poisson regression.
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The implied asymptotic covariance matrix estimator for this exactly
identified model would be

Asy. Var[β̂GMM] =
1
n

{[
1
n

N∑
i=1

−λi
(

1
xi

)(
1
xi

)′]

×
[

1
n

N∑
i=1

e2i

(
1
xi

)(
1
xi

)′]−1

×
[

1
n

N∑
i=1

−λi
(

1
xi

)(
1
xi

)′]}−1

(2.13)

(This is the standard “robust” covariance matrix estimator.) Since this
formulation includes many of the models of heterogeneity and various
other functional forms for count data models, the Poisson MLE with
this asymptotic covariance matrix is robust at least to some of these
extensions. (The “pseudo-MLE” treatment of Gourieroux et al. (1984)
produces the same conclusions.)

2.2 The Negative Binomial and Poisson Lognormal
Regression Models

As noted in (2.2) and (2.3), the Poisson model imposes the (usu-
ally) transparently restrictive assumption that the conditional variance
equals the conditional mean. The typical alternative is the negative
binomial (NB) model. The model can be motivated as an attractive
functional form simply in its own right that allows overdispersion. How-
ever, it is useful for present purposes to obtain the specification through
the introduction of unobserved heterogeneity in the Poisson regres-
sion model. We consider two possible cases, the conventional approach
based on the log gamma distribution and, we will argue, a more flexible
approach based on the lognormal distribution.

2.2.1 The Negative Binomial Model

To introduce latent heterogeneity into the count data model, we write

E[yi|xi,εi] = exp(α + x′
iβ + εi) = hiλi, (2.14)
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where hi = exp(εi) is assumed to have a one parameter gamma distri-
bution, G(θ,θ) with mean 1 and variance 1/θ = κ. That is

f(hi) =
θθ exp(−θhi)hθ−1

i

Γ(θ)
, hi ≥ 0, θ > 0.4 (2.15)

The nonzero mean of εi will be absorbed in the constant term of the
index function. Making the change of variable to εi = lnhi produces
the log gamma variate with density

f(εi) =
θθ exp[−θ exp(εi)] [exp(εi)]

θ

Γ(θ)
, −∞ < εi < ∞, θ > 0. (2.16)

It will be useful for the empirical results below to obtain the mean and
variance of the random variable εi. The end result is

E[εi] = ψ(θ) − lnθ,

Var[εi] = ψ′(θ),

where ψ(θ) is the digamma function, dlnΓ(θ)/dθ and ψ′(θ) is the
trigamma function, d2 lnΓ(θ)/dθ. To prove this, we will use an indirect
method of derivation so as to employ some simple known results. For
convenience, we drop the observation subscript. Taking logs in (2.15),

lnf(h) = θ lnθ − lnΓ(θ) − θh + (θ − 1) lnh.

The density in (2.15) is “regular” according by the Fischer criteria for
the properties of maximum likelihood estimation. (See Greene (2008a,
Ch. 16).) Thus,

E[∂ lnf(h)/∂θ] = 1 + lnθ − ψ(θ) − E[h] + E[lnh] = 0.

We know that E[h] equals 1 from earlier results for the gamma distri-
bution, so the first part of the result for E[εi] follows immediately, since
lnh = ε. For the second result, we know from the information matrix
equality that

Var[∂ lnf(h)/∂θ] = −E[∂2 lnf(h)/∂θ2] = ψ′(θ) − 1/θ.

4 This general approach is discussed at length by Gourieroux et al. (1984), Cameron and
Trivedi (1986, 1997), Winkelmann (2003) and Hausman et al. (1984).
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But,

Var[∂ lnf(h)/∂θ] = Var[h] + Var[lnh] − 2Cov[h, lnh]

and

Var[h] = 1/θ,

so

ψ′(θ) − 1/θ = Var[lnh] + 1/θ − 2Cov[h, lnh].

We need Cov[h, lnh] to obtain Var[lnh] = Var[ε];

Cov[h, lnh] = E[h lnh] − E[h]E[lnh]

= E[h lnh] − 1 × (ψ(θ) − lnθ).

Once again reverting to the gamma density for h,

E[h lnh] =
∫ ∞

0
h lnh

θθ exp(−θh)hθ−1

Γ(θ)
dh

=
∫ ∞

0
lnh

θθ exp(−θh)hθ
Γ(θ)

dh

=
∫ ∞

0
lnh

θθ+1 exp(−θh)h(θ+1)−1

Γ(θ + 1)
dh.

We have used the recursion Γ(θ + 1) = θΓ(θ) in the third line. The
third line gives E[lnh] when h has a gamma (θ,θ + 1) density, so it fol-
lows from our earlier result that E[h lnh] = ψ(θ + 1) − lnθ. Collecting
terms,

ψ′(θ) − 2/θ = Var[lnh] − 2[(ψ(θ + 1) − lnθ) − (ψ(θ) − lnθ)].

Finally, we use the recursion ψ(θ + 1) = ψ(θ) + 1/θ. (See Abramovitz
and Stegun (1971).) Inserting this in the line above produces the final
result for Var[lnh] = Var[ε] = ψ′(θ).

The conditional Poisson regression model is, therefore,

Prob[Y = yi|xi,εi] =
exp[−exp(εi)λi] [exp(εi)λi]yi

Γ(1 + yi)
,

λi = exp(α + x′
iβ), yi = 0,1, . . . (2.17)
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The unconditional density, that is, conditioned only on xi, is obtained
by integrating εi out of the joint density. That is,

Prob[Y = yi|xi] =
∫
εi

Prob[Y = yi|xi,εi]f (εi)dεi

=
∫ ∞

0

exp(−λi exp(εi))(λi exp(εi))yi

Γ(1 + yi)

× θθ exp(−θ exp(εi)) [exp(εi)]
θ

Γ(θ)
dεi. (2.18)

At this point, it is convenient to make the change of variable back to
hi = exp(εi). Then, the conditional density is

Prob[Y = yi|xi,hi] =
exp(−hiλi)(hiλi)yi

Γ(1 + yi)
,

λi = exp(α + x′
iβ), yi = 0,1, . . . (2.19)

and the unconditional density is

Prob[Y = yi|xi] =
∫
hi

Prob[Y = yi|xi,hi]f(hi)dhi

=
∫ ∞

0

exp(−hiλi)(hiλi)yi

Γ(1 + yi)
θθ exp(−θhi)hθ−1

i

Γ(θ)
dhi

=
θθλyi

i

Γ(1 + yi)Γ(θ)

∫ ∞

0
exp(−hi(λi + θ))hθ+yi−1

i dhi

=
θθλyi

i

Γ(1 + yi)Γ(θ)
Γ(θ + yi)

(λi + θ)θ+yi
. (2.20)

Defining ri = θ/(θ + λi) produces

Prob[Y = yi|xi] =
Γ(θ + yi)rθi (1 − ri)yi

Γ(1 + yi)Γ(θ)
, yi = 0,1, . . . , θ > 0, (2.21)

which is the probability density function for the NB distribution.
The conditional mean and variance of the NB random variable relate

to the Poisson moments as follows:

E[yi|xi] = λi, (2.22)

∂E[yi|xi]/∂xi = λiβ = gx, (2.23)
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J =
∂gx

∂(α,β′,θ)
= gx(1,x′

i,0) + λi [0 I 0] , (2.24)

(the same as in the Poisson model) and

Var[yi|xi] = λi[1 + (1/θ)λi] = λi[1 + κ λi], (2.25)

where κ = Var[hi].
Maximum likelihood estimation of the parameters of the NB model

(α,β,θ) is straightforward, as documented in, e.g., Greene (2007). Infer-
ence proceeds along familiar lines.5 Inference about the specification,
specifically the presence of overdispersion, is the subject of a lengthy
literature, as documented, e.g., in CT (1990, 1998, 2005) and Hilbe
(2007).

2.2.2 Poisson Lognormal Mixture Model

Consider, instead, introducing the heterogeneity in (2.14) as a normally
distributed variable with mean zero and standard deviation σ, which
we introduce into the model explicitly by standardizing εi.6 Then, the
Poisson model is

P (yi|xi,εi) =
exp(−hiλi)(hiλi)yi

Γ(1 + yi)
,

hiλi = exp(α + x′
iβ + σεi), εi ∼ N [0,1]. (2.26)

The unconditional density would be

P (yi|xi) =
∫ ∞

−∞
exp[−exp(σεi)λi][exp(σεi)λi]yi

Γ(1 + yi)
φ(εi)dεi, (2.27)

5 It is common to base inference about the parameters on “robust” covariance matrices (the
familiar “sandwich” estimator). See, e.g., Stata (2006). Since the model has been obtained
through the introduction of latent heterogeneity, which is now explicitly accounted for;
it is unclear what additional specification failure the MLE (or pseudo-MLE) would be
robust to. See Freedman (2006).

6 The Poisson lognormal mixture appears at a few points in the earlier literature. Bul-
mer (1984) and Pielou (1969) suggest an equivalent hierarchical model in which yi|λi is
distributed as Poisson with mean λi and in which the marginal distribution of λi is log-
normal. The specific form used here, with the appearance of the exponent of a normally
distributed carrier of latent heterogeneity appears in Greene (1995) and Million (1998) and
the several applications noted in the introduction. In Greene (1995) and Terza (1998), the
lognormal form is suggested in the context of the sample selection model in Section 3.1.
Million (1998) proposed the model in the simpler single equation form as a formal model
of heterogeneity.
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where here and in what follows, φ(εi) denotes the standard normal
density. The unconditional log likelihood function is

lnL =
N∑
i=1

lnP (yi|xi)

=
N∑
i=1

ln
{∫ ∞

−∞
exp[−exp(σεi)λi][exp(σεi)λi]yi

Γ(1 + yi)
φ(εi)dεi

}
. (2.28)

Maximum likelihood estimates of the model parameters are obtained
by maximizing the unconditional log likelihood function with respect
to the model parameters (α,β,σ).

The integrals in the log likelihood function do not exist in closed
form.7 The quadrature based approach suggested by Butler and Moffitt
(1982) is a convenient method of approximating them. Let

vi = εi/
√

2

and

ω = σ
√

2.

After making the change of variable from εi to vi and reparameterizing
the probability, we obtain

P (yi|xi) =
1√
π

∫ ∞

−∞
exp(−v2

i )P (yi|xi, vi)dvi, (2.29)

where the conditional mean is now E[yi|xi,vi] = exp(α + β′xi + ωvi).
Maximum likelihood estimates of (α,β,ω) are obtained by maximizing
the reparameterized log likelihood. In this form, lnL can be approxi-
mated by Gauss–Hermite quadrature. The approximation is

lnLQ =
N∑
i=1

ln

[
1√
π

H∑
h=1

WhP (yi|xi,Vh)
]
, (2.30)

7 Hinde (1982) suggested a combination of numerical integration and the EM algorithm for
estimation of the model parameters. Winkelmann (2003) suggests the Hermite quadrature
method described here as an alternative, straightforward procedure. Simulation seems to
have appeared only in the most recent applications, including, e.g., Munkin and Trivedi
(1999).
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where Vh and Wh are the nodes and weights for the quadrature. The
BHHH estimator of the asymptotic covariance matrix for the parameter
estimates is a natural choice given the complexity of the function. The
first derivatives must be approximated as well. To save some notation,
denote the individual terms summed in the log likelihood as ln LQ,i.
We also use the result that ∂P (., .)/∂z = P × ∂ lnP (., .)/∂z for any
argument z which appears in the function. Then,

∂ lnLQ/∂


αβ
ω


 =

N∑
i=1

1
LQ,i

1√
π

H∑
h=1

WhP (yi|xi,Vh)

× {yi − [exp(ωVh)λi]}

 1

xi
Vh


 . (2.31)

The estimate of σ is recovered from the transformation σ = ω/
√

2.
Simulation is another effective approach to maximizing the log like-

lihood function. (See Train (2003) and Greene (2008a).) In the original
parameterization in (2.26), the log likelihood function is

lnL =
N∑
i=1

ln
∫ ∞

−∞
P (yi|xi,εi)]φ(εi)dεi. (2.32)

The simulated log likelihood would be

lnLS =
N∑
i=1

ln
1
M

M∑
m=1

P (yi|xi,σεim)], (2.33)

where εim is a set of M random draws from the standard normal pop-
ulation. (We would propose to improve this part of the estimation by
using Halton sequences, instead. See Train (2003, pp. 224–238) and
Greene (2008a).) Extensive discussion of maximum simulated likeli-
hood estimation appears in Gourieroux and Monfort (1996), Munkin
and Trivedi (1999), Train (2003) and Greene (2008a).8 Derivatives of

8 One could preserve the log gamma specification by drawing him from a gamma (1,1)
population and using the logs in the simulation, rather than using draws from N[0,1] for
wim. This approach, which obviates deriving the unconditional distribution analytically,
was used in Munkin and Trivedi (1999).
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the simulated log likelihood for the ith observation are

∂ lnLS,i/∂


αβ
σ




=
1

lnLS,i
1
M

M∑
m=1

P (yi|xi,εim)[yi − exp(σεim)λi]


 1

xi
εim


 . (2.34)

The mean and variance of the lognormal variable are

E[exp(σεi)] = exp(σ2/2) (2.35)

and

Var[exp(σεi)] = E[exp(σεi)2] − {E[exp(σεi)]}2

= exp(σ2)[exp(σ2) − 1].

The conditional mean in the Poisson lognormal model is

E[yi|xi,εi] = λi exp(σεi). (2.36)

It follows that

E[yi|xi] = Eε[E[yi|xi,εi]] = λi exp(σ2/2)

= exp[(α + σ2/2) + x′
iβ]. (2.37)

To obtain the unconditional variance, we use

Var[yi|xi] = Eεi [Var[yi|xi,εi] + Varεi [E[yi|xi,εi]]. (2.38)

Combining the results above, we find

Var[yi|xi] = λi exp(σ2/2){1 + λi exp(σ2/2)[exp(σ2) − 1]}
= E[yi|xi,εi]{1 + τE[yi|xi,εi]}, τ = [exp(σ2) − 1]. (2.39)

Thus, the variance in the lognormal model has the same quadratic form
as that in the NB model in (2.25).

For the log gamma model, the partial effects and Jacobian have the
same form as in the Poisson model

gx = exp(σ2/2)λi

J =
∂gx

∂(α,β′,σ)
= gx(1,x′

i,σ) + exp(σ2/2)λi [0 I 0] . (2.40)
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One could argue that the lognormal model is a more natural specifi-
cation. If the heterogeneity captures the aggregate of individually small
influences, then an appeal to the central limit theorem would motivate
the normal distribution more than the log gamma. (See Winkelmann
(2003).) The attraction in this development is the ease with which the
normal mixture model can be extended and adapted to new models
and formulations, such as the two part models below. The log gamma
model that underlies the familiar NB specification provides no means
doing so. (See, as well, RWM (2003, p. 395) and Million (1998).)

2.2.3 Poisson Finite Mixture Models

An alternative approach to modeling latent heterogeneity in the count
data models is through a finite mixture model. The models for het-
erogeneity considered thus far can be viewed as models in which the
constant term in the conditional mean has a continuous distribution
over individuals in the sample. Thus, the preceding models are written

E[yi|xi] = exp(αi + x′
iβ)

αi = α + εi,

where εi has either log gamma or lognormal distribution in the treat-
ments thus far. As an alternative to this fully parametric treatment,
a semiparametric finite mixture approach to heterogeneity suggests a
discrete distribution over the entire parameter vector,

(αi,βi) = δi ∼ [δ1,δ2, . . . ,δJ ]with probabilities π1, . . . ,πJ

where πj ≥ 0 and Σjπj = 1.9

It is convenient to formulate this as a “latent class” model. (The
heterogeneous population of individuals is segregated into J classes,

9 Jochmann and Leon-Gonzalez (2004) propose what amounts to a full random parameters
treatment with continuous distribution of the parameters. This is the same as the full
lognormal random parameters treatment implemented in Greene (2007 and the 2004 ver-
sion, 8.0). They also describe a semiparametric extension of the model that is essentially
a Bayesian treatment of the full latent class model with Dirichlet mixing process. This
would be a generalization of Deb and Trivedi (1997) model. Their models are estimating
using a subset of the data used in the applications in this paper.
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where individual membership is unknown to the analyst.) The likeli-
hood function for this model is built up from the unconditional density

Prob(Yi = yi|xi) =
J∑
j=1

Prob(Yi = yi|xi,class = j)πj .

A variety of applications of this model appear in the recent literature,
including Deb and Trivedi (1997), Wang et al. (1998) and Bago d’Uva
(2006). A further extension developed in Greene (2007) is extension of
observable in the class probabilities in the form of a multinomial logit
model,

πij =
exp(z′

iφj)∑J
m=1 exp(z′

iφm)
.

The finite mixture approach has also been extended to a variety of
models, including negative binomial models (Deb and Trivedi (1997))
and the hurdle model discussed below (Bago d’Uva (2006)). The het-
erogeneous class probabilities formulation suggested above is employed
in Clark et al. (2005), Clark and Etile (2006) and Bago d’Uva (2006).
In principle, this formulation can be easily applied to any model. (See,
e.g., Greene (2007).)

2.3 Observed and Unobserved Heterogeneity in the NB
Model — A Heterogeneous NB Model

The NB random variable with density in (2.21) is heteroscedastic as can
be seen in (2.25). However, the scedastic function is a simple function of
the mean λi; Var[yi|xi] = λi[1 + (1/θ)λi]. In this model, 1/θ represents
a scaling parameter. A logical extension of the model is to allow this
parameter to be heterogeneous, in the form10

θi = exp(z′
iγ). (2.41)

10 This specification has been labeled the “generalized negative binomial model.” (See, e.g.,
Stata (2006) and Econometric Software (2007).) However, that term was applied to a
much earlier (no longer current) model. (See Amid (1978) and Jain and Consul (1971).)
What Stata calls the “generalized NB model” is more appropriately labeled the hetero-
geneous NB model, so we will use that label here. What might rightfully be called the
generalized NB model would be the NB P model developed in the next section. How-
ever, the name NegBin P, or NB P, will turn out to be much more useful as a descriptor
of the model. We note, finally, there is a well established “generalized Poisson model,”
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The conditional mean and partial effects in (2.22)–(2.24) are unchanged
by this modification of the model. This is a straightforward extension
of the NB model. Maximum likelihood estimation and inference are
routine.

Assuming that the NB model is the functional form of choice, not
through the introduction of heterogeneity, but as the base model in
its own right, one might be tempted to (re)introduce latent hetero-
geneity in the conditional mean function as in (2.14). The full model
would be

Prob[Y = yi|xi,εi] =
Γ(θi + yi)rθi

i (1 − ri)yi

Γ(1 + yi)Γ(θi)
, yi = 0,1, . . . , θi > 0,

(2.42)
where

ri = θi/(θi + hiλi),

θi = exp(z′
iγ),

hi = exp(εi).

The distribution of εi remains to be specified. Assuming, once again, a
log gamma distribution, G(µ,µ), does not produce the same benefit as
before, since the functional form of the NB model is not conjugate with
respect to a gamma(µ,µ) model for hi. The normal distribution would
provide a useful alternative, though the model would still have to be
estimated by maximum simulated likelihood or by using quadrature to
eliminate the open form integral. The simulated log likelihood for this
extended NB model for a sample of n observations would be

lnLS(α,β,γ,σ) =
N∑
i=1

ln
1
M

M∑
m=1

Γ(θi + yi)rθi
im(1 − rim)yi

Γ(1 + yi)Γ(θi)
,

rim =
exp(z′

iγ)
exp(z′

iγ)+ exp(α + x′
iβ +σwim)

=
θi

θi+himλi
,

(2.43)

P (yi|xi) = (λi/ai)yi[ai/Γ(1 + yi)]exp[−λi(1 + θyi)/ai],ai = 1 + θλi, that reverts to the
Poisson model if θ = 0. (See Econometric Software (2007), Sec. 24.4.2, and Wong and
Famoye (1997).) However, this generalization of the Poisson model has no obvious con-
nection to the generalizations of the NB model we consider here.
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where M is the number of draws for the simulation, wim ∼ N[0,1],m =
1, . . . ,M and σ is the standard deviation of the latent variable, εi = σwi.
(Further results on simulation appear in Section 3.1).

From the general form of the model, we have

E[yi|xi,εi] = exp(α + x′
iβ + εi). (2.44)

Since εi is unobserved, in order to obtain the conditional mean function,
we seek

E[yi|xi] = Eε{E[yi|xi,εi]} = λiEε[exp(εi)] = λiE[hi]. (2.45)

The result is straightforward for the two cases we have considered.
For a Gamma(µ,µ) model, the same result as before is obtained, since
E[exp(εi)] = E[hi] = 1. Thus, in this case, we still have E[yi|xi] = λi,
though the unconditional distribution is not the negative binomial.
Likewise, if the heterogeneity is assumed to be normally distributed,
then the conditional mean is, once again, exp(σ2/2)λi.

Since the NB model ultimately arises from the introduction of latent
heterogeneity into the Poisson model, arguably, the NB model with
latent heterogeneity is overspecified. There could be different explana-
tions for a finding of a “significant” estimate of σ (or, 1/µ). It could be
explained in terms of functional form of the assumed distribution of hi
in the Poisson model, or misspecification of the Poisson or NB models,
themselves. If the assumptions of the Poisson model with log gamma
heterogeneity are all correct, then it would seem that σ should equal
zero by construction.

2.4 The NEGBIN P Model

The NB model in (2.21) was labeled the NEGBIN 2 (NB2) model by
CT (1986), in reference to the appearance of the quadratic term for λi
in the conditional variance function:

Var[yi|xi] = λi + (1/θi)λ2
i = λi[1 + (1/θi)λi]

= λi + κi λ
2
i , κi = exp(−z′

iγ). (2.46)

(We have also incorporated (2.41).) CT (1986) suggested a reparame-
terization of the model,

Var[yi|xi] = λi + κiλ
1
i = λi[1 + κi], (2.47)
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and label the resulting specification NB1. The model is obtained by
replacing θi with θiλi in (2.21). After simplification, we obtain the
density for NB1,

Prob[Y = yi|xi] =
Γ(θiλi + yi)qθiλi

i (1 − qi)yi

Γ(1 + yi)Γ(θiλi)
, yi = 0,1, . . . (2.48)

where

qi =
1

1 + θi
.

The authors note in (1998) that other exponents would be possible.
(See their p. 73 and (3.26).) By replacing θi with θiλ2−P

i , we obtain the
NEGBIN P , or NBP model,

Prob[Y = yi|xi] =
Γ(θiλ2−P

i + yi)s
θiλ

2−P
i

i (1 − si)yi

Γ(1 + yi)Γ(θiλ2−P
i )

, yi = 0,1, . . .

(2.49)
where

si =
λi

λi + θiλ
2−P
i

.

(The log likelihood function and its derivatives are given in
Appendix A.) The NB1 and NB2 models are the special cases of P = 1
and P = 2. The conditional mean in this model is still λi, so the partial
effects are still those in (2.22), while the conditional variance is

Var[yi|xi] = λi[1 + (1/θi)λP−1
i ]. (2.50)

CT (1998) focus on the P = 1 and P = 2 forms, but suggest that
the “generalized event count model” (see Section 4.4.1) does include the
NEGBIN P as a special case. (CT (1986) also mentions the possibly
of this extension of the model, but does not develop it at any length.)
The GEC model (Winkelmann and Zimmermann (1991, 1995), King
(1989)) which does include NEGBIN P is sufficiently cumbersome to
have greatly restricted its general use. The NEGBIN P model achieves
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somewhat less of the generality of the GEC model, but is much simpler
to implement.11 An application appears below.12

Since the NB1 and NB2 models are not nested, there is no simple
parametric test that one can employ to choose between them. (E.g.,
CT do not express a preference for either one or the other in (1986)
or (1998); they merely note the difference. They do state “[T]he NB2
MLE [is] favored by econometricians and the NB1 GLM (generalized
linear model) [is] used extensively by statisticians.”) This appeal to the
estimation algorithm appears to be the closest to a preference for one or
the other as appears in the recent literature. On the other hand, the
various references to GEC and NBP models do suggest an attraction
to a more general specification than NB1 or NB2.

For choosing statistically between NB1 and NB2, the models are
nonnested and essentially equivalently parameterized, so a direct test
is precluded. However, one possibility is the Vuong (1989) test based on

V =
√
nm

sm
,

mi = lnLi(NB2) − lnLi(NB1). (2.51)

(See, as well, Winkelmann (2003, p. 109).) When the underlying con-
ditions for its validity are met, the Vuong test statistic has a limiting
standard normal distribution. Large positive values would favor NB2.
We have found in applications that this statistic is rarely outside the
inconclusive region (−1.96 to +1.96) for this model. It may be that
NB1 and NB2 are not sufficiently different to enable a distinction on
this basis. Since the NBP model does nest both of them, it provides
a partial solution to the specification problem. For example, in our
application below, a simple likelihood ratio test rejects both the NB1
and NB2 null hypotheses.

11 Winkelmann and Zimmermann (1995) develop a maximum likelihood estimator for the
equivalent of the NEGBIN P model, but their formulation adds what appears to be a
considerable yet unnecessary layer of difficulty to the derivation. The simpler form of
the estimator proposed here is also suggested, but not pursued in detail, in Winkelmann
(2003, page 122). In applications, the direct MLE based on (27) appears to be quite well
behaved.

12 The GEC model allows underdispersion as well as overdispersion and, as such, is more
general than the NEGBIN P form. Overdispersion is the more common problem to be
solved with an extended functional form.



3
Two Part Models

This section develops three “two part” extensions of the count data
models, a model for sample selection, the zero inflated Poisson model
(ZIP) (and the ZINB model), and a hurdle model. Each of these
models consists of an equation for “participation” and a model for
the event count that is conditioned on the outcome of the first deci-
sion. The third part of each specification is the observation mech-
anism that links the participation equation and the count outcome
model. The sample selection model appears first in Greene (1995,
1997), Terza (1998) and Greene (2006), and is included here for com-
pleteness and to develop the platform for the other two. The ZIP
and ZINB models are also established, e.g., by Heilbron (1992), Lam-
bert (1994) and Greene (1994). The following presents an exten-
sion of this model to allow correlation between the regime and the
count variable. The hurdle model (Mullahy (1986)) has been widely
used, e.g., in health economics. The extensions of the ZIP/ZINB and
hurdle models proposed here also allows correlation across the two
equations.
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Note
change Lambert (1994) to (1992)
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3.1 Sample Selection

The generic sample selection model builds on (2.1) (Poisson) or (2.8)
(NB) with latent heterogeneity in (2.41),

d∗
i = w′

iδ + uiui ∼ N [0,1],
(3.1a)

di = 1(d∗
i > 0),

Prob(di = 0|wi) = Π0(w′
iδ) (generic, binary choice, zero),

Prob(di = 1|wi) = Φ(w′
iδ) (probit selection equation),

yi|xi,εi ∼ P (yi|xi,εi) (conditional on εi Poisson or NB model)

E[yi|xi,εi] (conditional mean with heterogeneity),

= exp(α + x′
iβ + σεi)

= hiλi, εi ∼ N [0,1] (3.1b)

[ui,εi] ∼ N2[(0,1),(1,1),ρ)] (selection effect),

yi,xi are observed only (observation mechanism).

when di = 1. (3.1c)

(We use the notation N2[(µ1,µ2),(σ2
1,σ

2
2),ρ] to denote the bivariate

normal distribution with correlation ρ.) “Selectivity” is transmitted
through the correlation parameter ρ. Drawing on the results of Heck-
man (1979), it is tempting to estimate this model in the same fashion as
in the linear case by (a) fitting the probit model by MLE and comput-
ing the inverse Mills ratio, ψ̂i = φ(w′

iδ̂)/Φ(w′
iδ̂), for each observation

in the selected subsample, then (b) adding ψ̂i to the right-hand side of
the Poisson or NB model and fitting it by MLE, adding a Murphy and
Topel (1985) correction to the estimated asymptotic covariance matrix.
However, this would be inappropriate for this case (and other nonlinear
models):

• The impact on the conditional mean in the Poisson model will
not take the form of an inverse Mills ratio. That is specific
to the linear model. (See Terza (1998) for a development in
the context of the exponential regression. The result is given
below.)

• The dependent variable, conditioned on the sample selection,
is unlikely to have the Poisson or NB distribution in the
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presence of the selection. That would be needed to use this
approach. Note that this even appears in the canonical linear
case. The normally distributed disturbance in the absence of
sample selection has a nonnormal distribution in the pres-
ence of selection. That is the salient feature of Heckman’s
development.

We develop, instead, a full information maximum likelihood estima-
tor. (See Greene (1997).)

The log likelihood function for the full model is the joint density for
the observed data. When di equals one (yi,xi,di,wi) are all observed.
To obtain the unconditional, joint discrete density, P (yi,di = 1|xi,wi)
we proceed as follows:

P (yi,di = 1|xi,wi) =
∫ ∞

−∞
P (yi,di = 1|xi,wi,εi)φ(εi)dεi, (3.2)

where φ(εi) is the standard normal density. Conditioned on εi, di and
yi are independent, so,

P (yi,di = 1|xi,wi,εi) = P (yi|xi,εi)Prob(di = 1|wi,εi). (3.3)

The first part, P (yi|xi,εi) is the conditional Poisson or NB density in
(3.1a). By joint normality,

f(ui|εi) = N [ρεi,(1 − ρ2)], (3.4)

so

ui = ρεi + vi
√

1 − ρ2 where vi ∼ N [0,1]⊥εi. (3.5)

Therefore, using (3.1a),

d∗
i = w′

iδ + ρεi + vi
√

1 − ρ2 (3.6)

so

Prob(di = 1|wi,εi) = Φ
(
[w′

iδ + ρεi]/
√

1 − ρ2
)
. (3.7)

Combining terms, the unconditional joint density is obtained by inte-
grating εi out of the conditional density. Thus,

P (yi,di = 1|xi,wi) =
∫ ∞

−∞
P (yi|xi,εi)Φ

(
[w′

iδ + ρεi]/
√

1 − ρ2
)
φ(εi)dεi.

(3.8)
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By exploiting the symmetry of the normal cdf

Prob(di = 0|xi,wi,εi) = Φ
(
−[w′

iδ + ρεi]/
√

1 − ρ2
)

(3.9)

and

Prob(di = 0|xi,wi) =
∫ ∞

−∞
Φ
(
−[w′

iδ + ρεi]/
√

1 − ρ2
)
φ(εi)dεi.

(3.10)
Expressions (3.8) and (3.10) can be combined by using the symmetry
of the normal cdf,

P (yi,di|xi,wi) =
∫ ∞

−∞
[(1 − di) + diP (yi|xi,εi)]

×Φ
(
(2di − 1)[w′

iδ + ρεi]/
√

1 − ρ2
)
φ(εi)dεi, (3.11)

where for di equal to zero, P (yi,di|xi,wi) is just Prob(di = 0|wi).
Maximum likelihood estimates of the model parameters are

obtained by maximizing the unconditional log likelihood function,

lnL =
N∑
i=1

lnP (yi,di|xi,wi), (3.12)

with respect to the model parameters (α,β,σ,δ,ρ). We now consider
how to maximize the log likelihood. Butler and Moffitt’s (1982) quadra-
ture based approach suggested in Section 2.2.2 is a convenient method.
Let

vi = εi/
√

2,

ω = σ
√

2,
(3.13)

τ =
√

2
(
ρ/
√

1 − ρ2
)
,

η = [1/
√

1 − ρ2]δ.

After making the change of variable from εi to vi and reparameterizing
the probability, we obtain

P (yi,di = 1|xi,wi) =
1√
π

∫ ∞

−∞
exp(−v2

i )P (yi|xi,vi)Φ(w′
iη + τvi)dvi,

(3.14)
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where the conditional mean is now E[yi|xi,vi] = exp(α + β′xi + ωvi).
Maximum likelihood estimates of (α,β,ω,η, τ) are obtained by max-
imizing the reparameterized log likelihood.1 The Gauss–Hermite
approximation is

lnLQ =
N∑
i=1

ln
[

1√
π

H∑
h=1

Wh [(1 − di) + diP (yi|xi,Vh)]

×Φ
[
(2di − 1)

(
w′
iη + τVh

)]]
, (3.15)

where Vh and Wh are the nodes and weights for the quadrature. The
BHHH estimator of the asymptotic covariance matrix for the parameter
estimates is a natural choice given the complexity of the function. The
first derivatives must be approximated as well. For convenience, let

Pih = P (yi|xi,Vh),
Φih = Φ[(2di − 1)(w′

iη + τVh)] (normal CDF), (3.16)

φih = φ[(2di − 1)(w′
iη + τVh)] (normal density),

and to save some notation, denote the individual terms summed in the
log likelihood as ln LQ,i. Then,

∂ lnLQ/∂


αβ
ω


 =

N∑
i=1

di
LQ,i

1√
π

H∑
h=1

WhΦihPih

×
[
∂ lnP (yi|xi,Vh)

∂(hhλi)

]
(hhλi)


 1

xi
Vh


 ,

hh = exp(ωVh), (3.17)

∂ lnLQ/∂
(

η

τ

)
=

N∑
i=1

1
LQ,i

1√
π

H∑
h=1

Whφih[(1 − di) + diPih]
(
wi

Vh

)
.

Estimates of the structural parameters, (δ,ρ,σ) and their standard
errors can be computed using the transformations shown above and
the delta method or the method of Krinsky and Robb (1986).

1 The dispersion parameter, θ (or the heterogeneous version, θi) would appear in the param-
eter vector and in the derivatives in (3.17) and (3.19) if the (heterogeneous) NB model
were used here instead of the Poisson.
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Simulation can also be used to maximizing the log likelihood
function. (See Train (2003) and Greene (2008a).) Using the original
parameterization of the conditional mean function. The simulated log
likelihood based on (3.11) is

ln LS =
N∑
i=1

ln
1
M

M∑
m=1

[(1 − di) + diP (yi|xi,σεim)]

×Φ[(2di − 1)
(
w′
iη + τεim

)
], (3.18)

where εim is a set of M random draws from the standard normal pop-
ulation (or transformations of a Halton sequence). Derivatives of the
simulated log likelihood for the ith observation are

∂ lnLS,i/∂


αβ
σ


 =

di
lnLS,i

1
M

M∑
m=1

ΦimPim

×
[
∂ lnP (yi|xi,σεim)

∂(himλi)

]
(himλi)


 1

xi
εim


 ,

him = exp(σεim), (3.19)

∂ lnLS,i/∂
(

η

τ

)
=

1
lnLS,i

1
M

M∑
m=1

φim[(1 − di) + diPim]
(

wi

εim

)
,

where Φim,φim and Pim are defined as in (3.16) using εim in place of Vh.
The sample selection alters the conditional mean as follows: (See

Terza (1985).) From (3.16), the overall mean is

E[yi|xi] = Eε{E[yi|xi,εi]} = exp(σ2/2)λi. (3.20)

However,

E[yi|xi,wi,di = 1] = λiE[exp(σεi)|wi,di = 1]

= λi
exp((ρσ)2/2)Φ(ρσ + w′

iδ)
Φ(w′

iδ)
. (3.21)
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This greatly complicates the partial effects;

∂E[yi|xi,wi,di = 1]
∂xi

= λi

[
exp((ρσ)2/2)Φ(ρσ + w′

iδ)
Φ(w′

iδ)

]
β

∂E[yi|xi,wi,di = 1]
∂wi

= λi

(
exp((ρσ)2/2)

Φ(w′
iδ)

)

×
[
φ(ρσ + w′

iδ) − φ(w′
iδ)

(
Φ(ρσ + w′

iδ)
Φ(w′

iδ)

)]
δ.

(3.22)

The effects are added for variables that xi and wi variables in common.
These might be logically labeled the direct and indirect effects, since
the latter arise only due to the effect of the selection. Note that the
large bracketed term in the indirect effect equals zero if ρ equals zero.
Jacobians of the partial effects for use in obtaining standard errors are
given in Appendix B.

3.2 Zero Inflation

The zero inflation model accommodates data such as the count of
doctor visits that we will examine in the applications in Section 6.
Figure 6.2. gives a histogram for this variable.2 The conspicuous spike
at zero in this variable is decidedly nonPoisson.3 The preponderance
of zeros in these data might be motivated by the possibility that the
population consists of “healthy” individuals who never need to visit the
doctor (or refuse to do so), and “less healthy” individuals who may or
may not visit the doctor, depending on circumstances.

The latent class interpretation of the model suggests a two level
decision process, the regime and the event count. (The hurdle model
of the next section might be a yet more natural candidate for this
interpretation.) The ZIP and ZINB models have been widely used in
a variety of applications. The zero inflated Poisson and NB (ZIP and

2 The sample size is 27,326. To help format the figure, we have dropped 196 observations
(0.7% of the sample) for which DocVis is greater than 30.

3 Greene (2008a, Sec. 16.9.5.b) suggests a “geometric” count data model, P (yi|xi) = θi(1 −
θi)yi, where θi = 1/(1 + λi) and λi = exp(α + x′

iβ) for these data. The fit of the geometric
model to the zero heavy variable is dramatically better than that for the Poisson or NB
models.
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ZINB) models can be viewed as partial observation models or latent
class models of a sort.4 The familiar structure of the model is

d∗
i = w′

iδ + ui,
(3.23a)

di = 1(d∗
i > 0),

Prob(di = 0|wi) = Π0(w′
iδ) (regime selection equation),

Prob(di = 1|wi) = 1 − Π0(w′
iδ) (regime selection equation),

y∗
i |x ∼ P (y∗

i |xi) (latent Poisson or NB model),

E[y∗
i |xi] = exp(α + x′

iβ) = λi, (conditional mean), (3.23b)

yi = diy
∗
i and xi are observed (observation mechanism). (3.23c)

Thus, if di equals zero, then the observed yi equals zero regardless of
the latent value of y∗

i . If di equals one, the Poisson or NB variable
(which might then still equal zero) is observed. The joint density for yi
and di is derived as follows:

Prob(yi = 0|xi,wi,di = 0) = 1; Prob(di = 0|xi,wi) = Π0(w′
iδ),

Prob(Yi = yi|xi,wi,di = 1) = P (y∗
i |xi);Prob(di = 1|xi,wi)

= 1 − Π0(w′
iδ). (3.24)

Combining terms, the joint density is

P (yi,di|xi,wi) = P (yi|xi,wi,di)P (di|xi,wi)

= (1 − di)Π0(w′
iδ) + di[1 − Π0(w′

iδ)]P (y∗
i |xi). (3.25)

The conditional mean function is∑
d

∑
y

yiP (yi,di|xi,wi) = E[yi|xi,wi] = [1 − Π0(w′
iδ)]λi, (3.26)

4 See Heilbron (1992), Lambert (1992), Greene (1994) and Zorn (1998). Deb and Trivedi
(1997) note a shortcoming of the zero inflation model, that it is a degenerate form of the
latent class model, in which the latent class structure applies only to the zero outcome.
That is in fact the case, but rather than a shortcoming, it is precisely the original design
of the model in the quality control application suggested by Lambert (1992). In her case,
the population of counts of defective parts consisted precisely of two latent types of zero
outcomes and one observable type of nonzero outcomes. Whether the zero inflation model
is an adequate or satisfactory treatment of the excess zeros in other applications is a differ-
ent question. Recent applications have shown a preference for the hurdle model discussed
below.
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so the partial effects are

∂E[yi|xi,wi]/∂xi = λi[1 − Π0(w′
iδ)]β = gx (3.27)

and

∂E[yi|xi,wi]/∂wi = −λi[dΠ0(w′
iδ)/d(w′

iδ)]δ = gw

with

∂gx

∂(α,β′)
= gx(1,x′

i) + λi[1 − Π0(w′
iδ)] [0 I]

∂gx

∂δ′ = −λidΠ0(w′
iδ)

d(w′
iδ)

βw′
i

∂gw

∂(α,β′)
= gw(1,x′

i)

∂gw

∂δ′ = −λi
[

d2Π0(w′
iδ)

d(w′
iδ)2

δw′
i +

dΠ0(w′
iδ)

d(w′
iδ)

I

]
. (3.28)

A variety of specifications have appeared in the literature. As
noted, the event count model could be Poisson, NB, or something else,
though these two are the only forms that have been used.5 The form
of Π0(w′

iδ) is often based on the logistic probability model, though
the probit model is equally common. Finally, a rarely used speci-
fication proposed in Lambert (1992) is the ZIP(τ) model in which
Π0(w′

iδ) = 1 − F [τ(α + x′
iβ)] for the same α and β that appear in the

count model, and unrestricted scale parameter τ . This form is extremely
restrictive and difficult to motivate.6

A common element throughout is the assumption that the latent
effects in the regime equation and the count outcome are uncorrelated.

5 Greene et al. (2007) have adapted the zero inflation model developed here to an ordered
probit specification. Econometric Software, Inc. (2003) includes a zero inflated gamma
model. (See Winkelmann (2003) for discussion of the gamma model for count data.)

6 Practitioners have reported mixed results with the zero inflation models. When the zero
inflation probability is modeled as a heterogeneous logit or probit model, there seem to
be some difficulties related to weak identification of the parameters. This would appear
to be a function of the data set, not inherent to the model. The GSOEP data used in our
applications below is a particularly rich, well behaved panel. We encountered no particular
difficulties obtaining maximum likelihood estimates of the parameters of the ZIP models,
even when the zero inflation decision was allowed to be endogenous.
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The ZIP model developed in the preceding section can be adapted to
allow this correlation to be unrestricted. The extended model would be

d∗
i = w′

iδ + ui,ui ∼ N[0,1],
(3.29a)

di = 1(d∗
i > 0),

Prob(di = 0|wi) = Π0(w′
iδ)

Prob(di = 1|wi) = Φ(w′
iδ) (probit regime selection equation),

y∗
i |xi,εi ∼ P (y∗

i |xi,εi) (Poisson or NB model with heterogeneity),

E[y∗
i |xi,εi] (heterogeneous conditional mean),

= exp(α + x′
iβ + σεi)

= hiλi (3.29b)

[ui,εi] ∼ N2[(0,1),(1,1),ρ],

yi = diy
∗
i and (xi,wi) (observation mechanism).

are observed (3.29c)

It is now straightforward to adapt the derivation of the preceding
section to this model. The conditional (on εi) zero inflated Poisson
probability joint density function for yi and di would be

P (yi,di|xi,wi,εi) = (1 − di)Prob(di = 0|wi,εi)

+[1 − Prob(di = 0|wi,εi)]P (yi|xi,εi)

= (1 − di)Φ

[
−(w′

iδ + ρεi)√
1 − ρ2

]
+ Φ

[
(w′

iδ + ρεi)√
1 − ρ2

]

× exp(−hiλi)(hiλi)yi

Γ(yi + 1)
, (3.30)

where, once again, hiλi = exp(σεi)exp(α + x′
iβ) = exp(α + x′

iβ +
σεi). (The ZINB model is obtained by the corresponding replacement
of P (yi|xi,εi) in (3.30). As before, maximum likelihood estimates of the
parameters of the model are obtained by maximizing the unconditional
log likelihood. It is convenient to reparameterize the model. Then,

lnL =
N∑
i=1

ln
∫ ∞

−∞
(1 − di)Φ

[
−(w′

iδ + ρεi)√
1 − ρ2

]
+ Φ

[
(w′

iδ + ρεi)√
1 − ρ2

]

× exp(−hiλi)(hiλi)yi

Γ(yi + 1)
φ(εi)dεi
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=
∑N

i=1 ln
∫ ∞

−∞




(1 − di)Φ[−w′
iηηη − τεi]

+Φ[w′
iηηη + τεi]

exp[−exp(α + x′
iβββ + σεi)][exp(α + x′

iβββ + σεi)]yi

Γ(yi + 1)




×φ(εi)dεi.

(3.31)
At this point, the specification differs only slightly from the formulation
in the preceding section, in (3.11). Either quadrature or simulation can
be used to maximize the likelihood function, with the corresponding
adaptation of either (3.15) for the quadrature approach or (3.18) for
the simulation based estimator.

For convenience, let Ai = (w′
iδ+ρεi)√
1−ρ2 . The conditional mean function

for the ZIP model with latent heterogeneity is

E[yi|xi,wi,εi] = Φ[Ai] exp(α + x′
iβ + σεi). (3.32)

The observable counterpart is

E[yi|xi,wi] = λi

∫ ∞

−∞
Φ[Ai] exp(σεi)φ(εi)dεi, (3.33)

which must be computed either by simulation or quadrature. The par-
tial effects are computed likewise. For the variables in the primary
equation,

∂E[yi|xi,wi]/∂xi = λiβ

∫ ∞

−∞
Φ[Ai] exp(σεi)φ(εi)dεi = gx. (3.34)

For the variables in the regime equation,

∂E[yi|xi,wi]/∂wi = λi

(
1√

1 − ρ2

)
δ

{∫ ∞

−∞
φ [Ai] exp(σεi)φ(εi)dεi

}
= gw.

(3.35)
Note that in the expression above, if the correlation, ρ, equals zero, then
the conditional mean for the (only) heterogeneous ZIP model becomes

E[yi|xi,wi] = λiΦ
(
w′
iδ
)∫ ∞

−∞
exp(σεi)φ(εi)dεi

= λiΦ
(
w′
iδ
)
exp(σ2/2) (3.36)

and the partial effects simplify considerably. Jacobians for these vectors
of partial effects are given in Appendix C.
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The original ZIP or ZINB model is restored if ρ equals zero and
σ equals zero. A ZIP model with heterogeneity in P (yi|xi,εi) results if
only ρ equals zero. (A nonzero ρ with a zero σ is internally inconsis-
tent.) The ZIP model with heterogeneity has appeared elsewhere in the
literature, in the form of random effects in a panel data application.
(See Hur (1998), Hall (2000) and Xie et al. (2006).) This appears to
be the first application that relaxes the restriction of zero correlation
across the two equations.

3.3 Hurdle Models

The hurdle model is also a two part decision model. The first part is
a participation equation and the second is an event count, conditioned
on participation. Formally, the model can be constructed as follows:

d∗
i = w′

iδ + ui,
(3.37a)

di = 1(d∗
i > 0),

Prob(di = 0|wi) = Π0(w′
iδ) (hurdle equation),

Prob(di = 1|wi) = Φ(w′
iδ) (probit hurdle model),

yi|xi,(di = 0) = unobserved (nonparticipation), (3.37b)

yi|xi,(di = 1) ∼ P + (yi|xi) (truncated Poisson or

NB model given participation).

Note, we can distinguish between yi = “unobserved” and yi = 0 in the
nonparticipation case. However, an alternative interpretation is that
in this model, the zero outcome is governed by a separate process;
the zero outcome is a decision not to participate. The central feature
of the model is the effect of the hurdle decision on the event count
equation, which we denote P + (yi|xi). If di = 1, then by the construc-
tion, yi > 0. Thus, the resulting count model has the truncated form.
(See Terza (1985), Econometric Software (2007), Greene (2008a).) The
underlying motivation is similar to the latent class interpretation in the
preceding section. Which explanation of health care system usage, zero
inflation or hurdle, is more plausible is unsettled. Recent applications
have suggested that the hurdle model is a more plausible and, at the
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same time, more manageable specification for explaining the prepon-
derance of zeros that one typically finds in the observed data.

To obtain a likelihood for the hurdle model, we first obtain the joint
density for yi and di in this specification. Since nonzero values of yi are
only observed when di = 1, we can write

Prob(yi is unobserved|xi,di = 0) = 1, Prob(di = 0|wi) = Π0(w′
iδ)
(3.38)

P (yi|xi,di = 1) = P + (yi|xi)

=
exp(−λi)λyi

i

[1 − exp(−λi)]Γ(1 + yi)
, yi = 1,2, . . .

Prob(di = 1|wi) = 1 − Π0(w′
iδ)

Combining terms in the familiar fashion and once again, maintaining
the Poisson model for convenience, we have

P (yi,di|xi,wi) = (1 − di)Π0(w′
iδ)+ di

[1 − Π0(w′
iδ)]

[1 − exp(−λi)]
exp(−λi)λyi

i

Γ(1 + yi)
,

yi = 1,2, . . . (3.39)

The log likelihood takes a convenient form for this case. Taking the two
parts separately, we find

lnL =
∑
di=0

lnΠ0(w′
iδ) +

∑
di=1

ln[1 − lnΠ0(w′
iδ)]

− ln[1 − exp(−λi)] + lnP (yi|xi)

=

{∑
di=0

lnΠ0(w′
iδ) +

∑
di=1

ln[1 − lnΠ0(w′
iδ)]

}

+

{∑
di=1

lnP (yi|xi) − ln[1 − exp(−λi)]
}

(3.40)

The first term in braces is the log likelihood for the binary choice model
(probit or logit) for di. The second term is the log likelihood for the
truncated (at zero) Poisson (or NB) model. Thus, the hurdle model can
be estimated in two independent parts. (This will not be true when
we extend the model below.) The conditional mean function in the
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truncated Poisson model is

E[yi|xi,di = 1) =
exp(α + x′

iβ)
1 − P (0|xi) . (3.41)

Therefore,

E[yi|xi,wi] =
1∑

di=0

∞∑
yi=1

yiP (yi,di|xi,wi) =
[1 − Π0(w′

iδ)]
[1 − exp(−λi)]λi. (3.42)

As usual, the alteration of the distribution carries through to the partial
effects;

∂E[yi|xi,wi,di]/∂xi =
[1 − Π0(w′

iδ)]
[1 − exp(−λi)]

(
1 − λi exp(−λi)

1 − exp(−λi)
)
λiβ = gx,

(3.43)
∂E[yi|xi,wi,di]/∂wi =

−dΠ0(w′
iδ)/d(w′

iδ)
[1 − exp(−λi)] λiδ = gw.

Derivatives of these partial effects for use in computing standard errors
are given in Appendix D.

To relax the restriction that the two decisions are uncorrelated, we
use the same device as before and now assume joint normality for the
underlying heterogeneity.7 The extended model is

d∗
i = w′

iδ + ui,ui ∼ N[0,1],

di = 1(d∗
i > 0), (3.44a)

Prob(di = 0|wi) = 1 − Φ(w′
iδ) (probit hurdle equation),

yi|xi,εi,(di = 0) = unobserved (nonparticipation),

yi|xi,εi,(di = 1) ∼ P + (yi|xi,εi) (truncated Poisson or NB model),

[ui,εi] ∼ N[(0,1),(1,1),ρ]. (3.44b)

7 Van Ourti (2004) proposes a formulation that is logically the same as this one save for
the treatment of the heterogeneity. In his formulation, εi in the count equation exactly
equals γui in the count model, where γ is a factor that allows the scaling to differ across
the equations. Thus, in Van Ourti’s model, ρ = 1. The model is proposed as a random
effect model in which the same latent condition appears in both equations. In any event,
as shown above, the restriction that ρ equals one can be relaxed.
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Using the same devices as in the earlier derivations, we have,

P (y,dii|xi,wi,εi) = (1 − di) Φ
[−w′

iη − τεi
]

+di
Φ[w′

iη + τεi]
[1 − exp(−exp(σεi)λi)]

× exp(−exp(σεi)λi) [exp(σεi)λi]
yi

Γ(1 + yi)
(3.45)

and finally,

lnL =
N∑
i=1

ln
∫ ∞

−∞
P (yi,di|xi,wi,εi)φ(εi)dεi. (3.46)

For analysis of the partial effects, the conditional mean will be

E[yi|xi,wi] =
∫ ∞

−∞
Φ

(
w′
iδ + ρεi√
1 − ρ2

)
[exp(σεi)λi]

[1 − exp(−exp(σεi)λi)]
φ(εi)dεi.

(3.47)
From this point, estimation and analysis of the partial effects proceeds
in the same fashion as in the preceding two sections. Note, in all three
cases, the differences in the models consists of the density for yi in the
template function as in (3.15) or (3.18). The partial effects and deriva-
tives for this model are extremely cumbersome. They are presented in
Appendix E.



4
Models for Panel Data

We consider the most familiar treatments for panel data, the fixed and
random effects models. For each of these, a separate set of results for
Poisson and NB models have come into common use. These build on
the familiar treatments in the linear model, but for the treatments in
common use, only the Poisson FE model follows along the familiar lines.

4.1 Fixed Effects Poisson and NB Models

The now standard Poisson fixed effects model,

P (yit|xit) =
exp(−λit)λyit

it

Γ(1 + yit)
, λit = exp(αi + x′

itβ), (4.1)

is one of only a few known cases in which maximization of the full log
likelihood with respect to (αi, i = 1, . . . ,N,β) produces the numerically
identical result for β as maximization of the conditional log likelihood
based on

P

(
yi1, . . . ,yiT |

T∑
t=1

yit,Xi

)
=

Γ
(

1 +
T∑
t=1

yit

)
T∏
t=1

Γ(1 + yit)

T∏
t=1

Ayit
it , (4.2)

152



4.1 Fixed Effects Poisson and NB Models 153

where

Ait =
λit
T∑
t=1

λit

=
exp(x′

itβ)
T∑
t=1

exp(x′
itβ)

. (4.3)

(See Lancaster (2000).) Note that the conditional log likelihood does
not involve the constant terms, αi. Nonetheless, the β that maximizes
(with the solutions for αi) the unconditional log likelihood,

lnL =
N∑
i=1

T∑
t=1

lnP (yit|xit) (4.4)

is numerically identical to the maximizer of the conditional log
likelihood,

lnLC =
N∑
i=1

lnP

(
yi1, . . . ,yiT |

T∑
t=1

yit,Xi

)
. (4.5)

This is the commonly used form of the Poisson model that is built into
widely used commercial software such as Stata, SAS, and LIMDEP.

To set the stage for the development below, consider the implication
of a time invariant variable in xit. If the conditional mean is written in
the implied form:

λit = exp

(
N∑
i=1

αifit + ziδ + r′
itβ

)
, (4.6)

where fi are the individual specific dummy variables and rit contains
only the time varying variables in xit, then it becomes obvious on
inspection that the model is fundamentally unidentified. For each i,
the T observations, zi is a multiple of T nonzero observations in vari-
able f i. The NT observations in the column vector z can be replicated
by a linear combination of the N dummy variables. The impact of
this form of multicollinearity on a nonlinear model can be seen as fol-
lows: The log likelihood function for the fixed effects Poisson regression
model is

lnL =
N∑
i=1

T∑
t=1

lnP (yit|αi + x′
itβ), (4.7)
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where the density appears in (4.1). The likelihood equation for a time
invariant variable xit,k = zi is

∂ lnL/∂βk =
N∑
i=1

T∑
t=1

(yit − λit)zi (4.8)

and the likelihood equation for each of the fixed effects coefficients is

∂ lnL/∂αi =
T∑
t=1

(yit − λit). (4.9)

(see (2.5).) Therefore, at any parameter vector, ∂ lnL/∂βk =∑N
i=1 zi∂ lnL/∂αi. TheN + K columns of the derivatives of the log like-

lihood function are linearly dependent; the model is not identified. For
example, this precludes separate estimation of the fixed effects model as
shown with an additional overall constant. (This merely reinforces the
widely understood principle that fixed effects models cannot include
time invariant independent variables.)

Hausman et al. (1984) (HHG) report the following results for a fixed
effects negative binomial (FENB) model:

p

(
yi1,yi2, . . . ,yiTi |Xi,

T∑
t=1

yit

)

=
Γ
[(

T∑
t=1

yit

)
+ 1

]
Γ
(

T∑
t=1

γit

)

Γ
(

T∑
t=1

yit +
T∑
t=1

γit

) T∏
t=1

Γ(yit + γit)
Γ(yit + 1)Γ(γit)

, (4.10)

γit = exp(x′
itβ),

δi = φi/exp(µi),

E[yit|xit] = γit/δi = exp(x′
itβ + µi)/φi,

Var[yit|xit] = γit/δ
2
i = exp(x′

itβ + 2µi)/φ2
i .

The specification appears to allow fixed effects in both the mean
(through µi) and the standard deviation (through φi). The conditional
density in (3.5) is free of both fixed effects, which would seem to solve
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the heterogeneity problem in the familiar fashion. This is the default
FENB formulation used in popular software packages such as Stata,
SAS, and LIMDEP. But, this leaves the conundrum: Researchers accus-
tomed to the admonishment that fixed effects models cannot contain
overall constants or time invariant covariates are sometimes surprised
to find (perhaps accidentally) that this fixed effects model allows both.
Why can this model coexist with an overall constant term or even an
additional set of additive fixed effects?

To resolve the question, return to the HHG formulation of the condi-
tional probability. Using their notation, the departure point is a Poisson
model conditioned on an unobserved conditional mean,

Prob[Yit = yit|λit] =
exp(−λit)λyit

it

Γ(yit + 1)
.

Now, assume that the unobserved λit is distributed as Gamma(γit,δ)
where

γit = exp(x′
itβ).

Then

f(λit|xit) =
γδ
it exp(−γitλit)λδ−1

it

Γ(δ)
.

It follows, then

E[λit|xit] = γit/δ

and

Var(λit|xit) = γit/δ
2.

By integrating λit out of the joint density for (yit,λit), we obtain the
marginal density reported in HHG (Eq. (3.1))

Prob(Yit = yit|xit) =
Γ(γit + yit)

Γ(γit)Γ(yit + 1)

(
δ

1 + δ

)γit
(

1
1 + δ

)yit

.

This is the NB1 model that is obtained by replacing λi in our (2.4)
with λit = δγit and θ with 1/δ . It follows, then, that the conditional
mean function in the HHG model, in our notation, would be

E[yit|xit] = δλit.
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If we now define

θi = exp(αi)/φi,

then it appears that

E[yit|xit] = exp(x′
itβ + αi)/φi

and

Var[yit|xit] = exp(x′
itβ + 2αi)/φ2

i .

and the HHG model follows.
The loose end in the derivation is that the interpretation of θi as

displacing the mean and variance at the same time is incorrect. The
firm specific scale factor θi is just that. It acts only on the variance
of the random variable. It is a single parameter, not the product of
two separately identified parameters. Indeed, θi could be written as the
product of any number of individual specific parameters, and the group
of them would still fall out of the conditional density. The apparent
individual specific effect in the conditional mean is an artifact of the
functional form chosen for θi. To see this clearly, note that αi cannot
vary independently of φi. Thus, HHG’s statement that “both φi and
µi are allowed to vary across firms” is incorrect. Only φi/exp(µi) is
allowed to vary across firms.

In the two negative binomial models considered, the conditional
mean functions are

NB1(HHG) : E[yit|xit] = (1/θi)φit = (1/θi)exp(α + x′
itβ)

NB2(FE) : E[yit|xit] = λit = exp(αi + x′
itβ),

(4.11)

Thus, the conditional mean function in the HHG model is homogeneous.
The fixed effect in the model is introduced through the scaling param-
eter, θi, which enters the conditional variance of the random variable:

NB1(HHG) : Var[yit|xit] = (1/θi)φit[1 + (1/θi)],

NB2(FE) : Var[yit|xit] = λit[1 + (1/θ)λit].
(4.12)

The relationship between the mean and the variance is quite differ-
ent for the two models. For estimation purposes, one can explain the
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apparent contradiction noted earlier by observing that in the NB1 for-
mulation, the individual effect is built into the scedastic (scaling) func-
tion, not the conditional mean. (In principle, given this finding, one
could have a second set of fixed effects, in the mean of the HHG model.)
Greene (2007) analyzes the more familiar, FENB2 form with the same
treatment of λit. Estimates for both models appear below.

Theory does not provide a reason to prefer the NB1 formulation
over the more familiar NB2 model. The NB1 form does extend beyond
the interpretation of the fixed effect as carrying only the sum of all
the time invariant heterogeneity into the conditional mean function.
The appearance of lnθi in the conditional mean is an artifact of the
exponential mean form; θi is a scaling parameter in this model. In its
favor, the HHG model, being conditionally independent of the fixed
effects, finesses the incidental parameters problem — the estimator of
β in this model is consistent. This is not the case for the FENB2 form.
But, it remains unclear what role the fixed effects play in this model,
and how they relate to the fixed effects in other familiar treatments.

The conditional NB1 model obviates brute force maximization of
the unconditional NB2 (or NB1) log likelihood function with respect
to β and all N constants αi, which is a significant practical advantage
(notwithstanding the incidental parameter problem). However, Greene
(2004) provides a solution to this problem that enables the computation
even with large N . The estimates below are based on this method.

4.2 Random Effects Models

The random effects Poisson model can be formed by writing

λit = exp(x′
itβ + ui), (4.13)

where ui is independent of xit.1 Under the assumption that ui has a
log gamma density with exp(ui) ∼ G(θ,θ) as earlier in the cross section

1 Van Ourti (2004) uses this Poisson lognormal formulation as part of a hurdle model in
which the same random effect appears in both the hurdle equation and the truncated
count model. The random effect represents a common latent effect representing, e.g.,
health status, genetic endowment, etc. Bago d’Uva (2006) also proposes a random effects
extension of the Poisson model. In this case, the time invariant heterogeneity is modeled
through a discrete distribution of the parameters (in a latent class model).
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case, the unconditional joint density for individual i is

P (yi1,yi2, . . . ,yiT |Xi) =

[
T∏
t=1

λyit
it

]
Γ
[
θ +

T∑
t=1

yit

]

Γ(θ)
[
T∏
t=1

Γ(1 + yit)
]( T∑

t=1
λit

)∑T
t=1 yit




×Qθi (1 − Qi)
∑T

t=1 yit , (4.14)

where

Qi =
θ

θ + ΣT
t=1λit

.

This is a NB distribution for Yi = ΣT
t=1yit with mean Λi = ΣT

t=1λit. As
noted earlier, the choice of the log gamma formulation is motivated by
mathematical convenience, not by an appeal to an underlying model
of heterogeneity. The Poisson RE model could also be specified with
lognormal heterogeneity. Analysis would follow precisely along the lines
of Section 2.3. The joint probability would be computed from

P (yi1, . . . ,yiT |Xi) =
∫
ui

T∏
t=1

exp(−exp(ui)λit)(exp(ui)λit)yit

Γ(1 + yit)
f(ui)dui

=
T∏

t=1

[
λyit
it

Γ(1 + yit)

]∫
ui

exp

[
−exp(ui)

T∑
t=1

λit

]

× [exp(ui)]
∑T

t=1 yit f(ui)dui. (4.15)

This function and its derivatives can be approximated using either
quadrature or simulation.

Like the fixed effects model, introducing random effects into the NB
model adds some additional complexity. Since the NB model derives
from the Poisson model by adding latent heterogeneity to the condi-
tional mean, adding a random effect to the NB model could be viewed
as introducing the heterogeneity a second time. However, an approach
that would preserve the form of the model would be to begin with a
Poisson model and write

λit = exp(x′
itβ + εit + ui), (4.16)
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where both εit and ui are log gamma distributed with parameters θ and
µ, respectively. This would correspond to the mixed NB model at the
end of Section 2.3 (and the model used in RWM (2003) — see (5–12)
below.) Departing from (4.16), if it is assumed that εit has the G(θ,θ)
distribution assumed in Section 2 and ui has a normal distribution,
then we obtain a “true” random effects model that parallels the fixed
effects treatments developed earlier. The conditional NB model will
result from

P (yit|xit,ui) =
∫
εit

P (yit|xit,εi,ui)f(εit)dεit. (4.17)

Changing the variable to hit = exp(εit) and integrating over hit
instead produces the NB model with conditional mean E[yit|xit,ui] =
exp(x′

itβ + ui) and dispersion parameter θ. The resulting conditional
density is

P (yit|xit,ui) =
Γ(θ + yit)

Γ(1 + yit)Γ(θ)
rθit(1 − rit)yit ,

λit = exp(x′
itβ), (4.18)

rit = θ/(θ + exp(ui)λit).

We can then estimate the parameters by forming the conditional (on ui)
log likelihood and integrating ui out either by quadrature or simulation.

Hausman et al. (1984) random effects NB model is a hierarchical
model that derives from a heterogeneous Poisson model. The mean in
the Poisson model is exp(ui)λit where exp(ui) has G(θ,θ) density. This
produces the NB kernel. The unconditional distribution is obtained
by treating pit = [exp(ui)λit]/[Σt exp(ui)λit] as a random vector with
Dirichlet mixing distribution. Each pair of means, µit = exp(ui)λit
µis = exp(ui)λis is such that µit/(µit + µis) has a beta distribution with
parameters a and b. The resulting unconditional density is

p(yi1,yi2, . . . ,yiT |Xi) =
Γ(a + b)Γ

(
a +

T∑
t=1

λit

)
Γ
(
b +

T∑
t=1

yit

)

Γ(a)Γ(b)Γ
(
a +

T∑
t=1

λit + b +
T∑
t=1

yit

) .

(4.19)
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This is the common form of the RENB model that is incorporated in
several contemporary computer packages. As before, the relationship
between the heterogeneity and the conditional mean function is unclear,
and there is no obvious interpretation of the hyperparameters a and b.
The parameters are simpler to interpret in the effects model in (4.16),
where the estimated standard deviation of ui can be directly interpreted
against the other parameters in the model. Moreover, the HHG model
does not admit of a ready test of the homogeneous model. It is unclear
what the implication of a = b = 0 would be. Estimates of the two forms
of the random effects model are presented in Section 6 for a comparison.



5
The Bivariate Poisson Model

There have been a variety of proposals for a bivariate (or multivari-
ate) count data model. The earliest form is that of Kocherlakota and
Kocherlakota (1992) which is based on the trivariate reduction method.
Let z1, z2 and u denote three Poisson distributed random variables.
Then, the observed random variables are

y1 = z1 + u (5.1)

and

y2 = z2 + u

have a bivariate Poisson distribution with covariance equal to Var[u].
This model does produce a pair of correlated Poisson variables, however
the correlation must be positive, which severely limits the generality of
this specification. (For the outcomes examined in Section 6, doctor vis-
its and hospital visits, a negative correlation would not be surprising.)1

Munkin and Trivedi (1999) present a survey of other approaches.

1 The trivariate reduction method was employed e.g., by Jung and Winkelmann (1993);
Karlis and Ntzoufras (2003) and King (1989).
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Two recently developed approaches considered here (Munkin and
Trivedi (1999) and RWM (2003)) build the bivariate model into latent
heterogeneity structures, as employed in the various models proposed
above. These allow the sign of the correlation to vary. However, they
shift the impact of the bivariate distribution from the variables of inter-
est, as in the trivariate model above, to the unobservables in the con-
ditional mean function. The bivariate count outcomes model is still
preserved. However, the estimated correlations in these models do not
provide a clear picture of the implied correlations between the outcome
variables that was the objective to begin with. As a general proposition,
the correlation between the observed counts will be less, potentially far
less, than the estimated correlation between the underlying unobserved
heterogeneity.

The bivariate probit model specified in Munkin and Trivedi (1999)
and Riphahn et al. (2003) is

exp(x′
1iβ1 + σ1ε1i) = λ1i exp(σ1ε1i)

exp(x′
2iβ2 + σ2ε2i) = λ2i exp(σ2ε2i)

(ε1i,ε2i) ∼ N2[(0,0),(1,1),ρ]

P (yji|xji,εji) =
exp(−exp(σεji)λji)(exp(σεji)λji)yji

Γ(1 + yji)
, j = 1,2

(5.2)

Both studies build the empirical measurement of correlation of the two
outcomes around the estimation of ρ. However, as we now demonstrate,
the correlation coefficient, ρ, provides a misleading description of this
correlation. Superficially, this is obvious from the construction. The
coefficient ρ is not the correlation between y1i and y2i; it is the correla-
tion between lnE[y1i|x1i,ε1i] and lnE[y2i|x2i,ε2i]. How this relates to
Corr[y1i,y2i|x1i,x2i] is less than clear. To deduce this from the model
specification, we proceed as follows:

Corr[y1i,y2i|x1i,x2i]

= Cov[y1i,y2i|x1i,x2i]√
Var[y1i|x1i]

√
Var[y2i|x2i]

= E[Cov[y1i,y2i|x1i,x2i,ε1i,ε2i]]+Cov[E[y1i|x1i,ε1i],E[y2i|x2i,ε2i]]√
E[Var[y1i|x1i,ε1i]]+Var[E[y1i|x1i,ε1i]]

√
E[Var[y2i|x2i,ε2i]]+Var[E[y2i|x2i,ε2i]]

.

(5.3)
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For convenience, let

µji = λji exp(σ2
j /2). (5.4)

The terms in the denominator were derived earlier. The unconditional
variance is

Var[yji|xji] = λji exp(σ2
j /2)[1 + λji exp(σ2

j /2)[exp(σ2
j ) − 1]]

= µji{1 + µji[exp(σ2
j ) − 1]}, j = 1,2. (5.5)

For the terms in the numerator, the first is zero, since conditioned on
ε1i and ε2i, y1i and y2i (given x1i and x2i) are independent. Thus, what
remains to derive is

Cov{E[y1i|x1i,ε1i],E[y2i|x2i,ε2i]}
= Cov{[λ1i exp(σ1ε1i)], [λ2i exp(σ2ε2i)]}
= (λ1iλ2i)Cov{[exp(σ1ε1i)], [exp(σ2ε2i)]}
= (λ1iλ2i){E[exp(σ1ε1i)exp(σ2ε2i)] − E[exp(σ1ε1i)]E[exp(σ2ε2i)]}.

(5.6)

The two conditional means are the means for the univariate lognormals,

E[exp(σjεji)] = exp(σ2
j /2). (5.7)

The remaining term is straightforward;

E[exp(σ1ε1i)exp(σ2ε2i)] = E[exp(σ1ε1i + σ2ε2i)]

= exp[(σ2
1 + σ2

2 + 2ρσ1σ2)/2]. (5.8)

Combining terms and manipulating the expression produces

Cov[y1i,y2i|x1i,x2i] =
[
λ1i exp(σ2

1/2)
][
λ2i exp(σ2

2/2)
]
[exp(ρσ1σ2) − 1]

= µ1iµ2i [exp(ρσ1σ2) − 1] . (5.9)

Combining all terms and simplifying (slightly), we obtain the final
result

Corr(y1i,y2i|x1i,x2i) =
√
µ1iµ2i [exp(ρσ1σ2) − 1]√

1 + µ1i[exp(σ2
1) − 1]

√
1 + µ2i[exp(σ2

2) − 1]
(5.10)
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How this relates to ρ is unclear. It has the same sign, but the magni-
tudes are likely to be essentially unrelated. We will examine it in the
application below.

Munkin and Trivedi (1999) also develop a bivariate NB model. The
model is constructed as the joint density for two Poisson models with
common heterogeneity, vi. That is,

yji ∼ P (yji|xji,vi), (5.11)

where

λji = exp(α + x′
jiβ + vi), j = 1,2.

For hi = exp(vi) distributed with Gamma(θ,θ) distribution, this is pre-
cisely equivalent to the two period random effects Poisson model shown
in Section 4.2. Although the functional form for the log likelihood func-
tion is known (see Section 4.2) (and it is given in the paper), the authors
used simulation to estimate the parameters of the model. Since they
assume the value of θ (one), the results cannot be compared to the
Poisson–lognormal mixture model. One could, instead, form the bivari-
ate NB model using correlated lognormal mixtures along the lines sug-
gested at the end of Section 2.3. We leave this derivation for future
research.

Finally, RWM (2003) extended this development to a panel data
setting. Their random effects model is

lnλit,1 = α1 + x′
it,1β1 + ui,1 + εit,1 = α1 + x′

it,1β1 + vit,1,

lnλit,2 = α2 + x′
it,2β2 + ui,2 + εit,2 = α2 + x′

it,2β2 + vit,2,

(εit,1,εit,2) ∼ N2[(0,0),(σ1,σ2),ρ],
(ui,1,ui,2) ∼ N2[(0,0),(ω1,ω2),0].

(5.12)

The correlation between εit,1 and εit,2 creates the bivariate model.2

In the notation of our earlier formulation, the correlation of interest,

2 RWM’s assumption that ui1 and ui2 seems questionable, given that these represent the
time invariant individual heterogeneity. The assumption does provide considerable math-
ematical and computational convenience. As the specified model required 17 hours to
calibrate (according to the authors), with the relaxation of the assumption of zero corre-
lation, one might surmise that the additional layer of complexity might come at enormous
cost in computational difficulty.
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between vit,1 and vit,2, is

ρ12 =
ρσ1σ2√

ω2
1 + σ2

1

√
ω2

2 + σ2
2

. (5.13)

And the counterparts to σ1 and σ2 are the two terms in the denomi-
nator. The model also implies a T -variate Poisson–lognormal mixture
model for each group for each of the two variables. The implied correla-
tion is ρts,j = ω2

j /(ω
2
j + σ2

j ), j = 1,2. As they note and discuss, ρ is the
correlation between the unique unobservable factors in the two equa-
tions. One could, however, misinterpret the magnitude of the value as
representative of the correlation between the composed heterogeneity
or, worse yet, between the outcome variables, themselves. For example,
for their equation system applied to the males in their sample, they
report ρ = 0.599, σ1 = 0.996, σ2 = 1.244, ω1 = 0.795, and ω2 = 1.195.
The computation above produces ρ12 = 0.276. The calculation is rel-
evant because the unobservable propensities are difficult to partition
neatly into time varying and time invariant parts. It is speculative to
assume that ρ in isolation captures the full correlation of the unob-
servables apart from persistent, time invariant components (and leaves
ui,j truly unexplained). We will revisit the computation of the implied
correlation between the two outcomes below.



6
Applications

In “Incentive Effects in the Demand for Health Care: A Bivariate Panel
Count Data Estimation,” Riphahn et al. (2003) employed a part of
the German Socioeconomic Panel (GSOEP) data set to analyze two
count variables, DocVis, the number of doctor visits in the last three
months and HospVis, the number of hospital visits in the last year.
The authors employed a bivariate panel data (random effects) Pois-
son model to study these two outcome variables. A central focus of
the investigation was the role of the choice of private health insur-
ance in the intensity of use of the health care system, i.e., whether the
data contain evidence of moral hazard. We will use these data to illus-
trate the model extensions described above.1 The authors of this study
presented estimates for the Poisson–lognormal model in Section 2.2.2
and the bivariate Poisson model in (5.12). We will analyze the sin-
gle equation and two part models in some detail, but only analyze
the correlation structure developed for the bivariate Poisson model in
Section 5. (We have not proposed any extensions for this model; our

1 The raw data are published and available for download on the Journal of Applied Econo-
metrics data archive website, The URL is given in Table 6.1..
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analysis has only provided a more detailed interpretation of the exist-
ing model results.) In order to keep the amount of reported results to a
manageable size, we will also restrict attention to DocVis, the count of
doctor visits. Analysis of the count of hospital visits is left for further
research.

6.1 The Data

The RWM data set is an unbalanced panel of 7,293 individual families
observed from one to seven times. The number of observations varies
from one to seven (1,525, 1,079, 825, 926, 1,051, 1000, 887) with a
total number of observations of 27,326. The composition of the panel
is shown in Figure 6.1..

The variables in the data file are listed in Table 6.1. with descrip-
tive statistics for the full sample. They estimated separate equations for
males and females and did not report any estimates based on the pooled
data. Table 6.2. reports descriptive statistics for the two subsamples.
The figures given all match those reported by RWM. (See their Table II,

Fig. 6.1. Group sizes in RWM panel data.
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Table 6.2. Descriptive statistics by gender.

Males Females
Variable Mean Standard dev. Mean Standard dev.
Year 1987.84 3.19003 1987.80 3.14985
Year1984 0.141613 0.348665 0.141940 0.349002
Year1985 0.138875 0.345828 0.138806 0.345757
Year1986 0.138173 0.345094 0.139418 0.346395
Year1987 0.134171 0.340848 0.134144 0.340820
Year1988 0.162396 0.368826 0.165864 0.371973
Year1991 0.157551 0.364332 0.160208 0.366813
Year1994 0.127220 0.333231 0.119621 0.324530
Age 42.6526 11.2704 44.4760 11.3192
Agesq 1.94628 0.987385 2.10623 1.01543
Female 0.000000 0.000000 1.00000 0.000000
Married 0.765148 0.423921 0.751510 0.432154
Hhkids 0.412975 0.492386 0.391577 0.488122
Hhninc 0.359054 0.173564 0.344495 0.180179
Educ 11.7287 2.43649 10.8764 2.10911
Working 0.850312 0.356777 0.488420 0.499885
Bluec 0.340237 0.473805 0.138730 0.345677
Whitec 0.299937 0.458246 0.299243 0.457944
Self 0.0856561 0.279865 0.0366124 0.187815
Civil 0.117812 0.322397 0.0277459 0.164250
Haupts 0.601137 0.489682 0.649469 0.477155
Reals 0.176086 0.380907 0.219369 0.413835
Fachhs 0.0536404 0.225315 0.0269051 0.161812
Abitur 0.146949 0.354068 0.0844608 0.278088
Univ 0.0961876 0.294859 0.0455553 0.208527
Hsat 6.92436 2.25148 6.63417 2.32951
Newhsat 6.92459 2.25148 6.63441 2.32953
Handdum 0.227295 0.419007 0.199559 0.399538
Handper 8.13371 20.3288 5.79143 17.9562
DocVis 2.62571 5.21121 3.79080 6.11113
Doctor 0.559503 0.496464 0.704884 0.456112
HospVis 0.127782 0.930209 0.149660 0.831416
Hospital 0.0779330 0.268076 0.0982191 0.297622
Public 0.861055 0.345902 0.912558 0.282492
AddOn 0.9175525 0.131323 0.0201789 0.140617

Sample size 14,243 13,083

page 393.) The outcome variables of interest in the study were doctor
visits in the last three months and number of hospital visits last year.
Histograms for these variables for the full data set are shown in Fig-
ures 6.2. and 6.3.. (Figure 6.1. was truncated at 20 visits. Figure 6.2.
was truncated at 10. These remove about 200 observations from the
sample used to form the figures.)
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Fig. 6.2. Histograms for DocVis.

The base case count model used by the authors included the follow-
ing variables in addition to the constant term:

xit = (Age, Agesq, HSat, Handdum, Handper, Married,

Educ, Hhninc, Hhkids, Self, Civil, Bluec,

Working, Public, AddOn)

and a set of year effects,

t = (Year1985, Year1986, Year1987, Year1988,

Year1991, Year1994).

The same specification was used for both DocVis and HospVis. We will
use their specification in our count models. The estimated year effects
are omitted from the reported results in the paper. The variables used
in the participation equation in the two part models are discussed in
Section 6.3.



172 Applications

Fig. 6.3. Histograms for HospVis.

6.2 Functional Forms and Heterogeneity

Table 6.3. presents estimates of the Poisson regression models for males
and females. The pooled (across genders and across time) results appear
in the first column. We tested for homogeneity of the coefficient vectors
for males and females using a likelihood ratio test; the chi squared
statistic is

λLR = 2[90097.4 − (42927.6 + 46275.1)] = 1789.4.

This is substantially larger than the critical chi squared with 16 degrees
of freedom (26.30), so the hypothesis that the same model applies to
males and females is rejected for the Poisson model. The Poisson spec-
ification is, itself, rejected in favor of a model with heterogeneity, so
we repeated the homogeneity test with the log gamma (negative bino-
mial) results. The log likelihood for the pooled data is −58082.0 — the
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Table 6.3. Poisson models and heterogeneity in poisson (t ratios in parentheses).

Pooled Males Females
Variable Poisson Poisson Log gamma Lognormal Poisson Log gamma Lognormal
Constant 2.639 2.771 3.1488 2.8079 2.546 3.0245 2.7556

(39.46) (28.85) (13.74) (11.26) (28.54) (15.03) (12.47)
Age −0.00732 −0.02387 −0.03983 −0.05858 −0.01320 −0.03119 −0.04485

(−2.64) (−5.44) (−4.07) (−5.51) (−3.64) (−3.78) (−4.90)
Agesq 0.1407 0.3693 0.5467 0.7853 0.1794 0.3727 0.5421

(4.54) (7.45) (4.77) (6.45) (4.46) (4.02) (5.27)
Hsat −0.2149 −0.2253 −0.2392 −0.2650 −0.2034 −0.2080 −0.2225

(−151.9) (−104.1) (−42.44) (−50.93) (−108.3) (−47.30) (−46.54)
Handdum 0.1011 0.06899 −0.02090 −0.01093 0.1379 0.1133 0.1011

(8.71) (4.09) (−0.46) (−0.23) (8.55) (2.79) (2.48)
Handper 0.001992 0.002858 0.006614 0.007398 0.002414 0.004359 0.004432

(10.73) (10.04) (8.05) (9.08) (9.48) (5.92) (6.14)
Married 0.02058 0.05831 0.06582 0.1276 0.02718 0.02816 0.04590

(2.32) (3.89) (2.18) (3.67) (2.39) (1.13) (1.63)
Educ −0.01483 −0.02348 −0.02623 −0.02297 0.01473 0.007725 0.01318

(−7.96) (−8.43) (−4.59) (−3.43) (5.65) (1.36) (2.09)
Hhninc −0.1729 −0.2220 −0.1917 −0.1257 −0.2063 −0.1624 −0.1417

(−7.27) (−5.93) (−2.48) (−1.44) (−6.53) (−2.57) (−1.92)
Hhkids −0.1108 −0.07598 −0.08440 −0.09013 −0.1338 −0.1243 −0.1360

(−12.86) (−5.75) (−3.32) (−2.94) (−11.63) (−4.91) (−4.81)
Self −0.2914 −0.2110 −0.2179 −0.3590 −0.2175 −0.2424 −0.2885

(−16.18) (−8.98) (−5.02) (−6.81) (−7.47) (−4.51) (−4.55)
Civil −0.05026 0.09144 0.08411 0.01916 −0.07113 −0.01982 −0.03188

(−2.64) (3.78) (1.56) (0.32) (−1.91) (−0.34) (−0.39)
Bluec −0.08920 0.01779 0.03706 −0.03137 −0.03543 −0.04010 −0.09991

(−9.01) (1.24) (1.20) (−.93) (−2.38) (−1.31) (−2.81)
Working −0.07478 −0.05539 −0.01545 0.03119 0.01490 0.03046 0.03851

(−7.62) (−3.17) (−0.38) (0.78) (1.29) (1.23) (1.38)
Public 0.1145 0.1001 0.09340 0.05150 0.1312 0.09530 0.08076

(7.32) (4.27) (1.83) (0.91) (6.22) (2.44) (1.72)
Addon 0.06084 0.06655 0.05506 0.1954 0.02071 0.03088 0.1175

(2.39) (1.63) (0.50) (1.81) (0.63) (0.32) (1.25)
θ 0.5707 0.8289

(59.96) (64.44)
κ 1.7522 1.2064

(59.96) (64.44)
σ(ε) 1.9874 1.2520 1.4757 1.0608

72.19) (104.61) (84.33) (114.80)
σ(h) 1.3237 4.2651 1.1.0984 2.5325

(119.92) (29.49) (128.89) (41.13)
lnL −89641.2 −42774.7 −27480.4 −27408.6 −45900.2 −30262.3 −30214.7
n 27326 14243 13083
Notes: Estimated coefficients for year dummy variables, excluding year 1984, are not
reported; θ = the estimated parameter for the log gamma (NB) model; κ = 1/θ = Var[h] for
log gamma model; σ(ε) =

√
ψ′(θ) = Var(lnhi) for the log gamma model. Estimated directly

for the lognormal model; σ(h) =
√
κ for the log gamma model,

√
exp(σ2)[exp(σ2) − 1] for

the lognormal model.
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pooled NB results are not shown — so the LR statistic for the NB model
is 678.60, with 17 degrees of freedom. On this basis, we will not use
the pooled data in any of the models estimated below. For brevity, we
will present only the results for the males in the sample (n = 14,243).
(Qualitative results for the two samples are the same. RWM do not
pursue the differences in the results for males and females.)

The immediate impression is that the presence of public insurance
and private AddOn insurance in the pooled model both have a signifi-
cant influence on usage of physician visits. However, when the models
are fit separately for males and females, the latter effect is dissipated.
It appears that generally, the former effects disappears from the mod-
els that account for latent heterogeneity — of the four sets of results
in Table 6.3., the effect of AddOn remains significant only in the NB
model for females.

As noted, the Poisson model is rejected based on the likelihood
ratio test for either of the heterogeneity models (log gamma or log-
normal) for both males and females. For the males, for example,
for the negative binomial vs. the Poisson model, the chi squared is
2(42774.7 − 27480.4) = 30588.6, with one degree of freedom. Thus, the
hypothesis is rejected. Similar results occur for the other three cases
shown. The results are convincing that the Poisson model does not
adequately account for the latent heterogeneity. The last four rows of
Table 6.3. show the estimates of the parameters of the estimated distri-
bution of latent heterogeneity. The estimated structural parameter is
shown in boldface. The other values are derived as shown in the foot-
notes in the table. The two models produce similar results, however, the
variance of the multiplicative heterogeneity (hi) is substantially larger
for the lognormal model. This is a reflection of the thick upper tail of
the lognormal distribution. The overall impression of the distribution
of εi might be a bit erroneous on this basis, as the mean of εi in the
lognormal model is zero while the mean of εi in the log gamma model
is ψ(θ) − lnθ = −1.09 for the males. Thus, the range of variation of the
centered variables in the two models is somewhat closer (though the
lognormal still has the larger variance).

The third column of the two groups of estimates present the log-
normal model as an alternative specification to the log gamma (neg-
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ative binomial). These are the counterparts to RWM’s results in
their Table IV. Our estimates differ slightly; the difference appears
small enough to be attributable to difference in the approxima-
tion methods. We used a 48 point Hermite approximation. RWM
do not note what method they used for the heterogeneous Poisson
model. They used a modification of the Hermite quadrature for the
bivariate Poisson model. For example, for the log likelihood func-
tion, their reported value is −27411.4 vs. our −27408.6. The coun-
terparts for females are −30213.4 for RWM and −30214.7 for ours.
Based on the likelihoods, the lognormal model appears to be supe-
rior to the negative binomial model. Since the models are not nested,
a direct test based on these values is inappropriate. The Vuong
statistic suggested in (2.51) equals 2.329 in favor of the lognormal
model.

Table 6.4. presents estimates of the parameters of the different spec-
ifications of the NB model. The base case Poisson model corresponds
to P = 0 in the encompassing NBP specification. Based on the likeli-
hood ratio tests, any of the alternative specifications in the table, all of
which nest the Poisson, will dominate it. As suggested earlier, NB1 and
NB2 produce similar results, but nonetheless, are manifestly different
specifications. The log likelihood for NB1 is significantly larger than
that for NB2. However, as these two models are not nested, the LR
test is inappropriate. Using the Vuong statistic in (2.19), we obtain a
value of −1.63 in favor of NB1. In spite of the log likelihoods, this is
in the inconclusive region. As expected, NBP produces a greater like-
lihood than either NB1 or NB2. Using a likelihood ratio statistic for
testing against NB1, we obtain a chi squared of 207.8 with one degree
of freedom. Thus, NB1 and, a fortiori, NB2 are rejected in favor of
NBP for these data. The estimated standard error for the estimator of
P for this model is 0.02293. The t (Wald) test against the null hypoth-
esis that P equals 1.0 gives a statistic of 21.33, which, once again,
would decisively reject the NB1 specification. The second rightmost
column in Table 6.4. presents estimates of a heterogeneous model in
which income and education influence the dispersion parameter in the
NB2 model. The significantly negative coefficient on income indicates
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that increasing income increases the dispersion, since in this expanded
model, κi = (1/θ)exp(−z′

iγ).
The last column in Table 6.4. presents of the heterogeneous NB2

model. This model specifies the NB2 functional form with, in addition,

λi = exp(x′
iβ + σεi),

where εi has a standard normal distribution. One way to view the model
would be as a Poisson model with a compound disturbance in it,

λi = exp(x′
iβ + σnεni + εgi),

where εni is the standard normally distributed component and εgi is the
log of hi, which has the log gamma distribution that produces the NB
model. If εni and εgi are statistically independent, then the uncondi-
tional (on εgi) density will be the NB2 model, still with latent normally
distributed heterogeneity. Though it might appear otherwise, there is
no problem of identification in the model; the two variance components
are identified through different features of the distribution; the variance
of εgi, identified through θ, appears in the dispersion of yi (and, indeed,
in all higher moments). The estimation of this model is precisely anal-
ogous to estimation of the variance components in the stochastic fron-
tier framework (see Aigner et al. (1977) and Greene (2006)), where the
parameters are identifiable because of the different shapes of the dis-
tributions of the two random variables in the sum. Curiously, the esti-
mate of the total variance of the heterogeneity in the compound model
is smaller than that of the implied heterogeneity in NB2. Based on the
two formulations above, we obtain, for the variance of lnhi in NB2,
ψ′(0.5707) = 3.949, and for the variance of σnεn + lnhi,ψ′(0.9043) +
0.69612 = 2.393. The respective standard deviations are 1.987
and 1.547.

Based on the likelihood, the NB normal mixture model domi-
nates NB2. The likelihood ratio statistic is 9.4, again with one degree
of freedom. The mixture model does not dominate the NBP model.
However, the models are not nested so the simple LR test is not
usable.

RWM note based on comparing the Poisson–lognormal to the
bivariate model that the significance and, in some cases, the signs
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of the coefficients change with the specification. We find gener-
ally, that this applies to the marginal variables, but that the pat-
tern of significance of most of the variables in the equation is
extremely stable. The very important exception is the variables that
were the focus of the study, the insurance variables. What we find
is that as the model is extended to account for latent hetero-
geneity, the importance of the private insurance variable diminishes
consistently.

Tables 6.5. and 6.6. present estimates of a latent class Poisson regres-
sion model. We present the results for three classes. The determination
of the optimal (appropriate) number of classes is a substantial com-
plication, since J is not a parameter, and the likelihood ratio test is
inappropraite for determining the right value. (See McLachlan and
Peel (2000).) We do find that that log likelihood is approximately
−30,300 with a two class model compared to roughly −28,000 with

Table 6.5. Estimated three class poisson finite mixture model, males (t ratios in parenthe-
ses), males only, constant class probabilities.

Variable Poisson – One Class Poisson – Class 1 Poisson – Class 2 Poisson – Class 3
Constant 2.771 (26.85) 3.6321 (11.88) 3.2967 (14.66) 2.2148 (5.42)
Age −0.02387 (−5.44) 0.04790 (4.21) −0.02586 (−2.79) −0.0841 (−4.94)
Agesq 0.3693 (7.45) −0.5567 (−4.25) 0.3540 (3.40) 1.0920 (5.87)
Hsat −0.2253 (−10.41) −0.1620 (−28.04) −0.2061 (−41.27) −0.3111 (−36.30)
Handdum 0.06899 (4.09) 0.1845 (4.51) 0.1119 (2.80) 0.1372 (1.87)
Handper 0.002858 (10.04) 0.0004787 (0.77) 0.003061 (4.76) 0.005390 (5.18)
Married 0.05831 (3.89) −0.05021 (−1.25) 0.8798 (2.77) 0.3408 (5.82)
Educ −0.02348 (−8.43) −0.03812 (−4.44) −0.01907 (−3.19) −0.009429 (−0.88)
Hhninc −0.2220 (−5.93) −0.5750 (−5.83) −0.1634 (−2.30) −0.1916 (−1.30)
Hhkids −0.07598 (−5.75) −0.1398 (−4.27) −0.1263 (−4.58) −0.2374 (−4.39)
Self −0.2110 (−8.98) 0.1962 (2.82) −0.1353 (−2.79) −0.4451 (−4.53)
Civil 0.09144 (3.78) 0.05698 (0.88) −0.09664 (−1.91) −0.02989 (−0.28)
Bluec 0.01779 (1.24) 0.09825 (2.66) 0.01697 (0.56) −.03258 (−0.57)
Working −0.05539 (−3.17) −0.2744 (−5.91) −0.06432 (−1.77) −0.001136 (−0.02)
Public 0.1001 (4.27) 0.1256 (1.60) 0.008791 (0.18) 0.2713 (2.75)
Addon 0.06655 (1.63) −3.4518 (−4.33) 0.5343 (8.36) 0.6700 (6.52)
Year1985 0.07689 (3.85) −0.061143 (−1.33) 0.03825 (0.94) −0.004742 (−0.06)
Year1986 0.2153 (11.06) 0.1551 (3.10) 0.2010 (5.14) 0.2838 (4.12)
Year1987 0.1132 (5.30) −0.08257 (−1.68) 0.01519 (0.32) 0.04746 (0.50)
Year1988 0.05301 (2.74) −0.08971 (−1.76) 0.002979 (0.07) 0.1623 (2.34)
Year1991 −0.003974 (−0.20) −0.04384 (−0.79) −0.02389 (−0.60) 0.3874 (5.77)
Year1994 0.2472 (12.10) −0.04142 (−0.74) 0.2235 (5.27) 0.4645 (6.44)
Class π 1.0000 0.04423 0.3506 0.6051

lnL −42774.74 −28014.19
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Table 6.6. Estimated three class poisson finite mixture model, males (t ratios in parenthe-
ses), males only, heterogeneous class probabilities.

Variable Poisson – Class 1 Poisson – Class 2 Poisson – Class 3
DocVis Count Equation
Constant 5.9936 (46.32) 4.5156 (27.52) 3.0552 (11.91)
Age −0.01220 (−2.40) −0.06548 (−10.17) −0.1258 (−11.17)
Agesq 0.04713 (0.83) 0.6965 (9.49) 1.4243 (11.36)
Hsat −0.1800 (−71.63) −0.2162 (−66.26) −0.3117 (−52.61)
Handdum 0.1270 (6.60) 0.1016 (4.66) 0.08298 (1.97)
Handper 0.001202 (3.72) 0.004079 (11.10) 0.006547 (10.42)
Married −0.06013 (−3.90) 0.07071 (3.52) 0.2722 (7.10)
Educ −0.1321 (−45.16) −0.03238 (−4.38) 0.03482 (6.02)
Hhninc −0.4212 (−9.73) −0.1094 (−1.95) −0.1102 (−1.16)
Hhkids −0.1501 (−11.74) −0.1135 (−5.98) −0.1913 (−5.38)
Self 0.05519 (2.33) −0.1971 (−5.52) −0.5314 (−7.08)
Civil 0.04750 (1.72) −0.1030 (−2.52) 0.01841 (0.30)
Bluec −0.0009189 (−0.05) −0.02545 (−1.19) −0.06648 (−1.71)
Working −0.1317 (−7.15) 0.005479 (0.22) 0.01499 (0.35)
Public 0.1587 (5.71) −0.01793 (−.47) 0.2080 (3.70)
Addon −0.1509 (−1.89) 0.1491 (2.45) 0.2681 (3.26)
Year1985 −0.003609 (−0.16) 0.09781 (3.53) 0.02016 (0.40)
Year1986 0.1380 (8.16) 0.1968 (7.14) 0.2428 (4.82)
Year1987 −0.04531 (−2.14) 0.03146 (1.05) 0.06458 (1.17)
Year1988 0.03263 (1.63) 0.09837 (3.78) 0.2127 (4.65)
Year1991 −0.04043 (−1.87) −0.0006715 (−0.02) 0.3562 (7.44)
Year1994 0.03994 (1.68) 0.2514 (8.61) 0.4914 (10.43)
Class Probabilities Model
Constant −2.4125 (−21.38) −0.5743 (−5.83) 0.0000 (0.00)
Age30–34 0.09811 (0.56) 0.03849 (0.44) 0.0000 (0.00)
Age35–39 0.2388 (1.50) −0.001621 (−0.02) 0.0000 (0.00)
Age40–44 −0.2387 (−1.44) −0.1332 (−1.46) 0.0000 (0.00)
Age45–49 −0.6762 (−4.26) −0.2805 (−3.02) 0.0000 (0.00)
Age50–54 0.04755 (0.33) 0.09901 (1.12) 0.0000 (0.00)
Age55–59 0.2131 (1.46) 0.05399 (0.59) 0.0000 (0.00)
Age60Up 0.1664 (1.03) 0.07250 (0.69) 0.0000 (0.00)
Haupts 0.09073 (0.94) 0.1285 (1.56) 0.0000 (0.00)
Reals 0.05668 (0.40) 0.1854 (2.03) 0.0000 (0.00)
Fachhs 0.5499 (0.04) 0.03625 (0.00) 0.0000 (0.00)
Abitur 0.5691 (1.02) −0.1001 (−0.05) 0.0000 (0.00)
Univ 1.07971 (0.00) −9.8307 (−0.00) 0.0000 (0.00)
Whitec −0.1238 (0.00) −0.03938 (−0.00) 0.0000 (0.00)
Class π 0.06196 0.15647 0.78158

lnL −28101.29

three classes. The difference of nearly 2,000 strongly suggests that the
three class model is preferable. Indeed, we refit the model with four
and five classes, and the log likelihood continued to rise. However, with
five classes, some of the parameter estimates became quite extreme and
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it was not possible to compute a covariance matrix. This is the signa-
ture of an overspecified model. (We also fit the latent class model as
a panel, with class probabilities fixed over the Ti periods, with similar
results. (The panel data treatment for latent class models is described
in Greene (2008a). See Bago d’Uva (2006) for an application.) The
three class results are presented for illustration. Table 6.5. presents the
model with constant class probabilities. Table 6.6. presents the esti-
mates for a model in which the class probabilities are heterogeneous
as shown at the end of Section 2.2.3. The specification for the class
probabilities is the same one used for the two part models discussed
below.

It is difficult to compare the latent class model to any of the other
fully parametric formulations. The estimates within the three classes
are roughly similar to the other models presented. One noteworthy
result is the effect of AddOn in the model. This is the variable of most
interest in the RWM study. In the other formulations, we found that
the statistical significance of this variable diminishes when latent het-
erogeneity is accounted for. But, that is not the case with the latent
class models. The authors suggest that a positive and significant coef-
ficient on AddOn would be evidence of moral hazard. Thus far, only
this latent class model presents any evidence that the phenomenon is
discernible in the data.

6.3 Two Part Models

6.3.1 Sample Selection

RWM used a type of selection model for AddOn (not the full informa-
tion approach suggested here) to study the issue of adverse selection.
They used a logit model for the choice of AddOn. We will use their
specification for the participation equation, though we will be using a
probit model throughout. The specification is

wit = (Constant, Handdum, Handper, Educ, Haupts, Reals,

Abitur, Fachhs, Univ, Whitec, Married, Hhninc, Hhkids,

1(30 ≤ Age ≤ 34), 1(35 ≤ Age ≤ 39), 1(40 ≤ Age ≤ 44),
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1(45 ≤ Age ≤ 49), 1(50 ≤ Age ≤ 54), 1(55 ≤ Age ≤ 59),

1(Age > 59),

Year1985, Year1986, Year1987, Year1988,

Year1991, Year1994)

The authors’ logit model also included a variable, Number of health
insurances (“the number of private health insurance firms in an indi-
vidual’s state of residence”). This appears to be a variable that is not in
the published data set. Moreover, it is unclear how the sample subsets
for the decision variable were constructed; 9,274 of the 14,243 observa-
tions on men and 11,669 of the 13,083 women were used in this model.2

We will use the variables listed in wit above without a surrogate for
the number of insurances for our sample selection approach and for
our two part models. Since the issues of adverse selection and moral
hazard are interesting ones in the study, we will take their approach
in the sample selection model, but “select” on the Public variable for
health insurance, purely for the sake of a numerical example. (Note
that one must have the public insurance in order to obtain the AddOn
insurance.)

The adverse selection issue turns on the endogeneity of the insur-
ance coverage variable. As noted, the authors were interested in the
marginal impact of the add-on insurance. (They found weak support
for the adverse selection hypothesis.) To develop a numerical applica-
tion, we have treated the entire insurance package, rather than just the
add-on component. Thus, our “selection” model considers the possible
endogeneity of Public. (One must purchase the public insurance to add
the add-on.) Tables 6.7. and 6.8. present FIML estimates of the sample
selection models for males and females. The hypothesis test turns on
the estimated correlation, which is near zero and insignificant in the
equation for males, but highly significant for females. The likelihood
ratio test is carried out based on the likelihood function for the full
model minus the sum of the two values for the equations with ρ = 0.

2 RWM also report that the variable Fachhs is a perfect predictor of AddOn in their
restricted sample of males. We did not find this to be the case in the full data set, so
we will not further restrict the specification.
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Table 6.7. Estimated sample selection model, males.

ρ = 0 – No selection Sample selection
Variable Probit – Public Poisson – DocVis Probit – Public Poisson – DocVis
Constant 3.1416 (11.24) 2.7833 (10.77) 3.1465 (11.24) 2.8533 (10.01)
Age −0.06454 (−5.67) −0.06691 (−5.73)
Agesq 0.8689 (6.62) 0.8974 (6.65)
Hsat −0.2548 (−44.51) −0.2565 (−45.15)
Handdum 0.07328 (1.06) 0.006177 (0.12) 0.07362 (1.06) 0.008152 (0.16)
Handper −0.0000 (−0.001) 0.007824 (9.28) 0.0000 (−0.001) 0.007792 (9.24)
Married −0.01347 (−0.31) 0.06478 (1.80) −0.01353 (−0.33) 0.06610 (1.83)
Educ −0.1808 (−7.39) −0.01501 (1.91) −0.1813 (−7.09) −0.01681 (−1.58)
Hhninc −1.024 (−11.94) −0.08076 (−0.85) −1.025 (−14.41) −0.08917 (−0.85)
Hhkids 0.06995 (1.85) −0.02862 (−0.89) 0.07007 (1.88) −0.03045 (−0.95)
Self −0.3116 (−5.54) −0.3264 (−5.11)
Civil 0.02953 (0.38) 0.01633 (0.19)
Bluec 0.006345 (0.18) −0.005491 (−0.13)
Working 0.03976 (0.90) 0.05594 (1.15)
Year1985 0.04480 (0.75) 0.07375 (1.53) 0.04418 (0.73) 0.07153 (1.49)
Year1986 −0.01027 (−0.17) 0.1704 (3.52) −0.01094 (−0.18) 0.1694 (3.51)
Year1987 −0.08772 (−1.14) 0.07857 (1.38) −0.08815 (−1.14) 0.07343 (1.30)
Year1988 −0.06434 (−1.15) 0.09794 (2.02) −0.06476 (−1.15) 0.09290 (1.93)
Year1991 −0.03130 (−0.55) 0.1077 (2.06) −0.03161 (−0.56) 0.1015 (1.95)
Year1994 0.05901 (0.98) 0.3428 (6.52) 0.05850 (0.96) 0.3397 (6.48)
Age30–34 −0.2211 (−4.06) −0.2208 (−4.00)
Age35–39 −0.3089 (−6.02) −0.3089 (−6.0)
Age40–44 0.5164 (9.96) 0.5160 (10.08)
Age45–49 −0.1473 (−2.73) −0.1468 (−2.78)
Age50–54 0.2120 (3.55) 0.2113 (3.43)
Age55–59 0.4462 (6.53) 0.4463 (6.23)
Age60Up 0.5531 (7.25) 0.5532 (7.04)
Haupts 0.3631 (3.36) 0.3635 (3.51)
Reals −0.3657 (−3.21) −0.3646 (−3.24)
Fachhs 0.1456 (0.95) 0.1476 (0.94)
Abitur 0.06202 (0.40) 0.06490 (0.40)
Univ 0.03097 (0.31) 0.03274 (0.31)
Whitec 1.1305 (27.83) 1.1307 (30.23)
σ 1.2377 (99.92) 1.2394 (97.08)
ρ 0.0000 (fixed) 0.02246 (0.23)
lnL −4294.89 −24044.20 −28339.01
n 14243 12264 14243 12264

The statistic is 10.6 for the females and only 0.16 for the males. The
negative sign on the correlation indicates that the unobservable factors
that increase the probability of purchasing the insurance are negatively
correlated with the unobservable factors that increase demand on the
health care system.
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Table 6.8. Estimated sample selection model, females (t ratios in parentheses).

ρ = 0 – No selection Sample selection
Variable Probit – Public Poisson – DocVis Probit – Public Poisson – DocVis
Constant 3.0642 (11.76) 2.5493 (11.52) 3.0694 (11.40) 2.1856 (9.51)
Age −0.04117 (−4.37) −0.03866 (−4.07)
Agesq 0.5218 (4.93) 0.4857 (4.56)
Hsat −0.2215 (−45.51) −0.2197 (−43.31)
Handdum 0.1104 (1.19) 0.1001 (2.48) 0.07195 (0.85) 0.1205 (2.43)
Handper 0.003088 (1.97) 0.004725 (6.64) 0.0032745 (2.32) 0.004808 (5.93)
Married 0.003124 (0.95) 0.05571 (1.91) −0.0027795 (−0.06) 0.03836 (1.28)
Educ −0.1678 (−7.38) 0.02748 (3.91) −0.1593 (−7.02) 0.06077 (7.47)
Hhninc −1.183 (−12.9) −0.1607 (−2.08) −1.1620 (−15.00) 0.08070 (0.97)
Hhkids 0.08852 (1.95) −0.1306 (−4.44) 0.08804 (1.89) −0.1255 (−4.23)
Self −0.3444 (−4.78) −0.2340 (−3.14)
Civil 0.2667 (1.58) 0.4428 (2.80)
Bluec −0.09816 (−2.73) 0.03352 (0.90)
Working 0.04561 (1.61) −0.05897 (−1.88)
Year1985 −0.00536 (−0.07) −0.0279 (2.19) 0.007422 (0.11) −0.03663 (−0.86)
Year1986 −0.00267 (−0.04) 0.09287 (0.028) −0.005941 (−0.09) 0.1289 (3.08)
Year1987 −0.1215 (−1.21) −0.03763 (−0.79) −0.08333 (−0.89) −0.08684 (−1.54)
Year1988 −0.0909 (−1.42) −0.1467 (−3.46) −0.09197 (−1.43) −0.1391 (−3.18)
Year1991 0.03407 (0.51) −0.06931 (−1.54) 0.01679 (0.26) −0.06926 (−1.51)
Year1994 0.1665 (2.28) 0.2642 (5.86) 0.1555 (2.16) 0.2202 (4.76)
Age30–34 −0.1565 (−2.27) −0.1604 (−2.35)
Age35–39 −0.1581 (−2.49) −0.1642 (−2.57)
Age40–44 0.1901 (3.00) 0.1809 (2.81)
Age45–49 −0.1017 (−1.56) −0.08129 (−1.24)
Age50–54 0.06098 (0.89) 0.07611 (1.14)
Age55–59 0.1323 (1.83) 0.1231 (1.72)
Age60Up 0.1221 (1.68) 0.1095 (1.47)
Haupts 0.4737 (3.89) 0.3792 (3.21)
Reals 0.2016 (1.56) 0.1203 (0.98)
Fachhs 0.4686 (2.66) 0.3346 (1.97)
Abitur 0.4092 (2.38) 0.2705 (1.64)
Univ −0.1886 (1.70) −0.2206 (2.00)
Whitec 0.9482 (18.99) 0.9087 (18.98)
σ 1.0560 (109.96) 1.0993 (84.92)
ρ 0.0000 (fixed) −0.5339 (−8.87)
lnL −3099.5 −27833.5 −30927.7
n 13083 11939 13083 11939

6.3.2 Zero Inflation and Hurdle Models

Figure 6.2. is persuasive that the Poisson model probably does not
assign sufficient mass to the zero outcome. The zero inflation model
explicitly builds on the Poisson or NB model to shift the distribution
toward the zero outcome. Tables 6.9. and 6.10. present four specifica-
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Table 6.9. Estimated zero inflated poisson model, males (t ratios in parentheses).

No zero inflation Zero inflated Poisson (no heterogeneity)
Variable Probit – Zero state Poisson – DocVis Probit – Zero state Poisson – DocVis
Constant 2.771 (26.85) −0.01432 (−0.07) 2.5722 (57.10)
Age −0.02387 (−5.44) −0.005731 (−3.21)
Agesq 0.3693 (7.45) 0.1285 (6.34)
Hsat −0.2253 (−104.1) −0.1564 (−186.94)
Handdum 0.06899 (4.09) 0.1274 (3.58) 0.07641 (12.53)
Handper 0.00286 (10.04) −0.01374 (−15.65) 0.00081 (8.34)
Married 0.05831 (3.89) −0.1228 (−3.79) −0.01578 (−2.71)
Educ −0.02348 (−8.43) −0.01112 (−0.65) −0.01896 (−14.04)
Hhninc −0.2220 (−5.93) −0.06780 (−0.92) −0.2240 (−14.07)
Hhkids −0.07598 (−5.75) 0.07732 (2.67) −0.03190 (−6.19)
Self −0.2110 (−8.98) −0.1084 (−10.49)
Civil 0.09144 (3.78) 0.1111 (10.16)
Bluec 0.01779 (1.24) 0.04336 (7.21)
Working −0.05539 (−3.17) −0.05992 (−9.02)
Public 0.1001 (4.27) 0.07612 (7.07)
Addon 0.06655 (1.63) −0.07040 (−3.67)
Year1985 0.07689 (3.84) 0.09084 (11.58)
Year1986 0.21537 (11.06) 0.1840 (23.93)
Year1987 0.1132 (5.30) 0.1150 (14.64)
Year1988 0.05301 (2.74) 0.00065 (0.08)
Year1991 −0.003974 (−0.20) −0.1058 (−12.99)
Year1994 0.24726 (12.10) 0.1810 (22.07)
Age30–34 0.02866 (0.69)
Age35–39 0.06424 (1.58)
Age40–44 −0.1434 (−3.45)
Age45–49 0.1521 (3.47)
Age50–54 −0.1562 (−3.47)
Age55–59 −0.1864 (−3.93)
Age60Up −0.3261 (−5.89)
Haupts 0.06593 (0.79)
Reals 0.07693 (0.85)
Fachhs 0.1143 (0.95)
Abitur 0.2539 (2.10)
Univ 0.01076 (0.13)
Whitec −0.005596 (−0.21)
σ 0.0000 (fixed)
ρ (0.0000) (fixed)
lnL −42774.7 −35757.0
n 14243 14243
Voung

Stat.
0.00 28.83
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Table 6.10. Estimated zero inflated poisson models with latent heterogeneity, males,
(t ratios in parentheses).

Exogenous zero inflation Endogenous zero inflation
Variable Probit – Zero state Poisson – DocVis Probit – Zero state Poisson – DocVis
Constant −0.3218 (−0.95) 2.4564 (8.83) −0.3015 (−0.93) 2.5220 (8.74)
Age −0.02405 (−2.02) −0.02436 (−1.96)
Agesq 0.3650 (2.67) 0.36660 (2.56)
Hsat −0.2310 (−41.48) −0.2312 (−39.85)
Handdum 0.3784 (5.02) 0.03262 (0.72) 0.3933 (5.12) 0.03832 (0.82)
Handper −0.02667 (−6.36) 0.002292 (2.98) −0.02830 (−6.36) 0.001453 (1.43)
Married −0.2088 (−3.29) 0.005705 (0.14) −0.1916 (−3.03) 0.007373 (0.17)
Educ −0.02912 (−0.96) −0.01201 (−1.52) −0.02994 (−1.03) −0.01053 (−1.26)
Hhninc −0.2411 (−1.51) −0.2310 (−2.39) −0.2410 (−1.53) −0.2498 (−2.46)
Hhkids 0.1193 (2.05) −0.02546 (−0.72) 0.1105 (1.92) −0.02517 (−0.65)
Self −0.2350 (−4.22) −0.2474 (−4.33)
Civil 0.07712 (1.23) 0.06009 (0.94)
Bluec 0.04352 (1.13) 0.04617 (1.15)
Working −0.05616 (−1.21) −0.04573 (−0.94)
Public 0.06828 (1.21) 0.04932 (0.88)
Addon 0.05530 (0.52) 0.05892 (0.56)
Year1985 0.1125 (2.41) 0.1237 (2.67)
Year1986 0.2171 (4.67) 0.2198 (4.73)
Year1987 0.2142 (4.06) 0.2299 (4.26)
Year1988 0.05805 (1.26) 0.06311 (1.37)
Year1991 0.02592 (0.53) 0.02908 (0.59)
Year1994 0.3226 (6.43) 0.3189 (6.21)
Age30–34 0.05143 (0.71) 0.05491 (0.80)
Age35–39 0.1164 (1.70) 0.1168 (1.76)
Age40–44 −0.2525 (−3.57) −0.2409 (−3.43)
Age45–49 0.1770 (2.47) 0.1735 (2.51)
Age50–54 −0.2060 (−2.49) −0.1892 (−2.41)
Age55–59 −0.1555 (−1.79) −0.1464 (−1.75)
Age60Up −0.4165 (−3.29) −0.3874 (−3.19)
Haupts 0.1363 (0.83) 0.1045 (0.68)
Reals 0.1287 (0.73) 0.1034 (0.63)
Fachhs 0.2027 (0.91) 0.1796 (0.86)
Abitur 0.4061 (1.84) 0.3680 (1.76)
Univ 0.07217 (0.51) 0.09214 (0.69)
Whitec −0.03377 (−0.63) −0.02770 (−0.52)
σ 0.9875 (70.08) 0.9902 (66.31)
ρ 0.0000 (fixed) 0.1540 (0.14)
lnL −27183.9 −27183.1
n 14243 14243
Vuong Stat. 24.16 24.17
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tions of the ZIP model for the male subsample. The first model is the
base case Poisson. The second is the conventional ZIP model proposed
by Lambert (1992), Heilbron (1994) and Greene (1994). The Poisson
model is not nested in the ZIP model; there is no parametric restric-
tion on the ZIP model that produces the Poisson specification. Thus, an
LR test is inappropriate. From Table 6.7., the difference of the two log
likelihoods of roughly 700 is strongly suggestive. The Vuong statistic
of 28.83 strongly favors the zero inflation model, as might be expected.
Figure 6.4. compares the predictions from the ZIP model (the center
bar in each cell) to the Poisson (the right bar) and the actual data.
(Predictions for the two models are computed using the largest integer
less than or equal to the predicted conditional mean.) For the large
majority of the observations, that is, for the 0, 1, and 2 values, the ZIP
model predicts substantially better than the Poisson model.

We note, in the first ZIP specification, in contrast to RWM’s results,
we find strong suggestion of moral hazard; that is, the coefficients on
both Public and AddOn are strongly significant. Table 10 extends the
model by adding unobserved heterogeneity to the Poisson part of the
model. Endogeneity in this case would turn on the correlation between
the latent heterogeneity in the regime equation (zero/not zero) and the

Fig. 6.4. Predictions from ZIP and Poisson models and actual DocVis.
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count model. In the first set of results in Table 6.10., this correlation is
assumed to be zero. In the second model, the correlation is unrestricted;
the estimated value is 0.154. However, we do not find statistical evi-
dence of endogeneity. The t statistic on the estimated correlation is
only 0.14 and the LR statistic is only 1.6. A pattern that persists here
as in the preceding specifications is that the statistical significance of
the insurance indicators declines substantially when the model more
explicitly accounts for latent heterogeneity. The persistent conclusion
is that so far, the data do not contain evidence of moral hazard.

The hurdle model is closely related to the zero inflation models.
We have reinterpreted the two part decision process as having a sep-
arate process governing the zero outcome than the other outcomes.
This suggests a participation equation interpretation, since our obser-
vation of a zero count is a discrete decision as opposed to the obser-
vation of a nonzero count which is governed by the Poisson process.
The model consists of the participation equation and the truncated (at
zero) count model. Tables 6.11. and 6.12. present the estimates for the
hurdle model. As might be expected, the results are broadly similar
to those for the ZIP model. As before, the significance of the variable
of most interest, AddOn, diminishes as the layers of heterogeneity are
added to the model. Figure 6.5. shows a comparison of the predictions
from the ZIP and hurdle models. Both improve on the basic Poisson
model. Visually, the ZIP model appears to do a better job of predicting
the zeros, but the hurdle model predicts the count of ones and twos bet-
ter. It would be difficult to differentiate them on this basis. Since the
models are not nested — they are similarly parameterized with, essen-
tially, different functional forms — it is not possible directly to test
one against the other. We have carried out the Vuong test suggested
in (2.51). Using the basic ZIP model as the first model and the hurdle
model as the second (i.e., no heterogeneity), the statistic equals 3.94
which favors the ZIP model. The same test based on the full models
with heterogeneity and endogenous participation produces a statistic
of 12.92, again in favor of the ZIP model.

Finally, based on the results in Tables 6.12. and 6.10., we do not
find evidence of endogeneity (nonzero ρ) in either two part model based
on the Wald test (t test of significance) or the likelihood ratio test.
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Table 6.11. Estimated poisson hurdle model, males (t ratios in parentheses).

No hurdle effect Hurdle poisson (no heterogeneity)
Truncated

Variable Probit – Zero visits Poisson – DocVis Probit – Zero visits Poisson – DocVis
Constant 2.771 (26.85) −0.1134 (−0.39) 2.4910 (55.40)
Age −0.02387 (−5.44) 0.003950 (2.27)
Agesq 0.3693 (7.45) 0.01222 (0.63)
Hsat −0.2253 (−104.1) −0.1508 (−182.11)
Handdum 0.06899 (4.09) 0.1802 (3.24) 0.08191 (13.63)
Handper 0.00286 (10.04) −0.02389(15.85) 0.000727 (7.49)
Married 0.05831 (3.89) −0.1823 (−3.71) −0.02724 (−5.00)
Educ −0.02348 (−8.43) −0.001361 (−0.05) −0.02247 (−17.03)
Hhninc −0.2220 (−5.93) −0.001026 (−0.01) −0.2240 (−14.16)
Hhkids −0.07598 (−5.75) 0.1319 (3.02) −0.03616 (−7.53)
Self −0.2110 (−8.98) −0.06130 (−6.65)
Civil 0.09144 (3.78) 0.1201 (11.00)
Bluec 0.01779 (1.24) 0.03494 (5.83)
Working −0.05539 (−3.17) −0.09503 (−14.80)
Public 0.1001 (4.27) 0.08029 (7.44)
Addon 0.06655 (1.63) −0.08155 (−4.23)
Year1985 2.7719 (28.85) 0.04359 (5.93)
Year1986 −0.02387 (−5.44) 0.1475 (21.02)
Year1987 0.3693 (7.45) 0.06039 (8.26)
Year1988 −0.2253 (−104.1) −0.05321 (−7.22)
Year1991 0.06899 (4.09) −0.1658 (−21.56)
Year1994 0.00286 (10.04) 0.1253 (16.19)
Age3034 0.03263 (0.53)
Age35–39 0.07987 (1.31)
Age40–44 −0.1930 (−3.08)
Age45–49 0.2410 (3.64)
Age50–54 −0.2413 (−3.55)
Age55–59 −0.3191 (−4.37)
Age60Up −0.5386 (−6.21)
Haupts 0.08530 (0.67)
Reals 0.1047 (0.76)
Fachhs 0.1470 (0.80)
Abitur 0.3551 (1.93)
Univ −0.01733 (−0.14)
Whitec −0.005059 (−0.13)
σ 0.0000 (fixed)
ρ (0.0000) (fixed)
lnL −42774.7 −35938.68
n 14243 14243

6.4 The Bivariate Poisson Model

Result (5.10) provides the implied correlation between yi1 and yi2 in
the bivariate Poisson model in which

λi1 = exp(x′
i1β1 + σ1εi1)
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Fig. 6.5. Predictions from ZIP and hurdle models and actual DocVis.

and

λi1 = exp(x′
i2β2 + σ2εi2),

where

(εi1,εi2) ∼ N2[(0,1),(1,1),ρ].

Munkin and Trivedi (1999) used this specification in a model for the
joint determination of the counts of emergency room visits and hos-
pital visits for a sample of 4,406 elderly Americans drawn from the
National Medical Expenditure Survey from 1987 and 1988. The authors
report the estimates of β1 and β2 and, in addition, σ̂1 = 1.39, σ̂2 = 1.36,
and ρ̂ = 0.92. The last of these might lead one to suspect that emer-
gency room visits and hospital visits were extremely highly correlated.
However, as derived in Section 5, the 0.92 reflects only the correlation
between the latent effects in the conditional means. In order to evaluate
the correlation between the two outcomes, we propose to evaluate (5.10)
at the sample observations, and then average the outcomes. However,
since we do not have the Munkin and Trivedi data available — we do
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have the RWM data, which we will examine below — we resort to an
approximation. To a reasonable approximation, the sample average of
λi evaluated at the individual data will equal the mean of the outcome
variable. (The result is exact in the base case Poisson model — this
is the likelihood equation for the constant term.) The authors report
sample means of ȳ1 = 0.26 and ȳ2 = 0.92. Thus, in (5.10), we use

µi1 ≈ ȳ1 exp(0.5 × 1.392) = 0.683162

µi2 ≈ ȳ2 exp(0.5 × 1.362) = 0.756409,

and complete the computation with a hand calculator. The result is an
estimated correlation of 0.668929, which is substantially less than 0.92.
Munkin and Trivedi do not report the sample correlation of their two
outcome variables, so we cannot measure the implied estimate against
the sample statistic.

The RWM model is

lnλit,1 = α1 + x′
it,1β1 + ui,1 + εit,1 = α1 + x′

it,1β1 + vit,1,

lnλit,2 = α2 + x′
it,2β2 + ui,2 + εit,2 = α2 + x′

it,2β2 + vit,2,

(εit,1,εit,2) ∼ N2[(0,0),(σ1,σ2),ρ],
(ui,1,ui,2) ∼ N2[(0,0),(ω1,ω2),0].

(6.1)

for which we derived

ρ12 =
ρσ1σ2√

ω2
1 + σ2

1

√
ω2

2 + σ2
2

. (6.2)

The result in (5.10) can be used by using this expression for ρ and
the two standard deviations, τ1 =

√
ω2

1 + σ2
1 and τ2 =

√
ω2

2 + σ2
2 for

σ1 and σ2 in (5.10). The authors did not report the full set of esti-
mated parameters (they omitted the coefficients on the year dummy
variables). Rather than reestimate the full bivariate Poisson model, we
proceeded as follows. Each of the equations in (6.1) can be consistently
estimated in isolation. Moreover, we note that the marginal distribution
of each of the observations, (i, t), in the sample, has a marginal Poisson
distribution with normally distributed heterogeneity with mean zero
and standard deviation τj . Thus, we estimated the four equations singly
using the lognormal heterogeneity model discussed in Section 2.2.2.
This provides consistent, albeit inefficient estimators of the parameters
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Table 6.13. Single equations estimates of bivariate poisson models.

Males Females
Variable DocVis HospVis DocVis HospVis
Constant 2.95829046 −0.71769354 2.65970461 −0.92395935
Age −0.06039694 −0.01495334 −0.03467601 −0.04182897
Agesq 0.81046943 0.17526254 0.40417087 0.32800832
Hsat −0.26979714 −0.28467610 −0.22492822 −0.21283211
Handdum −0.10360835 −0.15938867 0.14118341 0.04898526
Handper 0.00811821 0.00687895 0.00436759 0.01053000
Married 0.06801734 −0.11266046 0.09394893 −0.03039990
Educ −0.02141476 −0.05611756 0.00669951 −0.02245035
Hhninc −0.09317739 0.28561716 −0.10306991 0.45290684
Hhkids −0.05833037 0.06532961 −0.18274059 0.02830548
Self −0.27162867 −0.07241379 −0.27422854 −0.12053254
Civil 0.03028441 −0.15292197 −0.00966680 0.16538415
Bluec −0.05264588 0.19299252 −0.09417967 −0.31982329
Working 0.00747418 −0.29732586 0.01608792 0.01324764
Public 0.04537642 −0.25102523 0.08274879 0.07493233
Addon 0.15634672 0.61629605 0.11353610 0.28858560
Year1984 0.00000000 0.00000000 0.00000000 0.00000000
Year1985 0.01555697 0.38790097 −0.02109554 0.18039499
Year1986 0.14371463 −0.03957923 0.11756445 0.28653104
Year1987 0.16606851 0.06845882 −0.10021643 0.12299139
Year1988 0.04018257 −0.05038515 −0.16888748 0.43457292
Year1991 0.02525603 −0.06140680 −0.06445527 0.44076348
Year1994 0.28195404 0.07614490 0.26471138 0.13759322
σ 1.23777937 1.78190925 1.04809696 1.47269236
σ2 1.53209777 3.17228488 1.09850724 2.16882279
σε 0.96737031 1.28460990 0.79772504 1.00736894
ωu 0.77219975 1.23371888 0.67981026 1.07425817
ρDW 0.276 0.201
Average Correlation 0.06938 0.05795
Sample Corr(Doc,Hosp) 0.1477 0.1255
RWM Reported Results
σ(εit) 0.996 1.244 0.822 1.053
ω(ui) 0.795 1.195 0.701 1.123
σ2(εit) 0.992 1.548 0.676 1.109
ω2(ui) 0.632 1.428 0.491 1.261
p = σ2(εit)/[ σ2(εit) + ω2(ui)] 0.6108 0.5202 0.5793 0.4679
τ =[σ2(εit) + ω2(ui)]1/2 1.274 1.725 1.080 1.540
ρDH 0.276 0.201
ρ 0.490 0.386

of the four equations. These are shown in Table 6.13.. (RWM’s coun-
terparts are shown in Table 6.14. for comparison.) The estimated vari-
ance, σ2, in each of these equations is an estimate of τ2 = σ2

ε + ω2
u in the

RWM model. This is also shown in Table 6.13.. Only an estimate of ρ is
needed to complete the calculations in (5.4), (5.10) and (5.13). We used
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Table 6.14. RWM estimated Bivariate Poisson models.

Males Females
Variable DocVis HospVis DocVis HospVis
Constant 2.563 −0.206 2.423 −1.567
Age −0.060 −0.077 −0.040 −0.032
Agesq 0.823 0.942 0.499 0.234
Hsat −0.237 −0.243 −0.191 −0.196
Handdum −0.029 −0.086 0.063 0.039
Handper 0.007 0.008 0.004 0.010
Married 0.085 −0.054 0.009 −0.044
Educ −0.022 −0.051 0.014 −0.015
Hhninc −0.090 0.375 −0.107 0.407
Hhkids −0.059 0.103 −0.117 0.073
Self −0.356 −0.196 −0.256 −0.117
Civil −0.011 −0.086 −0.069 0.281
Bluec −0.029 0.173 −0.034 −0.320
Working 0.041 −0.026 0.002 −0.014
Public 0.075 −0.136 0.058 0.246
Addon 0.090 0.549 0.096 0.219
σ(εit) 0.996 1.244 0.822 1.053
ω(ui) 0.795 1.195 0.701 1.123
ρ 0.490 0.386

the estimate of ρ reported by RWM for males and females, which
appears in the last row of Table 6.13.. For comparison purposes, we
have decomposed the estimated variance from our estimates using the
implied analysis of variance in RWM. The computations appear at the
bottom of Table 6.13.. The proportion denoted “p” in the table inferred
from the RWM results is used to decompose the estimated variance
from our model. With these statistics in hand, and with the estimated
coefficient vectors, we are able to compute the implied correlations for
the two models (males and females). Using (5.13), we obtain means
of individual specific estimates of the correlations of the outcome vari-
ables of 0.06938 for males and 0.05795 for females. These are an order of
magnitude less than the estimate of ρ reported in the paper, and more-
over, only about half of the actual correlation between the outcomes in
the data.

6.5 Panel Data Models

Table 6.15. presents the estimated fixed and random effects Poisson
models. Based on the likelihood ratio test (which is valid in this case
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Table 6.15. Estimated panel data poisson models, males (t ratios in parentheses).

Fixed effects Random effects
Variable No effects Unconditional FE log gamma (NB) lognormal
Constant 2.639 (39.46) 2.6369 (24.56) 2.0775 (19.39)
Age −0.00732 (−2.64) 0.0008051 (0.06) −0.02950 (−7.56) −0.02694 (−6.96)
Agesq 0.1407 (4.54) 0.4797 (4.42) 0.4883 (10.94) 0.5003 (11.39)
Hsat −0.2149 (−51.9) −0.1682 (−50.59) −0.1808 (−160.17) −0.1828 (−161.27)
Handdum 0.1011 (8.71) 0.003135 (0.17) −0.001932 (−0.24) 0.000159 (0.02)
Handper 0.001992 (10.73) 0.0000 (0.01) 0.001630 (7.68) 0.001198 (5.81)
Married 0.02058 (2.32) −0.01136 (−0.34) −0.01282 (−1.22) 0.03822 (3.55)
Educ −0.01483 (−7.96) −0.06482 (−3.02) −0.03379 (−5.85) −0.03474 (−5.95)
Hhninc −0.1729 (−7.27) −0.1786 (−2.72) −0.1759 (−6.16) −0.2058 (−7.04)
Hhkids −0.1108 (−12.86) 0.04577 (1.95) 0.007354 (0.86) −0.01688 (−1.87)
Self −0.2914 (−16.18) −0.03933 (−0.71) −0.1372 (−7.39) −0.1517 (−8.38)
Civil −0.05026 (−2.64) −0.1375 (−2.01) −0.01156 (−0.45) −0.01119 (−0.43)
Bluec −0.08920 (−9.01) −0.06725 (−2.18) −0.03458 (−2.63) −0.04332 (−3.34)
Working −0.07478 (−7.62) 0.03806 (1.23) 0.004875 (0.37) −0.001994 (−0.16)
Public 0.1145 (7.32) 0.1044 (2.30) 0.1057 (5.53) 0.1109 (5.80)
Addon 0.06084 (2.39) −0.04068 (−0.73) −0.03437 (−1.19) −0.0343 (−1.21)
Year1985 2.639 (39.46) 0.05690 (2.37) 0.08268 (8.87) 0.08383 (8.95)
Year1986 −0.00732 (−2.64) 0.1063 (3.53) 0.1622 (18.82) 0.1618 (18.86)
Year1987 0.1407 (4.54) 0.04392 (1.11) 0.1145 (11.32) 0.1109 (10.64)
Year1988 −0.2149 (−151.9) −0.09314 (−1.94) 0.01033 (1.00) 0.002153 (0.20)
Year1991 0.1011 (8.71) −0.2429 (−3.10) −0.05520 (−4.22) −0.07157 (−5.64)
Year1994 0.001992 (10.73) −0.06790 (−0.62) 0.1985 (12.53) 0.1713 (11.17)
κ 0.9879 (38.57)
σ 1.0051 (91.11)
lnL −42774.74 −21696.56 −32850.59 −32897.37
N 3687 (714 unusable in FE) 3687
ΣiTi 14243 14243

because the MLE is consistent), the “no effects” model is rejected
convincingly. The chi squared statistic with (3,687 − 714) degrees of
freedom is 41,156.36. The large degrees of freedom approximation in
Greene (2008b; result B-37) provides a standard normal test statistic
of 209.79. (Note, there 3,687 individuals in the sample. However, 714
of them had zero visits in every period. These observations contribute
a 1.00 to the likelihood function — Prob(yi1 = 0, yi2 = 0, . . . , |Σtyit =
0) = 1, so constant terms cannot be estimated for them. The marked
difference between the base case Poisson model (no effects) and the
fixed effects estimates in the second column are to be expected. The
random effects estimates in the third and fourth columns are quite sim-
ilar. Two noticable differences are the coefficients on marital status and
children in the household. Save for these, the Poisson random effects
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do not differ appreciably across the two platforms. The estimated vari-
ances of the heterogeneity are likewise quite similar. The similarities of
the competing models does not carry over to the NB specifications.

Estimates for the fixed and random effects NB models appear in
Table 6.16.. The two sets of fixed effects estimates are quite differ-
ent. The statistical significance and the signs of several of the coef-
ficients change across the two specifications, including Age, Married,
Educ, Civil, and AddOn. The magnitude of several of the coefficients
changes substantively, notably the coefficient on Public, which is five
times larger in the “true” fixed effects estimates. The signs and statis-
tical significance of the period effects reverse several times as well. The
difference between the HHG and true FE models is that HHG builds

Table 6.16. Estimated panel data negative binomial models, males (t ratios in parentheses).

Fixed effects Random effects
Variable HHG Unconditional FE HHG lognormal
Constant 1.2571 (4.04) 1.8500 (8.79) 2.8711 (9.85)
Age −0.06890 (−5.23) −0.01465 (−0.55) −0.06123 (−6.54) −0.04729 (−3.64)
Agesq 0.9328 (6.23) 0.6122 (2.95) 0.8085 (7.51) 0.6677 (4.41)
Hsat −0.1461 (−26.53) −0.1858 (−27.74) −0.1839 (−42.07) −0.2287 (−37.96)
Handdum −0.02760 (−0.74) −0.02142 (−0.54) −0.01461 (−0.43) −0.02789 (−0.59)
Handper 0.003961 (4.74) 0.002916 (2.40) 0.004813 (7.52) 0.006229 (5.92)
Married 0.04188 (0.97) −0.01870 (−0.30) 0.1158 (3.84) 0.07753 (1.92)
Educ 0.04176 (4.09) −0.07045 (−2.02) −0.004814 (−0.85) −0.02949 (−3.45)
Hhninc −0.006220 (−0.07) −0.08619 (−0.75) −0.04278 (−0.59) −0.1071 (−1.15)
Hhkids 0.02149 (0.63) 0.03225 (0.74) −0.05129 (−1.98) −0.05727 (−1.65)
Self −0.2327 (−3.66) −0.3279 (−3.25) −0.2792 (−6.31) −0.3388 (−5.40)
Civil −0.09470 (−1.33) −0.3001 (−2.46) 0.002865 (0.06) −0.007380 (−0.11)
Bluec −0.1222 (−3.12) −0.1035 (−1.76) −0.05024 (−1.76) −0.02313 (−0.55)
Working 0.1358 (2.91) 0.1051 (1.74) 0.05998 (1.64) 0.02431 (0.48)
Public 0.01414 (0.22) 0.07094 (0.91) 0.06681 (1.46) 0.06861 (1.10)
Addon 0.1136 (1.06) −0.005359 (−0.05) 0.1273 (1.45) 0.03729 (0.32)
Year1985 0.06908 (1.61) 0.09386 (2.12) 0.06592 (1.64) 0.1147 (2.62)
Year1986 0.1312 (3.15) 0.1551 (2.84) 0.1379 (3.57) 0.2103 (4.87)
Year1987 0.1025 (2.24) 0.07871 (1.10) 0.09462 (2.29) 0.1335 (2.52)
Year1988 0.06409 (1.55) −0.001798 (−0.02) 0.07583 (2.02) 0.09372 (2.22)
Year1991 0.06162 (1.41) −0.1119 (−0.83) 0.09586 (2.47) 0.05652 (1.23)
Year1994 0.2230 (4.83) 0.07991 (0.43) 0.2544 (6.54) 0.3137 (6.47)
κ 1.8131 (41.31) 1.0192 (50.76)
σ 0.7979 (34.31)
a 3.1782 (21.53)
b 6.2577 (17.94)
lnL −15690.87 −23000.24 −26824.63 −26881.20
N 3687 (714 have ΣtYit = 0) 3687
ΣiTi 14243 14243
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the effects into the variance of the random variable, not the mean.
Thus, we cannot conclude that the HHG estimator is a consistent esti-
mator of a model that contains a heterogeneous mean. It is a consistent
estimator in the context of a model with heterogeneous variance. We
have convincing evidence from the Poisson model that there is sub-
stantial latent heterogeneity in the mean of the random variable. The
log likelihood function for the “no effects” NB model falls to −27,480,
which is thousands less than the log likelihood for either fixed effects
specification. Thus, it is reasonable to conclude that the HHG estima-
tor is at least potentially problematic. This finding does not weigh in
favor of the true FE estimator, however. There is no minimally suffi-
cient statistic for αi in the NB2 model, so we are led to expect that the
incidental parameters problem will surface in this setting. It remains
to be investigated how substantial the biases (if there are any) will be,
however. It seems unlikely that the simple proportional results widely
known for the probit and logit models will carry over to this setting.
The FE approach produces a bit of a Hobson’s choice. The HHG model
does not actually build the heterogeneity into the mean of the random
variable, so we might suspect that it suffers from an “omitted vari-
able” problem. The true fixed effects estimates differ enough from the
HHG estimates in this very large sample that one might suspect the
appearance of the incidental parameters problem.

The random effects estimates for the NB models also differ sub-
stantially. In this case, however, there is no simple comparison one can
draw. There are fewer sign changes, however, the magnitudes and sta-
tistical significance are surprisingly variable for a sample as large as this
one. Once again, we suspect that the models differ in subtle, but signif-
icant structural ways. We have no way of interpreting the parameters
of the beta distribution in the HHG model that implies a decomposi-
tion of the variance of the heterogeneity. For the lognormal model, we
can decompose the variance as follows: The variance of the log gamma
term is ψ′(θ) = ψ′(1/1.0192) = 1.681. The variance of the time invari-
ant lognormal component is 0.79792 = 0.637. The total is thus 2.318.
A counterpart that does not assume that the lognormal component is
time invariant appears in the second to last column of Table 6.4.. The
same decomposition produces ψ′(0.9043) = 1.909 and 0.69612 = 0.485
for a nearly identical total of 2.394.



7
Conclusions

This study has described several extensions to some familiar models
for count data. Each of these extensions has appeared in the received
literature. In each case, we have either addded an additional feature
to the model or reconciled the existing model with recent applications
including:

1. The NBP encompassing form for the negative binomial
model — Although the NBP model has been proposed at
various points (e.g., CT (1986), Winkelmann (2003)) this
appears to be the first formal implementation of the model
in a parametric specification using the maximum likelihood
estimator.

2. The lognormal model as an alternative to the log gamma
model for unobserved heterogeneity in count data models —
This model has been employed in numerous received applica-
tions (e.g., Hinde (1982), Greene (1994), Munkin and Trivedi
(1997), Terza (1997) and Million (1998)); As noted, e.g., by
Million (1998) and Winkelmann (2003), the lognormal mix-
ture model provides a natural specification for unobserved
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heterogeneity. The additional benefit is the flexibility of the
model to provide a platform for several useful extensions,
particularly for two part models.

3. Extensions of some conventional two part models to allow for
endogeneity of the participation decision in the first equa-
tion. Two part models appear, e.g., in Mullahy (1987) and
Van Ourti (2004). With the exception of Van Ourti’s, we
have not found previous implementations of the two part
models that provide for correlation between the two decision
variables. In Van Ourti’s case, the correlation was essentially
accidental, induced by the appearance of the same random
effects in the two equations of a panel data model.

4. A detailed interpretation of some applications of the bivari-
ate Poisson model.

5. Some alternative natural and convenient forms of the widely
used forms of panel data models for count data.

We have also applied the techniques in an analysis of a large sample of
German households.

The NBP variant of the negative binomial model is a convenient
form that provides a means of formalizing the specification choice. Most
received applications of the model have used the NB2 form. In a few
other cases, such as HHG (1984), the NB1 model is used. In none of the
cases, does the presentation provide a formal means of preferring one
or the other. The NBP is an encompassing form that is simple to oper-
ationalize. In the application here (and in others we have considered),
likelihood ratio tests suggest that the NBP form would be preferred to
both NB1 and NB2.

The NB has been used for a generation as the standard vehicle for
introducing unobserved heterogeneity into loglinear count data models.
The vast array of functional forms that appear in the literature, and
the NB model itself, have largely been motivated by a desire to accom-
modate over or underdispersion. In fact, the Poisson form is probably
unique in its restriction of the random variable to equidispersion. It
is convenient, however, that the NB model also arises as a byproduct
of the introduction of a particular form of latent heterogeneity — log
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gamma in distribution. A number of authors, e.g., Winkelmann (2003),
Million (1998), RWM (2003), Greene (2008a), have suggested that the
normal distribution would be a preferable platform on which to build
the model. In addition to deriving from a natural assumption about the
source of latent heterogeneity, a model based on the normal distribu-
tion provides a convenient setting in which to build useful extensions.
We developed the methods for accommodating this form of heterogene-
ity in the count data model — this follows earlier applications such as
Greene (1997), Munkin and Trivedi (1999), and RWM (2003). We then
extended the lognormal model to several two part models, sample selec-
tion, zero inflation and hurdle models, to allow the participation to be
endogenous. The development provides a unified framework that will
accommodate other similar models with minimal change in the basic
template.

One of the recent applications of the methods extended in this paper
is in a type of bivariate count model. We found that in these models,
the introduction of a “correlation coefficient” into the model within the
conditional means provides only a partial indication of the degree of
correlation between the outcome variables. We derived the relationship
between the structural parameters and the reduced form correlation
between the outcome variables in the bivariate Poisson model. In the
application carried out in this paper, we find that the estimated correla-
tion coefficient is far higher than the actual correlation of the variables
in the model. Moreover, the implied correlation coefficient based on
the model estimates, which is a function of the data and thus varies
by observation, does a strikingly poor job of reproducing the actual,
simple correlation of the outcome variables and, moreover, appears, on
average in these data, to be a full order of magnitude less than the
simple reported correlation coefficient. This calls into question the pre-
cise interpretation of this part of the model and whether this form of
correlation is an effective approach to modeling the correlation across
related count data outcome variables.

Finally, we examined some aspects of the most familiar forms of
fixed and random effects models for count data. As in the earlier mod-
els, we find that the lognormal distribution provides a natural method
of introducing time invariant heterogeneity into the equation. Like-



201

wise, we propose an alternative to the HHG fixed effects model. In this
case, the results leave a choice to be made, and a point for further
research. In the HHG fixed effects NB model, the fixed effects enter the
model through the dispersion parameter rather than the conditional
mean function. This has the implication that time invariant variables
can coexist with the effects. This calls the interpretation of the het-
erogeneity in the model into question. We propose to apply the direct
fixed effects approach suggested in Greene (2004) as an appropriate
approach to introducing fixed effects into the NB model. While the
proposed approach does parallel the treatment of fixed effects in other
received models, like many of them, the specification may also suffer
from the incidental parameters problem. In some specific cases, such as
binary choice models, the MLE FE estimator has been found to exhibit
a significant bias when T is small (as it is in our application). However,
the NB model remains to be examined. As shown in Greene (2004), not
all estimators are biased away from zero, and some are (apparently) not
biased at all. On the other hand, the HHG model provides a sufficient
statistic for the fixed effects, so the estimator in their model would not
exhibit an “incidental parameters problem.” Because the conditional
mean function in the HHG model remains homogeneous, however, one
might expect a “left out variable” problem instead. We cannot charac-
terize at this point which specification is likely to be more problematic
in terms of the features of the population one is interested in studying.
This remains an issue to be studied further.

Finally, the methods developed here were applied to the data set
used in RWM (2003). Our results were largely similar to theirs. We do
find that on the question of moral hazard — whether the presence of
insurance appears positively to influence demand for health services —
the apparent effect that shows up in the simple models (e.g., a pooled
Poisson model) almost completely disappears when latent heterogene-
ity is formally introduced into the model



A
Log Likelihood and Gradient for NBP model

The Negbin P model is obtained by replacing θ in NB2,

Prob(Y = yi|xi) =
Γ(θ + yi)

Γ(θ)Γ(1 + yi)
rθi (1 − ri)yi , (A.1)

where

ri = θ/(θ + λi)

with θλP−2.
i . For convenience, let Q = P − 2. Then, the density is

Prob(Y = yi|xi) =
Γ(θλQi + yi)

Γ(θλQi )Γ(1 + yi)

(
θλQi

θλQi + λi

)θλQ
i
(

λ

θλQi + λi

)yi

.

(A.2)
Derivatives of lnLi for the Negbin P model are straightforward, albeit
tedious. We obtain them by writing the density as

lnLi = lnΓ(yi + gi) − lnΓ(gi) − lnΓ(1 + yi) + gi lnri + yi ln(1 − ri),
(A.3)

where

gi = θλQi and wi = gi/(gi + λi).
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Then,

∂ lnLi/∂λi = [Ψ(yi + gi) − Ψ(gi) + lnwi]∂gi/∂λi
+[gi/wi − yi/(1 − wi)]∂wi/∂λi

∂ lnLi/∂θ = [Ψ(yi + gi) − Ψ(gi) + lnwi]∂gi/∂θ
+[gi/wi − yi/(1 − wi)]∂wi/∂θ

∂ lnLi/∂Q = [Ψ(yi + gi) − Ψ(gi) + lnwi]∂gi/∂Q
+[gi/wi − yi/(1 − wi)]∂wi/∂Q.

(A.4)

The inner parts are:

∂gi/∂λi = θQλQ−1
i = (Q/λi)gi

∂gi/∂θ = λQi = (1/θ)gi
∂gi/∂Q = θλQi logλi = lnλigi
∂wi/∂λi = [(Q − 1)/λi]wi(1 − wi)
∂wi/∂θ = (1/θ)wi(1 − wi)
∂wi/∂Q = logλiwi(1 − wi)

(A.5)

Collecting terms, now, let

Ai = [Ψ(yi + gi) − Ψ(gi) + lnwi]
Bi = [gi(1 − wi) − yiwi],

(A.6)

to obtain

∂ lnLi/∂


λiθ
Q


 = [Ai + Bi]


Q/λi1/θ

logλi


 − Bi


1/λi

0
0


 . (A.7)

The final element needed is ∂ lnLi/∂β = (∂ lnLi/∂λi)(∂λi/∂β), where
∂ lnLi/∂λi appears above and ∂λi/∂β = λixi. We use these and the
BHHH estimator to compute the maximum likelihood estimates and
their asymptotic standard errors for the NBP model. Good starting
values for NBP iterative estimator are the NB2 estimates of β and θ

with P = 2(Q = 0).



B
Derivatives of Partial Effects in the Poisson

Model with Sample Selection

The conditional mean function is

E[yi|xi,wi,di = 1] = λi
exp((ρσ)2/2)Φ(ρσ + w′

iδ)
Φ(w′

iδ)
(B.1)

The partial effects are

∂E[yi|xi,wi]
∂xi

= λi

[
exp((ρσ)2/2)Φ(ρσ + w′

iδ)
Φ(w′

iδ)

]
β = gx

∂E[yi|xi,wi]
∂wi

= λi

(
exp((ρσ)2/2)

Φ(w′
iδ)

)
(B.2)

×
[
φ(ρσ + w′

iδ) − φ(wiδ)
(

Φ(ρσ + w′
iδ)

Φ(w′
iδ)

)]
δ = gw.

For the variables in the count model,

∂gx

∂(α,β′)
= λi

[
exp((ρσ)2/2)Φ(ρσ + w′

iδ)
Φ(w′

iδ)

]
[0 I] + gx(1,x′

i)
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∂gx

∂ρ
= gx

[
ρσ2 + σ

φ(ρσ + w′
iδ)

Φ(ρσ + w′
iδ)

]
(B.3)

∂gx

∂σ
=
∂gx

∂ρ

ρ

σ

∂gx

∂δ′ = λi exp(ρσ)2
[
φ(ρσ + w′

iδ)
Φ(w′

iδ)
− Φ(ρσ + w′

iδ)φ(w′
iδ)

[Φ(w′
iδ)]2

]
βw′

For the variables in the selection equation,

∂gw

∂(α,β′)
= gw(1,x′

i)

∂gw

∂ρ
= gwρσ

2 − λi

(
exp((ρσ)2/2)

Φ(w′
iδ)

)

×
[
(ρσ + w′

iδ)φ(ρσ + w′
iδ) + φ(w′

iδ)
φ(ρσ + w′

iδ)
Φ(w′

iδ)

]
σδ

∂gw

∂σ
=
∂gw

∂ρ

ρ

σ
(B.4)

∂gw

∂δ′ = −φ(w′
iδ)

φ(w′
iδ)

gww′
i + λi exp(ρσ)2

×




−(ρσ + w′
iδ)φ(ρσ + w′

iδ) +
φ(w′

iδ)φ(ρσ + w′
iδ)

Φ(w′
iδ)

+
(
w′
iδ
)
φ(w′

iδ)
Φ(ρσ + w′

iδ)
Φ(w′

iδ)

− [φ(w′
iδ)]2 Φ(ρσ + w′

iδ)
[Φ(w′

iδ)]2




δw′
i



C
Derivatives of Partial Effects of ZIP Model

with Endogenous Zero Inflation

Let A(εi) = (w′
iδ+ρεi)√
1−ρ2 and ∆ = 1√

1−ρ2 . The partial effects are

∂E[yi|xi,wi]/∂xi = λiβ

∫ ∞

−∞
Φ[A(εi)]exp(σεi)φ(εi)dεi = gx.

∂E[yi|xi,wi]/∂wi = λi∆δ

{∫ ∞

−∞
φ [A(εi)]exp(σεi)φ(εi)dεi

}
= gw.

(C.1)

The derivatives are

∂gx

∂(α,β′)
= gx(1,x′

i) + λi [0 I]
∫ ∞

−∞
Φ[A(εi)]exp(σεi)φ(εi)dεi

∂gx

∂σ
= λiβ

∫ ∞

−∞
Φ[A(εi)]εi exp(σεi)φ(εi)dεi

∂gx
∂δ′ = λiβw′

i∆
∫ ∞

−∞
φ [A(εi)]exp(σεi)φ(εi)dεi

∂gx

∂ρ
= λiβ∆

∫ ∞

−∞
φ [A(εi)]exp(σεi)

[
εi − ρ∆2A(εi)

]
φ(εi)dεi

∂gw

∂(α,β′)
= gw(1,x′

i) (C.2)
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∂gw

∂σ
= λi∆

{∫ ∞

−∞
φ [A(εi)]εi exp(σεi)φ(εi)dεi

}
∂gw

∂δ′ = λiδw′∆2
i

{∫ ∞

−∞
−A(εi)φ [A(εi)]exp(σεi)φ(εi)dεi

}
∂gw

∂σ
= gwρ∆2 + λiδ∆2

×
{∫ ∞

−∞
−A(εi)φ [A(εi)]

[
εi − ρ∆2A(εi)

]
exp(σεi)φ(εi)dεi

}

These must be approximated either by quadrature or by simulation.
If ρ equals zero, then most of the preceding vanishes. The conditional
mean is = λiΦ(w′

iδ)exp(σ2/2) and the partial effects are

gx = λiβΦ(w′
iδ)exp(σ2/2),

∂gx

∂(α,β′,σ)
= gx(1,x′

i,σ),

∂gx

∂δ′ = λiβw′
i[φ(w′

iδ)exp(σ2/2)]

gw = λiδφ(w′
iδ)exp(σ2/2),

∂gw

∂(α,β′,σ)
= gw(1,x′

i,σ),

∂gw

∂δ′ = −gww′
i(w

′
iδ) + λiφ(w′

iδ)exp(σ2/2)I

(C.3)



D
Derivatives of Partial Effects in Hurdle Models

We assume that the hurdle equation is a probit model. Adap-
tation to a logit hurdle equation requires substitution of Λ(w′

iδ)
for Φ(w′

iδ),{Λ(w′
iδ)[1 − Λ(w′

iδ)]} for φ(w′
iδ) and [1 − 2Λ(w′

iδ)]
{Λ(w′

iδ)[1 − Λ(w′
iδ)]} for −(w′

iδ)φ(w′
iδ)] in what follows. The con-

ditional mean is

E[yi|xi,wi] =
Φ(w′

iδ)λi
[1 − exp(−λi)] . (D.1)

The partial effects are

∂E[yi|xi,wi,di]/∂xi =
Φ(w′

iδ)
[1 − exp(−λi)]

(
1 − λi exp(−λi)

1 − exp(−λi)
)
λiβ = gx

(D.2)
∂E[yi|xi,wi,di]/∂wi =

φ(w′
iδ)

[1 − exp(−λi)]λiδ = gw.

The derivatives are cumbersome. We proceed as follows: Write

c(λi) = λi/[1 − exp(−λi)].
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Then

dc(λi)/dλi = c′(λi)

= (1/λi){c(λi) − exp(−λi)[c(λi)]2},
d2c(λi)/dλ2

i = c′′(λi) (D.3)

= −(1/λi)c′(λi) + (1/λi)[c′(λi) − 2c(λi)c′(λi)exp(−λi)]
= −(2/λi)c(λi)c′(λi)exp(−λi)

∂c(λi)/∂xi = c′(λi)(∂λi/∂xi) = c′(λi)λiβ.

Thus,

E[yi|xi,wi] = Φ(w′
iδ)c(λi)β,

gx = Φ(w′
iδ)c′(λi)λiβ, (D.4)

gw = φ(w′
iδ)c(λi)δ.

Then,

∂gx

∂(α,β′)
= Φ(w′

iδ)λi
{
[c′(λi) + λic

′′(λi)]β(1,x′
i) + c′(λi)[0 I]

}
,

∂gx

∂δ′ = φ(w′
iδ)c′(λi)λiβw′

i,
(D.5)

∂gw

∂(α,β′)
= φ(w′

iδ)c′(λi)λiδ(1,x′
i),

∂gw

∂δ′ = −(w′
iδ)φ(w′

iδ)c(λi)λiδw′
i.



E
Partial Effects and Derivatives of Partial

Effects in Hurdle Models with Endogenous
Participation

The conditional mean is

E[yi|xi,wi] =
∫ ∞

−∞
Φ

(
w′
iδ + ρεi√
1 − ρ2

)
[exp(σεi)λi]

[1 − exp(−exp(σεi)λi)]
φ(εi)dεi.

(E.1)
For convenience, let

A(εi) =
(w′

iδ + ρεi)√
1 − ρ2

(E.2)
hi = exp(σεi)

so that

∂hi/∂σ = εihi.

Let

ui = hiλi, ∂ui/∂λi = hi = exp(σεi), ∂ui/∂σ = εiui, (E.3)

and

ai = a(ui) =
hiλi

[1 − exp(−hiλi)] =
ui

1 − exp(−ui) .
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Then

a′
i(ui) =

da(ui)
dui

=
ai
ui

(1 − ai exp(−ui)) ,

a′′
i (ui) =

d2a(ui)
du2

i

=
ai exp(−ui)

ui
(a2
i − 2a′

i),

∂a(ui)
∂σ

= εiuia
′
i,

∂a(ui)
∂λi

= hia
′
i, (E.4)

∂2a(ui)
∂σ2 = εi(εiuia′

i + εiuiuia
′′
i ) = ε2iui(a

′
i + uia

′′
i ),

∂2a(ui)
∂λ2

i

= h2
i a

′′
i ,

∂2a(ui)
∂λi∂σ

= εihia
′
i + hia

′′
i εiui = εihi(a′

i + uia
′′
i ).

The conditional mean function is

E[yi|xi,wi] =
∫ ∞

−∞
Φ[A(εi)]a(ui)φ(εi)dεi (E.5)

and the partial effects are

∂E[yi|xi,wi]
∂xi

=
{∫ ∞

−∞
Φ[A(εi)]

(
a′(ui)hi

)
φ(εi)dεi

}
λiβ = gx,

∂E[yi|xi,wi]
∂wi

=
{∫ ∞

−∞
φ [A(εi)]a(ui)φ(εi)dεi

}(
1√

1 − ρ2

)
δ = gw.

(E.6)

Let ∆ = 1/
√

1 − ρ1 The derivatives are

∂gx

∂(α,β′)
=
〈{∫ ∞

−∞
Φ[A(εi)]

(
a′′(ui)h2

iλi
)
φ(εi)dεi

}
λiβ + gx

〉
(1,x′

i)

+
{∫ ∞

−∞
Φ[A(εi)]

(
a′(ui)hi

)
φ(εi)dεi

}
λi [0 I]
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∂gx

∂σ
=
{∫ ∞

−∞
Φ[A(εi)]εihi

(
a′(ui) + a′′

i (ui)ui
)
φ(εi)dεi

}
λiβ

∂gx

∂δ
=
{∫ ∞

−∞
φ [A(εi)]

(
a′(ui)hi

)
φ(εi)dεi

}
∆λiβw′

i (E.7)

∂gx

∂ρ
=
{∫ ∞

−∞
φ [A(εi)] (εi − ρ∆[A(εi)])

(
a′(ui)hi

)
φ(εi)dεi

}
∆λiβ

∂gw

∂(α,β′)
=
{∫ ∞

−∞
φ [A(εi)]

(
a′(ui)hi

)
φ(εi)dεi

}
λi∆δ(1,x′

i)

∂gw

∂σ
=
{∫ ∞

−∞
φ [A(εi)]

(
a′(ui)εiui

)
φ(εi)dεi

}
∆δ

∂gw

∂δ′ =
{∫ ∞

−∞
− [A(εi)]φ [A(εi)]a(ui)φ(εi)dεi

}
∆2δw′

i

∂gw

∂ρ
=
{∫ ∞

−∞
− [A(εi)]φ [A(εi)] (εi − ρ∆[A(εi)])a(ui)φ(εi)dεi

}
∆2δ.
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