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Preface

This book began as a short note to propose the estimator in Section 8.3. In researching
the recent developments in ordered choice modeling, we concluded that it would be useful to
include some pedagogical material about uses and interpretation of the model at the most basic
level. Our review of the literature revealed an impressive breadth and depth of applications of
ordered choice modeling, but no single source that provided a comprehensive summary. There
are several somewhat narrow surveys of the basic ordered probit/logit model, including Winship
and Mare [1984], Becker and Kennedy [1992], Daykin and Moffatt [2002] and Boes and
Winkelmann [2006a], and a book length treatment, by Johnson and Albert [1999] that is focused
on Bayesian estimation of the basic model parameters using grouped data." But, these stop well
short of examining the extensive range of variants of the model and the variety of fields of
applications, such as bivariate and multivariate models, two part models, duration models, panel
data models, models with anchoring vignettes, semiparametric approaches, and so on.” This
motivated us to assemble this more complete overview of the topic. As this review proceeded, it
struck us that a more thorough survey of the model, itself, including its historical development
might also be useful and (we hope) interesting for readers. The following is also a survey of the
methodological literature on modeling ordered outcomes and ordered choices.

The development of the ordered choice regression model has emerged in two surprisingly
disjoint strands of literature, in its earliest forms in the bioassay literature and in its modern social
science counterpart with the pioneering paper by McElvey and Zavoina [1975] and its successors,
such as Terza [1985]. There are a few prominent links between these two literatures, notably
Walker and Duncan [1967]. However, even up to the contemporary literature, biological
scientists and social scientists have largely successfully avoided bumping into each other. For
example, the 500+ entry bibliography of this survey shares only four items with its 100+ entry
counterpart in Johnson and Albert [1999].

The earliest applications of modeling ordered outcomes involved aggregate (grouped)
data assembled in table format, and with moderate numbers of levels of usually a single stimulus.
The fundamental ordered logistic (“cumulative odds”) model in its various forms serves well as
an appropriate modeling framework for such data. Walker and Duncan [1967] focused on a
major limitation of the approach. When data are obtained with large numbers of inputs — the
models in Brewer et al. [2008], for example, involve over 40 covariates — and many levels of
those inputs, then crosstabulations are no longer feasible or adequate. Two requirements become
obvious, the use of the individual data and the heavy reliance on what amount to multiple
regression-style techniques. McElvey and Zavoina [1975] added to the model a reliance on a
formal underlying “data generating process,” the latent regression, a mechanism that makes an
occasional appearance in the bioassay treatment, but is never absent from the social science
application. The cumulative odds model for contingency tables and the fundamental ordered
probit model for individual data are now standard tools. The recent advances in ordered choice
modeling have involved modeling heterogeneity, in cross sections and in panel data sets. These
include a variety of threshold models and models of parameter variation such as latent class and
mixed and hierarchical models. The chapters in this book present in some detail, the full range of
varieties of models for ordered choices.

' See, also, Congdon [2005, Chapter 7] and Agresti [2002, Section 7.4].
2 We have, of necessity, omitted mention of many — perhaps most — of the huge number of applications.
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This book is intended to be a survey of a particular class of discrete choice models. We
anticipate that it can be used in a graduate level course in applied econometrics or statistics after
the first one at the level of, say, Greene [2008a] or Wooldridge [2002b] and as a reference in
specialized courses such as microeconometrics or discrete choice modeling. We assume that the
reader is familiar with basic statistics and econometrics and with modeling techniques somewhat
beyond the linear regression model. An introduction to maximum likelihood estimation and the
most familiar binary choice models, probit and logit, is assumed, though developed in great detail
in Chapter 2. The focus of this book is on areas of application of ordered choice models. The
range of applications of ordered choice models considered here includes economics, sociology,
health economics, finance, political science, statistics in medicine, transportation planning, and
many others. We have drawn on all of these in our collection of applications. We leave it to
others, e.g., Wooldridge [2002a], Hayashi [2000] or Greene [2008a] to provide background
material on, e.g., asymptotic theory for estimators and practical aspects of nonlinear optimization.

All of the computations carried out here were done with NLOGIT. (See
www.nlogit.com.) Most of them can also be done with several other packages, such as Stata and
SAS. Since this book is not a ‘how to’ for any particular computer program, we have not
provided any instruction on how to obtain the results with NLOGIT (or any other program). We
assume that the interested reader can follow through on our developments with their favorite
software, whatever that might be. Rather, our interest is in the models and techniques.

We would like to thank Joseph Hilbe and Chandra Bhat for their suggestions that have
improved this work and Allison Greene for her assistance with the manuscript. Any errors that
remain are ours.

William H. Greene

David A. Hensher
New York, April, 2009
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1

Introduction: Random Utility and
Ordered Choice Models

Netflix (www.netflix.com) is an internet company that rents movies on DVDs to subscribers.
The business model works by having subscribers order the DVD online for home delivery and
return by regular mail. After a customer returns a DVD, the next time they log on to the website,
they are invited to rate the movie on a five point scale, where five is the highest, most favorable
rating. The ratings of the many thousands of subscribers who rented that movie are averaged to
provide a recommendation to prospective viewers. For example, as of April 5, 2009, the average
rating of the 2007 movie National Treasure: Book of Secrets [2007] given by approximately
12,900 visitors to the site was 3.8. This rating process provides a natural application of the
models and methods that interest us in this book.

For any individual viewer, we might reasonably hypothesize that there is a continuously
varying strength of preferences for the movie that would underlie the rating they submit. For
convenience and consistency with what follows, we will label that strength of preference
“utility,” U*. Given that there are no natural units of measurement, we can describe utility as
ranging over the entire real line;

-0 < U;,* <+-00

where i indicates the individual and m indicates the movie. Individuals are invited to ‘rate’ the
movie on an integer scale from 1 to 5. Logically, then, the translation from underlying utility to a
rating could be viewed as a censoring of the underlying utility,

im lf -0 < (Jimﬂ< S uila

if pi < Un™ < po,

if up < Up™ < pi, (1.1)
if i3 < l]im* S Hig,

if Hia < (Jim)k < oo,

R
R
R;
R
R

§

]
Il
B AW =

=

)/

m

The crucial feature of the description thus far is that the viewer has (and presumably knows) a
continuous range of preferences that they could express if they were not forced to provide only an
integer from one to five. Therefore, the observed rating represents a censored version of the true
underlying preferences. Providing a rating of five could be an outcome ranging from general
enjoyment to wild enthusiasm. Note that the thresholds, p;, are specific to the person and number
(J-1) where J is the number of possible ratings (here, five) — J-1 values are needed to divide the
range of utility into J cells. The thresholds are an important element of the model; they divide the
range of utility into cells that are then identified with the observed ratings. One of the admittedly
unrealistic assumptions in many applications is that these threshold values are the same for all
individuals. Importantly, the difference between two levels of a rating scale (e.g., one compared
to two, two compared to three) is not the same on a utility scale; hence we have a strictly
nonlinear transformation captured by the thresholds, which are estimable parameters in an
ordered choice model.

The model as suggested thus far provides a crude description of the mechanism
underlying an observed rating. But it is simple to see how it might be improved. Any individual
brings their own set of characteristics to the utility function, such as age, income, education,

12
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gender, where they live, family situation and so on, which we denote x;1, X;,...,x;x. They also
bring their own aggregate of unmeasured and unmeasurable (by the statistician) idiosyncrasies,
denoted ¢;, How these features enter the utility function is uncertain, but it is conventional to use
a linear function, which produces a familiar random utility function,

U™ = Bio + BuXa T BoXp + ... + BixXik + €im. (1.2)

Once again, the model accommodates the intrinsic heterogeneity of individuals by allowing the
coefficients to vary across individuals. To see how the heterogeneity across individuals might
enter the ordered choice model, consider the user ratings of the same movie noted earlier, posted
on December 1, 2008 at a different website, www.imdb.com, as shown in Figure 1.1. This site
uses a ten point scale. The panel at the left below shows the overall ratings for 41,771 users of
the site. The panel at the right shows how the average rating varies across age, gender and
whether the rater is a US viewer or not.

User ratings for
National Treasure: Book of Secrets
Votes Average
Your Vote w || vote | Males 33.644 6.5
Females 5 464 72
41,771 IMDb users have given a weighted average vote of 6.6 / Aged under 18 2,492 7.6
) Males under 18 1,795 7.5
Demographic breakdowns are shown below. Femmales under 18 695 81
Votes Percentage Rating Aged 18-29 26,045 6.7
4 795 14 5%, 10 Males Aged 18-29 22 603 6.6
3 78E 7 99, g Females Aged 18-23 3,372 7.3
7179 17.2%, g Aged 30-44 8210 6.3
10 636 25 59, 7 Males Aged 3044 7.216 6.3
7.729 1859 6 Females Aged 30-44 936 6.7
3 B4E 8.7% 5 Aged 45+ 2268 6.6
1738 4 3%, 4 Males Aged 45+ 1.814 6.5
940 2 3% 3 Females Aged 45+ 420 7.0
538 1.3% 2 IMDb staff 8 64
1 234 3.0% 1 Top 1000 voters 309 6.0
LS users 14,792 6.8
Arithmetic mean =6.9. Median=7 MNon-US users 24,283 6.5
IMDb users 41,771 6.6

Figure 1.1 IMDb.com Ratings (www.imdb.com/title/tt0465234/ratings)

An obvious shortcoming of the model is that otherwise similar viewers might naturally
feel more enthusiastic about certain genres of movies (action, comedy, crime, etc.) or certain
directors, actors or studios. It would be natural for the utility function defined over movies to
respond to certain attributes zi, zy,...,z). The utility function might then appear, using a vector
notation for the characteristics and attributes, as

(Jim* = ﬁilxi + 8iIZm + Eim- (13)

Note, again, the marginal utilities of the attributes, 8;, will vary from person to person. We note,
finally, two possible refinements to accommodate additional sources of randomness, i.e.,
individual heterogeneity. Two otherwise observably identical individuals (same x;) seeing the
same movie (same z,) might still react differently because of individual idiosyncrasies that are
characteristics of the person that are the same for all movies. Some individuals are drawn to
comedies and have low regard for dramas, while others might be uninterested in these two and

13
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enjoy only action movies. Second, every movie has unique features that are not captured by a
simple hedonic index of its attributes — a particularly skillful character development, etc. A more
complete random utility function might appear

(Jimﬂ< = ﬁilxi + 81‘1Zm + Eim + u; + V- (14)
Finally, note that Netflix maintains a (huge) database of the ratings made by their users, including

a complete history for each individual.
To return to the rating mechanism, the model we have constructed is

3

= 1if -0 < B;X; +8,Zy + € + 14 + Vi < W1,

if Wi < BiXi+8zy + & T Ui + v, < i,

if wo < BiXi+8/Zu+ €m T 1t Vi < Wi, (1.5)
if w3 < BiXi+ 8z + €+ tti ¥ Vi < Wia,

if s < BiXi+ 8,2, + &+ u; + v, < 0.

mIIIZ
§ § 3§
[
(VI OV I )

g

L

Perhaps relying on a central limit to aggregate the innumerable small influences that add up to the
individual idiosyncrasies and movie attraction, we assume that the random components, &;,, u;
and v, are normally distributed with zero means and (for now) constant variances. The
assumption of normality will allow us to attach probabilities to the ratings. In particular, arguably
the most interesting one is

PrOb(Rim = 5|X,’,Zm,l/li,vm) = PrOb[Sim > Wig — (Bi'xi + Si,Zm +u; + Vm)] (16)

The structure provides the framework for an econometric model of how individuals rate movies
(that they rent from Netflix). The resemblance of this model to familiar models of binary choice
is more than superficial. For example, one might translate this econometric model directly into a
probit model by focusing on the variable

E, =1 ifR,, =5 (1.7)
E,, = 0 ifR,, < 5.

Thus, the model is an extension of a binary choice model to a setting of more than two choices.
But, the crucial feature of the model is the ordered nature of the observed outcomes and the
correspondingly ordered nature of the underlying preference scale.

Beyond the usefulness of understanding the behavior of movie viewers, e.g., whether
certain genres are more likely to receive high ratings or whether certain movies appeal to
particular demographic groups, such a model has an additional utility to Netflix. Each time a
subscriber logs on to the website after returning a movie, a computer program generates
recommendations of other movies that it thinks that the viewer would enjoy (i.e., would give a
rating of 5). The better the recommendation system is, the more attractive will be the website.
Thus, the ability accurately to predict a “5” rating is a model feature that would have business
value to Netflix. Netflix is currently (2008 until 2011) running a contest with a $1,000,000 prize
to the individual who can devise the best algorithm for matching individual ratings based on
ratings of other movies that they have rented. See www.netflixprize.com. Hafner [2006] and
Thomson [2008]. The Netflix prize and internet rating systems in general, beyond a large popular
interest, have attracted a considerable amount of academic attention as well. See, for example,
Ahsari, Essegaier and Kohli [2000], Bennett and Lanning [2007] and Umyarov and Tuzhlin
[2008].
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The model described here is an ordered choice model. (The choice of the normal
distribution for the random term makes it an ordered probit model.) Ordered choice models are
appropriate for a wide variety of settings in the social and biological sciences. The essential
ingredient is the mapping from an underlying, naturally ordered preference scale to a discrete
ordered observed outcome, such as the rating scheme described above. The model of ordered
choice pioneered by Aitcheson and Silvey [1957] and Snell [1964] and articulated in its modern
form by Zavoina and McElvey [1969] and McElvey and Zavoina [1971, 1975] and McCullagh
[1980] has become a widely used tool in many fields. The number of applications in the current
literature is large and increasing rapidly. A search of just the ‘ordered probit’ model identified
applications on:

e academic grades (Butler et al. [1994], Li and Tobias [2006a]),

¢ bond ratings (Terza [1985]),

¢ Congressional voting on a Medicare bill (McElvey and Zavoina [1975]),

o credit ratings (Cheung [1996] , Metz and Cantor [2006]),

e driver injury severity in car accidents (Wang and Kockelman [2005], Eluru, Bhat and
Hensher [2008]),

e drug reactions (Fu et al.[2004]),

o duration (Han and Hausman [1990], Ridder [1990]),

e education (Machin and Vignoles [2005], Carneiro, Hansen and Heckman [2001, 2003],
Cameron and Heckman [1998], Cunha, Heckman and Navarro [2007], Johnson and
Albert [1999]),

e eye disease severity (Biswas and Das [2002]),

o financial failure of firms (Jones and Hensher [2004], Hensher and Jones [2007]),

e happiness (Winkelmann [2005], Zigante [2007]),

o health status (Greene [2008a], Riphahn, Wambach and Million [2003]),

e insect resistance to insecticide (Walker and Duncan [1967]),

e job classification in the military (Marcus and Greene [1983]),

e job training (Groot and van den Brink [2002a]),

e labor supply (Heckman and MaCurdy [1981]),

o life satisfaction (Clark et al. [2001], Wim and ven den Brink [2002, 2003b]),

e monetary policy (Eichengreen, Watson and Grossman [1985]),

o nursing labor supply (Brewer et al. [2008]),

e obesity (Greene, Harris, Hollingsworth and Maitra [2008]),

e perceptions of difficulty making left turns while driving (Zhang [2007]),

o pet ownership (Butler and Chatterjee [1997]),

e political efficacy (King et al. [2004]),

e pollution (Wang and Kockelman [2009a)),

o product quality (Prescott and Visscher [1977], Shaked and Sutton [1982]),

e promotion and rank in nursing (Pudney and Shields [2000]),

e stock price movements (Tsay [2005]),

e tobacco use (Harris and Zhao [2007], Kasteridis, Munkin and Yen [2008]),

e toxicity in pregnant mice (Agresti [2002]),

o trip stops (Bhat [1997]),

e vehicle ownership (Bhat and Pulugurta [1998], Train [1986], Hensher, Smith,
Milthorpe and Bernard [1992]),

o work disability (Kapteyn et al. [2007]),

and hundreds more.
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This book will survey the development and use of models of ordered choices primarily
from the perspective of the social sciences. We will detail the model itself, estimation and
inference, interpretation and analysis. We will also survey a wide variety of different kinds of
applications, and a wide range of variations and extensions on the basic model that have been
proposed in the recent literature.

The practitioner who desires a quick entry level primer on the model can choose among
numerous sources for a satisfactory introduction to the ordered choice model and its uses. Social
science oriented introductions appear in journal articles such as Winship and Mare [1984], Becker
and Kennedy [1992], Daykin and Moffatt [2002] and Boes and Winkelmann [2006a], and in
textbook and monograph treatments including Maddala [1983], DeMaris [2004], Long [1997],
Johnson and Albert [1999], Long and Freese [2006] and Greene [2008a]. There are also many
surveys and primers for bioassay, including, e.g., Greenland [1994], Agresti [1999, 2002],
Congdon [2005] and Ananth and Kleinbaum [1997]. This survey is offered as an addition to this
list largely to broaden the discussion of the model and for a number of specific purposes:

e Many interesting extensions of the model already appearing in the literature are
not mentioned in any of the surveys listed above.

e Recent analyses of the ordered choice model have uncovered some interesting
avenues of generalization.

e The model formulation rests on a number of subtle underlying aspects that are
not developed as completely as are the mechanics of using the “technique”
(e.g., estimating the parameters). Only a few of the surveys devote substantial
space to interpreting the model’s components once they are estimated. As
made clear here and elsewhere, the coefficients in an ordered choice model
provide, in isolation, provide relatively little directly useful information about
the phenomenon under study. Yet, estimation of coefficients and tests of
statistical significance are the central (sometimes, only) issue in many of the
surveys listed above, and in some of the received applications.

o We will offer our own generalizations of the ordered choice model.

e With the creative development of easy to use contemporary software, many
model features and devices are served up because they can be computed
without much (or any) discussion of why they would be computed, or, in some
cases, even how they are computed. To cite an example, Long and Freese
[2006, pp. 195-196] state “several different measures [of fit] can be
computed...” [using Stata] for the ordered probit model. Their table that
follows lists 20 values, seven of which are statistics whose name contains “R
squared.” The values range from 0.047 to 0.432. The discussion to follow
provides the reader with a single statement that two Monte Carlo studies have
found that one of the measures “closely approximates the R obtained by fitting
the linear regression model on the underlying latent variable.”. We will attempt
to draw the focus to a manageable few aspects of the model that appear to have
attained some degree of consensus.
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The book proceeds as follows. Standard models of binary choice are presented in
Chapter 2. The fundamental ordered choice model is developed in some detail in Chapter 3. The
historical antecedents to the basic ordered choice model are documented in Chapter 4. In Chapter
5, we return to the latent regression based form of the model, and develop the different aspects of
its use, such as interpreting the model, statistical inference and fit measures. Some recent
generalizations and extensions are presented in Chapters 6 - 11. Semiparametric models that
reach beyond the mainstream of research are discussed in Chapter 12. An application based on a
recent study of health care (Riphahn, Wambach and Million [2003]) will be dispersed through the
discussion to provide an illustration of the points being presented.

There is a large literature parallel to the social science applications in the areas of
biometrics and psychometrics. The distinction is not perfectly neat, but there is a tangible
difference in orientation, as will be evident below. From the beginning with Bliss’s [1934a]
invention of probit modeling, many of the methodological and statistical developments in the area
of ordered choice modeling have taken place in this setting. It will be equally evident that these
two areas of application have developed in parallel, but by no means in concert. This book is
largely directed toward social science applications. However, the extensions and related features
of the models and techniques in biometrics will be integrated into the presentation.
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2

Modeling Binary Choices

The random utility model described in the Introduction is one of two essential building
blocks that form the foundation for modeling ordered choices. The second fundamental pillar is
the model for binary choices. The ordered choice model that will be the focus of the rest of this
book is an extension of a model used to analyze the situation of a choice between two alternatives
— whether the individual takes an action or does not, or chooses one of two elemental alternatives,
and so on. This chapter will develop the standard model for binary choices in considerable detail.
Many of the results analyzed in the chapters to follow will then be straightforward extensions.

There are numerous surveys available, including Amemiya [1981], Greene [2008a,
Chapter 23] and several book length treatments such as Cox [1970] and Collett [1991]. Our
interest here is in the aspects of binary choice modeling that are likely to reappear in the analysis
of ordered choices. We have therefore bypassed several topics that do appear in other treatments,
notably semiparametric and nonparametric approaches, but whose counterparts have not yet made
significant inroads in ordered choice modeling. (Chapter 12 does contain some description of a
few early entrants to this nascent literature.) This chapter also contains a long list of topics
related to binary choice modeling, such as fit measures, multiple equation models, sample
selection and many others, that are useful as components or building blocks in the analysis of
ordered choices. Our intent with this chapter is to extend beyond conventional binary choice
modeling, and provide a bridge to the somewhat more involved models for ordered choices.
Quite a few of these models, such as the sample selection model, are straightforward to generalize
to the ordered probit model.

The orientation of our treatment is the analysis of individual choice data, as typically
appears in social science applications using survey data. An example is the application developed
below in which survey data on health satisfaction are transformed into a binary outcome that
states whether or not a respondent feels healthier than average. A parallel literature in, e.g.,
bioassay such as Cox [1970] and Johnson and Albert [1999] is often focused on ‘grouped’ data in
the form of proportions. Two examples would be an experiment to determine the lethality of a
new insecticide in which #; insects are subjected to dosage x;, and a proportion p; succumb to the
dose, and a state by state tally of voting proportions in a (US) presidential election. With only a
few exceptions noted in passing, we will not be concerned with grouped data.

2.1 Random Utility Formulation of a Model for Binary Choice

An application we will develop is based on a survey question in a large German panel
data set, roughly, “on a scale from zero to ten, how satisfied are you with your health?” The full
data set consists of from one to seven observations — it is an unbalanced panel — on 7,293
households for a total of 27,326 family year observations. A histogram of the responses appears
in Figure 5.1. Consistent with the description in the Introduction, we might formulate a random
utility/ordered choice model for the variable R, = “Health Satisfaction” as

U* = p'x; + &,
Ri =0 if o< U* < py,
R =11if g < U* <,

R, =10 if po < U* < oo,
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where Xx; is a set of variables such as gender, income, age, and education that are thought to
influence the response to the survey question. (Note that at this point, we are pooling the panel
data as if they were a cross section of n = 32,726 independent observations and denoting by i one
of those observations.) The average response in the full sample is 6.78 Consider a
simple response variable, y; = “Healthy,” (i.e., better than average), defined by

y; = 1 1if R, > 7 and y; = 0 otherwise.
Then, in terms of the original variables, the model for y; is

vy = 0ifR; € (0,1,2,3,4,5,6)and y;=1ifR; € (7, 8, 9, 10).
By adding the terms, we then find, for the two possible outcomes,

yi = 0if U™ < e,
yi = 1if U™ > pe.

Figure 2.1 suggests how the variable y; is generated from the underlying utility.

+ +
e e e S e e el
U | -0 Mo W M2 M3 He Hs Mg M7 Mg Mo too |
Satisfaction R; | 0 1 2 3 4 5 6 7 8 9 10 |
Healthy  y; || | I |
| 0 1 |
+ +

Figure 2.1 Random Utility Basis for a Binary Outcome

Substituting for U;*, we find

yi = 1 if B'x;+ &>
or yvi=11if & > pe- B'x;
and y; = 0 otherwise.

We now assume that the first element of B’x; is a constant term, o, so that ’x; — [ equivalent to
v'x; where the first element of y is a constant that is equal to a — s and the rest of v is the same as
the rest of B. Then, the binary outcome is determined by

Vi = 1 if ’Y’Xi—i_gi >0
and  y; = 0 otherwise.

In general terms, we write the binary choice model in terms of the underlying utility as

yi* =%+ g,
Vi 1y* > 0], 2.1)

where the function 1[condition] equals one if the condition is true and zero if it is false.
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2.2 Probability Models for Binary Choices
The observed outcome, y;, is determined by a latent regression,
y* =X te.

The random variable y; takes two values, one and zero, with probabilities
Prob(y; = 1|x;) = Prob(y;* > 0|x,)

Prob(y'x; + &> 0) (2.2)
Prob(e; > -y'x; ).

The model is completed by the specification of a particular probability distribution for €;. In terms
of building an internally consistent model, we require that the probabilities be between zero and
one and that they increase when y'x; increases. In principle, any probability distribution defined
over the entire real line will suffice, though empirically, one might be interested in investigating
whether one specification is preferable to another.

2.2.1 Nonparametric and Semiparametric Specifications

The fully parametric probit and logit models discussed in the rest of this chapter remain
by far the mainstays of empirical research on binary choice. Applications of fully nonparametric
discrete choice models are fairly unusual and have made only limited inroads in the applied
literature — though they have attracted a considerable attention in the more theoretical literature,
e.g., Matzkin [1993].  One obstacle to application is their paucity of interpretable results.'
Semiparametric estimators represent a compromise between the robust but thinly informative
nonparametric estimators and fragile fully parametric approaches. Klein and Spady’s [1993]
model has been used in several applications, including Gerfin [1996], Horowitz [1993], and
Fernandez and Rodriguez-Poo [1997]. The single index formulation departs from a linear
“regression” formulation,

Elyi | xi] = Elyi [y'x; ].

Prob(y; = 1|x;) = F(y'x; | x;) = G(y'xy),

Then

where G(.) is an unknown continuous distribution function whose range is [0, 1]. The function
G(.) is not specified a priori; it is estimated along with the parameters. The estimator of the
probability function, G,(.), is computed using a nonparametric, kernel estimator of the density of
v'x;. There is a large and burgeoning literature on kernel estimation and nonparametric estimation
in econometrics. (An application is Melenberg and van Soest [1996].) Pagan and Ullah [1999]
and Li and Racine [2007] are comprehensive introductions to the subject.

2.2.2 The Linear Probability Model
The binary choice model is sometimes based on a linear probability model (LPM),

PrOb(yi = 1|X,‘) = ’YIX,‘.

! See, e.g., Manski [1987, 1995].
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Further discussion of the LPM may be found in Aldrich and Nelson [1984], Amemiya [1981],
Maddala [1983, Section 2.2] and Greene [2008a]. In spite of a fundamental flaw, that
probabilities must lie between zero and one, but the linear function cannot be so constrained, the
LPM has been employed in a number of studies. Notwithstanding its shortcomings, the model has
been employed in numerous applications, such as Caudill [1988], Heckman and MaCurdy [1985],
Heckman and Snyder [1997] and Angrist [2001]. Since the LPM has not played a role in the
evolution of the ordered choice models, we will not consider it further.

2.2.3 The Probit and Logit Models

The literature on binary choices is overwhelmingly dominated by two models, the
standard normal distribution, which gives rise to the probit model,

B exp(—si2 /2)

f(S,-)—T,

and the standard logistic distribution, which produces the logit model. The logistic distribution,

(2.3)

 exp(e)
) = i exp(e )T @4

resembles the normal distribution, but has somewhat thicker tails — it more closely resembles the ¢
distribution with seven degrees of freedom. Other distributions, such as the complementary log
log and Gompertz distribution that are built into modern software such as Stata and NLOGIT are
sometimes specified as well, without obvious motivation. The normal distribution can be
motivated by an appeal to the central limit theorem and modeling human behavior as the sum of
myriad underlying influences. The logistic distribution has proved to be a useful functional form
for modeling purposes for several decades. These two are by far the most frequently used in
applications.

Figure 2.2 shows how the distribution of the underlying utility is translated into the
probabilities for the binary outcomes for y;. The shaded area is Prob(y; = 1|x;) = Prob(g; > -y’x;).
The implication of the model specification is that y;|x; is a Bernoulli random variable with

Prob(y; = 1]x;) = Prob(y;* > 0|x;)

Prob(e; > -y'x;)

I:,X_f(gi)dgi (2.5)
1= F(-y'xy),

where F(.) denotes the cumulative density function (CDF) or distribution function for . The
standard normal and standard logistic distributions are both symmetric distributions that have the

property that
Fiyxy) = 1-F(-y'x).
This produces the convenient result

Prob(y; = 1|x;) = F(Y'x)). (2.6)
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Figure 2.2. Probability Model for Binary Choice

Standard notations for the normal and logistic distribution functions are

Prob(y; = 1x;) = ®(Yx;) if &; is normally distributed and 2.7
Prob(y; = 1x;) = A(Y'x;) if €; is logistically distributed.

There is no closed form for the normal cdf, ®(¢); it is computed by approximation (usually by a
ratio of polynomials.) But, the logistic cdf does exist in closed form,

A(t) = exp(?) /1 + exp(?)].

The resulting probit model for a binary outcome is shown in Figure 2.3.
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Figure 2.3 Probit Model for Binary Choice
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There is an issue of identification in the binary choice model. We have assumed that the
random term in the random utility function has a zero mean and known variance equal to one for
the normal distribution and n*/3 for the logistic. These are normalizations of the model.
Consider the zero mean assumption first. Assume that rather than having mean zero, &; has
nonzero mean 0. The model for determination of y; will then be

Prob(y; = 1]x;) = Prob(g;< o + ¥ 'x;)
Prob(e;,— 0 < (a—0)+ ¥ 'x))
Prob(e* < a* + ¥ 'x)),

where ¥ is the rest of y not including the constant term. The same model results, with &* now

having a zero mean and the nonzero mean of g; being absorbed into the constant term of the
original model. The end result is that as long as the binary choice model contains a constant term,
there is no loss of generality in assuming the mean of the random term is zero. A nonzero mean
would disappear into the constant term of the utility function. Suppose that & comes from
population with standard deviation 6. For convenience, write g; = ov; where v; has zero mean and
standard deviation one. Then,

Vi = 1[y'x; +ov; > 0].

Now, multiply the term in square brackets by any positive constant, .. The same observation
mechanism results; because we only observe zeros and ones,

Vi = I[My'x; +ov;) > 0)]
= 1["{*1X,‘+G*V,‘ > O],

for any positive A we might choose. We can assume any positive ¢ and observe exactly the same
data, the same zeros and ones. Contrast this to the linear regression model,

Vi =X, + g,

in which a scaling of the right hand side of the equation translates into an equal scaling of y;. To
remove the indeterminacy in the probit model, it is conventional to assume that ¢ = 1. In the logit

model, f{g;) is kept in the standardized form with implied standard deviation, ¢ = n/ V3. The end

result is that because y; has no scale the data do not provide any information for estimation of a
variance parameter.

2.3 Estimation and Inference

Estimation and inference for probit and logit models for binary choice models is usually
based on maximum likelihood estimation. The recent literature does contain some applications of
Bayesian methods, so we will examine a Bayesian estimator as well.
2.3.1 Maximum Likelihood Estimation

Each observation is a draw from a Bernoulli distribution (binomial with one trial). The

model with success probability F(y°x;) and independent observations leads to the joint probability,
or likelihood function,
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PI'Ob(Yl :yngZ :yz,...,Y,, :yn|X1,X2,...,X,,) = Hyi:O[l_F(’Y’Xi)]XHy,:IF(Y’Xi) . (28)

Let X denote the sample of n observations, where the ith row of X is the ith observation on x;
(transposed, since X; is a column) and let y denote the column vector that is the n observations on
v;. Then, the likelihood function for the parameters may be written

LyXy) = [, D-FOax)I " [F@'x) . (2.9)

Taking logs, we obtain the log likelihood function,
InLyXy) = D" (I=y)In[l-F(y’x)]+y, In F(yx,). (2.10)

We are limiting our attention to the normal and logistic, symmetric distributions. This permits a
useful simplification. Let

g = 2i— 1. 2.11)

Thus, ¢; equals —1 when y; equals zero and +1 when y; equals one. Because the symmetric
distributions have the property that F(¢) = 1 — F(—{), we can combine the preceding into

InL(yIX.y) = Y. InFlg,(y’x,)]. (2.12)

The maximum likelihood estimator (MLE) of y is the vector of values that maximizes this
function.
The MLE is the solution to the likelihood equations,

olnL(y|X,y) . S1g,(v’x)]
omLYIXY) _ S WYX 2.13
oy 2 {q’ Flg, (Y’Xi)]}x’ =

where f{.) is the density, dF(.) /d(y'x;). The likelihood equations will be nonlinear and require an
iterative solution. For the logit model, the likelihood equations can be reduced to

OlnL(y | X,y) _

oy Z; [yi _A(’Y'Xi)] x, =0. (2.14)

If x; contains a constant term, then, by multiplying the likelihood equation by 1/n, the first-order
condition with respect to the constant term implies

- N
;Zizl [y, - AG'x)]=0. (2.15)

where ¥ is the MLE of y. That is, the average of the predicted probabilities will equal the

proportion of ones in the sample, P, = (1/n)X;y;. Although the same result has not been shown to
hold exactly (theoretically) for the probit model, it does appear as a striking empirical regularity
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there as well. For example, for the model estimated in Section 2.5 — the estimated probit and
logit models are given in Table 2.2 — the mean value of the dependent variable and the fitted
logistic probabilities is 0.609529 while the mean of the fitted probabilities from the probit model
is 0.609559, a difference of 0.005%. The likelihood equation also bears some similarity to the
least squares normal equations if we view the term y;— A(Y'x;) as a residual. The first derivative
of the log-likelihood with respect to the constant term produces the generalized residual in many
settings.' The log-likelihood function for the probit model is

InL(y[X,y) = zn:o In[1-®(y'x;)]+ lel In®(y'x,)
=" In®[g,(yx,)].

(2.16)

The likelihood equations are
omLyIXy s [ b |5 o) |
oy 0 [ Tmagx) | '

D(rx;)
=20 MR,
=Zf_l{ #la, (v'x )]} 217

' ®[q,(Yx,)]

= Z:’:l }Lixi
=0

Note that A; is negative when y; equals zero and positive when y; equals one.
2.3.2 Maximizing the Log Likelihood Function

The second derivatives of the log likelihood function are

0 In L(y|X,y)
oyoy'

-z, (e (o
= Flarx)] \Fla(r'x,)]

H=

(2.18)

Where f (¢) is the derivative of the density function for the normal or logistic distribution. For
the normal distribution, this is ¢'(¢) = -#¢(¢) while for the logistic distribution, this is

SO =[1-2A@0]AO[1-A(®)]. (2.19)

These expressions simplify the second derivatives considerably. For the probit model,

' See, for example, Chesher and Irish [1985].
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Hp = > {0+ ()l xx = D00 B XX (2.202)

i=l1

while for the logit model this is
H, = Z; {—A(y'xi)[l - A(y’xl.)]} XX, = Z; hijoixl'. ) (2.20b)

In both of these cases, the term in braces, 7; yo40, 1S always negative. This means that the second
derivatives matrix of the log likelihood is always negative definite, which greatly simplifies
maximization of the function.'

Newton’s method uses the iteration

P+ D=7~ ]| &0). 21)

where r indexes the iterations, H(7)is the second derivatives matrix computed at the current

value of the parameters and g(r) is the vector of first derivatives evaluated at the current values
of the parameters. An alternative method based on the expected value of the second derivatives
matrix is the method of scoring. The Hessian for the logit model is not a function of y; (i.e., ¢;),

SO
E[HL] = HL.

For the probit model,

_[d)(ylxi)] XX

, , X (2.22)
o(x)[1-oax)] [

EH,1=3,

The method of scoring is used by replacing H(r) with E[H(r)] in Newton’s method. Because of
the shape of the log likelihood function — the negative definiteness of the Hessian implies that the
function is globally concave; it has only one mode — maximization using either of these methods
is likely to be fast and simple.”

Two other methods of maximizing the log likelihood are interesting to examine at this
point, the EM algorithm and a Bayesian estimator, the Markov Chain Monte Carlo (MCMC)
approach using a Gibbs sampler.

2.3.3 The EM Algorithm

The EM method is built around the idea that the probit model is a missing data model. If
U™* = v'x; + & were observed, the estimation problem would be much simpler; vy would be
estimated by a linear regression of U* on x,. With the normality assumption, this would be the
maximum likelihood estimator. To use the EM algorithm, we would maximize the log likelihood
function that is constructed by replacing U;* with E[U*|y;,x;].> The conditional mean functions
we need are

! See Pratt [1981] who demonstrated this result for several models.

2 See Pratt [1981].

3 The method is only equivalent to doing this regression — see Dempster, Laird and Rubin [1977] for the
actual specifics of the algorithm. We will also add some details in Section 8.2.3.
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E[lUXy;=1x] =E[Yx;t&|yx+¢&>0,x]
v'x; +Ele; | &> - v'x]]

— e YY) (2.230)
1- (D(_Y Xi)
= ’YIXZ‘ + }\4: .
(See (2.17).) By the same logic, then
E[U*|y;=0x] = v'x; + X?- (2.23b)

The iteration works as follows: We begin with a starting value of y, say v(0). At each iteration, 7,
we compute the predictions

U; (1) = 4(r)'x, + 4, (7).

Then, the new Y(r +1)is computed by linear regression of U i* (r)on x;. Therefore, the iteration
for the EM method is

,1 A
Y(r+1)= [ZH xixl'} Zizl x,U, (r)

= (XX)" Y X, [ 90, + 2,0 (2.24)

n

=)+ (XX Y XA, ()

Notice that the summation at the end is just the derivatives of the log likelihood function
evaluated at y(r). (See (2.17).) This means that the EM method for the probit model is the

same as Newton’s method or the method of scoring except that (X'X)™ is used in place of —H or
—E[H]. For this particular model (not in general), the EM method is not a particularly effective
approach to maximizing the log likelihood function. Using (X'X)" instead of the Hessian in a
Newton-like iteration turns out generally to be a slower method of maximizing the log likelihood.
There are fewer computations, since (X'X)"' needs only to be computed ones. But, typically,
more iterations than Newton’s method are required to locate the solution. The EM method can be
adapted to the logit model as well, by replacing the computation in (2.23a,b) with the counterparts
for the logistic distribution. The necessary conditional mean for the logistic distribution is given
in Xu, Mittlehammer and Torrell [1994, Appendix A],

—q; lnA(q,.y'x[)

E[yi* ‘ Xi, Viy loglstlc] = 'Y'Xi + ;
Agy'x;)
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2.3.4 Bayesian Estimation by Gibbs Sampling and MCMC

Bayesian estimation of a probit model builds on the method of data augmentation
pioneered by Tanner and Wong [1987] and Albert and Chib [1993]." A Gibbs sampler is
constructed for the binary choice model by departing from

y* = v'x; + &, &~ with mean 0 and known variance, 1 (probit) or 7%/3 (logit),

Let the prior for y be denoted p(y). Then, the posterior density for the probit or logit (symmetric
distribution) models is

’-1 F i : i
p(yy,X)= p(Y)H’:‘ [qy,x] , (2.25)
[, pOI T FlgysJay

where we use y and X (and later, y*) to denote the full set of N observations. Estimation of the
posterior mean is done by setting up a Gibbs sampler in which the unknown values y;* are treated
as nuisance parameters to be estimated along with y. For convenience at this point, we will
assume the probit model is of interest. Conditioned on y and x;, y;* has a normal distribution with
mean y'x; and variance 1. However, when conditioned on y; (observed), as well, the sign of y;* is
known;

p:* 17y, X) = normal with mean y'x; and variance 1, truncated at zero;
truncated from below if y; = 1 and from above if y; = 0.

Using basic results for Bayesian analysis of the linear model with known disturbance” and a
diffuse prior, the posterior for y conditioned on y*, y and X would be

P y*y.X) = Ni[e,(X"X)"'] where ¢ = (X"X)"'X"y*.

If, instead, the prior for y is normal with mean y° and covariance matrix, X, then the posterior
density is normal with posterior mean

Elyly*y.X] = [Z'+ XX @'y + X'y
and
Var[yly*,y,X] = [ +(X'X)]".

This sets up a simple Gibbs sampler for drawing from the joint posterior, p(y,y*|y,X). It is
customary to use a diffuse prior for y. Then, compute initially, (X'X)" and the lower triangular
Cholesky matrix, L such that LL’ = (X'X)". (The matrix L needs only to be computed once at
the outset for the informative prior as well. In that case, LL’ = (X' + X'X)".) To initialize the
iterations, any reasonable value of ¥ may be used. Albert and Chib [1993] suggest the classical
MLE. The iterations are then given by

1. Compute the N draws from p(y*|y,y,X).
Draws from the appropriate truncated normal can be obtained using

! See Lancaster [2004] for this development.
? Greene [2008a, p. 605].
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¥ =v'x; + (D_I[CD(-’Y'X,') +Ux (1-0(-y'x;))] if y= 1 and
y#E(r) =%+ O[U x d(-y'x)] if y, = 0,

where U is a single draw from a standard uniform population and ®'(U) is the inverse
function of the standard normal.
2. Draw an observation on y from the posterior p(y|y*,y,X) by first computing the mean

e(r) = XX)X'y*(r).
Use a draw, v, from the K-variate standard normal, then compute y(#) = ¢(») + Lv.

(We have used “(r)” to denote the rth cycle of the iteration.) The iteration cycles between steps 1
and 2 until a satisfactory number of draws is obtained (and a burn-in number are discarded), then
the retained observations on y are analyzed. With an informative prior, the draws at step 2
involving the prior mean and variance are slightly more time consuming. The matrix L is only
computed at the outset, but the computation of the mean adds a matrix multiplication and
addition. Congdon [2005] suggests methods of sampling from the logistic distribution for the
data augmentation step.

For the probit model with a diffuse prior, the posterior density will look very much like
the likelihood function, particularly when the sample is reasonably large, and the posterior mean
will be essentially the same as the MLE.. In this case, the MCMC method can be an extremely
inefficient approach to estimation. Estimating the posterior mean will require possibly thousands
of generations of thousands of observations (on y;*(r)) each followed by a regression, compared
to a small handful of regressions for Newton’s method. In a sample of two thousand, for
example, we found that the MCMC estimator took more than 25 times as long as Newton’s
method to reach essentially the same set of results.

2.3.5 Estimation with Grouped Data and lteratively Reweighted Least Squares

Many applications of binary choice modeling in biological and social sciences involve
grouped data. Consider, for example, a study intended to learn the appropriate dosage level of a
drug or the effectiveness of a pesticide. A group of »; individuals is subjected to dosage level x;
and a proportion p; = n;/n; respond to the drug (by recovering or by dying). Thus, proportion p;
=1 — ps do not respond. This setting is only slightly different from the one we have examined so
far. Let Y; equal the number of responders among the n; subjects and let y; denote whether
individual # in group 7 responds. Then Y; = Xy;,. We assume that the random utility/binary choice
model applies to each subject, where y;* would correspond to the subject’s own tolerance or
resistance level to the treatment.

The log likelihood function would be

mL=Y" |3, , WFCrx)+Y, | WP
=" I F(=y'x,)+n, InF(y'x,)
=3 [Py F(-yx)+ p, InF(y'x,)]
=>" n[(1-p)In(-F)+p,InF).

(2.26)

This is the same function we maximized earlier, where n; = 1, pi,o = 1-y; and p;; = y:.
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Johnson and Albert [1999, p.119 | argue that “The difficulty in obtaining maximum
likelihood estimates for a binary regression stems from the complexity of (3.16), which makes an
analytic expression for the maximum likelihood estimates of B impossible to obtain. However, the
iteratively reweighted least squares algorithm makes point estimation of maximum likelihood
estimates a trivial task and underlies the algorithm used in most commercial software packages.”
The iteratively weighted least squares method was pioneered by Nelder and Wedderburn [1972]
and McCullagh and Nelder [1989] for the class of generalized linear models.

Using our notation but the same functions, Johnson and Albert [1999] define the
algorithm as follows: Let

' (Yz _niE)
Z; :'YXi +—'
ndF, /d(y's,)
:,eri + (pi _F;‘),

i

where ¥ is the current estimate of the parameter vector, Y; is the number of responders in group i,
F; is the probability (logit or probit cdf), f; is the density (derivative of F;) and the second line is
obtained by noting that Y; = njp;. Define the weight,

2
L

" E(-F)

1 1

The iteratively reweighted least squares estimator is obtained by weighted least squares
regression of z; on x;, with weights w;. Thus, the iterative estimator is

-1
1 _ n (U n 0g 0
Y _[E,,-l M)ixixi:| [2,,», szzzz]’

where the terms w,’ and z,” are computed using yO. Based on the form of z,»o, this can be written

,Yl =,YO +[ZL1 wl.OXl.le:|_l {Zjl XiW,O (plf )}

The derivative of the log likelihood with respect to y is

OlnL v nf(p, F)
_Zzl i E(l F)

By multiplying w! by (p, — F)/ f; in the iteration, we find the product exactly equals the scalar

term in the derivative. It follows, then, that the iteratively reweighted least squares estimator is
simply

Y =y +[le wl.oxlxj [6;;0]})]
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Ostensibly, the only difference between this and Newton’s method is the weighting matrix in
brackets. However, for the logit model, f; = F;(1-F}), from which it follows that the estimator is,
in fact, identical to Newton’s method. For the probit model it differs slightly because of the form

of f;.
2.3.6 The Minimum Chi Squared Estimator

The minimum chi squared estimator (MCS) is obtained by treating p;; as an estimator,
subject to sampling variability, of F(y'x;). The simpler case to work with is the logit model.
Write

pi = F(Y'x;) +wi

Then, log[pa/(1-pa)] = logit(ps) = ¥'x; + w* where w* is a heteroscedastic error of
approximation that embodies w; and the error in linearization of the function. For the logit model,
vy may now be estimated by weighted least squares regression of logit(p;;) on x; with Welghts

1/ [n p, (1= 11)] The estimator may be iterated by replacing p;; in the weights with F from

the previous iteration. It has been shown that the MCS estimator, though numerically different, is
as efficient as MLE.'

2.4 Covariance Matrix Estimation

There are three available estimators for the asymptotic covariance matrix of the MLE.
The conventional approach is based on the actual second derivatives of the log likelihood;

Est.AsyVar[¥,,,]|= [—H (Y ae ):l_1

-1
[ Z,l i YMLE J >

where the expressions for /; are given in the braces in the expressions for Hp and H;, in (2.20). A
second estimator is bases on the expected Hessian, rather than the actual estimated one. This is
the same matrix for the logit model. For the probit model, the estimator is

-1

[T pax) | o
CI)(YPMLEX)[I OV} X )] - (2.27)

= [—Z; X?iixix'}

The third estimator is the Berndt, Hall, Hall and Hausman [1973] estimator based only on the first
derivatives;

ESZ‘-AS)’-VW’[?P,MLE} = z;

-1

-1

Est.AsyVar[¥ e | ym :{Zjl (e ) XX J , (2.28)

"E.g., Amemiya [1981] and Greene [2003, pp. 688-689].
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where the first derivative terms are g; = [y; — A(y’x;)] for the logit model and g; = A; for the probit
model. Any of the three of these may be used; all are appropriate estimators of the asymptotic
covariance matrix for the MLE.

Robust Covariance Matrix Estimation

The probit and logit maximum likelihood estimators are often labeled quasi-maximum
likelihood estimators (QMLE) in view of the possibility that the normal or logistic probability
model might be misspecified. White’s [1982a] robust “sandwich” estimator for the asymptotic
covariance matrix of the QMLE,

Est.AsyVar([¥,,; |

[ PN ACI) XXT [Z & (Thae) XX}[ PN ACHS x.x,'}_1 (2.29)

= (- BCA),

has been used in a number of studies based on the probit model and is a standard feature in
contemporary software such as Stata, SAS and NLOGIT.'

If the probit model is correctly specified, then plim(1/72)B = plim(1/n)(-H) and either
single matrix will suffice, so the robustness issue is moot. But, the probit (Q-) maximum
likelihood estimator is not consistent in the presence of any form of heteroscedasticity,
unmeasured heterogeneity, omitted variables (even if they are orthogonal to the included ones),
correlation across observations, nonlinearity of the functional form of the index, or an error in the
distributional assumption (with some narrow exceptions as described by Ruud [1986]). Thus, in
almost any case, the sandwich estimator provides an appropriate asymptotic covariance matrix for
an estimator that is biased in an unknown direction.” White [1982a, p. 4] raises this issue
explicitly; “It is the consistency of the QMLE for the parameters of interest in a wide range of
situations which insures its usefulness as the basis for robust estimation techniques”.

2.5 Application of the Binary Choice Model to Health Satisfaction

Riphahn, Wambach and Million [RWM, 2003] analyzed individual data on health care
utilization (doctor visits and hospital visits) using various models for counts. The data set is an
unbalanced panel including 7,293 German households observed from 1 to 7 times and a total of
27,326 observations, extracted from the German Socioeconomic Panel (GSOEP).> (We will visit
the panel data aspects of the data and models later.) The data set includes a self reported health
assessment, HSAT, that is recorded with values 0,1,..,10. The sample mean response is 6.8. To
construct an example for this chapter, we will define the dependent variable

Healthy; = 1 if HSAT;> 7
0 otherwise.

The families were observed in 1984-1988, 1991 and 1995. For purposes of the application, to
maintain as closely as possible the assumptions of the model, at this point, we have selected the
most frequently observed year, 1988, for which there are a total of 4,483 observations, 2,313

" E.g., Fernandez and Rodriguez-Poo [1997], Horowitz [1993], and Blundell, Laisney, and Lechner [1993].
? See Freedman [2006].
3 RWM [2003] provide a detailed discussion of the data set.
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males (Female = 0) and 2,170 females (Female = 1). We will use the following variables in the
regression part of the model,

x; = (constant, Age;, Income,, Education, Married,, Kids;),oss.

In the original data set, Income is HHNINC (household income) and Kids is HHKIDS (household
kids). Married and Kids are binary variables, the latter indicating whether or not there are
children in the household. Descriptive statistics for the data used in the application are shown in
Table 2.1.

Table 2.1 Data Used in Binary Choice Application

———————— o
| Male (n=2313)| Female (n=2170) | All (n=4483) |
Variable| Mean S.D. | Mean S.D. | Mean S.D. |[Min. Max |
———————— B e el e
HEALTHY | 0.624 0.485 | 0.582 0.493 | 0.604 0.489 | O 1 |
AGE | 42.73 11.39 | 44.20 11.23 | 43.44 11.29 | 25 64
EDUC | 11.83 2.494 | 10.98 2.142 | 11.42 2.368 | 7 18
INCOME | 0.355 0.165 | 0.342 0.163 | 0.349 0.164 | O 2 |
MARRIED | 0.756 0.429 | 0.748 0.434 | 0.752 0.432 | O 1 |
KIDS | 0.387 0.487 | 0.372 0.483 | 0.379 0.485 | 0 1
———————— R i et I et

Estimates of the parameters of the probit and logit models are shown in Table 2.2. In
terms of the diagnostic statistics, the log likelihood function and the ¢ ratios for the parameters,
the two models appear almost identical. However, there are prominent differences between the
coefficients. To a reasonable approximation, the regularity, that will show up in most cases, is

Vi.Loar
————=1.6.

~

Y&, prOBIT

The substantial difference between the coefficients in the two models exaggerates the substantive
difference between the specifications. When we turn, instead, to the partial effects implied by the
models, the difference largely disappears. An example appears below. Table 2.3 displays the
standard errors obtained by the different methods shown earlier. As might be expected in a
sample this large, and in the absence of some major flaw in the model specification, the estimates
are almost identical. Note that this holds even for the “robust” estimator. We have only shown
the results for the probit model, but they are almost identical for the logit model.

Table 2.2 Estimated Probit and Logit Models

+-—————— o o tom +
| | Logit | Probit |

| | LogL = -2890.393 | LogL = -2890.288 |

tm—————— o o + Mean |
|Variable| Coef. S.E t P | Coef S.E. t P | of X
o o e o +
|Constant| .7595  .2349 3.233 .0012 | 4816 .1423 3.383 .0007| 1.0000 |
| AGE | -.0329 .0032 -10.266 .0000 | -.0203 .0020 -10.386 .0000| 43.4401
|EDUC | .0860 .0148 5.805 .0000 | .0520 .0089 5.872 .0000| 11.4181 |
| INCOME | .3454  .2083 1.658 .0972 | 2180 .1265 1.724 .0847| .34874 |
|[MARRIED | -.0483 .0828 -.584 .5592 | -.0311 .0508 -.612 .5403] .75217 |
|KIDS | .1278 .0756 1.692 .0907 | 0800 .0463 1.727 .0841| .37943 |
+-—————— o o tom— +
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Table 2.3 Alternative Estimated Standard Errors for the Probit Model

o fom e fom e fom = fom e fom e +

|Variable| Coefficient | Std.Error | Std.Error | Std. Error | Std.Error |
| | | E[H] | H | BHHH | Robust |
tomm Fom e o o Fom e fom e +
|Constant| .48160673 | .14234358 | .14248075 | .14191210 | .14282907
| AGE | -.02035358 | .00195967 | .00196013 | .00195847 | .00196118
| EDUC | .05204356 | .00886339 | .00890657 | .00870141 | .00902935
|INCOME | .21801803 | .12646534 | .12695827 | .12469930 | .12830838
|[MARRIED | -.03107496 | .05075075 | .05081510 | .05053493 | .05098501
|KIDS | .08004423 | .04633938 | .04629982 | .04649873 | .04618606
tomm o o o o o +

2.6 Partial Effects in a Binary Choice Model
The probability model is a regression:
E[vi| x]=0 % [1 = Fy'x)] + 1 % F(y'x) = F(y'x).
Therefore, the probability that y; equals one is also the expectation, or regression function.

Whatever distribution is used, the parameters of the model, like those of any nonlinear regression
model, are not necessarily the marginal effects. In general,

OELy, | x,] _ {dF(Y'xi)}y. (2.30)

ox. d(y’x,)

1

where f'(.) is the probability density function (PDF) that corresponds to the CDF, F(.). For the
normal distribution, this result is

OB X _ iy (2.31a)
OX.

1

where ¢(#) is the standard normal density. For the logistic distribution,

dA(y'x. ) ,
[L} = AG% )1~ Ay, 232)
d(y’x;)
Thus, in the logit model, the partial effects are

aE[gz | x,] = A(Y')[1-A(Y'X)]y. (2.31b)
X

i

These values will vary with the values of x. The effect is illustrated in Figure 2.4, where Ax; = 1
for both cases, but AF(y'x) depends on where the calculation begins. In interpreting the estimated
model, it will be useful to calculate this value at, say, the means of the variables and, possibly,
other specific values. The same scale factor applies to all the slopes in the model. For computing
marginal effects, one can evaluate the expressions at the sample means of the data or evaluate the
marginal effects at every observation and use the sample average of the individual marginal
effects. Current practice favors averaging the individual marginal effects when it is possible to do
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so (though in practice, there is usually only a minor numerical difference between the two
results).

Recall, as shown in the earlier example, that the estimated coefficients in the logit model
will generally be approximately equal to 1.6 times their counterparts in the probit model. The
scale factors in (2.31a,b), at least near y'x; = 0, will be roughly 0.25 for the logit model and 0.4 for
the probit model. Thus, the scaling to obtain the marginal effects will undo the difference in the
coefficients. This effect is clearly visible in the example in Table 2.4.

2.6.1 Partial Effect for a Dummy Variable

Another complication for computing marginal effects in a binary choice model arises
because x will often include dummy variables—for example, our application to health satisfaction
includes dummy variables for marital status and number of children. Because the derivative is
with respect to a small change, it is not appropriate to compute derivatives for the effect of a
change in a dummy variable, or change of state. The appropriate marginal effect for a binary
independent variable, say, d, would be

Marginal effect = [Prob(y; = 1X ) ,d; = 1)] — [Prob(y; = 1| X, ,d=0)],

where X, , denotes the means of all the other variables in the model. Simply taking the

derivative with respect to the binary variable as if it were continuous provides an approximation
that is often surprisingly accurate. For example, the marginal effect for Married of
-0.01191157 shown in table 2.4 is obtained by computing the probability that Healthy equals one
while holding all the other variables at their means and Married equaling one then zero and
taking the difference. The scale factor used to compute the partial effects for the other variables,
using the values for /ncome in Tables 2.2 and 2.4 for the computation, is 0.08375583/0.21801803
= 0.3841693. Multiplying the coefficient on Married of -0.03107496 by this scale factor
produces an estimated partial effect of -0.01193805. The error is only 0.2%. The first difference
computation is now common in applications, and is built into modern software.
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Figure 2.4 Partial Effects in a Binary Choice Model

The partial effects for the estimated probit and logit models are shown in Table 2.4. As
expected, the different scaling of the two models that makes the coefficient estimates appear
different is absent from the partial effects, which are nearly the same.

Table 2.4 Partial Effects for Probit and Logit Models at Means of x

fom = o e ittt +
| | PROBIT | LOGIT |
| B e T e e e o +
|Variable|Partial | Std. | t | Elast. | Partial | Std. | t | Elast. |
| |[Effect | Error | | | Effect | Error | |

to—— t-—— to————— to————— to—— o to————— to————— Fo—— = +
| AGE | -.0078 0007 =-10.39 -.5584 | -.0078 0006 -10.28 -.5587 |
|EDUC | .0200 .0034 5.88 .3753 | 0205 .0035 5.81 3837 |
| INCOME | .0838 .0486 1.72 .0480 | 0822 .0496 1.66 0471 |
|MARRIED*| -.0119 .0194 -.61 -.0147 | -.0115 0196 -.59 -.0142 |
|KIDS* | .0307 .0177 1.73 .0191 | 0303 0178 1.70 0189 |
+-—————— B o +

* Partial effects for dummy variables computed using discrete differences
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2.6.2 Odds Ratios

For the logit model with a set of variables x and an additional (any) variable of interest,
the odds in favor of a response of one are

Prob(y, =1|x,z)
Prob(y, =0|x,z)

=exp(y'x + 0z).

Consider how the odds ratio changes when z changes by one unit;

Prob(y, =1|x,z+1)
Prob(y, =0|x,z+1)

Prob(y, =1|x,z)
Prob(y, =0]x,z)

=exp(0)=r1.

Analysts are occasionally interested in changes in odds ratios rather than changes in probabilities.
Then, the interesting quantity to report as opposed to (or in addition to) the partial effect is the
change in the odds ratio, exp(y,). Note that a full unit change in a variable is often not the change
of interest. In our example, for instance, the income variable is scaled so that its full range of
variation is only from zero to two, so a full unit change is not likely to be a useful measure for a
derivative, even for an odds ratio. But, age, years of education and marital status are variables for
which a one unit change is an empirically reasonable experiment.

2.6.3 Elasticities

It is common in some areas, such as transportation, to report elasticities of probabilities,
rather than derivatives. These are straightforward to compute as

_ OlnProb(y, =1]x,)

€k

Olnx, ,
_ OProb(y, =1|x,) Xk
ox, , Prob(y, =1|x,)’

The elasticities are simple to obtain from the estimated partial effects. These are shown in Table
2.4 with the derivatives. We note, however, since it is a ratio of percentage changes, the elasticity
is not likely to be useful for dummy variables such as marital status, or for discrete variables such
as age and education.

Like a partial effect, an elasticity for a dummy variable or an integer valued variable will
not necessarily produce a reasonable result. The computation for a dummy variable or an integer
variable would be a semi-elasticity, [%AProb]/Ax, where Ax would equal one. Whether a
percentage change in an integer valued x would make sense would depend on the context.
Obviously it would not for a dummy variable. Whether it would for, say, years of education,
would depend on the study in hand. The relevant semi-elasticity for the change in a dummy
variable (or a unit change in a discrete regressor) would be

_ Prob(y[ :.j|Xi,di :1)_Pr0b(yi =j|xi’di =0)
1[Prob(y, = j|x,,d, =1)+Prob(y, = j | x,,d, =0)]

ik
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The denominator computation removes the asymmetry in the computation that makes it otherwise
dependent on whether the change is from d; =1 to 0 or from 0 to 1.

2.6.4 Inference for Partial Effects
The predicted probabilities, F'(Yx,) = ﬁ: and the estimated partial effects,
8=f(¥%)7.

are nonlinear functions of the parameter estimates. To compute standard errors, we can use the
linear approximation approach (delta method). For the predicted probabilities,

AsyVar|: } [GF/GY} [813;/8?]

where V = Asy.Var[y]. The estimated asymptotic covariance matrix of ¥ can be any of the

three described in Section 2.4. Letz; = ¥ ‘x;. Then the derivative vector is
[0F. 167 | = | dF; 1dz | (2z/07 1= f x.
Combining terms gives
A AN2
Asy.Var[ F, ] = ( f; ) X/ Vx,,

which depends on the particular x; vector used. This result is useful when a marginal effect is
computed for a dummy variable. In that case, the estimated effect is

A

AE =[E |@=1D]-[F |d=0)]

1

The asymptotic variance would be

Asy.Var[AF; 1= [8(AF;)/07 1 VIO F;)07 ]

where
[BAF)07] = (f;ld = 1)( ’(‘”j (f;ld= 0)( ’“”j
For the other partial effects,

. (e8] . [as]
Asy.Var[d]=|— |V|— |-
’ M M

The matrix of derivatives is
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A oF af Af |oer
() y[dzj(ﬁy] f1+[d] 25

For the probit model, df /dz = —Z(’I\) , SO

Asy.Var[$ {¢[I 7 )A—’} {J)[I—( )A—’} (2.34a)

= Gpropir V G'prosir.

For the logit model, f = A(l — A) )

df ldz=(1— 2A)[dA] (1-2A)A(1-A).

Collecting terms, we obtain

Asy.Var[S]—{A(l A)][T+A-2A)X T VA0 - A)J[X+(1- 2A)‘—’]}. (2.34b)
= Grocir V G'roair.

As before, the value obtained will depend on the x vector used. We have suggested the sample
mean above.

2.6.5 Standard Errors for Estimated Odds Ratios

The computation for the estimated odds ratio, 7, =exp(y,) is straightforward. Using the
delta method, the estimated standard error for 7, will equal 7, times the standard error for 7, .

Note, however that the conventional ¢ ratio for testing the hypothesis that y, equals zero would be
inappropriate for t,. The appropriate test would be Hy:t, = 1, and the t statistic reported should be
t. = (1,— 1)/standard error( 1, ).

2.6.6 Average Partial Effects
The preceding has emphasized computing the partial effects for the average individual in

the sample. Current practice has many applications based, instead, on average partial effects."
The underlying logic is that the quantity of interest is

APE= E, [M}

Ox

In practical terms, this suggests the computation

'See, e.g.,Wooldridge [2002b].
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APE =3
= Z,l f(¥ (2.35)

= [;Zl’_l f(?'x,»)}?

Both the “partial effects at the means” and the “average partial effects” are computed by scaling
the coefficient vector. The scale factor for the first is the density evaluated at y’X. The scale
factor for the second is the sample mean of f{y'x;). Table 2.5 shows a comparison of the average
partial effects and the partial effects at the sample means for our estimated probit model.

Table 2.5 Marginal Effects and Average Partial Effects

o B e ettt e e e e e +
| Marginal IAvg Partial |

Variable | Effects | Effects |
o - o —— +
AGE | -.00782 | -.00751 |
EDUC | 01999 | 01919 |
INCOME | 08376 | 08041 |
MARRIED | -.01191 | -.01146 |
KIDS | 03066 | 02952 |
Scale Factor | 38417 | 36881 |
fom - fom - e +

Whether this produces a noticeably different answer will depend on the data. Generally, except
for finite sample variation, the difference in these two results is likely to be quite minor,
particularly in a large sample. However, computing the individual effects, then using the natural
estimator to estimate the variance of the mean, may badly estimate the asymptotic variance of the
average partial effect.’ The natural estimator would be

2 I 1 w2V
Est.Asy.Var[Sk} = ;{—ZH(SL,{ - Sk) } .

n—1

The problem with this computation is that the observations in the APE are highly correlated —
they all use the same estimate of y — but this variance computation treats them as a random
sample. The computations are analyzed in Greene [2008a, pp. 784-785]. In principle, the
variance of the mean of n correlated variables should involve n” terms (which would be 17
million for our example). But, this computation turns out to be simpler than that; the end result is

Est.Asy. Var[ :| G(y)VG(y) (2.36)

where G() is the sample means of the individual matrices,

GH)= 127—1 {(1)1 [1- (?’xi)f(x;]} for the probit model and (2.37)
n=—"

G({)= 12’; {[[\,. (1= AT +(1-2A, )jx! ]} for the logit model.
n=rmr

'E.g. Contoyannis et al. [2004, p. 498].
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2.6.7 Standard Errors for Marginal Effects Using the Krinsky and Robb Method

An alternative to the delta method described above that is sometimes advocated is the
Krinsky and Robb [1986, 1990, 1991] method. By this device, we have our estimate of the model
coefficients, ¥, and the estimated asymptotic covariance matrix, V. The marginal effects are
computed as a function of y and the vector of means of the sample data, x , say gi(y, x ) for the
kth variable. The Krinsky and Robb technique involves sampling R draws from the asymptotic
normal distribution of the estimator, i.e., with mean y and covariance V, computing the function
with these R draws, then computing the empirical variance. Draws from the required population
are obtained as follow: Let LL’ denote the Cholesky factorization of V; L is a lower triangular
matrix. Let w, denote the rth vector of K independent draws from the standard normal. Then,
¥, =Y +Lw,. The routine below uses the Krinsky and Robb method to recompute the standard
errors for the partial effects that are computed using the delta method in Table 2.4. The

simulation uses 1,000 draws. The comparison is shown below. The results with the two methods
are nearly identical.

Namelist ; x = one,age,educ,income,married,kids $

Probit ; lhs=healthy;rhs=x; marginal effects $

Matrix ; xb=mean (x) ; xbc=xb(l:4) $

Calc ; xbb5=xb (5);xb6=xb(6) ; Ran(123457) $ (Set seed for RNG)

Wald ; k&r ; pts=1000 ; start=b ; var=varb ; labels = a,bl,b2,b3,b4,b5
; fnl = n0l(a'xb)*bl ; fn2 = n0l(a'xb)*b2 ; fn3 = n0l(a'xb)*b3
; fn4 = phi (a'xbctb4*1+b5*xb6) - phi(a'xbct+b4*0+b5*xb6)
; fn5 = phi (a'xbctbd*xb5+b5*1) - phi (a'xbct+tbd*xb5+b5*0) $

fo— = fo— = Fo————— +

| | St. Er.| St.Er.|

|Variable| Delta |  K&R |

tomm o o +

| AGE | .0007 | .0007 |

|EDUC | .0034 | .0032 |

| INCOME | .0486 | .0490 |

| MARRIEDY* | .0194 | 0198 |

|KIDS* | L0177 | .0179 |

fo— = fo—— Fo————— +

2.6.8 Fitted Probabilities

A useful display when the model contains both continuous and interesting discrete
variables is a plot of the fitted probabilities that holds the other variables fixed, say at their means,
while simultaneously varying the continuous and discrete variables. This type of plot can show
graphically the information contained in the partial effects. For example, Figure 2.5 shows the
effect of changes in /ncome on the probability that Healthy equals one for 21 year olds and 45
year olds.
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Probability of Healthy=1 Given Income for Age=21 and 45

BUTE

=1

Probability of Healthy

—_— 557

1 1 1 1 1 1 1
000 250 500 750 1.000 1.250 1.500 1.750 2,000
INC_I

Figure 2.5 Fitted Probabilities for a Probit Model

PI_21 — P45

2.7 Hypothesis Testing

The simplest method for testing a single restriction would be based on the usual ¢ tests,
using the standard errors from the estimated asymptotic covariance matrix for the coefficients.
Using the normal distribution of the estimator, we would use the standard normal table rather than
the ¢ table for critical points. Thus, as in conventional regression analysis, the test statistic for
testing the null hypothesis that a coefficient equals a specific value,

Ho: Y = Yko,
would be
. Ve = Yﬁ ‘
\/Est.Asy.Var(f( )

Critical values would be based on the normal distribution, since the distribution used for the
statistic holds only asymptotically. The statistic for testing the hypothesis that each coefficient
equals zero will be presented with the coefficient estimates by all standard software. See, for
example, the third column of results for each model in Table 2.2.

2.7.1 Wald Tests

For more involved restrictions, it is possible to use the Wald test. For a set of restrictions
Ry = q, the statistic is

W =(Ry—q)'[R Est.AsyVar(§) RT' (Ry—q).
This statistic has a limiting chi squared distribution with degrees of freedom equal to the number
of restrictions being tested. (That will be the number of rows in R.) For example, for testing the

hypothesis that a subset of the coefficients, say, the last M, are zero, the Wald statistic uses
R =1[0|1I,] and q = 0. Collecting terms, we find that the test statistic for this hypothesis is
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W= ?;\/IVAZ\/I'YM >

where the subscript M indicates the subvector or submatrix corresponding to the M variables and
V is the estimated asymptotic covariance matrix for y. For a set of nonlinear restrictions of the

form r(y,q) = 0, based on the delta method, we would use

.\ or(7,q)
R =
(7) o

in the expression for the Wald statistic. In the linear case, r(y,q) = Ry - q.
2.7.2 Likelihood Ratio Tests.

Likelihood ratio and Lagrange multiplier statistics can also be computed. The likelihood
ratio statistic is

LR=-2[InL,-InL,], (2.39)

where InL and InL; are the log-likelihood functions evaluated at the restricted and unrestricted
estimates, respectively. The statistic has a limiting chi squared distribution with degrees of
freedom equal to the number of restrictions being tested.

A common test, which is similar to the F test that all the slopes in a regression are zero, is
the likelihood ratio test that all the slope coefficients in the probit or logit model are zero. For this
test, the constant term remains unrestricted. In this case, the restricted log-likelihood is the same
for both probit and logit models,

InLy=n[PyIn P, + (1= Py) In(1 - Py)], (2.40)

where P, is the proportion of the observations that have dependent variable equal to 1. The model
chi squared often reported in statistical results is

Xjuodelz = 2(1nL - lnLO)

This is a counterpart to the F statistic typically computed for a linear regression model. The
statistic is used to test the joint hypothesis that the K-1 coefficients on the non-constant variables
in the model are all zero. We note, perhaps based on the preceding, one occasionally sees
reported the “log likelihood statistic,” -2InL. The apparent comparison is to zero, however, this is
meaningless since InL, = 0 cannot occur even by accident.

It might be tempting to use the likelihood ratio test to choose between the probit and logit
models. But there is no restriction involved, and the test is not valid for this purpose. To
underscore the point, there is nothing in its construction to prevent the chi-squared statistic for
this “test” from being negative.
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2.7.3 Lagrange Multiplier Tests
The Lagrange multiplier test statistic is
LM=g'Vg,

where g is the vector of first derivatives of the unrestricted model evaluated at the restricted
parameter vector and V is any of the three estimators of the asymptotic covariance matrix of the
maximum likelihood estimator of ¥, once again computed using the restricted estimates. A
convenient formulation that requires only the first derivatives of the log likelihood is based on the
BHHH estimator. For either the probit or logit models the first derivative vector can be written as

0

InL [N
89 :Zi=l gixia

where g, equals ( Y, —Ai) for the logit model and 71,. for the probit model. [See (2.14) and

(2.17).] Define a diagonal matrix G = diag[ ¢, ] and let i denote an nx1 column vector of ones.
Then,

The BHHH estimator of the Hessian will be X' G'G X, so the LM statistic based on this estimator
is

LM=n [li'((”;X)(X'é'(;X)-‘ (X'(A}')i}.
n
Another way to write the statistic which suggests how to set it up for computer programs is

LM:(Z;(QLRX,.)[ LIQZRXI.XZ}( ;’Zlgi,in). (2.41)

All the statistics listed here are asymptotically equivalent and under the null hypothesis of
the restricted model have limiting chi-squared distributions with degrees of freedom equal to the
number of restrictions being tested.

2.7.4 Application of Hypothesis Tests
The application below shows three tests:

a. The individual tests that coefficients equal zero

b. The three tests of the hypothesis that all coefficients except the constant term are zero

c. A homogeneity test. When the sample can be divided into G groups, a test of the hypothesis
that the same parameter vector applies to all G groups is carried out by estimating the model
G+1 times, once with each group, obtaining log likelihood functions InZ, and once with the
full pooled data set, obtaining InLp,.... The likelihood ratio test statistic is
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LR = -2[InL,,,, % InL, |. (2.42)

The chi squared statistic has (G-1)K degrees of freedom, where K is the number of
parameters in the model, including the constant term.

Table 2.6 Presents the estimated probit and logit models from Table 2.2. The individual
significance tests for the coefficients appear in the column labeled “t.” For both models, Age and
Educ are statistically significant while the other variables are not. We would not expect the two
models to produce different conclusions. We have also reported the chi squared tests that all
coefficients save the constant term are zero. As might be expected, the hypothesis is rejected.
(The critical chi squared for 5 degrees of freedom is 11.07 while the model value is about 240.
The probit results also include the Wald and LM statistic for the same hypothesis. The similarity
to the likelihood ratio statistic is to be expected. Finally, the test for pooling the 7 years of data is
carried out in table 2.7. The log likelihood for the pooled sample is -17365.76. The sum of the
log likelihoods for the seven individual years is -17324.33. Twice the difference is 82.87. The
degrees of freedom is 6x6 = 36. The 95% critical value from the chi squared table is 50.998, so
the pooling hypothesis is rejected.

———————— e
| | Logit | Probit |

| | LogL = -2890.393 | LogL = -2890.288 |

| | LogL0O = -3010.421 | LogL0 = -3010.421 |

| | Chisqg = 240.056 | Chisqg = 240.266 |

| | | Wald = 234.349 |

| | | LM = 238.677 | |
Fem—————— e e + Mean
|Variable| Coef. S.E. t P | Coef S.E t P | of X

fom = o o o +
|Constant| .7595  .2349 3.233 .0012 | 4816 .1423 3.383 .0007|] 1.0000 |
| AGE | -.0329 .0032 -10.266 .0000 | -.0203 .0020 -10.386 .0000| 43.4401
|EDUC | .0860 .0148 5.805 .0000 | .0520 .0089 5.872 .0000| 11.4181

| INCOME | .3454 .2083 1.658 .0972 | 2180 .1265 1.724 .0847| .34874 |
|[MARRIED | -.0483 .0828 -.584 .5592 | -.0311 .0508 -.612 .5403] 75217 |
|KIDS | .1278 .0756 1.692 .0907 | 0800 .0463 1.727 .0841] .37943 |
tomm B ittt e o +
Table 2.7 Homogeneity Test
+-————= o to—— +

| | Log Likelihood | Sample |

| Year | Function | Size |
fo———— Rt fomm—— = +

| 1984 | -2395.137 | 3874 |

| 1985 | =-2375.090 | 3794 |

| 1986 | -2387.602 | 3792 |

| 1987 | -2337.835 | 3666

| 1988 | -2890.288 | 4483 |

| 1991 | -2769.375 | 4340 |

| 1994 | -2168.998 | 3377 |

| Pool | -17365.76 | 27326
Fo———— fom e fo—— = +
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2.8 Goodness of Fit Measures

There have been many fit measures proposed for binary choice models." Many are based
on the maximized value of the log-likelihood function, InL. Because the hypothesis that all the
slopes in the model are zero is usually interesting, the log-likelihood computed with only a
constant term, InL,, is typically reported with InL. McFadden’s [1974] likelihood ratio index or
Pseudo R* is

InL-InZ,
InZ

Pseudo R*= LRI = =1—(InL / InLy).

0

This measure has an intuitive appeal in that it is bounded by zero and one it increases as size of
the model increases. If all the slope coefficients are zero, then it equals zero. There is no way to
make LRI equal one. If F; is always one when y; equals one and always zero when y; equals zero,
then In L equals zero (the log of one) and LRI equals one. This finding is not indicative of a
“perfect fit,” however. Unfortunately, the values between zero and one have no natural
interpretation. If F(y'x;) is a proper pdf, then even with many regressors the model cannot fit
perfectly unless y'x; goes to +oo or —0.> As a practical matter, it does happen. But when it does, it
indicates a flaw in the model, not a good fit. For example, if a continuous variable, x; in the
model is such that y; equals zero when x; < a and y; = 1 when x; > a for some «a, then one could, in
principle achieve a perfect fit.

The Pseudo R*has no connection to a “proportion of variation explained.” The
“variation” of the dependent variable has not appeared in any of the computations thus far. In this
regard, it is not, in fact, an analog to R” in regression. One other point worth noting is that the
LRI should never be computed for any model that is not a discrete choice model. The reason is
that it is only in discrete choice models (where the contributions to the log likelihood are logs of
probabilities) that the log likelihood is guaranteed to be negative. When the dependent variable is
continuous, for example in a linear regression, the log likelihood function can be positive or
negative, and LR/ can take any value.

The Akaike [1973] information criterion (AIC) statistic or its log,

InAIC = (-2InL+2K)/n,

is a fit measure based on the likelihood function that is like the adjusted R in linear regression in
that it “rewards” good fit but penalizes the model for having a large number of parameters. The
AIC measure is often used to compare nonnested models when there is no obvious criterion or
rule for comparing fits. There is no distribution theory for AIC or InAIC that produces a formal
test of any hypothesis. Rather, the statistic is used as a practical measure for comparing models,
for example, in cases in which the models are nonnested.

Some authors have proposed other “fit measures” that are based on the log likelihood
function. Veall and Zimmermann’s [1992] suggested measure is

) 6-1 n
v, =| ———— |LRI, 0= .
5— LRI 2InL,

'See, for example, Cragg and Uhler [1970], Amemiya [1981], Maddala [1983], McFadden [1974], Ben-
Akiva and Lerman [1985], Kay and Little [1986], Veall and Zimmermann [1992], Zavoina and McKelvey
[1975], Efron [1978], and Cramer [1999]. A survey of techniques appears in Windmeijer [1995].

See Agresti [2002, p. 227].
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Another is

_ a2
R, 11{@} :1_exp{ﬂ}
n n

where y,” is the likelihood ratio statistic used to test the hypothesis that all the coefficients in the
model are zero. Like the LRI, in spite of their names, these are not fit measures as such, nor, for
that matter are they correlation coefficients. These are all function of the log likelihood function
that are bounded by zero and one and that increase, albeit at different rates, when variables are
added to the model.

2.8.1 Perfect Prediction

If the range of one of the independent variables contains a value, say, x*, such that the
sign of (x — x*) predicts y perfectly and vice versa, then the model will become a perfect
predictor. This result also holds in general if the sign of y'x; gives a perfect predictor for some
vector y. For example, one might mistakenly include as a regressor a dummy variables that is
identical, or nearly so, to the dependent variable. In this case, the maximization procedure will
break down precisely because y'x; is diverging during the iterations. (See McKenzie [1998] for
an application and discussion.)

2.8.2 Dummy Variables with Empty Cells

A problem similar to the one noted above arises when a model includes a dummy
variable that has no observations in one of the cells of the dependent variable. An example
appears on page 673 of the first [1993] edition of Greene [2008a], in which the dependent
variable is always zero when the variable ‘Southwest’ is zero. McKenzie [1998] and Stokes
[2004] have used this example and others to examine a number of econometrics programs. Stokes
found that no program which did not specifically check for the failure — only one did — could
detect the failure in some other way. All iterated to apparent convergence, though with very
different estimates of this coefficient and differing numbers of iterations because of their use of
different convergence rules. This form of incomplete matching of values likewise prevents
estimation, though the effect is likely to be more subtle. In this case, a likely outcome is that the
iterations will fail to converge, though the parameter estimates will not necessarily become
extreme.

2.8.3 Explaining Variation in the Implied Regression

The fit measures suggested do not actually correspond to the conventional measure of fit
in a regression model, that is, the ability of the model to predict the dependent variable. One
might interpret the model directly as a nonlinear regression, since

Elvix] =0x(1—F)+1xF,=F,

It follows that
U; =Y - F('?’X)
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is a residual, albeit one that is always equal either to F or 1 - F,. With this in hand, Efron’s
[1978] proposed fit measure is

2 _ 2"
v 2"1(y, ff
—1_ %Zleuz
R(1-B)

Amemiya [1981] suggests several modifications of this computation. The statistic bears some
resemblance to the conventional R®in regression if one considers the denominator the total
variation of the binary dependent variable. If the model contains only a constant term, then

F will equal 7 for every observation. How the statistic behaves when

R;, equals zero because F
one adds variables to an existing model is uncertain, however. Nothing in the construction
guarantees that the numerator in the fraction will fall when variables are added to a model that
already contains at least one variable. Also, it should not be interpreted as a “proportion of
variation explained,” as it is not bound in the [0,1] interval.

A modification of u; that has been suggested is the Pearson residual, (see Johnson and

Albert [1999, p.94)),

u.

1

A(-7)

U p =

Two suggested refinements on this computation (for binary data) are the deviance residuals,

U p=q;-2InL,,

where ¢; = 2y; — 1 and L, is the contribution of observation i to the likelihood function and the
adjusted deviance residuals,

iAD =

The authors suggest that plots of the residuals against the fitted probabilities can be helpful in
identifying outliers in the data.
McKelvey and Zavoina’s [1975] suggestion is based on the latent regression,

R: — 2?:1(?”‘1'_ ) .
M n+Z,’.’:1('?'X ?'i)

The McElvey and Zavoina measure corresponds to the ratio of the regression variation to the total
variation in the latent regression y;* = y'x; + €. The computation is made possible because the
variance of g; is known to equal one for a probit model. Note, as well, that this computation will
differ a bit when used for a logit model, since the sums will be multiplied by roughly 1.6> while
the nx1 in the denominator must be replaced with n/3. It follows that R, will be
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systematically lower for a logit model than a probit model. Since prediction of y;* is rarely the
objective of estimation, this measure is not commonly used.

2.8.4 Fit Measures Based on Predicted Probabilities

A fundamental flaw in the fit measures already suggested is that although they are labeled
R? measures, with the exception of the Efron measure, they do not, in fact, measure the fit of the
model to the data. The likelihood function is not maximized so as to minimize the distance
between F; and y;. Other fit measures have been suggested that are more in line with this
objective. Ben-Akiva and Lerman [1985] and Kay and Little [1986] suggested a fit measure that
is based on a prediction rule,

1 n fal al
th?L :;Z‘n:l |:yiF;’ +(1-y)0 _E)] .

This is the average probability of correct prediction of y; using ﬁ, and 1-y; using 1-F . The
difficulty in this computation is that in unbalanced samples, the less frequent outcome will
usually be predicted very badly by the standard procedure, and this measure does not pick up that
point. Cramer [1999] has suggested an alternative measure that directly measures this failure,

A = (average F, | y, =1) — (average F, | y, = 0)
= (average (1-F)) | y, = 0) — (average (1-F})| y, =1).

Cramer’s measure heavily penalizes the incorrect predictions, and because each proportion is
taken within the subsample, it is not unduly influenced by the large proportionate size of the
group of more frequent outcomes.

Table 2.8 reports the various fit measures for the probit model. The small values are
somewhat surprising, given the results in the next section that show the model actually does quite
a good job in predicting the outcome variable. The very large difference between the Ben
Akiva/Lerman measure and Cramer’s statistic underscores the need to look carefully at these
results when reporting them.

Table 2.8 Fit Measures for Probit Model

Sample Size N = 4483
NO = 1777 PO = .396386
N1 = 2706 P1 = .603614
Log Likelihood = -2890.288
Log Likelihood (0) = -3010.421
Likelihood Ratio Index = .03991
Akaike InformationCriterion 1.2921

R squared values
Ben Akiva and Lerman .54668

Cramer .05262
Efron .05254
Pseudo R .03991
Rsgrd ML .05218
Veall and Zimmerman .08874

2.8.5 Assessing the Model’s Ability to Predict

A useful summary of the predictive ability of the model is a 2 x 2 table of the hits and
misses of a prediction rule such as
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y=1 ifﬁi > F* and 0 otherwise.

The usual threshold value is 0.5, on the basis that we should predict a one if the model says a one
is more likely than a zero. Table 2.9 shows the results for our probit model for Healthy.
Although the R* measures based on the log likelihood function are all very small, less than 0.1,
the model correctly predicts 62% of the observations. This demonstrates the substantial
disconnection between these two notions of “fit.”

Table 2.9a Prediction Success for Probit Model Based on Y, :1[Ifi >.5]

fom——— e fom +
|Actual] Predicted Value |

|Value | 0 1 | Total
tm———— o o o +
| 0 | 530 ( 11.8%) | 1247 ( 27.8%) | 1777 ( 39.6%) |
|1 | 456 ( 10.2%) | 2250 ( 50.2%) | 2706 ( 60.4%) |
tomm = o o o +
| Total | 986 ( 22.0%) | 3497 ( 78.0%) | 4483 (100.0%) |
tm———— o o fmm e +

A number of summary measures can be constructed for the success of the model to predict the
outcome using this rule. A list is shown in Table 2.10 for the health care example.

Table 2.10 Success Measures for Predictions by Estimated Probit Model Using Y, =1[Ifi > 5]

Prediction Success

Correct predictions = actual 1ls and Os correctly predicted 62.012%
Sensitivity = actual 1s correctly predicted 83.149%
Specificity = actual Os correctly predicted 29.826%
Positive predictive value = predicted 1ls that were actual 1s 64.341%
Negative predictive value = predicted Os that were actual Os 53.753%
Prediction Failure

Incorrect predictions = actual 1ls and Os incorrectly predicted 37.988%
False positive for true negative = actual 0Os predicted as 1s 70.174%
False negative for true positive = actual 1ls predicted as Os 16.851%
False positive for predicted pos. = predicted 1ls actual Os 35.659%
False negative for predicted neg. = predicted 0s actual 1s 46.247%

These fit measures can be problematic in highly unbalanced samples, that is, that have
many more ones than zeros, or vice versa. Consider, for example, the naive predictor, always
predict y =1 if P > 0.5 and 0 otherwise, where P is the simple proportion of ones in the sample.

This rule will always predict correctly 100P percent of the observations, which means that the
naive model does not have zero fit. In fact, if the proportion of ones in the sample is very high, it
is possible to construct examples in which the naive predictor (no model) will generate more
correct predictions than the prediction rule with a fuller model. The important element is that the
coefficients of the estimated model are not chosen so as to maximize this (or any other) fit
measure, as they are in the linear regression model where b maximizes R>. Another consideration
is that 0.5, although the usual choice, may not be a very good value to use for the threshold. If the
sample is heavily unbalanced, then this prediction rule might never predict a one (or zero). To
consider an example, suppose that in a sample of 10,000 observations, only 1,000 have y; = 1.We
know that the average predicted probability in the sample will be 0.10. As such, it may require an

extreme configuration of regressors even to produce an 13: of 0.2. In such a setting, the prediction
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rule may fail every time to predict when y; = 1. The obvious adjustment is to reduce F*. This
adjustment comes at a cost. If we reduce the threshold F* so as to predict y; = 1 more often, then
we will increase the number of correct classifications of observations that do have y = 1, but we
will also increase the number of times that we incorrectly classify as ones observations that have

y; = 0. In general, any prediction rule of the form p=1if ﬁ, > F* and 0 otherwise. will make

two types of errors: It will incorrectly classify zeros as ones and ones as zeros. In practice, these
errors need not be symmetric in the costs that result. For example, in a credit scoring model,’
incorrectly classifying an applicant as a bad risk is not the same as incorrectly classifying a bad
risk as a good one. Changing F* will always reduce the probability of one type of error while
increasing the probability of the other. There is no correct answer as to the best value to choose. It
depends on the setting and on the criterion function upon which the prediction rule depends.
Figure 2.6 shows the tradeoff inherent in choosing different thresholds for the health care
example.

Pct of 1s and Os correctly predicted by Probit model.
—  100.00 T ] |
F T e R e AR b
E ! ‘ !
G| 5000 R CABRSRETL "SRR P EESRRRRES LI e
2 : : :
a
2500 - - T GIGRRECEEREEEEY SR R REGRCEETELEEREPEEEEREE
- 0007, T T T T
0.00 25.00 50.00 75.00 100.00

CutoffPt

—Prye=11 —_PIv*=0[0

Figure 2.6 Prediction Success for Different Prediction Rules

It has been suggested (e.g., Train [2003]) that if the model is not intended to predict
individual behavior, but rather to understand the market behavior, then the preceding is not
necessarily a useful way to assess the fit of the model to the data. An alternative to the preceding
table based on the fitted probabilities, rather than the individual predictions, is suggested. The
3x3 table of entries in Table 2.9a is computed as

I(y, =0)
H=Y" |13 =D |[I(p, <5 1p,>5) 1]
1

The tabulation can, instead, be based directly on the predicted probabilities. In this case,

'Boyes, Hoffman, and Low [1989],
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1(y,=0)]
H=3" [10,=D [a-5) b 1]
I
10,=0] N
=3, |10, =1) [ Prob(y, =0) Prob(y, =1) 1]
I

The results using this approach instead are shown in Table 9b.

Table 2.9b. Predictions for Probit Model Based on Probabilities

+-————= o o +
|Actual| Predicted Probability | |
|Value | Prob (y=0) Prob (y=1) | Total Actual |
+-————= o o o +
| y=0 | 760 ( 17.0%) | 1016 ( 22.7%) | 1777 ( 39.6%) |
| y=1 | 1015 ( 22.6%) | 1690 ( 37.7%) | 2706 ( 60.3%) |
fo———— Rt R fom e +
| Total | 1776 ( 39.6%) | 2706 ( 60.4%) | 4483 (100.0%) |
+-————- o o o +

It appears by this computation that the fit of the model is somewhat less than suggested in Table
2.9a, now 54.7% compared to 62% by the earlier calculation. But, the two calculations are based
on different motivations for making the predictions. Note that in the computation we just did, the
sum of the diagonal proportions, is somewhat like Cramer’s result given earlier. We computed

A= %[{NOAverage(l -p)ly= O} + {NlAveragef) |y = 1}}

=P, { Average p,)| y =0} + B { Average p, | y =1}.
where Py and P, are sample proportions of ones and zeros.

2.8.6 A Specification Test Based on Fit

Hosmer and Lemeshow [2000] have proposed a diagnostic measure for the probit and
logit models (they focus on the latter) that assesses the match between actual and predicted
values. To do the computation, we compute a fitted probability, F: for each observation using the
estimated model parameters. We then sort the fitted values in ascending order, carrying the actual
yi with them. The data are then divided into 10 percentiles based on the fitted values, and means
of the predicted and actual data are computed within each group. The statistic is

(If the sample is not large, some groups at the high or low end may have insufficient variation to
compute the denominator — the fitted values may all be very close to zero or one. The resulting
statistic has a limiting chi squared distribution with 10 degrees of freedom. Large values of the
statistic suggest that the model is inappropriate. The example for the health care data below

52



Modeling Ordered Choices

suggests this case. The H statistic for the model in Table 2.2 is 16.789 with 8 degrees of freedom.
The P value is 0.03238 which casts doubt on the distributional assumption.

2.8.7 ROC Plots for Binary Choice Models

Receiver operating characteristic (ROC) plots provide a loose descriptive measure of fit
in a binary choice model, and can be used to some extent to compare models. An example
appears in Figure 2.7. The curve is constructed by computing for the range of values of P* from
zero to one, the Sensitivity(P*) which equals the proportion of observations for which estimated
and actual values of y; are both equal to one (when the estimated y; equals one if the predicted
probability is greater than or equal to P*). The Specificity(P*) equals the proportion of values for
which predicted and actual zeros match. The graph is constructed by plotting Sensitivity(P*)
against 1 - Specificity(P*). The ‘fit measure’ is then computed as the area under the ROC curve.
A greater area implies a greater model fit. (The field is a unit rectangle.) A model with no fit has

an area of 0.5.

ROC Curve for Probit Model. Area= .636852
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Figure 2.7 ROC Curve for Estimated Probit Model

2.9 Heteroscedasticity

The assumption of homoscedasticity of g; in the binary choice model (and the ordered
choice model discussed later), is likely to be violated in micro- level data. Semiparametric
approaches that are robust to heteroscedasticity such as maximum score (Manski [1995]) and the
Klein and Spady [1993] approach, have a fundamental shortcoming; only ratios of partial effects
and coefficients can be estimated and fit measures are largely uninformative in these contexts.
Formal treatment of heteroscedasticity in binary choice models must be specified parametrically
in terms of observables. (l.e., there is no counterpart to the White [1980] estimator for
unspecified heteroscedasticity.)

We use the general formulation analyzed by Harvey [1976],
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Var[e;|z;] = [exp(0'z )]~

This model can be applied equally to the probit and logit models. We will derive the results
specifically for the probit model; the logit model is essentially the same. Thus,

yv*¥=vxte,
Var[g; | x,z] = [exp(0'z: )]~

The presence of heteroscedasticity necessitates some care in interpreting the coefficients for a
variable wy that could be in x or z or both. The partial effects are

aPrOb(yz =1 | XHZ[) _ 'Y,Xz Vi _('Y'Xi)ek (2.43)
ow, xp(®7,) | cxp(®z,) |

Only the first (second) term applies if w; appears only in x (z). This implies that the simple
coefficient may differ radically from the effect that is of interest in the estimated model. 'The log-
likelihood function is

n Y'X,
In L= InF|qg—t> | 2.44
2 [ql exp(e'zi)} (249

To be able to estimate all the parameters, z; cannot include a constant term. The derivatives are

alnL_ n o f;(yl—F:) Xi
am "2 {exp( O 0=k }[zx—y'xi)]' (243
0

The LM test provides a convenient way to test for heteroscedasticity. The model is easily
estimated assuming that @ = 0, as this is the probit or logit model we began with. Let w; equal the
data vector in parentheses in the derivatives of the log likelihood in (2.45) and let g; be the term in
square brackets. Then, the LM statistic is just

' -1
LM:(Z;giwi)[ ngizwiwl,':|( ;giwi)'

The likelihood ratio or Wald statistics are also straightforward to compute if one is able to
estimate the unrestricted heteroscedastic model.

An application is shown in Table 2.11. We have modeled the variance function in terms
of Income, Kids, Female and Working, a dummy variable for whether the respondent is employed
at the time of the survey. The results carry out the LR, Wald and Lagrange multiplier tests of
homoscedasticity. The LM statistic is 3.8577 with two degrees of freedom. The critical value
(95%) is 5.99, so the hypothesis of homoscedasticity is not rejected. The second set of results are
for the model with heteroscedasticity. The likelihood ratio statistic is LR=2[(-2888.328)
-(-2890.288)] = 3.9200. The conclusion is the same. The Wald test based on the unrestricted
(heteroscedastic) model is 3.7282 leading to the same inference. The coefficient estimates are

'See Knapp and Seaks [1992].
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shown in the table as well. Overall, the data do not suggest that there is heteroscedasticity present.
Partial effects for the restricted and unrestricted models are shown at the end of Table 2.11. The
index function and variance function have two variables in common, /ncome and Kids. Partial
effects are computed as the sum of the two terms shown in (2.43). The change from the
homoscedastic model is minor for this model.

Table 2.11 Heteroscedastic Probit Model

- o o tom +
| | Heteroscedastic | Homoscedastic |

| | LogL = -2888.328 | LogL = -2890.288 |

| | LogLR = -2890.288 | LogLO = -3010.421 |

| | Chisqg = 3.920 | Chisqg = 240.266 |

| | Wald = 3.728 | |

| | LM = 3.858 | |

- Fmm Fm—————— + Mean |
|Variable| Coef. S.E. t p | Coef S.E. t P | of X
- o B e et L e e Fom +
|Constant| .7595 .2349 3.233 .0012 | 4816 .1423 3.383 .0007| 1.0000 |
| AGE | -.0329 .0032 -10.266 .0000 | -.0203 .0020 -10.386 .0000| 43.4401
|EDUC | 0860 0148 5.805 0000 | .0520 .0089 5.872 .0000| 11.4181 |
| INCOME | 3454 2083 1.658 0972 | 2180 .1265 1.724 .0847| .34874
|[MARRIED | -.0483 0828 -.584 5592 | -.0311 0508 -.612 .5403] .75217 |
|KIDS | 1278 0756 1.692 0907 | 0800 0463 1.727 .0841| 37943 |
- + Variance Function | |

|INCOME | .0141 .5193 .027  .9784 | | .34874
|KIDS | -.1608 .1975 -.814 .4158 | | .37943
|FEMALE | .0291 .1073 271 .7864 | | .48405 |
|WORKING | -.1831 .1350 -1.356 .1750 | | .67232 |
| + Partial Effects | Partial Effects |

| AGE | -.0080 .0008 -9.469 .0000 | -.0078 .0008 =-10.392 .0000| 43.4401
|EDUC | .0190 .0035 5.443 .0000 | .0200 .0034 5.875 .0000| 11.4181
|INCOME | .0859 .1539 .558 .5769 | .0838 .0486 1.724 .0847| .34874
|MARRIED | -.0171 .0217 -.789 .4301 | -.0119 .0194 -.614 .5394 75217 |
|KIDS | .0314 .0478 .657 .5113 | .0307 .0177 1.733 .0831| .37943
|FEMALE | -.0029 .0104 -.282 .7779 | | .48405 |
|[WORKING | .0184 .0186 .989  .3227 | | . 67232 |
+-—————— o B e tom— +

2.10 Panel Data

A structural model for a possibly unbalanced panel of data would be written

v, =YX, +¢g,, i=1..,n t=1.,T,

1

y, =1ify, > 0and 0 otherwise.

Ideally, we would like to specify that &, and g, are freely correlated within a group, but
uncorrelated across groups. But doing so will involve computing joint probabilities from a 7;
variate distribution, which is generally problematic. (See Section 2.14.) A more limited approach
is an effects model,

v, =YX, +v, +u, i=1,..,n, t=1..T,

1

y, =1ify, > 0 and 0 otherwise.

where u; is the unobserved, individual specific heterogeneity. We distinguish between “random”
and “fixed” effects models by the relationship between u; and x;. The assumption that u; is
unrelated to x;,, so that the conditional distribution f (u; | x;, ) is not dependent on x;;, produces the
random effects model. This places a restriction on the distribution of the heterogeneity. If that
distribution is unrestricted, so that u; and x; may be correlated, then we have the fixed effects
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model. The distinction does not relate to any intrinsic characteristic of the effect, itself. This is a
modeling framework that is fraught with difficulties and unconventional estimation problems.
Prominent among them are the following:

Estimation of the random effects model requires very strong assumptions
about the heterogeneity.

The fixed effects model encounters an incidental parameters problem that
renders the maximum likelihood estimator inconsistent even when the
model is properly specified.

As in the linear model, there cannot be any time invariant variables in a
fixed effects binary choice model..

2.10.1 Pooled Estimation, Clustering and Robust Covariance Matrix Estimation

If the appropriate model is either a fixed or random effects specification (or any other
specification that involves correlation across observations), then the pooled estimator obtained by
ignoring the panel nature of the data will usually be inconsistent. We will obtain an explicit
expression for the random effects case below. Assume that the pooled estimator is consistent for
some vector of constants. In the same manner that the covariance matrix computed for OLS in a
linear model with random effects is inappropriate, the covariance matrix computed for the pooled
probit or logit estimator will not estimate the correct asymptotic covariance. A computation that
is often used is the cluster corrected covariance matrix.' The pooled MLE based on using
Newton’s method or a similar algorithm,

y=plimi+(3 " H, )1 (X2l e )iz, (2.46)

where H;, is the contribution of individual observation it to the second derivatives matrix, g; is the
first derivative vector and the final term is the sampling error that vanishes as n increases — 7;

does not. We have used plimy rather than v in the first term because the estimator is may be
inconsistent. The result can be written

-
. o 1 " [ | :
Y ~ plimy +(2?_1]; Zi:l ZxT:l Hifj (; Zi:] EZIT—I git}

= plimy + (ﬁ)_l (% ; gi].

Assuming that H converges to a finite negative definite matrix, the implied estimator for the
asymptotic covariance matrix should be

(2.47)

Est.AsyVar[y]= (I?I)i1 (l z; g j (%27_1 g j’ (I?I)i1 . (2.48)

n

'Wooldridge [2008].
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The terms with unequal subscripts in the double sum in the middle term correspond to different
individuals. Since observations are independent, these terms should (in aggregate) converge to
zero. This would leave

Est.Asy.Var [f(] = (I:I)_1 (% n:l gg;} (ﬁ)_l . (2.49)

This is the cluster corrected covariance matrix for the binary choice estimator. A refinement that
is sometimes employed [see Stata [2007]) is

N =\ 1 n |1 o _ —_o =\
ESt-ASy~Var['Y]:(H) n_ZZi_l[?Z,’_l(git_gi)(git_gi)J (H) . (2.50)

-1
In practical terms, the estimator usually differs substantially from that based on (H) , which is

at least suggestive that the simple pooled estimator is, itself, not robust to the failure of the
pooling assumption. The example in Table 2.12 is illustrative. The estimator uses the full
unbalanced panel of 27,326 observations. The corrected and uncorrected standard errors are
shown with the estimates. The correction produces a 40% - 50% increase in the standard errors.
This is typical for applications in which there is a significant degree of correlation across
observations that is ignored by the pooled estimator.

Table 2.12 Cluster Corrected Covariance Matrix (7293 Groups)
+

tomm B ittt o o

| | | Standard | Standard |
|Variable| Coefficient | Error | Error |
| | | Pooled | Cluster Cor. |
tomm B it o o +
|Constant| 49632326 | .05891212 | .08678277 |
| AGE | -.02317830 | .00079949 | .00111641 |
|EDUC | .05732077 | .00370607 | .00578509 |
| INCOME | .34245820 | .04810999 | .06162735 |
|MARRIED | .01293268 | .02062755 | .02926480 |
|KIDS | .06657821 | .01859187 | .02493187 |
fomm R fom o +

2.10.2 Fixed Effects

The fixed effects model is

i=1..,n t=1,..T,

*:(xd + ,X- +&
Vit i@y TY Xy i (251)

it>

y, =1ify, > 0 and 0 otherwise.

where d;, is a dummy variable that takes the value one in every period for individual i and zero
otherwise. For convenience, we have redefined x;, to be the nonconstant variables in the model.
The parameters to be estimated are the K elements of y and the » individual constant terms. The
log likelihood function for the fixed effects model is

hlL = Zf:lZleﬂ lnF[qit(ai + Y,Xit)]’
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where F(.) is the probability of the observed outcome, (D[ql.t (o, +y'x,.,)] for the probit model or

Alg, (o, +v'x,)] for the logit model. It will be convenient to let z, = a; + y'X; so0
Prob(Y; = yi | Xi) = F(qizir).

In the linear regression case, estimation of the parameters is made possible by
transforming the data to deviations from group means. This eliminates the individual specific
constants from the estimator. That transformation will not be usable in this nonlinear model, so
that if one desires to estimate the parameters of this model, it will be necessary actually to
compute the possibly huge number of constant terms at the same time as y. This has been widely
viewed as a practical obstacle to estimation of this model because of the need to invert a
potentially large second derivatives matrix, but this is a misconception. ' A method for estimation
of nonlinear fixed effects models such as the probit and logit models is detailed in Greene [2008a,
Section 16.9.6.c]. The problems with the fixed effects estimator are statistical, not practical. The
estimator relies on 7; increasing for the constant terms to be consistent—in essence, each o; is
estimated with 7; observations. But, in this setting, not only is 7; fixed, it is likely to be quite
small. As such, the estimators of the constant terms are inconsistent (not because they converge to
something other than o, but because they do not converge at all). The estimator of y is a function
of the estimators of a;, which means that the MLE of y is not consistent either. This is the
incidental parameters problem.” There is a small sample (small 7; ) upward bias in the estimators
on the order of 7/(7-1). How serious this bias is remains a question in the literature. Two pieces
of received wisdom are Hsiao’s [1986] results for a binary logit model (with additional results in
Abrevaya [1997]) and Heckman’s [1981a,b] results for the probit model. Hsiao found that for 7; =
2, the bias in the MLE of y is 100 percent, which is extremely pessimistic. Heckman found in a
small Monte Carlo study that in samples of » = 100 and 7 = 8, the bias appeared to be on the
order of 10 percent, which is substantive, but certainly less severe than Hsiao’s results suggest.
No other firm theoretical results have been shown for other models, although in very few cases, it
can be shown that there is no incidental parameters problem. (The Poisson regression model is
one of these special cases.) A 100% bias for the probit estimator has been widely observed but
not proven analytically.’ The fixed effects approach does have some appeal in that it does not
require an assumption of orthogonality of the independent variables and the heterogeneity. An
ongoing pursuit in the literature is concerned with the severity of the tradeoff of this virtue against
the incidental parameters problem. Some commentary on this issue appears in Arellano [2001].
Results of our own investigation appear in Greene [2004 and 2008a, Chapter 17].

Estimates of a fixed effects probit model are presented in Table 2.13. The results indicate
that 3,289 individuals were dropped from the sample. These are the individuals who had y; equal
one or zero in every period. Except for the income coefficient, which is surprisingly stable, the
fixed effects estimates and partial effects are quite different from the pooled results. Given the
very large change in the log likelihood function, this is not surprising. The likelihood ratio test
against the null hypothesis of no effects is over 17,700. The partial effects also change
substantially when the effects are added to the model. Since the group sizes are small (7; ranges
from 1 to 7), the slope estimator is inconsistent. Whether this is propagated to the estimates of
the partial effects remains to be established.

" E.g., Maddala [1987, p. 317].
2 Neyman and Scott [1948] and Lancaster [2000].
* E.g., Katz [2001] and Greene [2004].
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Table 2.13 Fixed Effects Probit Model

- o o Fo— +
| | Fixed Effects | Pooled |

| | LogL = -8500.704 | LogL = -17365.76 |

| | LogLR = -17365.76 | LogL0O = -18279.95 |

| | 7293 Individuals | |

| | 3289 Individuals Bypassed | |

- Fm— Fm———— + Mean |
|Variable| Coef. S.E. t p | Coef S.E. t P | of X
- B et B e T e e Fo— +
|Constant| | .4963 .0589 8.425 .0000| 1.0000 |
| AGE | -.0649 .0045 -14.418 .0000 | -.0232 .0008 =-28.991 .0000| 43.5257
|EDUC | 0027 0506 054 9570 | .0573 .0037 15.467 .0000] 11.3206

| INCOME | 3530 1161 040 0024 | .3425 .0481 7.118 .0000] .35208
|[MARRIED | -.0609 0666 -.915 .3600 | .0129 .0206 .627  .5307] .75862 |
|KIDS | -.0118 .0475 -.249 .8032 | .0666 .0186 3.581 .0003]| .40273

| + Partial Effects | Partial Effects |

| AGE | —-.0248 .0049 -5.087 .0000 | -.0089 .0003 =-29.012 .0000| 43.5257
|EDUC | .0010 .0192 .054 .9567 | .0219 .0014 15.478 .0000] 11.3206
|]INCOME | .1349 .0515 2.617 .0089 | .1309 .0184 7.118 .0000] .35208
|[MARRIED | -.0233 .0010 -22.562 .0000 | .0049 .0079 .626 .5311] .75862 |
|KIDS | -.0045 .0004 -10.792 .0000 | .0254 .0071 3.589 .0003] .40273
o B ittt o o +

The incidental parameters problem in estimation of the slope parameters arises here and
(apparently) not in the linear regression model. The absence of the incidental parameters problem
in the regression is, in fact, only apparent. The MLE of o” in the fixed effects linear regression
model (assuming a balanced panel) is e'e/(nT), which converges to [(7-1)/T]c. If T is small, 6°
may be significantly underestimated (e.g., by 50% if 7'=2). The problem shows up in the scaling
parameter, not the slopes. Since implicitly, the probit MLE is estimating y/c”, the case of the
+100% bias in the fixed effects probit MLE is perhaps not surprising.

Estimation in the linear regression model is based on the deviations from group means,
not the original data as it is here. The result exploited there is that although f(y; |X;) is a function
of o, f{vi |Xi, ¥,) is not a function of a; , and the latter is used in least squares estimation of y. In

the regression setting, y, is a sufficient statistic for o, Sufficient statistics exist for a few

distributions, but not for the probit model. They are available for the logit model. A fixed effects
binary logit model is

exp((xl + 'Y'Xn)
1+exp(a, +7'x,) ’

Prob(y, =1[x;)

The unconditional likelihood for the n7T independent observations is

L_H H explg, (o, +7'X,, )]
=EAE 1+explg, (o +yx”)]

The conditional likelihood function [see Rasch [1960], Andersen [1970] and Chamberlain
[1980]),

L. H Prob(Y, =y,.Y, =y, Y = vy 1 X Zh ) s

is free of the incidental parameters, o; .The joint likelihood for each set of 7; observations
conditioned on the number of ones in the set is
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exXp [ZrTQyit'Y’Xn]
ZE,de,y,, 285 [Z)‘T;ldit'yrxit ]

H,’;l PrOb(Kl =YY :yi2""’Y;1} =Vir |Xi’th;1yit):

th':lyit

zeros and ones that have sum equal to X" y. . The enumeration of all these computations would

appear to be quite a burden — see Arellano [2000, p. 47] or Baltagi [2005, p. 235]. But, using a

recursion suggested by Krailo and Pike [1984], the computation even with 7; up to 100 is routine.
Consider the example of 7; = 2. The unconditional likelihood is

The function in the denominator is the sum over the set of all ( J different sequences of T;

L; = Prob(Y;; = yi))Prob(Y;; = yi2).
For each pair of observations, we have these possibilities:

1. y;; =0 and y;; = 0. Prob(0,0 | sum = 0) = 1.
2.yy=1andy;;=1.Prob(l,1 | sum=2)=1.

The ith term in L, for either of these is just one, so they contribute nothing to the conditional
likelihood function. When we take logs, these terms (and these observations) will drop out. But
fory; =0and y, =1,

Prob(0,1 and sum=1) Prob(0,1)

3. Prob(0, 1|sum=1) = .
Prob(sum = 1) Prob(0,1)+Prob(1,0)

Therefore, for this pair of observations, the conditional probability is

1 exp(a; +v'X,,)
[1 +exp(a, +7'x, )] [1 +exp(a,; + y’xiz)]
1 exp(a, +7'X,,) N exp(o; +v'X,)) 1
[1 +exp(a,; + y’xil)] [1 +exp(a; + y'xl.z)] [1 +exp(a, + y'xl.l)] [1 +exp(a, + y'xl.z)]

_ eXP('Y’Xiz )
exp(Y'x,,) +exp(y'x;,)

By conditioning on the sum of the two observations, we have removed the heterogeneity.
Therefore, we can construct the conditional likelihood function as the product of these terms for
the pairs of observations for which the two observations are (0,1). Pairs of observations with (1,0)
are included analogously. The product of the terms such as the preceding, for those observation
sets for which the sum is not zero or T; , constitutes the conditional likelihood. Maximization of
the resulting function is straightforward and may be done by conventional methods.'

Computation of partial effects in the fixed effects binary choice model presents a new
problem. If the sample contains any groups that contain no variation — i.e., y;; is always one or
zero — then those groups must be dropped from the sample. This is true both for the
unconditional estimator or the conditional estimator. (Note in Table 2.13 it is reported that 3,289
observations (groups) have been omitted from the sample.) This precludes computation of

! Cecchetti [1986] and Willis [2006] present an application of this model.
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average partial effects for either estimator. This follows automatically in the conditional
estimator since the constant terms are not computed at all. One might base estimation of partial
effects on the individuals remaining in the sample. An alternative is to base the computation on
the means of the data and the mean of the constant terms for the included groups. Then

§=r(é.+7%)7,

where X would be the overall mean vector for the independent variables, or some suitably chosen
alternative.

This does not solve the problem for the conditional estimator, however, since the constant
terms are not estimated for that model. One way to proceed in this case is as follows: The
contribution to the log likelihood for one individual is

InL; = Z; InAlg, (o, +Yx,)].

The problem solved by the conditional estimator is consistent estimation of y. If y were known,
and if there were variation of y; in the 7; observations, then estimation of a; would be done by
maximizing InL; with respect to o,. Using the first order conditions derived earlier, we find the
solution can be found by solving

1 v
Pa :_Z,lel A(ai +ait) >

where p;; is the proportion of the 7; observations with y;, equal to one and a; = y'x;. There is no
closed form solution, but the root can be found by a simple one dimensional search. A one step
approximation based on a linear Taylor series approximation would be

N Pi _T%ZZ;:IA(ait) _ 2121 [.Vn _A(azz)]

o, = = .
l T%ZIZIA(ait ) [1 - A(an )] ZZT’:IA(ait ) [1 - A(ait )]

Estimation of partial effects, probabilities, etc. can then be based on the average of these
estimates.

Table 2.14 presents estimates of a fixed effects logit model, computed with both the
conditional and unconditional estimators. The theory suggests that the coefficient estimates with
the unconditional approach should be systematically larger than the conditional estimates. This
does seem to be the case in general. The exception, the coefficient on Educ, is also the one with
the lowest ¢ ratio, by far. This suggests that for this coefficient, we should expect very large
sampling variation. The major differences between the estimators show up in the partial effects.
These are computed by obtaining estimates of the constant terms, then averaging over all
observations. This is a large sample, so the sampling variability induced by the small 7; should
be averaged away in the partial effects. We find that the effects computed with the two
estimators are very different. With only the incidental parameters problem to provide guidance,
we would opt for the estimates computed from the conditional estimator.
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Table 2.14 Estimated Fixed Effects Logit Models

- o o Fo— +
| | Unconditional Estimator | Conditional Estimator |

| | LogL = -8506.164 | LogL = -5669.541 |

| | LogLR = -17365.15 | | \
| | 7293 Individuals | |

| | 3289 Individuals Bypassed | |

- Fm— Fm———— + Mean |
|Variable| Coef S.E t p | Coef S.E. t P | of X
- B et B e T e e Fo— +
| AGE | -.1095 0076 -14.405 0000 | -.0881 .0068 -12.984 .0000| 43.5257

| EDUC | 0090 0835 108 9141 | .0126 .0718 .176 .8604] 11.3206

| INCOME | 6038 1968 3.068 0022 | .4767 .1750 2.724 .0064| .35208
|[MARRIED | -.1091 1114 979 3276 | -.0772 .0983 -.785 .4322] .75862
|KIDS | -.0167 .0793 -.210 .8337 | -.0059 .0706 -.084 .9331| .40273

| + Partial Effects | Partial Effects |

| AGE | -.0259 .0063 -4.102 .0000 | -.0012 .00009 -13.961 .0000| 43.5257
|EDUC | .0021 .0193 .110 .9122 | .0002 .0010 .176 .8605] 11.3206
|INCOME | .1429 .0582 2.455 .0141 | .0066 .0023 2.920 .0035] .35208
|[MARRIED | -.0258 .0015 =-17.531 .0000 | -.0011 .0014 -.789 .4303| .75862 |
|KIDS | -.0039 .0008 -5.225 .0000 | -.0001 .0010 -.084 .9331| .40273
tomm e e o +

2.10.3 Random Effects

A specification that has the same structure as the random effects linear regression model
has been implemented by Butler and Moffitt [1982]. Full details on estimation and inference may
be found in Butler and Moffitt [1982] and Greene [2008a, Chapter 23]. The random effects model
specifies

€ = Vi tu,
where v;, and u; are independent random variables with

E[vi [X]=0; Cov[vi, v;s [X]=0, t#s or i #j, Var[v; [X] = 1,
Elu; [X]=0; Covlu;, u; [X] =0 if i #j, Var[u;[X] =0,
Cov[vy, u;|X]=0forall i, ¢, j,

and X indicates all the exogenous data in the sample, x;, for all i and ¢. Then,
COV[S,-,,S,-S] = Guz
and

2
O

u

Corr[gpnei] = p = ——.
1+o,

The new free parameter is
2 _
Cu = p/(l - p)
The Pooled Estimator
The implied probit model, given the composition of the disturbance is

Vi =YX + v + ou,
Vit 1()71‘;* > O)-
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It follows that
Prob(y, =1|x,)=Prob(yx, +v, +u, >0)

— | i (2.52)
w/1+(52

=D(y.x,).

If one pools the data and ignores the within group correlation, then the maximum likelihood
estimator provides a consistent estimator of y«, not y. So, the estimator is inconsistent; it is biased
toward zero — as an estimator of y. Since the observations are correlated (within the groups), the
estimated asymptotic covariance matrix will also be inappropriate. One would expect the cluster
corrected covariance matrix estimator to be an improvement. The partial effects in the random
effects probit model, once again based on the preceding formulation, are precisely

aPI'Ob(yit =1 X[l) = [(I)('Yixn)]y*
. (2.53)

- [otrs )15,

The implication is that although the pooled estimator does not estimate y consistently, assuming
the data, x;, are well behaved, the pooled model does produce the appropriate estimator of the
partial effects in the random effects probit model.> The upshot would be that this establishes a
case for estimating the pooled model, with an appropriate correction to the estimator of the
asymptotic covariance matrix.

The Maximum Likelihood Estimator

The log likelihood for the random effects model is

InL= Z; In .[Z H; F [%z (yx, + auwl.)lf(wi)dm , (2.54)

where once again, x;, contains a constant term, and w; = u;/c,. Maximization of the log likelihood
requires computation of the inner integrals, for which there is no closed form. Butler and Moffit’s
method based on Gauss-Hermite quadrature is a very common approach. The parameters may
also be estimated by maximum simulated likelihood. This model is typically specified using the
normal distribution (probit model) for both v;, and ;. Using the simulation based estimator, the
logit model could be used for either or both terms

As shown in (2.53), the partial effects in the model involve the scaling parameter (1-p).
Since the MLE estimates y and p, it follows that the MLE estimates the structural parameters
consistently, but not the partial effects. In order to estimate partial effects based on the MLE, it is
necessary to compute (2.53) using the estimates of y and p.

' See Section 2.10.1.
2 Wooldridge [2002a] discusses this issue at some length.
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GMM Estimation

We have examined two approaches to estimation of a probit model with random effects.
GMM estimation is another possibility. Avery, Hansen, and Hotz [1983], Bertschek and Lechner
[1998], and Inkmann [2000] examine this approach; the latter two offer some comparison with
the quadrature and simulation-based estimators considered here. For the more general panel
probit model examined in Section 2.14, the GMM approach offers some savings in computational
effort by avoiding evaluation of multivariate normal probabilities. For the random effects model
considered here, the benefit is more limited, since the estimation requires only univariate normal
integration.

Heckman and Singer’s Semiparametric Approach

Heckman and Singer [1984a,b] argued that a fully parametric specification of the
distribution of unobserved heterogeneity (in a duration model) could overspecify the model, and
bias the estimation of the other parameters. Their proposed alternative is based on a discrete
approximation to the underlying distribution of the individual heterogeneity. The Heckman and
Singer model can be formulated as a latent class model. The implied latent class binary choice
model is

Prob(y;; =1 |xi, class = ¢) = F(o. +¥'x;), (2.55)
Prob(class =c¢) = m..

(Note that we have isolated the constant term from the rest of the parameter vector.) The class
probabilities are specified nonparametrically. The requirement that they be positive and sum to
one can be imposed by a multinomial logit functional form

T, = L(ec) C:L-"’C’ eczo

Ef:l eXp(ec) ,

Note that this function does not impose any restrictions on the probabilities other than that they
are positive and sum to one. The C-1 parameters 0, are unrestricted. The log likelihood function
for this model is

nL=Y" Y " n[] Fla, (e +7x)]. (2.56)

The log likelihood function is maximized with respect to the C-1 class probabilities, C constant
terms and K parameters in ¥.

Probabilities and partial effects for this model can be estimated in two ways. An
unconditional approach can be based directly on the MLEs of the model parameters. Thus,

Est.Prob(y, =1|x,) = z; fF[a, +1%,].

. , (2.57)
8, =X wsla+i%, )4

Alternatively, we can base an estimate of the class, ¢;, within which the individual resides as
follows, using Bayes theorem:
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Prob(y, =y, ip--Y, 1 »class = c[ X;)
Prob(y, =YYV | X))
_ Prob(y; =y, i Y5, | X, class = c)Prob(class = c)
B Prob(y, = YisYir-Yir |X,)
Prob(y, =1, ip--Y, 1 | X, class = ¢)Prob(class = c)

Prob(class =c|y,,X,) =

=— (2.58)
ZEZI Prob(y, =y, p--¥, 1 | X, class = ¢)Prob(class = c)

t 1., Fla, (e +vx,)]

B Zf:l TECH[TI:I F[qit (ac +'Y’Xit)]
=7, ]y, X,.

The natural estimator of which is the appropriate class for individual i would be the class with the
largest conditional probability. Given this estimator of ¢;, the estimator of a,. follows, then the
probabilities and partial effects for individual i can be computed.

Table 2.15 presents estimates of a random effects model for Healthy. The left panel
shows the Butler and Moffitt [1982] results using Gauss-Hermite quadrature for the integration.
The panel on the right shows the same model estimated by maximum simulated likelihood. We
used only 50 Halton draws for the simulation — one would typically use several hundred.
Nonetheless, the estimates are surprisingly close. The implied estimate of p in the simulation is

p=6/(1+6>) =0.5412, which differs only trivially from the quadrature based estimate.

Table 2.15 Estimated Random Effects Probit Models

+-—— o B et Fom— +
| | Quadrature Estimator | Simulation Estimator |

| | LogL = -15424.40 | LogL = -15429.26 |

| | LogLO = -17365.76 | LogL0O = -17365.76 |

| | 7293 Individuals | Simulation = 50 Halton |

t-—————— o o + Mean
|Variable| Coef S.E t P | Coef S.E. t P | of X

fom = o o o +
|Constant| .9459 .1116 8.473 .0000 | .9420 .0694 13.574 .0000 | 43.5257 |
| AGE | -.0365 .0015 -24.279 .0000 |-.0364 .0010 -37.801 .0000 | 43.5257
|EDUC | 0817 0073 11.230 0000 | .0815 .0044 18.742 .0000 | 11.3206

| INCOME | 3207 0717 4.474 0000 | .3225 0547 5.899 0000 | .35208
|MARRIED | 0188 0346 544 5863 | .0170 0237 716 4741 | .75862
|KIDS | 0430 0298 1.443 1490 | .0442 0216 2.049 0405 | 40273 |
|Rho | 5404 0100 53.842 0000 | | |
|Sigma u | [|1.0862 0129 84.119 0000 |

Fo———= o o o +

Table 2.16 shows the estimates of Heckman and Singer’s [1984a,b] semiparametric,
latent class model. We begin with a specification search. There is no firm rule for determining
the optimal number of classes. The likelihood ratio test is not valid because a model with fewer
classes is not parametrically nested in a larger one. In this specification, each class does require
two additional parameters beyond the one lower. However, for example, one cannot produce a
four class model by restricting the parameters of one of the classes. In principle, a four class
model is produced from a five class model by forcing one of the as to equal one of the other ones,
but which one? And, if so, is there any restriction needed on the corresponding probability? As
expected, the log likelihood function does increase with the number of classes. However, there is
no clear way to use this to formulate a search for the right number of classes. A common
approach is to base the search on the InAIC, which is InAIC = (-2InL + 2M)/n, where M is the
number of model parameters. By this rule, it appears that the five class model is preferred.
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However, Heckman and Singer provide an additional suggestion which is useful here. They argue
that if the model is fit with too many classes, the estimates will become unstable because the
estimator (here) in an M dimensional parameter space is actually on a ridge in an M-2
dimensional (smaller) space. In Table 2.16, the estimate of o, in the five class model is 10.238
with an estimated standard error of 66,988 and that for o, is -8.523 with standard error of
134,831. These would seem to fit their description. Thus, we chose the four class model as our
preferred specification. The implied mean and standard deviation for the discrete random
variable in the four class model are 0.5933 and 1.1197. The standard deviation differs from the
parametric estimate of 1.0862 by only about 3.1%. Though they are not directly comparable, it is
striking that the log likelihood function for the four class latent class model is nearly identical to
that for the parametric random effects model in Table 2.15.

Table 2.16a Semiparametric Random Effects Probit Model*

e R ettt o o fomm e +
I 5 | 4 I 3 I 2 \ 1 \
e o e fmm e R +
la;  10.238 (66988) | 2.3363 (.1573) | 2.2500 (.1400) | 1.6015 (.1014)]| .4963 (.0589)]
la, -8.523 (134831)| -1.7635 (1.0297)| -.3831 (.1273) | -.0309 (.0986) |

Joes  .8291  (.1554) | -.1478 (.1660) | .8882 (.1292) | |

o, -.2636 (.1426) | 1.0104 (.1436) | \ |

las  1.8971 (.1777) | | | |

| T, .0756 | .2700 | .3133 | .5513 | 1.0000 |
| T, .0207 | .0323 | L2429 | . 4487 | |
| 73 .3758 | L2772 | L4437 | | |
| T4 .2404 | .4205 | | | |
| Tt .2876 \ \ \ \ \
|InL -15420.17 -15423.77 | -15431.74 -15552.89 -17365.76
|AIC 1.12963 | 1.12975 | 1.13019 | 1.13891 | 1.27145
o fomm o fomm o fomm e fomm +

* Estimated standard errors for o in parentheses

Table 2.16b Estimated Parameters for 4 Class Latent Class Model

- o - +-—————— t-—————— t-————— +
|Variable| Coefficient | Standard |b/St.Er.|P[|Z|>z]]| Mean |
| | | Error | | | of X |
to—— tom e o —— to—— o to————— +
| AGE | -.0367 .0015 -24.110 .0000 43.5257]
|EDUC | .0795 .0076 10.426 .0000 11.3206]
| INCOME | 3340 .0743 4.491 .0000 .35206]|
|MARRIED | .0122 .0359 .340 L7341 .75862]|
|KIDS | .0485 .0304 1.596 .1104 .40273
tomm o o tom— o= o +

2.10.4 Mundlak’s Correction for the Probit and Logit Models

The incidental parameters problem is a convincing reason to be skeptical of the fixed
effects estimator when 7; is small, as it is in our application. However, the assumption that the
common effect u; is uncorrelated with x;, is a disadvantage of the random effects model. An
approach suggested by Mundlak [1978] and extended by Wooldridge [2002b] proposes a middle
ground between the two. The effects in the fixed effects model are projected on the means of the
(time varying) regressors,

o, =0, +w,. (2.59)

where w; is normally distributed with mean zero and standard deviation G, and is uncorrelated
with X, or with x;. Inserting (2.59) into (2.51) with the fixed effects formulation in Section
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2.10.2 produces the modified model
it =%, + 0%, + & +ow, (2.60)
which is a random effects model.

2.10.5 Testing for Heterogeneity

As in the linear regression model, it is of some interest to test whether there is indeed
heterogeneity. With homogeneity (a; = a), there is no unusual problem, and the model can be
estimated as a pooled probit or logit model. The test is simple for the random effects model. A
simple Wald (f) test of the statistical significance of the estimate of p is appropriate.
Alternatively, one can use a likelihood ratio test by comparing the log likelihoods of the random
effects and pooled models. The estimate of p in the estimated random effects model in Table
2.15 is 0.5404 with an estimated standard error of 0.001037. The implied ¢ ratio of 53.8 is large
enough to reject the hypothesis of homogeneity. Alternatively, we can use the likelihood ratio
test. For the estimated random effects models, we have

InLpootea = -17365.76,
InL g -15424 40,
lnLHeckman,Singer = -15423.77.

For testing in the parametric framework, the likelihood ratio statistic, with one degree of freedom,
would be 2[(-15424.40) — (-17365.76)] = 3,882.72. This is far larger than the critical value of
3.84, so once again, the hypothesis is rejected. To use the semiparametric approach instead, we
need to recalculate the degrees of freedom. The number of additional parameters that are
estimated to produce the improvement in the log likelihood is three for the additional constant
terms plus three for the unrestricted probabilities — the fourth is constrained so that they sum to
one. The statistic is 2[(-15423.77) — (-17365.76)] = 3,883.98 with 6 degrees of freedom. The
95% critical value is 12.59, so the hypothesis of homogeneity is once again rejected.

Testing for heterogeneity in the fixed effects case is more difficult. Consider first the
conditional logit approach. It is not possible to test the hypothesis using the likelihood ratio test
because the two likelihoods are not comparable. The conditional likelihood is based on a
restricted data set that excludes individuals for which y;, is the same in every period. Moreover,
none of the usual tests of restrictions can be used because the individual effects are never actually
estimated.

Hausman’s [1978] specification test is a natural one to use here. Under the null
hypothesis of homogeneity, both Chamberlain’s conditional maximum likelihood estimator
(CMLE) and the usual maximum likelihood estimator are consistent, but Chamberlain’s is
inefficient. (It fails to use the information that o; = o, and it may not use all the data.) Under the
alternative hypothesis, the unconditional maximum likelihood estimator is inconsistent, whereas
Chamberlain’s estimator is consistent and efficient. The Hausman test can be based on the chi-
squared statistic

1= ('?CML Yz )’ I:Asy'Var(?CML)_Asy'Var(?ML )]71 (?CML _?ML) . (2.61)

The estimated covariance matrices are those computed for the two maximum likelihood
estimators. For the unconditional maximum likelihood estimator, the row and column
corresponding to the constant term are dropped. A large value will cast doubt on the hypothesis of
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homogeneity. (There are K degrees of freedom for the test.) It is possible that the covariance
matrix for the maximum likelihood estimator will be larger than that for the conditional
maximum likelihood estimator. If so, then the difference matrix in brackets is assumed to be a
zero matrix, and the chi-squared statistic is therefore zero. It might be tempting to eliminate from
the sample at the outset groups of observations for which y;, is always zero or 7;. If so, then the
samples used for the pooled estimator and the conditional MLE will be the same. However, there
is now a danger that the resulting subsample used for the pooled model is choice based — see
Section 2.15 — so that the pooled estimator would no longer be consistent even under the null
hypothesis of homogeneity.

One cannot use this approach with the unconditional FE estimator. The reason is that the
unconditional MLE is inconsistent even when the fixed effects model is correctly specified,
because of the incidental parameters (small 7) problem. Therefore, it would seem that there is a
loose end in the econometric methodology; there is no appropriate test for fixed effects vs. no
effects for the probit model in the received literature.

2.10.6 Testing for Fixed or Random Effects: A Variable Addition Test

The usual approach of using the Hausman test to test for fixed vs. random effects in the
linear model is unavailable here. The fixed effects maximum likelihood estimator is inconsistent
under both the null and alternative hypotheses. The Wu [1973] variable addition test should be a
viable alternative. In the Mundlak specification considered in the section 2.10.4 (2.59), if the
random effects model is appropriate, then the coefficients on the group means should be zero. If
0 is not zero, this casts doubt on the random effects model, which suggests the fixed effects
model as a preferable alternative. The Wald and likelihood ratio tests should be usable. Table
2.17 presents the random effects and Mundlak estimates for the probit model. The coefficient
estimates in the latter are noticeably different in the two models. The Wald statistic of 45.27922
and the likelihood ratio statistic of 40.280 are both far larger than the critical chi squared with 5
degrees of freedom, 11.07. This suggests that for these data, the fixed effects model is the
preferred framework.

Table 2.17 Random Effects Model with Mundlak Correction

+-—— o B et Fom— +
| | Random Effects Probit | Group Means Addition |

| | LogL = -15424.40 | LogL = -15404.26 |

| | LogLO = -17365.76 | LogL0O = -17365.76 |

| | 7293 Individuals | |

t-—————— tom tom e + Mean
|Variable| Coef S.E t P | Coef S.E. t P | of X

fom = o o o +
|Constant| .9459 .1116 8.473 .0000 | .6551 .1232 5.320 .0000| 43.5257 |
| AGE | -.0365 .0015 -24.279 .0000 | -.0521 .0036 -14.582 .0000| 43.5257
|EDUC | 0817 0073 11.230 0000 | .0031 .0421 .073  .9415] 11.3206

| INCOME | 3207 0717 4.474 0000 | .2937 .0959 3.064 .0022] .35208 |
|MARRIED | 0188 0346 544 5863 | -.0429 .0534 -.803 .4220] .75862
|KIDS | 0430 0298 1.443 1490 | -.0019 .0397 -.048 .9614| .40273 |
|AGEBAR | | 0193 .0039 4.895 .0000]

|EDUCBAR | | .0790 .0427 1.848 .0646]|

| INCMBAR | | .3451 1496 2.307 .0211}]

| MARRBAR | | .0499 .0717 .695 .4871]

|KIDSBAR | | .0936 .06l6 1.520 .1285]

| Rho | 5404 0100 53.842 0000 | .5389 .0100 53.822 .0000|

fo— o o o +
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2.11 Parameter Heterogeneity

The panel data analysis considered thus far has focused on modeling heterogeneity with
the fixed and random effects specifications. Both assume that the heterogeneity is continuously
distributed among individuals. We also examined a semiparametric approach based on a discrete
distribution using Heckman and Singer’s [1984a,b] approach. The random effects model is fully
parametric, requiring a full specification of the likelihood for estimation. The fixed effects model
is essentially semiparametric. It requires no specific distributional assumption, however, it does
require that the realizations of the latent heterogeneity be treated as parameters, either estimated
in the unconditional fixed effects estimator or conditioned out of the likelihood function when
possible. Heckman and Singer’s [1984b] model provides a less stringent model specification
based on a discrete distribution of the latent heterogeneity.

The preceding opens another possibility. The random effects model can be cast as a
model with a random constant term;

vit=wt+tyxpte,i=1,...,nt=1,...,Ti,
yi=11ify;* >0, and 0 otherwise,

where o; = a + ow;." This is simply a reinterpretation of the model just analyzed. We might,
however, now extend this formulation to the full parameter vector. The resulting structure is

yit* :ai+Yi,Xit+git; i=1,...,nt=1,...,Ti, (262)
yi=1ify;* >0, and 0 otherwise,

where y; = y + Xw; where X is a nonnegative definite diagonal matrix of standard deviations—
some of its diagonal elements could be zero for nonrandom parameters. The method of maximum
simulated likelihood is well suited to this model. The simulated log-likelihood for the random
parameters model is

n 1 i ’
InL=>" 117211 [T, Fiala+2w,,)x,1}. (2.63)

The simulation now involves R draws from the multivariate distribution of w. Because the draws
are uncorrelated - X is diagonal - this is essentially the same estimation problem as the random
effects model considered previously. The simulated log likelihood is maximized with respect to
the elements of y and X. A relatively straightforward extension is to relax the assumption that the
random parameters are uncorrelated. This can be done by writing £? = LL’ where L is a lower
triangular matrix, then including the below diagonal elements of L. among the parameters to be
estimated. A hierarchical model is obtained by allowing the parameter heterogeneity to be partly
systematic, in terms of observed variables, as in

Yi=y+ Az;+ Lw,
where A is a matrix of parameters and z; is a vector of covariates. The techniques are illustrated

in the following example, in which the hierarchical model is specified to allow both random
heterogeneity in the parameters and variation across genders.

! Agresti [2002, p. 514] takes this approach as well.
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Agresti [2002, p. 514] and Hedeker and Gibbons [1994] propose a similar, but restricted,
partially heterogeneous, “random effects” model,

logit[Prob(y; = 1]x;,z;)] = o+ B'x; + u;'z;

where u; ~ N[0,X]. This is equivalent to the random parameters model suggested above, applied
to a subvector of y;, but with the restrictions that the constants, y, equal zero (and A = 0). The
restriction on the constants is likely to be substantive — its impact on estimation will be essentially
that of omitted variables in a regression model.

An extension of the heterogeneity model to the latent class structure is a minor extension
of the Heckman and Singer model of Section 2.10.3. We can also produce a counterpart to the
hierarchical model as shown in (2.64) and (2.65). The model structure is

eXp(eLZ[)

Tie = o O
Zexp(8.z))

c=1,.,C, 6, =0, (2.64)

mz=Y" WY " mJI, Fla.rx)]. (2.65)

Estimation of a fully specified latent class model is discussed in Section 8.2.5, and Greene
[2008a]. Background material on latent class models may be found in McLachlan and Peel
[2000] and Greene [2008, Section 16.9.7].

We have reestimated the probit model for Healthy with the basic random parameters (RP)
specification,

Yik = Y& T OxWir.

The results are shown in Table 2.18 with the original (now fixed parameters) estimates. The
estimated means of the RPs differ substantially from their fixed counterparts. The differences can
be seen in the first column of the table of partial effects in Table 2.19 as well. A likelihood ratio
test of the null hypothesis of the fixed parameters model gives a chi squared value of 2(-15407.51
— (-17365.76)) = 3916.50 with six degrees of freedom. The hypothesis would be rejected,
suggesting that the RP model is the preferred specification.

Partial effects in the RP model will vary both with the data and by the individual;

oProb(y, =1/x,,)
ox

= f(y'x,)y,, wherey, =y +Lw,.

it

This cannot be computed because it involves the unknown random term, w;. The simplest way to
remove the indeterminacy in the computation is to use the population mean, E[y;] = y in the
computation. An alternative approach is to estimate vy; for the individual — in principle this would
also allow the computation of average partial effects. Since w; is random and uncorrelated with
the observed variables, it is not possible to estimate vy,, itself. It is possible to improve on E[y;],
however. Lety; = (vu,...,viry) and let X; denote the 7; observations on x;. Then, using Bayes
Theorem,
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SOy X))
SOy X)) = 7, 1X)
_ Sy X) ()
S X))
__ SOy X) ()
[, Fov-X)p(r)dy,

This is the conditional density of y; given the data on individual i. This provides a method of
estimating the expectation of y; or of OProb(y;, = 1|x;,)/0x;;,

_Iv, VS YL X)p(y)dy,
_ Jyl SO X)p()dy,

E(y;ly:»X;) (2.66)

The conditional mean of the partial effect would be obtained likewise. In (2.66), fyiy;,X;) is the
contribution of individual i to the likelihood function (not its log) and p(y;) is the marginal density
of y; which we have assumed is normal with mean y and variance X. Using the definition of the
likelihood function in (2.9), the counterpart to (2.66) for the binary choice model is

T ,

[, Il F@ys Ny, v, D)y,
T ' ’

J.y Ht:IF(‘]iz'YiXit)NK('Y,’ |y, Z)dy,

E(y;ly.» X)) =

Since even given the population values of y and X, the integrals would not be directly
computable, we will use simulation instead. Inserting our estimates of the population parameters,
then, the estimator is

l —r . =~ T oA ,
Ezr:l (Y+Lwi,r)Ht:1 F[qit(Y+LWi’r)Xit]

1 R T ~ - '
EZ”‘ H,=1 F[qit ('Y + Lwi,r) Xit]

E(,|y.,X)= (2.67)

where LL° = X and w;, is the rth simulated draw from the K-variate standard normal population.
If the random parameters are uncorrelated, then L is the diagonal matrix of estimated standard
deviations. This provides an individual specific estimate, though we emphasize, it is the
conditional mean function of y; given y; and X, not a direct estimate of y;, We have done this
computation for our estimated random parameters model in Table 2.18. A kernel density
estimator for y;ycoue based on the 7,293 estimates is shown in Figure 2.8. In order to simulate the

partial effects, the initial term (?+I:Wi’r)in the numerator of (2.67) is replaced with

fl(F+Lw l.,r)’xl.t]('?+I:w i) - These are the values shown in Table 2.19 for the two random

parameters models.

The estimator in (2.67) is the counterpart to a Bayesian posterior mean estimator of
E[y|Data;]. [See, for example Rossi and Allenby [1999].) One difference between the classical
estimator in (2.67) and the Bayesian estimator is that (2.67) treats the estimated structural
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parameters as if they were known. One could use (2.67) to estimate Var[y; |y, X;] by simulating
an estimator of the expected square, then constructing a variance or standard deviation. This
could form the basis of a ‘confidence interval’ for v,;, which would be somewhat too narrow
because it would ignore the sampling variability in the estimators of the structural parameters, y
and X. One possibility to reconcile this would be to bootstrap the interval over the estimated
asymptotic distribution of the estimates of y and £. The narrower Bayesian HPD interval would
follow from the fact that the Bayesian estimator is posterior only to the data in hand while the
classical estimator with its asymptotic variance attempts to characterize the entire population.

Table 2.18 Estimated Random Parameter Models

o o o Fo————— +
| | Random Parameters | Pooled |

| | LogL = -15407.51 | LogL = -17365.76 |

| | LogLR = -17365.76 | LogL0 = -18279.95 |

| | 7293 Individuals | |

t-—————— o o + Mean
|Variable| Coef. S.E. t P | Coef S.E. t P | of X
Fom——— o - e o +

| | Mean Parameters in Probability

|Constant| .5688 .0701 8.113 .0000 | .4963 .0589 8.425 .0000] 1.0000 |
| AGE | -.0355 .0010 -37.027 .0000 | -.0232 .0008 -28.991 .0000| 43.5257

| EDUC | .1103 .0046 23.839 .0000 | .0573 .0037 15.467 .0000| 11.3206

| INCOME | .3137 .0554 5.665 .0000 | .3425 .0481 7.118 .0000] .35208 |
|MARRIED | .0265 .0237 1.117 .2641 | .0129 .0206 .627 .5307] .75862 |
|KIDS | .0560 .0219 2.563 .0104 | .0666 .0186 3.581 .0003] 40273 |
| + Variance Parameters in Random Parameter Distribution |
|Constant| .0474 .0091 5.223 .0000 | | 1.0000 |
| AGE | .0144 .0002 60.817 .0000 | | 43.5257 |
| EDUC | .0778 .0011 71.857 .0000 | | 11.3206

| INCOME | .1934 .0240 8.068 .0000 | | .35208 |
|MARRIED | .0205 .0106 1.939 .0525 | | .75862 |
|KIDS | .3771  .0153 24.645 .0000 | | .40273 |
fmmm o e Fmm +
Table 2.19 Estimated Partial Effects

fmmm e B T fmm [
|Variable| Est. S.E. t P |  Est. S.E. t P |Mean of X|
e e e ettt e o Fomm - +
fmmm——— + Pooled | Random Effects | |
| AGE | -.0089 .0003 =-29.012 .0000 |-.0133 .0003 -43.726 .0000 | 43.5257
|EDUC | .0219 .0014 15.478 .0000 | .0297 .0023 12.957 .0000 | 11.3206

| INCOME | .1309 .0184 7.118 .0000 | .1175 .0204 5.763 .0000 | 35208
|MARRIED | .0049 .0079 .626 .5311 | .0062 .0087 L7150 L4747 | 75862
|KIDS | .0254 .0071 3.589 .0003 | .0l161 .0080 2.007 .0448 | 40273 |
Fomm - + Uncorrelated Random Parameters| Correlated Random Parameters | |
| AGE | -.0130 .0004 -34.711 .0000 |-.0134 .0004 -34.044 .0000 | 43.5257

| EDUC | .0402 .0017 23.757 .0000 | .0390 .0018 21.443 .0000 | 11.3206

| INCOME | .1144 .0202 5.670 .0000 | .1158 .0218 5.303 .0000 | .35208
|MARRIED | .0097 .0087 1.115 .2648 | .0096 .0092 1.043 .2971 | 75862 |
|KIDS | .0204 .0079 2.588 .0097 | .0121 .0083 1.457 .1451 | 40273 |
e e e ittt o Fo—m - +
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Figure 2.8 Distribution of Conditional Means of Income Parameter

2.12 Endogeneity of a RHS variable

The presence of endogenous right-hand-side variables in a binary choice model presents
familiar problems for estimation. Consider the model

yi¥*=vx;+0h; +¢,

yi=1l:* > 0),
Elg; |hi 1= g(hi ) #0.

Thus, 4; is endogenous in this model. The simple maximum likelihood estimators considered
earlier will not consistently estimate (y,0 ). (Without an additional specification that allows us to
formalize Prob(y; = 1 | x; ,/4; ), we cannot state what the MLE will, in fact, estimate.) Suppose that
we have a “relevant” instrumental variable, z; such that

Elgi |z, x] =0,
E[hl Z; ] #0.

A natural instrumental variable estimator would be based on the “moment” condition

E{(yi *y'x, —eh,)[zﬂ ~0.

If y* were observed, this would be the standard linear GMM estimator. However, y;* is not
observed, y; is. The “residual,” (y,*—y’x, —6h ), would have no meaning even if the true

parameters were known. The approach used in Avery et al. [1983], Butler and Chatterjee [1997],
and Bertschek and Lechner [1998] is to assume that the instrumental variable is orthogonal to the

residual [(y, — ®(y'x, +0h,)) ]; that is,

X,
E|:(yi _CD(Y'Xi + ehi))(zlj} =0.

1
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This form of the moment equation, based on observables, can form the basis of a straightforward
two-step GMM estimator.

The GMM estimator is not less parametric than the full information maximum likelihood
estimator described below because the probit model based on the normal distribution is still
invoked to specify the moment equation. Bertschek and Lechner [1998] argued, however, that
the gains might come in terms of practical implementation and computation time. The same
considerations motivated Avery et al.)

A maximum likelihood estimator requires a full specification of the model, including the
assumption that underlies the endogeneity of 4;. The structural equations are

yi*=yx+t0hite yi=10* > 0),
hi =o'z + u,

g, 0 1 po,
~N , R
u; 0)\poc, o,
(We are assuming that there is a vector of instrumental variables, z; .) Probit estimation based on
y; and (x; ,4;) will not consistently estimate (y, 8) because of the correlation between 4; and ¢;

induced by the correlation between u; and ¢;. A partial reduced form obtained by inserting the
second equation in the first. This becomes a probit model with probability

Prob(yl:l |Xi,Z,‘) = (D('Y*’Xi + (X,*’Zi).

This will produce consistent estimators of

yE = y/\/l +0°c. +20po,

and

a* =00,/ 1+ 6°> + 20po,

as the coefficients on x; and z; , respectively. (The procedure will estimate the sum of y* and a*
for any variable that appears in both x; and z;.) In addition, linear regression of %; on z; produces
estimates of @ and o,”, but there is no method of moments estimator of p or 0 produced by this
procedure, so this estimator is incomplete. Newey [1987] suggested a “minimum chi-squared”
estimator that does estimate all parameters.

The log-likelihood is built up from the joint density of y; and 4; , which we write as the
product of the conditional and the marginal densities,

SGihi)=f i lh) f ().
To derive the conditional distribution, we use results for the bivariate normal, and write
&ilu; = [(po.)/c, Tu; + vi,

where v; is normally distributed independently of u; with zero mean and Var[v;] = (1 — p°).
Inserting this in the first equation, we have

yi*|h,‘ = 'Y'X,‘ + eh, + (p/Gu)l/l,‘ +v.

Therefore,
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(2.68)

Prob(y; = 1|x,,h;,u;) = (D[Y X, +0h +(p/c,)u; }

J1-p’

Inserting the expression for u; = (h; — a'z;), and using the normal density for the marginal
distribution of #; in the second equation, we obtain the log-likelihood function for the sample,’

InL=37 Ind q,{”'*eh"+(p/0”)(h"_°‘zf)] +1n{i¢(—hf_“fﬂ. (2.69)

/1_p2 c c

The case in which the endogenous variable in the main equation is, itself, a binary
variable occupies a large segment of the literature. Consider the model

yi*=vx;,+ 0T, +e¢,

yi=1@* > 0),
Elg | T ]1=0,

where T; is a binary variable indicating some kind of program participation (e.g., graduating from
high school or college, receiving some kind of job training, etc.). The model in this form (and
several similar ones) is a treatment effects model. The main object of estimation is 0. In these
settings, the observed outcome may be y* (e.g., income or hours) or y; (e.g., labor force
participation). The preceding analysis has suggested that problems of endogeneity will intervene
in either case.

2.13 Bivariate Binary Choice Models

A natural extension of the probit model would be to allow more than one equation, with
correlated disturbances, as in a seemingly unrelated regressions model. The general specification
for a two-equation model” would be

yFE=vx te, y =1 * >0),

WE=10X, &y, ¥, =1y, * > 0),

Efe, | x,,x,]=E[e, | x,,x,]=0, (2.70)
Varle, | x,,x,]=Varle, | x,,X,]=1,

Covig,,&, | X,X,]=p.

The bivariate probit (normal) specification is used with only rare exception in applications. The
bivariate normal cdf is

'A built-in Stata procedure that computes this maximum likelihood estimator is unfortunately labeled
“IVPROBIT” suggesting that it is using an instrumental variables (IV) estimator rather than the full
information MLE — labeled elsewhere a control function approach. For the distinction, see, e.g.,
Wooldridge and Imbens [2009a].

? (The model based on the logistic distribution is fairly inconvenient. See, e.g., Imai, King and Lau. [2007]
and Koehler et al. [1992].
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Prob(X; <xi, Xo<x) = [~ [ 0,(5.2,.p)dzdz,,
which we denote ®,(x;, x,,p). The density is

exp[—%(xlz "'xz2 _prlxz)/(l_pz)]

¢(x5xap): .
2 (X, Xy o ,—l—pz

To construct the log-likelihood, let ¢;; = 2y;; — 1 and g = 2y — 1. Thus, g; = +1 if y; = 1 and —1

2.71)

if y; =0 for j = 1 and 2. Now let z; = y/xy, wy = q;; z;, j = 1, 2, and p* = guqnp. Note the
notational convention. The subscript 2 is used to indicate the bivariate normal distribution in the
density ¢, and cdf @,. In all other cases, the subscript 2 indicates the variables in the second
equation. As before, ¢(.) and ®@(.) without subscripts denote the univariate standard normal

density and cdf. The probabilities that enter the likelihood function are

Prob(Y; =yi, Yo = yolXin,Xn) = @o(wi.wi,pi®),

which accounts for all the necessary sign changes needed to compute probabilities for y’s equal to
zero and one. Thus,

InL = Z; In ®y(wir.wi,pi™*) (2.72)

= Zj:l In q)i2~

The derivatives of the log-likelihood then reduce to

olnL n 4,8 .
LT (e

x, 2 (2.73)
alnL:Z” 9,9:9:,
op s,
where
W., — PW.
g = o(w, )P {—’jl—pz” } , (2.74)
-p

and the subscripts 1 and 2 in g;; are reversed to obtain gp,. It is useful to note what becomes of the
preceding if p = 0. For dlnL/0y;, if p = p;* = 0, then g;; reduces to ¢p(w;))D(wip), d2 18 d(w;1)d(wy),
and @, is O(w;)D(wy,). Inserting these results in the partial derivatives with ¢; and ¢g,, produces
the results for two univariate probit models. Because both functions in dlnL/0p factor into the
product of the univariate functions, olnL/0p reduces to

OlnL 1(p=0)= ZL] [qild)(qil'}llix[l)j[q[2¢(qi2',Y;X[2)]
op D(q,Y:x,) D(g,,Y5X;,)

= 7“1'17‘1'2'

i=1

(2.75)

76



Modeling Ordered Choices

The maximum likelihood estimates are obtained by simultaneously setting the three derivatives to
zero. Computation of the bivariate normal integrals needed for the log likelihood function can be
done using quadrature methods. Expressions for the second derivatives to use for computing an
asymptotic covariance matrix for the MLE are given in Greene [2008a, p. 819]. Given the
complexity of the expressions, the Berndt, Hall, Hall and Hausman estimator based on only the
first derivatives will be convenient.

2.13.1 Tetrachoric Correlation

The tetrachoric correlation is the correlation coefficient computed for a pair of binary
variables that are assumed to be derived by censoring two observations from an underlying
continuous bivariate normal population. This would be the bivariate probit model without
independent variables. In this representation, the tetrachoric correlation is precisely the p in this
model - it is the correlation that would be measured between the underlying continuous variables
if they could be observed. This suggests an interpretation of the correlation coefficient in a
bivariate probit model—as the conditional tetrachoric correlation. It also suggests a method of
easily estimating the tetrachoric correlation coefficient using a program that is built into nearly all
commercial software packages. We obtain an estimate of p simply by fitting a bivariate probit
model with no covariates.

In the example below, we will analyze the variable Working in a bivariate probit model
with Healthy. (The analysis will be based on the 4,483 observations used in the previous
examples.) A cross tabulation for these two variables appears in Table 2.20. The simple
(Pearson) correlation between these two binary variables is 0.09288. The tetrachoric correlation
computed from a bivariate probit model is 0.15159.

Table 2.20 Cross Tabulation of Healthy and Working

B et e +
|Chi-squared] 1] = 38.76382 (Prob = 0.00000) |
o o +
| | WORKING |
Fo— - B e Fom +
| HEALTHY | 0 1 | Total |
o e o +
| 0l 678 (0.151) 1099 (0.245) | 1777 (0.396) |
| 1] 791 (0.176) 1915 (0.428) | 2706 (0.604) |
fomm - o B et e e +
| Total| 1469 (0.327) 3014 (0.763) | 4483 (1.000) |
fomm - o fomm - +

2.13.2 Testing for Zero Correlation

The Wald and likelihood ratio tests are the usual devices for testing the hypothesis that p
equals zero in the bivariate probit model. For the Wald test, the square of the ¢ statistic for

p presented with the standard output has a limiting chi squared distribution with one degree of
freedom.. For the example in Table 2.21, p = .0572 with a reported ¢ statistic of 2.08. The chi
squared value is 4.3264, which leads us to reject the hypothesis for this specification. The
likelihood ratio test is carried out by comparing the log likelihood function for the bivariate probit
model to the sum of the separate log likelihoods for the univariate probits that are implied when p
= 0. The statistic is

LR = 2[1nLBivariate - (lnLl + 1IIL2)]

The statistic has one degree of freedom. For the example, the result is
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LR =2[-5294.053 — (-2890.288 + -2405.931)] = 4.332.

The hypothesis is rejected once again. Both of these statistics require estimation of the bivariate
probit model. The Lagrange multiplier test derived by Kiefer [1982] is based on only the single
equation results. The statistic is

 4:005)008,) |
= O(w, )D(w,)
Z” [d)(wn)d)(wiz )]2
T O(w, )D(w, )D(—w, )D(—W;,)

LM =

For the data and single equation estimates (not shown) for the model in Table in 2.21, the statistic
equals 4.0956. As in the other two cases, we reject the hypothesis that p equals zero.

2.13.3 Marginal Effects in a Bivariate Probit Model

There are several possible marginal effects one might want to evaluate in a bivariate
probit model.' A natural first step would be the derivatives of Prob[y; = 1, y» =1 | x;, X;] in
(2.73). These can be deduced from dlnL/0y; by multiplying by ®,, removing the sign carrier, g;
and differentiating with respect to x; rather than vy, . The result is

6[D2(Y;X1:Y'2X25p) ' lexz py;xl
—d)'yx ) Y, - 2.76
2 1 ( 1 1) (—l > 1 ( )

The bivariate probability, albeit possibly of interest in its own right, is not a conditional mean
function. As such, the preceding does not correspond to a regression coefficient or a slope of a
conditional expectation. For convenience in evaluating the conditional mean and its partial

effects, we will define a vector x = x; U x2 and let y,"x; = B,'x. Thus, B, contains all the nonzero

elements of y; and possibly some zeros in the positions of variables in x that appear only in the
other equation; B, is defined likewise. The bivariate probability is

Prob[y; =1, 1y, =1|x]=D(B'x, B.'x, p).

Signs are changed appropriately if the probability of the zero outcome is desired in either case.
The marginal effects of changes in x on this probability are given by

0D

_zzglﬁl + 8.8, (2.77)
Ox

where g, and g, were defined in (2.74). The familiar univariate cases will arise if p =0, and effects
specific to one equation or the other will be produced by zeros in the corresponding position in
one or the other parameter vector.

The univariate conditional mean functions are given by the univariate probabilities:

' See Greene [1996, 2008a] and Christofides et al. [1997, 2000].

78



Modeling Ordered Choices

Elyixi,x2] = ®(v/'x),j = 1.2,

which was analyzed in detail earlier. One pair of conditional mean functions that might be of
interest are

Ely, |y, =1,x]=Prob(y, =1| y, =1,x)
:Prob(yl =Ly, =1|x)

(2.78)
Prob(y, =1|x)
_ @, (Bx,B3x,p)
DO(B;x)
and similarly for E[y; | y; = 1, x]. The marginal effects for this function are given by
oFE =Lx 1 X
[ 1y, ]z{ , j glﬁl+(g2_@2 il )jﬁl , (2.79)
ox O(B;x) O(B5x)

Finally, one might construct the nonlinear conditional mean function

_ D, (Bix.(2y, ~ DBy, (2y, —Dp)
Ely | y,,x]= O[(2y, ~1P,x] : (2.80)

The derivatives of this function are the same as those presented earlier, with sign changes in
several places if y2 = 0 is the argument.

In each of these sets of partial effects, there is a direct and an indirect effect of a changing
variable. The direct effect is the effect on E[y;...] of a variable that appears in x;. The indirect
effect is the effect of a variable that appears in x,. When variables appear in both equations, the
total effect will be the sum of the two effects. In the example below, for example, Age and Educ
appear in both equations, so there is a decomposition of the partial effects for each of these.

We have added a second equation to the probit model for Healthy,

Prob(Working; = 1|X; working) = F(Age, Educ, Female).

Estimates of the bivariate probit model are shown in Table 2.21. The conditional tetrachoric
correlation between these two variables is statistically significant, but quite small. (Three tests of
the significance were carried out in Section 2.13.2.) The partial effects for
Prob(Healthy=1|Working=1) are shown at the left of the table. = The partial effects can be
decomposed into direct and indirect effects for variables that appear in both equations, Age and
Educ.
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Table 2.21 Estimated Bivariate Probit Model

- o o Fo— +
| | HEALTHY | WORKING | |
| | [InL=-2890.288] | [InL = -2405.931] | |
| | InL = -5294.053 (n = 4483) | |
Fm—————— e e + Mean |
|Variable| Coef. S.E t P | Coef S.E. t P | of X |
to—— B ettt B et Fom— +
|Constant| .4814 .1419 3.392 .0007 | 1.3418 .1550 8.658 .0000| 1.0000 |
| AGE | -.0203 .0020 -10.335 .0000 | =-.0223 .0017 -12.867 .0000| 43.4401 |
|EDUC | 0531 0087 6.099 .0000 | .0551 .0099 5.574 .0000| 11.4181 |
| INCOME | 1602 .1280 1.251 .2109 | | .34874 |
|[MARRIED | -.0282 .0506 -.557 .5776 | | .75217 |
|KIDS | 0831 .0465 1.786 .0741 | | .37943 |
|FEMALE | | -.9856 0430 -22.924 0000 | .48405 |
|RHO (1,2) | 0572 0275 2.080 0375 | | |
- B et o o +
| |Decomposition of Partial Effect]| | |
| | Indirect Direct Total | | |
- Bt ettt B et it L T T Fom— +
| AGE | .00025 -.00748 -.00723 | | 43.4401 |
|EDUC | -.00061 .01965 .01904 | | 11.3206 |
| INCOME | .06107 .06107 | | 35208 |
|MARRIED | -.01075 -.01075 | (First difference: -.01072) | 75862 |
|KIDS | .03170 .03170 | (First difference: .03159) | 40273 |
| FEMALE | 01095 01095 | (First difference: .01096) | 40273 |
tomm B ettt L e e o +

2.13.4 Recursive Bivariate Probit Models

Burnett [1997] proposed the following bivariate probit model for the presence of a gender
economics course in the curriculum of a liberal arts college:

PI'ObD/Z =1 | X ] = (I)('Yz'Xz) .
Prob[y; = 1| > X1, Xo] = Oo(11'X1 + 0y2, g2 V2"%X2, qiop).

The dependent variables in the model are

y; = presence of a gender economics course,
y, = presence of a women’s studies program on the campus.

The independent variables in the model are:

z; = constant term,

z, = academic reputation of the college, coded 1 (best), 2, . . . to 141,

z3 = size of the full-time economics faculty, a count,

z4 = percentage of the economics faculty that are women, proportion (0 to 1),
z5 = religious affiliation of the college, 0 = no, 1 = yes,

z¢ = percentage of the college faculty that are women, proportion (0 to 1),
z7—2z19 = regional dummy variables, South, Midwest, Northeast, West.

The regressor vectors are
X1 = (21, 22, 23, 24, 25)', X2 = (22, Z6, Z5, Z7210) -
This model is a recursive, simultaneous-equations model. The model appears in Heckman

[1978], Maddala [1983, p. 123], Greene [1998, 2008a, pp. 823-826] and in a spate of recent
applications.
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The four joint probabilities are

P = Dy(y'x1 + 0y2, 72'%5, p),
Pio= Ox(y1'x1, —72"%2, —p),

Py = Do[—(y1"x1 + 0)2), ¥2"%2, —p],
Poy = Op(—y1'X1, 72X, p).

These terms are exactly those of the bivariate probit model that we obtain just by carrying y, in
the equation for y; with no special attention to its endogeneity. (See Maddala [1983] for the
derivation.) Another aspect of the model that is unlike the linear case is that there is no exclusion
restriction required for identification — all exogenous variables may appear in both equations.
(See Wilde [2000].)

The marginal effects in this model are fairly involved, and as before, we can consider
several different types. Consider, for example, z,, academic reputation. There is a direct effect
produced by its presence in the first equation, but there is also an indirect effect. Academic
reputation enters the women’s studies equation and, therefore, influences the probability that y,
equals one. Because y, appears in the first equation, this effect is transmitted back to y;. The total
effect of academic reputation and, likewise, religious affiliation is the sum of these two parts.
Consider first the gender economics variable, y;. The reduced form conditional mean is

ED}I | X1, Xz] = PrObD/z = I]E[yl |y2 = 1; Xy, X2] +
Prob[y, = 0]E[y; | y2 =0, x3, X2]
= O(72'xy) [ Da(y1'x1 + 0, 12'%2,  p) D(y2'x2)] + (2.81)

O(12")[ Da(v1'x1,  —72"%0, —p)/ D(—712"%2)]
= (DZ('YI'XI + 9, 'Y2'X2, p) + (DZ('YI'XL _'YZ'XZr _p)

Derivatives can be computed using our earlier results for the bivariate normal cdf. The particular
feature of interest here is that there is an indirect and a direct effect on y, of any variable that
appears in both x; and x,. (The indirect effect is the latter.)

Fabbri, et al. [2004] present a variety of tests for exogeneity and independence in this
model. They then applied them in a study of births (cesarean or not) conditioned on hospital type
(public or private).

2.13.5 A Sample Selection Model
Consider the model analyzed by Boyes, Hoffman and Lowe [1989],

y;i = 1 if individual i defaults on a loan, 0 otherwise,
v = 1 if the individual is granted a loan, 0 otherwise.

Wynand and van Praag [1981] also used this framework to analyze consumer insurance purchases
in the first application of the selection methodology in a nonlinear model. Greene [1992] applied
the same model to y;; = default on credit card loans, in which y;, denotes whether an application
for the card was accepted or not. Mohanty [2002] used this model to analyze teen employment in
California. For a given individual, y; is not observed unless y;, equals 1. Following the lead of
the linear regression case, a natural approach might seem to be to fit the second (selection)
equation using a univariate probit model, compute the inverse Mills ratio, A;, and add it to the first
equation as an additional “control” variable to accommodate the selection effect.’ That would
seem to be the apparent counterpart for this probit model,

! This is the approach used by Wynand and van Praag [1981].
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Prob(y;; = 1 | selection on y;; = 1) = ®(y,'x;; + OA;),

is not, in fact, the appropriate conditional mean, or probability. For this particular application,
the appropriate conditional probability would be

D, (Y1X,1, V5X,55 P) .
D(Y5X,,)

Probly; = 1| yn = 1,X1,Xp] = (2.82)

We will use this result to build up the likelihood function for the three observed outcomes, as
follows:. The three types of observations in the sample, with their unconditional probabilities are

Y =0: Prob(y,=0 | X, X,)=1- q)(Y;Xi2)9
yi1=0,yp=1: Prob(y;; =0, yn = 1|X,,,X,,) = DO, (=Y ,X,;, ¥>X,,, — P), (2.83)
yia=Lyp=1:Prob(y;=1,y,=1 | X5 Xp )= q)z (Y;Xna ‘Y'2Xi2’ p)'

The log-likelihood function is based on these probabilities. For further analysis of the response,
note that

Elyin=1]|yo=1X1,Xx2] = Prob[y; =1]yn= LxiXz],

so the interesting partial effects in the model are the partial derivatives of the conditional
probability,

OE[yy |y =LX %] _ 1 0®,(yiXy, Y%, P)
0x,, D(y5X;,) OX,,
8l
= fy ,
D(y3x;,) 1
(2.84)
OE[yy | yi, =1,%,,X,,] _ 1 0D, (Y1X;15 Y1X;55 P)
0X,, D(y7x,,) ox,,
:( g D@, (Y1X45 VX005 P) O(Y3X,5) j
D(Yx,,) D(Yix,)  PHx,) )

where g;; and g;, are defined in (2.74).

The possibility that choice of Public insurance influences the reported health satisfaction
is considered in the sample selection model in Table 2.22. The estimate of p is high, -.6981, but
not statistically significant. The negative estimate does suggest that unobserved factors that it
make it more likely that the individual buys the insurance make it less likely that they would
report that they are healthier than average.
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Table 2.22 Estimated Sample Selection Model

tmmm B i e Fmmm +
| | HEALTHY | PUBLIC | |
| | 3911 Individuals Selected | 4483 Individuals |

| | LogL = -3998.974 | |

o e e fmmm +
|Variable| Coef S.E t P | Coef S.E t P |Mean of X|
tomm e o Fomm +
|Constant| .0056 .2708 .021 .9834 | 3.7196 1784 20.849 0000 | 1.0000 |
| AGE | -.0178 .0023 -=7.799 .0000 | 0005 0026 200 8416 | 43.4401

| EDUC | 0857 0183 4.677 0000 | -.1811 0099 -18.367 0000 | 11.4181 |
| INCOME | 4236 1659 2.553 0107 | -1.120 1486 =-7.537 0000 | .34874 |
|MARRIED | -.0245 0505 -.486 6269 | | 75217 |
|KIDS | 0962 0478 2.012 0442 | -.0146 0553 -.264 7920 | .37943 |
|[RHO(1,2) | -.6981 4139 -1.687 0916 | |

o Bttt e e e +

2.14 The Multivariate Probit and Panel Probit Models

In principle, a multivariate probit model would simply extend the bivariate probit model
to more than two outcome variables just by adding equations. The resulting equation system,
again analogous to the seemingly unrelated regressions model, would be

»E=vx +e, y =1 * >0)
»F=v0x, +e,, ¥, =1(y, * > 0),

Y F =YX e Y =100y, * > 0), (2.85)
Ele,, | x,,X,,....,X,,]=0,
Varle, | X;,X,,....X,, ]=1,

Covle, ey, | X;,Xy5 0 X =P as -

The joint probabilities of the observed events, [yi;, Vo . . ., Vi | Xi, Xizo - - ., Xang, i=1, ..., n
that form the basis for the log-likelihood function are the M-variate normal probabilities,

L =@, (q4Y X059 2 X250 Gins Y 1 Xing » R) 5
where
qim = 2y1m - 1:

R = qisGimpjm-

The practical obstacle to this extension is the evaluation of the M-variate normal integrals and
their derivatives. Some progress has been made on using quadrature for trivariate integration, but
existing results are not sufficient to allow accurate and efficient evaluation for more than two
variables in a sample of even moderate size. However, given the speed of modern computers,
simulation-based integration using the GHK simulator or simulated likelihood methods do allow
for estimation of relatively large models.

The multivariate probit model in another form presents a useful extension of the random
effects probit model for panel data. If the parameter vectors in all equations in (2.85) are
constrained to be equal, we obtain what Bertschek and Lechner [1998] label the panel probit
model,

Vir* = Y%y + €, Yie = 1(vi* > 0),
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(€i1,€i2,- . -»&ir) ~ N[O,R].

The Butler and Moffitt [1982] approach for this model (as a random effects model) has proved
useful in many applications. But, their underlying assumption that Cov[g;,&; | = p is a substantive
restriction. By treating this structure as a multivariate probit model with the restriction that the
coefficient vectors are the same in every period, one can obtain a model with free correlations
across periods. (Hyslop [1999], Bertschek and Lechner [1998], Greene [2004 and 2008a,
Example 23.16], and Cappellari and Jenkins [2006] are applications.) Applications that employ
simulation techniques for evaluation of multivariate normal integrals are now fairly numerous as
well.

Bertschek and Lechner’s [1998] application analyzed innovation by a sample of 1,270
German manufacturing firms observed from 1984 to 1988. They were interested in a panel probit
estimator of the binary outcome. They used the GMM estimator suggested in Section 2.12 to
avoid the 5-variate normal integration necessary to compute full maximum likelihood estimates
of the panel probit model. The main variables of interest in the innovation equation were
measures of pressure from outside the industry, Imports and Foreign Direct Investment. Other
control variables included the log of sales, relative size of the firm, a measure of productivity and
sector dummy variables. Table 2.23 replicates Table 23.17 from Greene [2008a] and includes the
authors’ GMM estimates, the random effects estimates with common correlation coefficient, p,
and the full information maximum likelihood estimates using the GHK simulator for the
multivariate normal probabilities. The three sets of estimates are quite similar. The unrestricted
correlation matrix is, in fact, not extremely different from the equicorrelated case. A likelihood
ratio test of the hypothesis that the correlations are all equal can be based on the values given in
the table. For the 5(4)/2 — 1 = 9 restrictions, twice the difference in the log likelihoods is 25.4.
The 95% critical value from the chi squared table is 16.92, so on this basis, the hypothesis of the
equicorrelated case is rejected. One caveat to note is that basing a test on the difference between
an analytic log likelihood (the random effects model) and a simulated one (the panel probit
model) could be unreliable. A preferable approach would be to refit the panel probit model using
the same simulated random (or Halton) draws while imposing the restriction of the random
effects model.
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Table 2.23 Estimated Panel Probit Model

Full Maximum Likelihood Random Effects
Coefficients Using GHK Simulator BL GMM* p =0.578 (0.0189)
Constant —1.797* (0.341) 174 (0.37) —2.839  (0.533)
log Sales 0.154**  (0.0334) 0.15*  (0.034) 0.244 (0.0522)
Relative size 0.953*  (0.160) 0.95*  (0.20) 1.522 (0.257)
Imports 1.155*  (0.228) 1.14*  (0.24) 1.779  (0.360)
FDI 2426"  (0.573) 2.59%  (0.59) 3.652 (0.870)
Productivity ~1578  (1.216) ~1.91*  (0.82) ~2307 (1.911)
Raw material —0.292*  (0.130) 028 (0.12) —0477 (0.202)
Investment goods 0.224*  (0.0605) 0.21%  (0.063) 0.578 (0.0189)
log-likelihood ~3522.85 ~3535.55

Estimated Correlations

1984, 1985 0.460%  (0.0301) Estimated Correlation Matrix
1984, 1986 0.599** (0.0323) 1984 1985 1986 1987 1988
1985, 1986 0.643" (0.0308) 1984 1.000 (0.658) (0.599) (0.540) (0.483)
1984, 1987 0.540  (0.0308) 1985 0.460 1.000 (0.644) (0.558) (0.441)
1985, 1987 0.546™ (0.0348) 1986 0.599 0.643 1.000 (0.602) (0.537)
1986, 1987 0.610% (0.0322) 1987 0.540 0.546 0.610 1.000 (0.621)
1984, 1988 0.483*  (0.0364) 1988 0.483 0.446 0524 0.605 1.000
1985, 1988 0.446*  (0.0380)
1986, 1988 0.524*  (0.0355)
1987, 1988 0.605*  (0.0325)

AEstimates are BL's WNP-joint uniform estimates with k = 880. Estimates are from their Table 9, standard
errors from their Table 10.
*Indicates significant at 95 percent level, ** indicates significant at 99 percent level based on a two-tailed test.

2.15 Endogenous Sampling and Case Control Studies

In some studies, e.g., Boyes, Hoffman, and Low [1989], Greene [1992], the mix of ones
and zeros in the observed sample of the dependent variable is deliberately skewed in favor of one
outcome or the other to achieve a more balanced sample than random sampling would produce.
The sampling is said to be choice based. In the two studies noted, the dependent variable
measured the occurrence of a loan default, which is a relatively uncommon occurrence. To enrich
the sample, observations with y; = 1 (default) were oversampled. Intuition should suggest
(correctly) that the bias in the sample should be transmitted to the parameter estimates, which will
be estimated so as to mimic the sample, not the population, which is known to be different.
Manski and Lerman [1977] derived the weighted endogenous sampling maximum likelihood
(WESML) estimator for this situation. The estimator requires that the true population proportions,
®; and ®y, be known. Let p; and py be the sample proportions of ones and zeros. Then the
estimator is obtained by maximizing a weighted log-likelihood,

InL=3%" wInF(gyx,),

where w; = yi(®1/p1) + (1 — y:)(wo/po). Note that w; takes only two different values. The derivatives
and the Hessian are likewise weighted. A final correction is needed after estimation; the
appropriate estimator of the asymptotic covariance matrix is the sandwich estimator, H 'BH ' in
which H is the weighted second derivatives matrix and B is the weighted sum of outer products
of the first derivatives. (The weights are not squared in computing B.)

The assumption that the population proportions, ®, and ®, are known in advance is
somewhat optimistic. An alternative approach to the problem of choice based sampling is
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described by Johnson and Albert [1999, pp. 115-118] for the situation of a case-control study.
Consider an analysis of the occurrence in a population of death from an uncommon disease such
as lung cancer. A random sample of individuals would have to be followed (at potentially great
expense) for a long time to observe a sample of “responses” and even so, would produce a low
proportion of responders in the sampled group. A retrospective study might involve searching
patient records at a hospital to identify a group of patients who had died from lung cancer along
with a set of covariates. Another set of patient records would serve as the controls. The problem
with the analysis that now follows is the same as the one in the previous paragraph. The sample
is unlikely to be representative of the population.

Let S; = 1 denote the event that an individual in the population is sampled. (The authors
are using the term “population” in a subtly different manner than we have to this point. For the
case control study described here, the “population” would be the full set of case histories at the
hospital, not the full population of individuals in the country (state, world) that might or might not
have the disease. Some further assumptions would be needed to argue that what is learned from
the population at that hospital could be extended to the (super?)population outside the hospital.)
The probability that S; = 1 depends on y;. The target model is

Prob(y; = 1|x;) = F(y'x;),

however, the sample information provides only
Prob(y; = 1|5; = 1,x,),

and these may be very different. By Bayes Theorem,

Prob(y, = 1], =1,x,) = Prob(S, =1|y, =1,x,)Prob(y, =1]x,)
Prob(S; =1]x,)

_ Prob(S, =1]y, =1,x;)Prob(y, =1[x;)
Prob(S; =1| y, =1,x,)Prob(y, =1|x,) + Prob(S; =1| y, =0,x;)Prob(y, = 0| xi)'

Now, make two crucial assumptions to replace the Manski-Lerman assumption of known
population proportions. First, assume that the correct specification is a binary logit model and
that y contains a constant term, a. Second, assume that the probability that a responder is
sampled, Prob(S; = 1|y; = 1,x;) = A, a constant, and that the probability that a nonresponder is
sampled is also a constant; Prob(S; = 1|y; = 0,x;) = A¢. That is, the probability of an observation
being selected into the sample is independent of the covariates, x;, in the model. The two
assumptions produce

PI'Ob(S,':”X,') = 7\‘1 PI'Ob(yi = 1|X,’) + 7\.0 Prob(y,- = 0|X,‘).

It follows that
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a A, Prob(y, =1]x,)
A, Prob(y, =1|x,)+A,Prob(y, =0|x,)

Prob(y, =1|S, =Lx,)

exp(a +7'x,)

"1+ exp(a+7x,)
exp(a +7'x,) oY 1
"T+exp(a+yx,)  l+exp(a+yx,)

_ A, exp(a+v'x,)
A exp(a+yx,)+A,

(A, /hy)exp(o+7X,) _exp((o+1)+ Y'x,)
A/ hg)exp(a+y'x,)+1  T+exp((a+1)+7x,)

where © = In(A/A¢). Therefore, estimation of the binary logit model by maximum likelihood,
ignoring the sampling mechanism, produces the familiar consistent estimator of the slope
parameters, but a biased estimator of the constant term. The cost of the weaker assumptions in
this instance is that the analyst will be unable to obtain predictions of probabilities or partial
effects without the reliable estimator of a. But, the benefit is that inference about the slope
parameters, themselves, can proceed in spite of the nonrandom sampling mechanism.
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3

A Model for Ordered Choices

The ordered probit model in its contemporary, regression based form was proposed by
McElvey and Zavoina [1969, 1971, 1975] for the analysis of ordered, categorical, nonquantitative
choices, outcomes and responses. Their application concerned Congressional preferences on a
Medicaid bill." Familiar recent examples include bond ratings, discrete opinion surveys such as
those on political questions, obesity measures, preferences in consumption, and satisfaction and
health status surveys such as those analyzed by Boes and Winkelmann [2006a, 2006b] and other
applications mentioned in the introduction. The model is used to describe the data generating
process for a random outcome that takes one of a set of discrete, ordered outcomes. The health
satisfaction or opinion survey provide clear examples.

3.1 A Latent Regression Model for a Continuous Measure
The model platform is an underlying random utility model or latent regression model,
yi* :B'Xi+8ia 1= 1,...,1’1, (31)

in which the continuous latent utility or ‘measure,” y;* is observed in discrete form through a
censoring mechanism;

Vi =0 if py < y* <po,
= 1if po <y* <w, (3.2)
=2if W < y*<w

=Jif po <y* <.

Note, for purposes of this introduction, that we have assumed that neither coefficients nor
thresholds differ across individuals. These strong assumptions will be reconsidered and relaxed
as the analysis proceeds. The vector x; is a set of K covariates that are assumed to be strictly
independent of g; B is a vector of K parameters that is the object of estimation and inference. The
n sample observations are labeled i = 1,....,n. Long and Freese [2006, p. 183] caution that one
ought to ensure that the model to be considered here really is appropriate for the variable of
interest before embarking on the analysis. In their case, the question is whether the measured
outcome really is ordered. They cite an application of ordering of occupations. A ranking based
on, say, some prestige scale is likely to be completely different from a ranking of the same set of
outcomes based on expected income. The interpretation of the ordered outcome as a censoring of
an underlying continuously measured preference or other measure will provide a reliable guide as
to the appropriateness of the model. The thrust of the model is that the observed outcome is not
simply a set of discrete outcomes that by some criterion can be ordered; the observed outcome is
a monotonic (many to one) transformation of a single continuous outcome that naturally must be
ordered. The further example that Long and Freese pursue, in which the response variable is one

! See, as well, the discussion of Gurland et al. [1960] in Section 4.5 which anticipates some aspects of the
social science application.
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of “Strongly Disagree,” “Disagree,” “Neutral,” “Agree,” and “Strongly Agree” is a clear
example of a censoring of a naturally ordered underlying preference scale.

The model contains the unknown marginal utilities, 8, as well as J+2 threshold
parameters, L, all to be estimated using a sample of n observations, indexed by i = 1,....n. The
data consist of the covariates, x; and the observed discrete outcome, y; = 0,1,...,J. The assumption
of the properties of the “disturbance,” g;, completes the model specification. The conventional
assumptions are that g is a continuous random disturbance with conventional cumulative
distribution function (cdf), F(e;]x;) = F(g;) with support equal to the real line, and that the density,
fle)) = F'(g) is likewise defined over the real line. The assumption of the distribution of ¢;
includes independence from, or exogeneity of, x;.

The use of models for ordered outcomes arises in many literatures, as suggested in the
introduction. The literatures do have focal points at two centers, social sciences including
sociology, political science, economics and psychology and in bioassay, as discussed at length
below. A reading of the literature in both places suggests that social scientists are broadly
comfortable with the idea of the censoring mechanism as the data generating process behind their
samples of, usually, individual observations. Their counterparts in bioassay occasionally express
some ambivalence about the underlying regression. In Aitchison and Silvey’s [1957] canonical
application, there is no clear regression-based data generating process at work; if anything the
only stimulus in the model is the passage of time, and there are no “coefficients” or “responses”
in the equation. Nonetheless, there is a clear, if not perfect, correspondence between their
analysis and the ordered choice model. Snell [1964] in contrast, begins development of his model
with “We assume there to be an underlying continuous scale of measurement along which the
scale categories represent intervals.” Once again, however, the analysis to follow is not based on
a regression; the model relates to discovery of the threshold values in the presence of an
individual “effect.” But, the applications in the study clearly apply to continuous preference
scales, in one case a taste test and in another an opinion survey with answers terrible, poor, fair,
good, excellent.

The use of the latent regression to represent an underlying preference, or utility scale, and
the translation of the utility into a discrete indicator has critics in many quarters. A lengthy
discussion of the relevance (or irrelevance) of economics to the formulations appears in
Hammermesch [2004]. On the question, for example, of “how happy does your income make
you?” — the question analyzed at some length by Boes and Winkelmann [2006b — see, esp., pp. 4-
5) and illustrated below — Hammermesch asks whether it is meaningful to equate this
“happiness” with utility. We will then associate the measured outcomes with the supposed utility.
[For example, see Groot and van den Bring [2002, 2003b].) For better or worse, this is the
position reached by many of the social science applications where the models of ordered choice
are applied. They rest crucially on the notion of the underlying regression and the censoring
process that produces the measured outcome. Ferrer-i-Carbonell and Frijters [2004] take the
discussion yet another level deeper, and consider the underlying assumptions that must be at work
in order to use satisfaction measures to reflect underlying welfare measures.'

McCullagh [1980] analyzed a variety of applications involving cross tabulated data in
which one dimension is ordered:

(1) Tonsil size vs. carrier or not of streptococcus pyogenes,

(2) Income group vs. year.

(3) Frequency of disturbed dreams vs. age of boys aged 5-51,

(4) Quality of eye vision vs. sex,

(5) Response to a taste test survey vs. 5 unordered (unnamed) treatments.

' See, as well, Winkelmann and Winkelmann [1998].
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He states (on page 109)

Motivation for the proposed models is provided by appeal to the existence of an
underlying continuous and perhaps unobservable random variable. In bioassay this latent
variable usually corresponds to a “tolerance” which is assumed to have a continuous
distribution in the population. Tolerances, themselves, are not directly observable but
increasing tolerance as manifest through an increase in the probability of survival. The
categories are envisaged as contiguous intervals on the continuous scale.... Ordinality is
therefore an integral feature of such models and the imposition of an arbitrary scoring
system for the categories is thereby avoided.

At least to some extent, Anderson and Philips [1981, p. 22] seem unpersuaded;

It is often possible to argue that an ordered categorical variable is a coarsely measured
version of a continuous variable not itself observable. Thus, it is reasonable to assume
that the ordered categories correspond to non-overlapping and exhaustive intervals of the
real line. ... Although the existence of a latent continuous variable is not crucial for our
arguments, it makes interpretation easier and clearer.

They do suggest that in at least one application, a method of predicting the values of the
unobservable variable will be developed. Nonetheless, the development of their model begins
(on p. 23) with

Suppose that individuals are grouped into & ordered groups which are identified by an
ordered categorical variable y with arbitrarily assigned value s for the sth ordered group; s
= 1,....,k. The variable y is a convenient identifier for some of the arguments presented
later. The ordering of the groups is not, in general, based on any numerical
measurement. (Emphasis added.)

Anderson [1984, p. 1) seems to move in both directions at once:

Particular emphasis is placed on the case where y is an ordered categorical variable and
the category with y = y; is taken to be “lower” than the category with y =y, if i <j. .. In
principle, there is a single unobservable, continuous variable related to this ordered scale,
but in practice, the doctor making the assessment will use several pieces of information in
making his judgment on the observed category.

The notions of the latent continuous variable and the existence of a latent regressand are
not mere semantics. At least this is the point behind some of the preceding discussion.
Superficially, the same model will arise in any case. However, the underlying platform turns out
to be a crucial element of making sense of parameters that are estimated, and of interpretations of
the empirical model once obtained from the data. Consider, for example, also from Anderson
[1984, p.2].

The dimensionality of the regression relationship between y and x is determined by the
number of linear functions required to describe the relationship. If only one linear
function is required, the relationship is one dimensional; otherwise it is multidimensional.
For example, in predicting k categories of pain relief from predictors x, suppose that
different functions B;'x and B,'x are required to distinguish between the pairs of
categories (worse, same) and (same, better), respectively. Then the relationship is
neither one-dimensional nor ordered with respect to x. (Emphasis added.)
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Essentially, the observation is about adequacy of the functional form, but it does suggest a
complication in the underlying model. What if the outcomes, themselves, are manifestly ordered.
Precisely what does the last sentence imply about the model that is generalized in such a way as
to purposely be adequate to handle the full dimensionality of the outcome, essentially as if it were
not ordered at all? We will return to this issue below in the context of one of the “generalized”
ordered choice models.

3.2 Ordered Choice as an Outcome of Utility Maximization

The appearance of the ordered choice model in the transportation literature falls
somewhere between a latent regression approach and a more formal discrete choice
interpretation. Bhat and Pulugurta [1998] discuss a model for ‘ownership propensity,’

C; = kifand only if y;.; < Ci* <y, £=0,1,...K, y_| = —0, yg = +00, 3.3)

where C;* represents the latent auto ownership propensity of household i. The observable
counterpart to C;* is C;, typically the number of vehicles owned.! Agyemand-Duah and Hall
[1997] apply the model to numbers of trips. Bhat [1997] models the number of non-work
commute stops with work travel mode choice.] From here, the model can move in several
possible directions: A natural platform for the observed number of vehicles owned might seem to
be the count data models (e.g., Poisson) detailed in, e.g., Cameron and Trivedi [1998, 2005] or
even a choice model defined on a choice set of alternatives, 0,1,2,...2

The Poisson model for C; would not follow from a model of utility maximization, though
it would, perhaps, adequately describe the data generating process. However, a looser
interpretation of the vehicle ownership count as a reflection of the underlying preference intensity
for ownership suggests an ordered choice model as a plausible alternative platform. Bhat and
Pulugurta [1998] provide a utility maximization framework that produces an ordered choice
model for the observed count. Their model departs from a random utility framework that assigns
separate utility values to different states, e.g., zero car ownership vs. some car ownership, less
than or equal to one car owned vs. more than one, and so on (presumably up to the maximum
observed in the sample). A suitable set of assumptions about the ranking of utilities produces
essentially an unordered choice model for the number of vehicles. A further set of assumptions
about the parameterization of the model makes it consistent with the latent regression model
above.> A wide literature in this area includes applications by Kitamura [1987, 1988], Golub and
van Wissen [1988], Kitamura and Bunch [1989], Golob [1990], Bhat and Koppelmann [1993],
Bhat [1996], Agyemara-Duan and Hall [1997], Bhat and Pulugurta [1998] and Bhat, Carini and
Misra [1999].

One might question the strict ordering of the vehicle count. For example, the vehicles
might include different mixtures of cars, SUVs and trucks. Though a somewhat fuzzy ordering
might still seem natural, several authors have opted instead, to replace the ordered choice model
with an unordered choice framework, the multinomial logit model and variants.* Applications
include Bhat and Pulugurta [1998], Mannering and Winsten [1985], Train [1986], Bunch and
Kitamura [1990], Hensher, et al. [1992], Purvis [1994] and Agostino, Bhat and Pas [1996].
Groot and van den Brink [2003a] encounter the same issue in their analysis of job training
sessions. A count model for sessions seems natural, however the length and depth of sessions

!'See, e.g., Hensher, Smith, Milthorpe and Bernard [1992].

? Hensher et al. [1992].

3 See Bhat and Pulugurta [1998, page 64].

* See, again, Bhat and Pulugurta [1998] who suggest a different utility function for each observed level of
vehicle ownership.
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differs enough to suggest a simple count model will distort the underlying variable of interest,
‘training.’

While many applications appear on first consideration to have some ‘natural’ ordering,
this is not necessarily the case when one recognizes that the ordering must have some meaning
also in utility or satisfaction space (i.e., a naturally ordered underlying preference scale) if it
assumed that the models are essentially driven by the behavioral rule of utility maximization. The
number of cars owned is a good example: 0,1,2, >2 is a natural ordering in physical vehicle
space, but it is not necessarily so in utility space.

Ordered and unordered discrete outcome models have distinct conceptual and econometric
properties. An unordered model specification is more appropriate when the set of alternative
outcomes representing the dependent variable does not follow a natural ordinal ranking. In
unordered models, the utility functions specified by the researcher might be different for each
alternative. Different attributes may enter into one or more utility expressions, with a general
constraint that no single attribute can appear in all utility expressions simultaneously.! By
contrast, the ordered choice model has a single utility expression with thresholds, such as in our
example in the introduction.

The discussion to follow will focus on applications in which the underlying choice or
intensity variable produces a naturally strictly ordered observable counterpart, such as a survey
statement of the strength of ones preferences. Save for a brief reconsideration in Section 5.1.2,
we will not consider unordered choice models further in this review.” The use of the ordered
choice model as a framework for analyzing counts, such as of vehicles owned, remains a
possibility under the preceding interpretations. However, once again in the interest of brevity, we
will not consider this particular application apart from the general analysis of the model.

3.3 An Observed Discrete Outcome
A typical social science application might begin from a measured outcome such as:

“Rate your feelings about the proposed legislation as

0 Strongly oppose

1 Mildly oppose

2 Indifferent

3 Mildly support

4 Strongly support.”

The latent regression model would describe an underlying continuous, albeit unobservable,
preference for the legislation as y;*. The surveyed individual, even if they could, does not
provide y;*, but rather, a censoring of y;* into five different ranges, one of which is closest to their
own true preferences. By the laws of probability, the probabilities associated with the observed
outcomes are

Prob[y; =j | x;] = Prob[e; < w,—B'x;] — Prob[p., — B'x;],j=0,1,....J. (3.4)

It is worth noting, as do many other discrete choice models, the ‘model’ describes probabilities of
outcomes. It does not directly describe the relationship between a y; and the covariates x;; there is
no obvious regression relationship at work between the observed random variable and the
covariates. This calls into question the interpretation of B, an issue to which we will return at
several points below. Though y; is not described by a regression relationship with x; —i.e., y; is

! See Hensher, Rose and Greeene [2005].
? Hensher, Rose and Greene [2005].
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merely a label — one might consider examining the binary variables,

m; = 1ify; =jand 0 if not,
or

M; = 1ify; < jand 0 if not,
or

M;' = 1 if y;>jand 0 if not.

The second and third of these as well as m;, can be described by a simple binary choice (probit or
logit) model, though these are usually not of interest. However, in general, there is no obvious
regression (conditional mean) relationship between the observed dependent variable(s), y;, and x;.

Several normalizations are needed to identify the model parameters. First, in order to
preserve the positive signs of all of the probabilities, we require p; > ;. Second, if the support is
to be the entire real line, then u; = —oo and pu; = +oo. Since the data contain no unconditional
information on scaling of the underlying variable — if y;* is scaled by any positive value, then
scaling the unknown p; and B by the same value preserves the observed outcomes — an
unconditional, free variance parameter, Var[e;] = o,°, is not identified (estimable). It is
convenient to make the identifying restriction o, = a constant, 6. The usual approach to this
normalization is to assume that Var[g]x;] = 1 in the probit case and 7*/3 in the logit model — in
either case to eliminate the free structural scaling parameter. (See Section 2.2.3 for this
development for binary choice models.) Finally, assuming (as we will) that x; contains a constant
term, we will require py = 0. (If, with the other normalizations, and with a constant term present,
this normalization is not imposed, then adding a constant to i, and the same constant to the
intercept term in B will leave the probability unchanged.)

We note at this point a minor ambiguity in the received literature. Some treatments omit
the overall constant term in 8 and, in turn, omit the now unnecessary normalization p, = 0. The
counterpart in these treatments is By = 0, where [3y is the overall constant term. In related fashion,
some treatments (e.g., the Stata and SAS software packages) translate the outcome variable to y; =
1,2,....J, which produces a different count of possible outcomes. We have maintained the
formulation above for two reasons. First, most empirical applications in our experience are based
on data that actually contain zero as the origin — e.g., the GSOEP data analyzed by Boes and
Winkelmann [2006a, 2006b]. Second, as we have formulated the model, the familiar binary
choice (probit and logit) models are useful parametric special cases that do not require a
reformulation of the entire model. This feature is noted elsewhere by some of the authors
discussed below.

The standard treatment in the received literature completes the ordered choice model by
assuming either a standard normal distribution for g;, producing the ordered probit model or a
standardized logistic distribution (mean zero, variance n*/3), which produces the ordered logit
model. Applications appear to be well divided between the two. A compelling case for one
distribution or the other remains to be put forth — historically, a preference for the logistic
distribution has been based on mathematical convenience and because of its ready revelation of
“odds ratios” in a convenient closed form." Contemporary software such as Stata and NLOGIT
have automated menus of other distributional choices, for example, the asymmetric
complementary log log and extreme value distributions. However the motivation for these
distributions is even less persuasive than that for a preference for probits over logits. These two

' But, see Berkson [1951] who “prefers logits to probits” in a direct response to Finney. Unfortunately,
Berkson’s arguments will not help to resolve the issue in the setting of this book. More recently, Hahn and
Soyer [2009] argue that one model or the other can be preferred based on a fit measure. See, as well,
Chambers and Cox [1997].)

93



Modeling Ordered Choices

overwhelmingly dominate the received applications; the others seem more than anything else to
be gadgets that are straightforward to program in the software.'

3.4 Probabilities and the Log Likelihood

With the full set of normalizations in place, the likelihood function for estimation of the
model parameters is based on the implied probabilities,

Probly; =j | x;] = [F(i;—B'x) — F(wa —Bx)] >0,/=0,1,....J. (3.5)
Figure 3.1 shows the probabilities for an ordered choice model with three outcomes,

Prob[y, = 0jx] = F(0~p'x) — F(-oo— p'x) = F(-p'x)
Probly, = 1)x] = F(-B'x) = F(u — p'x) (34)
Probly, =2[x] = F(+o0—p'x)~ F(u — ') = 1~ F(u — p'x)

Frobabilities for an Ordered Choice Model
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Figure 3.1 Underlying Probabilities for an Ordered Choice Model

3.5 Log Likelihood Function

Estimation of the parameters is a straightforward problem in maximum likelihood estimation.
(See, e.g., Pratt [1981] and Greene [2007a, 2008a].) The log likelihood function is

logl = X3/ m, log[F(u, ~ B'x)~F(u,_, — B'x)], (3.6)
where m; = 1 if y; =j and 0 otherwise. Maximization is done subject to the constraints p.; = —oo,

Ko = 0 and p,; = +oo. The remaining constraints, L., < p; can, in principle, be imposed by a
reparameterization in terms of some underlying structural parameters, such as

'An exception is Han and Hausman [1986], who present a model in which an ordered extreme value model
emerges naturally. We will examine their model in Chapter 12. A similar example of duration modeling
by Formisiano et al. [2001] is described by Simonoff [2003, pp. 435-448].
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K= o texp(oy)
x_exp(a, ),

however, this is typically unnecessary. See, e.g., Fahrmeier and Tutz [2001]. (It is necessary in
the generalizations suggested in Chapters 7 and 8.) Expressions for the derivatives of the log
likelihood can be found in Section 5.9.5 and in McElvey and Zavoina [1975], Maddala [1983],
Long [1997], Stata [2008] and Econometric Software [2007].

The most recent literature (since 2005) includes several applications that use Bayesian
methods to analyze ordered choices. Being heavily parametric in nature, they have focused
exclusively on the ordered probit model.' Some commentary on Bayesian methods and
methodology may be found in Koop and Tobias [2006]. Applications to the univariate ordered
probit model include Kadam and Lenk [2008], Ando [2006], Zhang et al. [2007] and Tomoyuki
and Akira [2006]. In the most basic cases, with diffuse priors, the “Bayesian” methods merely
reproduce (with some sampling variability) the maximum likelihood estimator.” However, the
MCMC methodology is often useful in settings which extend beyond the basic model. We will
describe below, for example, applications to a bivariate ordered probit model (Biswas and Das
[2002]), a model with autocorrelation (Czado et al. [2005] and Girard and Parent [2001]) and a
model that contains a set of endogenous dummy variables in the latent regression (Munkin and
Trivedi [2008].)

3.6 Analysis of Data on Ordered Choices

Analysis of ordered outcomes appears at many points in the literature since its (apparent)
emergence with Aitchison and Silvey [1957]. As discussed below, what sets McElvey and
Zavoina apart is their adaptation to social science applications — the analysis of individual data.
The central focus of the applications in bioassay was, and is, on grouped data and the analysis of
proportions. Likewise, the widely cited survey by McCullagh [1980] focuses on cross tabulated
data. The analysis of individual data, in a regression-like setting was relatively new at this point
in the literature. Cox [1970], Finney [1971], Theil [1969, 1970, 1971] among others make
mention of analysis of individual binary data. Walker and Duncan [1967] develop at length the
sorts of applications considered here, with individual data. But McElvey and Zavoina [1975]
appear to be the first the first to extend the ideas of the ordered choice analysis to a model that
was closely akin to regression modeling in cross sections of social science data. We will pursue
this dichotomy in the next chapter, on the antecedents to the ordered probit (and logit) models.

'See Congdon [2005] for brief Bayesian treatment of an ordered logit model.
? In this connection, see Train [2003] and Wooldridge and Imbens [2009b] for discussion of the Bernstein —
von Mises result.
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A

Antecedents and Contemporary Counterparts

McElvey and Zavoina’s proposal is preceded by several earlier developments in the
statistical literature. The chronology to follow does suggest, however, that their development
produced a discrete step in the received body of techniques. The obvious starting point was the
early work on probit methods in toxicology, beginning with Bliss [1934a] and made famous by
Finney’s [1947b] classic monograph on the subject. The ordered choice model that we are
interested in here appears in three clearly discernible steps in the literature, Aitchison and
Silvey’s [1957] treatment of stages in the life cycle of a certain insect, Snell’s [1964] analysis of
ordered outcomes (without a regression interpretation) and McElvey and Zavoina’s [1975]
proposal of the modern form of the “ordered probit regression model.” Some later papers, e.g.,
Anderson [1984] expanded on the basic models. Walker and Duncan [1967] is another discrete
step in the direction of analyzing individual data.

4.1 The Origin of Probit Analysis: Bliss [1934], Finney [1947]

Bliss [1934a] tabulated graphically the results of a laboratory study of the effectiveness
of an insecticide. He plotted the relationship between the “Percent of Aphids Killed” on the
ordinate and “Milligrams of Nicotine Per 100 ML of Spray” on the abscissa of a simple figure,
reproduced here as Figure 4.1. The figure loosely traces out the familiar sigmoid shape of the
normal cdf, and in a natural fashion provides data on what kill rate can be expected for a given
concentration of nicotine.

KILLED

PERCENT OF APHIDS

A D R R

0 50 100 150 200 250
MILLIGRAMS OF MNICOTINE PER 100 ML. OF SPRAY

Fie. 1. Net mortality of Aphis rumicis L. sprayed in
laboratory with different solutions of nicotine; summary
of results over 3-year period. Tattersfield and Giming-
ham.+ Heavy curve is same as that in Fig. 2 transposed
back to original units.

Figure 4.1 Insecticide Experiment
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The inverse question — “what concentration is necessary to achieve a given kill rate?” — is
answered by inverting the function in the figure. Writing

pi = Flc) 4.1)

for the former, Bliss suggested that the latter could be answered by analyzing
&= F'(p). “42)

The “Method of Probits™ is carried out simply by referring the percent kill, p; to a table to
determine the value of ¢; of interest. The question can also be answered from the figure by
moving eastward from the kill rate of interest to the figure then downward to the concentration.
A common application involved elicitation of the lethal dose needed to achieve a 50% kill rate,
denoted LD50. ' An obvious flaw in the method just described (by the authors, not by Bliss) is
that different situations would provide different shaped curves, and the preceding provides no
accommodation of that. His search of the then current literature suggested to Bliss that analysts
had used a variety of freechand drawing methods to accommodate this kind of heterogeneity,
methods that were subject to errors and approximations. Bliss [1934a, p. 38] goes on to suggest
“It is believed that these and other difficulties can be minimized if percentage kill and dosage are
transformed to units which may be plotted as straight lines on ordinary cross section paper and
hence permit fitting by the customary technique of least squares or of the straight line regression
equation.”
Superficially, Bliss suggests that (4.1) be modified to accommodate the heterogeneity:

pi = Fla+ Bey). 4.3)

What is needed for the “transformation to units...” is a definition of the specific function, F(.), for
which he chose the normal distribution. The inverse transformation is

o+ Be; = Fl(p) = ©'(p)) = normit(p)) = y. (4.4)

It being 1934, computation of the normits was another difficult hurdle. Bliss relied on a table
published by Pearson [1914], “Tables of the Normal Probability Integral” in Pearson’s Tables for
Statisticians and Biometricians which is reproduced in Figure 4.2. Dealing with negative
numbers was a complication of some substance in 1934, so Bliss suggested the “probability unit”
or “probit”

probit(p;) = normit(p;) + 5. (4.5)

Probits for a number of values of p; are given in Bliss’s Table I reproduced below in Figure 4.2.
These are Bliss’s probits. Note that the value associated with 50% is 5.00, not 0.00. A
remaining problem is how to handle the extreme tail values. Bliss assigned the value 0.00 to
0.01% and 10.00 to 99.99%. The level of inaccuracy for the intervening values was taken as
tolerable. It is intriguing to note, the Pearson Tables (volumes of them) were themselves
computed by hand (around 1910). Indeed, though the accuracy of the figures in Bliss’s table is
noteworthy given when and how they were computed, it is, in fact, quite lacking in absolute
terms. Figure 4.3 shows the percentage error in Bliss’s (Pearson’s) probits. The errors are quite

'See Finney [1944a,b, 1947a] or [1971], for examples.
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large at the tails and clearly not random. An approximation was being used that systematically
degrades as the probability moves away from 0.5 in either direction.

TABLE T
Per Per Per Per
cent. Probits cent. Probits cent. Probits cent. Probits
kill kill kill kill

1.0 1.87 50.0 5.00 80.0 6.13 095.0 7.21
5.0 2.79 52,0 5.07 B1L.0 6.18 96.0 7.35
10.0 3.28 540 5.14 82.0 623 97.0 7.53
15.0 3.61 56.0 5.20 83.0 6.28 98.0 7.76
20.0 3.87 58.0 527 B4.0 6.34 085 7.92

25.0 4.09 60.0 5.34 B85.0 639 99.0 813
30.0 4.30 62.0 5.41 86.0 645 991 818
34.0 444 640 5.48 B7.0 651 992 824 .
36.0 452 66.0 5.56 88.0 6.58 09.3 830
38.0 459 68.0 5.6  89.0 6.65 994 838

40,0 466 70.0 5.70 90.0 6.72 0995 B8.46
42.0 4.73 720 5.78 91.0 6.80 99.6 857
44.0 4.80 74.0 5.86 920 6.80 99.7 8.69
46.0 4.86 76.0 595 93.0 698 098 8.87
48.0 498 78.0 6.04 04.0 7.00 999 9016

Figure 4.2. Table of Prbbits for Values of p,.

Percentage Error in Fisher Table of Inverse Normal

Percentage Error

00 a1 22 33 A5 56 67 T8 89 1.00

Figure 4.3 Percentage Errors in Pearson Table of Probability Integrals
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As the model is stated above, any two points suffice to determine a and B. To
accommodate the inevitable sampling variability, the (implied) model must be modified to

pi = ®(at e+ &) (4.6)

No assumption about the distribution of &; is necessary; ¢; is just sampling variability. A mean or
median of zero would be a convenient normalization. Bliss then suggests the method of least
squares to estimate o and 3, which might suggest that he relied (again implicitly) on symmetry of
the random errors, €;. This would be the evident origin of probit analysis. Other authors had been
doing similar analyses for several years. But, this was the first point at which the technique was
formalized using the inverse probability function (and the normal distribution).!

Bliss cites several advantages of his method:

(1) It provides a test of normality (of €). (One could examine the variation of F'(p;) around the
fitted regression line.)

(2) It includes the ability to do the analysis using logarithms.? (At least it makes it simpler.)

(3) It suggests a method of determining whether organisms exposed to each dosage were
equivalent and the amounts administered experimentally were uniformly proportional to the
effective dosage over the range covered by the experiment. (This is examined by exploring
the regression relationship.)

(4) It allows the analyst to see “the disclosure of change in the mode of lethal action with certain
poisons over different sections of the dosage range indicated by an abrupt change in the slope
of the regression.” The figure that is shown for this case in the article (shown as Figure 4.4) is
equivalent to the introduction of a linear spline in the function based on the log of the dosage,
ie.,

pi = ®{a+ BlogDosage; + y[1(logDosage; > 1.35) x (logDosage; — 1.35)] + &; }.}

(5) It allows a simple method of expressing in the slope of a straight line, the relative uniformity
or diversity between individuals in their susceptibility to a poison. (This seems to relate to the
inherent variability of freehand methods used previously.)

In three editions of his celebrated book on the subject of probit analysis, Finney [1947b,
1952, 1971] refined Bliss’s methods and applied them to a wide array of experiments. A major
practical development in the progression of this work was the advent of software and computers
for maximum likelihood methods, including Finney’s own contribution to this market, a program
that he named BLISS in recognition of his predecessor. *

" In Bliss [1934b], the author notes that two other researchers, Hemmingsen [1933] and Gaddum [1933]
had used essentially the same method in a study of toxicity in mice.

2 See Greene, Knapp and Seaks [1993].

3 See Greene [2008a, pp. 111-112].

* See ISI [1982].
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Figure 4.4. Implied Spline Regression in Bliss’s Probit Model

4.2 Social Science Data and Regression Analysis for Binary Outcomes

To this point, and in the studies noted below, the collection of methods is applied to
sampling situations involving grouped data, that is proportions. The samples involved in the
analyses described here consisted of observations (n;p;,x;), i = 1,....n. That is, a group size, a
proportion of “responders” and a level of the stimulus. The literature was into the 1970s before
researchers began to extend the techniques to individual data. See, for example, the “Frontiers”
section of Theil [1971]. The formal treatment of individual data for ordered choices — the sort of
data observed by social scientists — begins with Walker and Duncan [1967] in the bioassay
literature and appeared first in the social sciences in 1971 and 1975 with McElvey and Zavoina’s
work.

The development of the “minimum chi squared” approach to estimation, and the
development of estimation methods as something closer than before to regression analysis might
be seen as a bridge between these literatures. Berkson [1944, 1953, 1955a,b, 1957, 1980] and
Amemiya [1975, 1980, 1985] suggest an approach to estimation along the lines of

pi = Flo+Be) + & (4.7)

That is, the sampling variability in estimation is laid on the sample proportion, p;, as an estimator
of the population quantity, F(o. + Be;)." Under this interpretation, the logit of p;, log p/(1-p;), or
normit transformation, ®"'(p;) would seem to be less useful, since now the sampling variability is
moved inside the function. A two step or iterative application of weighted least squares, the
minimum chi squared estimator provides an approach that accounts for the nonlinearity of the
function and the heteroscedasticity in p;.”

' Walker and Duncan [1967, p. 169], drawing on Gurland and Dahm [1960], also took precisely this
approach to modeling probabilities. However, they were concerned with individual data, not sample
proportions. We will examine Walker and Duncan’s analysis in Section 4.5.

? See, e.g., Amemiya [1981] and Greene [2003, Section 21.4.6].
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The analysis of the population probability, F(a + Pc;), as the conditional mean in a
regression relationship can be carried over to a setting of individual data. This line of approach
comes to fruition in the class of “Generalized Linear Models” (GLIM)." The GLIM approach to
modeling binary data embodies the regression interpretation of the probability function and
extends easily to the analysis of individual data.

4.3 Analysis of Binary Choice

By 1975, analysis of binary data by social scientists, in grouped or individual form, using
maximum likelihood, or minimum chi squared estimators had become common. The GLIM
approach had likewise appeared in bioassay.” Surveys of varying length of estimation involving
binary choices are given in Cox [1970], Finney [1971], Amemiya [1981], Long [1997], Greene
[2007a, 2008a] and dozens of other primers and introductions.

4.4 Ordered Outcomes: Aitchison and Silvey [1957], Snell [1964],

Analysis of a dichotomous response (always in grouped form, however), is well
developed by the 1940s. Analysis of ordered responses that are of interest in this study, begins in
1957 with an extension to Finney by Aitchison and Silvey [1957]. The other relevant antecedent
is Snell’s [1964] parallel development of an (only) apparently different treatment of ordered
outcomes. In what follows, we will use the authors own notation, though contemporary
treatments use a uniformly different flavor of notation.

The modeling exercise considered by Aitchison and Silvey [1957] is as follows: Sample
observations are made on a species of insect Petrobius Leash (Thysanura, Machilidae) that passes
through s+1 stages in its life cycle. A particular insect is necessarily observed in one stage at any
point in time. The last stage is always reached. Observations are made at m different times,
denoted x,, o = 1,...,m. The amount of time spent by an insect in stage i, (i=1,...,5) is an
observation on a nonnegative random variable, £, Interest is in estimation of A; = E[E;] = the
average amount of time that will be spent in stage i. The total time spent in stages 1,...,7 is 1, =

27 &, , also a nonnegative random variable. Interest might be in estimation of w. = E[n,] as well.

Since A; = W; — Wi, A; is estimable from ;.
Total time spent in stages up to the observation, 1),, is a continuous random variable with
Pr(n, <x) = G.(x). Probabilities of observation of an insect in the s+1 stages at time x are

m(x) = Pr(;>x) = 1-Gi(x),
m(x) = Pr(m <xandn,>x)
= Pr(n; <x) —Pr(n; <x and n, <x)
Pr(n; <x) — Pr(my, <x)
G1(x) — Gax).

(This makes use of the result that if n, <x, then n,.; <x.)

TCS(X) = Gs(x)st—l(x)a
T1(x) = Gy(x).

! Nelder and Wedderburn [1972] and McCullagh and Nelder [1983].
2 Grizzle et al. [1969], Nelder and Wedderburn [1972] and Wedderburn [1974], and, see, McCullagh and
Nelder [1983] and Pregibon [1984].
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The proportions of insects (subjects) observed in stage s at time x, p,(x) are moment estimators of
my(x). Estimation of the means is based on the model assumption that the random variables 1, are
normally distributed with mean L, and standard deviation 9,, so

G(x) =O[(x— )0

The authors consider method of moments estimation of u, and 6,. Let p, denote the sample
estimate of m.(x,). That is, p, is the proportion of subjects in stage r at time x,. Then the
relationship above suggests

' (Py) = Yu = x4/0,— 1,/0,.

They observe, then, “for given r a straight line fitted to the points (x,,Y,) will cross the x-axis
near the maximum likelihood estimate of p,, while the gradient will approximate to the
maximum-likelihood estimate of —0,".” By this device, all the parameters of this model may be
estimated. Some obvious problems will arise with data sets in which p,, is near zero or one.
Moreover, estimation of the scale parameters was complicated, so they considered model
simplifications, arriving at 0, = o’ and then using, instead, maximum likelihood based on the
method of scoring. The authors, noting the connection to Finney’s work, label this a “generalized
probit model.” Although the preceding does not involve the same sort of estimation problem as
Finney’s (in short, the coefficient on x in this model is 1/6, and we are, in principle, only
estimating the threshold values), there is an obvious relationship. They state (p. 139)

Clearly a situation might arise where in place of a simple dichotomy, [Finney’s case]
subjects are divided into more than two classes by any dose of the stimulus.
Accordingly, we envisage an experiment where random samples of subjects are subjected
to m does x, (o = 1,2,...,m) of a stimulus and as a result of the application of the dose x,
each subject is placed in one of s+1 classes. A straightforward illustration of such an
experiment is given by Tattersfield, Gimingham and Morris [1925] who classified insects
subject to a poison as unaffected, slightly affected, moribund or dead. The particular
problem discussed above is another illustration if, in this case, time is regarded as the
stimulus.

Thus, Aitchison and Silvey have clearly laid the foundation for the ordered probit model
as we now understand it, albeit, the application described does not resemble it very closely. They
go on to suggest conditions that “must be satisfied in this general experiment in order that the
method of analysis used in our particular case should be applicable”

(i) The classes must be ordered, mutually exclusive and exhaustive.

(i) The reactions of a subject to increasing doses must be systematic in the sense that if
dose x places a subject in the ith class, then a dose greater than x is required to place
this subject in the jth class where j is greater than i.

Point (i) is obvious — the model is designed for ordered outcomes. The second point seems to
relate to the latent regression interpretation of the modern view of the model. The authors discuss
a “tolerance” for the given classes defined in the model, which the surrounding discussion
associates with levels of a latent variable that is observed by the analyst only through the class
observed. Finally, the authors note that “if s = 1 then the present analysis becomes an ordinary
probit analysis and it is in this sense that we have generalized probit analysis.”

Before leaving Aitcheson and Silvey, it is interesting to note that although their
application did not actually generalize probit analysis, the speculation in the paragraph noted
above, in fact, did. The application that they pursued is extended by Feinberg [1980] in what he
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calls the continuation ratio model." The model is a regression style model that is designed for
sequential (so, by implication, ordered) outcomes. The example given by Long and Freese is
faculty rank, which would typically include assistant, then associate, then full professor (and
perhaps instructor at the left and chaired professor at the right). The functional form is written for
m stages in the progression in which the probability that an observed individual is in stage m
given x is Pr(y = m|x) and the probability that they are in a higher stage is Pr(y > m|x). Then, the
“continuation model” for the log odds is

Pr(y=m[x)|_, o
0g{Pr(y>m|x)}_em P

It is not obvious how the ordering aspect of the outcomes enters this model. The requirement in
the model (and in university life) that for a given individual,

Pr(y <m|x) < Pr(y < m+1|x),

is induced by the fact that m+1 means there are more ranks at or below m than m+1, not that the
next rank has a higher order than the previous one. For the scenario described, the flaw in the
model would seem to be that it is a static model being used to describe a dynamic phenomenon.
Although one must pass through the stages in order (though individuals have been known to skip
stages), the probabilities in the model do not have any intrinsic relationship to the ordering of the
stages, but rather arise the same way if we merely count ranks.

Snell [1964] considers specifically analyzing a set of scores for a ranked set of outcomes
such as Excellent, Very Good, Good, Not Very Good, Poor, Very Poor, recorded, perhaps,
6,5,4,3,2,1 or the like. Conventional analysis of such data (Aitchison and Silvey [1957]
notwithstanding) was done using analysis of variance techniques, e.g., regression methods
assuming (a) normally distributed disturbances and (b) homogeneous variances.

Their departure point is “[w]e assume there to be an underlying continuous scale of
measurement along which the scale categories represent intervals.” The scale is divided into
intervals labeled k= 0,1,...,k by k+2 points, x_;, xo, X1,...,xx. Observations in the data, indexed by
i, consist of group size, n; and proportions, p;, j = 0,1,...,k. The underlying continuous
distribution function is denoted Py(x;). It is unclear what continuous random outcome this is
meant to refer to, in connection to the “7.” However, it is clear from the context that in fact what
is implied is that we describe the realization of a random variable, X; which is the unobserved
aforementioned “measurement.” Thus, by the construction above, the probability of observing an
individual in group i will be in category s; is equal to

P,‘()Cj) *P,‘()Cj_l), i= 1,...,m;j= 0,...,k.

[
1

Once again, the reference to above refers to a group, so it can only be inferred that what the
author has in mind is that group “i” consists of n; realizations of X;, and the preceding gives the
probabilities associated with each member of the group. (Note that there is nothing so far in the
data other than the observation subscript, 7, to distinguish the groups, e.g., no stimulus x;.) To

continue, “We take the distribution function to be of the form”
Pix)=[1+ e:xp(-f,~j)]'l = A(fj) (using a contemporary notation).

Finally, f; is defined to be the “logit” of the “proportion” Pi(x;),

! See, as well, Long and Freese [2006, pp. 221-222].
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Ji = 10g[Px)/(1- Px)))] = a; + bix;.

The model now has for each 7, a location parameter a; and a spread parameter b;, To impose
homoscedasticity on the data, they assume b; = 1. The log likelihood for the observed data is

logL(ay,...,amX.1,X0,....X3) = Z;’ilniZI;:Oplj log[Pl.j —Pi'j_l]

It is apparent that a normalization is required to use the entire real line, so xo = -co and x; = +oo.
He also notes “since the choice of origin is arbitrary, we take x; = 0.” (In fact, since there is no
other invariant constant term in the model, this last normalization is not necessary — it now
constitutes a substantive restriction.) The remainder of the analysis focuses on methods of
estimating m fixed effects a; and -2 threshold values, x;.

The parameters of the model can be loosely estimated by a method of moments type of
calculation. Approximate estimates of the threshold values x; are based on group size weighted
averages of the group proportions. Initial estimates of the fixed effects are computed using

<k
4; ==L, P;S;

where s; = (x; — x,.1)/2, j = 2,3,...,k-1. The two end points corresponding to the lower and upper
tails are problematic, and a solution, ultimately, s; = x; -1 and s; = x;.1+1, is suggested. Newton’s
method is used to complete the estimation.

Snell’s model is functionally equivalent to P(x;)) = A[x; — (—a;)] so that the log
likelihood function is

logl(ai,...,@mX1,X0,...,X;) = E;’;lnl.Zl;zopl.j log[A(xj +a;)- A(xjf1 + al.)] .

This corresponds to a modern form of the ordered choice model, though it should be noted that
the assumption of a different “effect,” a; for each cross section observation does not appear in the
recent literature. (It is estimable, perhaps counter to intuition, because there is more than a single
observation for each 7; there is a whole set of p;s for each i.)

It is worth noting as well, that the terms in the log likelihood function above are only
positive if the x; terms are strictly ordered. The initial, “approximate” values will certainly be,
because they are functions of the cumulative group proportions. But, the application of Newton’s
method that follows makes no mention of this restriction, and could break down numerically. The
method was only suggested in the text; the author used the approximate, method of moments
estimators in the applications.

Some of the closing remarks in the paper are intriguing.

The aim throughout this paper has been to present a method based upon a theoretical
model and yet to keep the procedure as simple as possible. For this reason, attention has
been directed very much towards an approximate solution.

The method of solution is the method of moments; in principle it could have been done with a
hand calculator. In 1964, Texas Instruments had just begun production of their first four function
calculators, so that might have been optimistic. However, IBMs 7090 series of mainframe
computers was already well established and the 360 series was on the near horizon. There would
have been no shortage of computing power. A computing language, Fortran (Formula
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Translation), had been invented in the 1950s. Snell does note that the iterative method “can easily
be carried out on a desk machine, and one iteration should be sufficient.”

The model upon which the method is based takes no account of the experimental design
behind the data.

We read this to state that there is no data generating process assumed to be at work here (though,
in fact, there must be one in the background — the data arise through some kind of stochastic
process; we have attached probabilities to the outcomes.) In fact, the method is semiparametric —
the fixed effects approach does stop short of regression. However, the choice of logistic
distribution was not entirely innocent. It was made for mathematical convenience, however the
numerical results depend on it. The same set of computations could have been done, at
considerable cost in complexity, using the normal distribution.

“Finally, there is no reason why the use of this technique should be restricted to
subjective measurement.”

4.5 Minimum Chi Squared Estimation of an Ordered Response
Model: Gurland, Lee and Dahm [1960]

Gurland, Lee and Dahm [1960, p. 383] considered the following analysis in bioassay:
(We will modify their notation slightly so that their model will fit more neatly into the discussion
used herein.)

Suppose N groups consisting of ny,...,ny houseflies are exposed to dosages xi,....xy,
respectively. Out of the n; flies exposed at dosage x;, suppose that at the given time of
observation,

;1 are dead, r;, are moribund, r;; are alive.
Write the observed proportions as

Pt = Falhi, pp = ro/ni, p = ris/ni =1 = pi — pp.
Let

Py = Elpal, Po = Elpnl, Ps=1-Py1— Py

be the corresponding expected proportions or true probabilities. Then, ...

P = ®(a; + Bx;) (1
Pil+Pi2 = (D((X2+Bxi),i:1,..., (2')
where

B =1/c, oy =-p/c, 0 = -p,/c.

... This assumes a normal tolerance distribution N[u;,6°] of lethal dosages and a normal
tolerance distribution N[u,,6°] of moribund dosages. Furthermore, y; > p,. Since a fly
becomes moribund before it dies, the expression in (2), which is the probability a fly is
moribund or dead, must involve the same parameter, § as in (1). If the B were not common,
the two curves would cross, but this is obviously not permissible since P;; + Pp > P;.
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Note, first, the interpretation of P; as E[p;] implies p; = P; + ¢;, as in Section 4.2. The authors
propose a regression approach to estimation of the model parameters, as opposed to maximum
likelihood estimation. They proceed to develop a weighted least squares (minimum chi squared)
estimator. Second, presumably, the normal distributions assumed above apply to the distributions
of tolerances across individual flies. It follows from their analysis, then, that for any
particular housefly, ¢ =1,...,n,

Prob(dead, |x;) = ®O[-w/c + (1/o)x;]
= Prob[T* < (1/o)x; — w/o],

Prob(dead;|x;) + Prob(moribund,|x;) = ®[-py/o + (1/0)x;]
Prob[T* < (1/6)x; — w/c],

where T* is the tolerance across flies in the experiment. This would appear to be precisely the
model ultimately analyzed by McElvey and Zavoina [1975]. There is a loose end in the
preceding which makes the model an imperfect precursor, however. The authors have avoided
the latent regression — they make no mention of it. They state specifically that there are different
tolerance distributions with the same variance but different means. But, they do force the same 3
to appear in both probabilities, arguing that without this restriction, we will be able, for some
dosage, x; to have the probability of dead or moribund be less than the probability of dead, which
is a contradiction of the axioms of probability. It does follow, however, that there are different
prior distributions for flies that will die after dosage x; and flies that will be moribund — i.e., the
different tolerance distributions. Thus, there is an ambiguity in the formulation as to what
random variable the assumed normal distributions are meant to describe. By a reasonable
construction, for example, we might infer that the distribution describes the observed flies only
after the reaction to the dosage.

The ambiguities notwithstanding, Gurland et al. [1960] have laid the platform for analysis
of ordered outcomes with something resembling a regression approach. The approach is still,
however, focused on the analysis of sample proportions. The minimum chi squared (iterated
weighted least squares) estimator that they develop is proposed because it “is simpler to apply.”

4.6 Individual Data and Polychotomous Outcomes: Walker
and Duncan [1967]

Walker and Duncan [1967] were concerned with the problem of using a large number of
covariates to analyze the probabilities of outcomes. The experiment in the study involved four
large surveys of individuals who were free of heart disease at entry to their study and who were
examined long after for the presence of (1) myocardial infarction (M), (2) angina pectoris (4P)
and (3) no coronary heart disease (CHD). After considering whether the first two categories
might be unordered or ordered, the authors opted to build a model for the latter. Previous
analyses had studied cross-tabulated data based on one or two factors and by age and sex. The
use of numerous other factors — the application involved 8 in addition to age and sex —
necessitated a different approach.

The three outcome model follows along the lines of Gurland et al. [1960] with two major
exceptions. First, the large number of factors compels analysis of the individual data, rather than
the sample proportions. Second, though only in passing, they note a natural characterization of
the data generating process as “Considered jointly they involve the further assumption that the
state of an individual described by the vector x, which is sufficient to entail the more severe form
MI, is certainly sufficient to entail the less severe form AP. If MI and AP are in reality grades of
severity of coronary disease, this assumption will hold at least approximately. If on the other
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hand these are distinct, even though closely related diseases, it is not likely to hold.” [Emphasis
added.] (p. 173.) Coupled with the assumption of the strict ordering of the outcomes, this does
sound like the rudiments of an “underlying regression” interpretation. If so, then the authors’
assumption of the logistic distribution as shown below completes the formulation of the ordered
logit model. Continuing, “The mathematical reflexion of this assumption is seen in the fact that
P, + P, > P,, which holds if and only if the ‘slope’ coefficient  is identical in (6.1) and (6.2), as
is easily shown.” (In fact, this is only the case if a, > a;. Otherwise, it is neither necessary nor
sufficient.)

Their three outcome model (where, as before, we have changed their notation for clarity)
is:

Zil = 1i1fMI; and O otherwise,
Zin = 1i1fAP; and O otherwise,
Zi = 1if CHD; and 0 otherwise,
P, = E[Zil|Xi],

P, = Elzalxi],

P =1-P —P,,

Elza|x;] =P = Aoy +B'x)),

Elzatzplx] = Pi+P; Aoz + B'x;).
To preserve the result P, + P, > P), it must also be true that o, > ;. The implied model structure
is
Prob(MI[x;) = Aoy + B'xy),
Prob(4P]x;) = Prob(Heart Disease|x;) — Prob(MI|x;) = A(o, + B'x)) — Aoy + B'x),
Prob(CHD{x;) =1-A(0; + B'x;).

Walker and Duncan are the first to pursue the analysis of ordered probabilities with individual
data. In fact, the latent regression model is not necessary to reach their model formulation; we
have superimposed our own interpretation on their model to obtain it. They, in turn, did not
appear quite ready to make the assumption. Their model is only consistent with that
specification. Indeed, what they have proposed is a mathematical model of a set of probabilities
that preserve the supposed (severity) ordering of the first and second outcomes. No appeal to a
latent regression is needed. On the other hand, quite clearly, it is a small extension to broaden
this model to include the formal ordered probit regression model proposed by McElvey and
Zavoina [1975].

4.7 McElvey and Zavoina [1975]

McElvey and Zavoina’s [1975] proposed model is described at length above. Based on
the preceding very short chronology, it would seem that their model was a significant jump
forward, not an increment to the existing machinery. In fact, neither Aitchison and Silvey [1957]
nor Snell [1964] proposed anything resembling a latent regression approach to the analysis of
ordered outcomes. There is an obvious hint in this direction at the end of the former, but no
direct modification of their proposed model would produce a regression style formulation.
Certainly, Walker and Duncan’s model can easily be made consistent with the structure proposed
by McElvey and Zavoina. But, McElvey and Zavoina were the first to formalize the model in
terms of an individual choice setting based on a theory of regression, and to develop an effective
iterative method of estimation. Walker and Duncan were in similar territory, but they relied on a
weighted least squares procedure and an algorithm based on a Kalman filter (Kalman [1960]) that
has not reappeared in the literature. McElvey and Zavoina [1975] and Walker and Duncan [1967]
were the also the first analysts to propose using individual data. Their predecessors relied entirely
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on grouped data (proportions), essentially on the method of moments (or maximum likelihood in
a few cases).

4.8 Cumulative Odds Model

As noted earlier, McCullagh [1977, 1979, 1980] is credited with codiscovering the
ordered choice model. The proposed model, shown below, is precisely a counterpart to the
ordered probit model. However, McCullagh stopped short of hanging the framework on a latent
regression. Though he departs from “Motivation for the proposed model is provided by appeal to
the existence of an underlying continuous random variable,” he goes on to state (1980, p. 110)

All the models advocated in this paper share the property that the categories can be thought
of as contiguous intervals on some continuous scale. They differ in their assumptions
concerning the distributions of the latent variable (e.g. normality (after suitable transformation),
homoscedasticity etc.). It may be objected, in a particular example, that there is no sensible
latent variable and that these models are therefore irrelevant or unrealistic. However, the
models as introduced in Sections 2.1 and 3.1 make no reference to thé existence of such a latent
variable and its existence is not required for model interpretation. If such a continuous
underlying variable exists, interpretation of the model with reference to this scale is direct and
incisive. If no such continuum exists the parameters of the models are still interpretable in terms
of the particular categories recorded and not those which might have obtained had the defining
criteria {6} been different. Quantitative statements of conclusions are therefore possible in both
cases although more succinct and incisive statements are usually possible when direct appeal to
a latent variable is acceptable.

McCullagh resists a commitment to an underlying regression. As he notes, however, it will
emerge ultimately that interpretation of the coefficients of the model without such an assumption
becomes a bit ambiguous.

Though the idea of the ordered logit model shown below is sometimes attributed to
McCullagh, elements of it appear earlier in Andrich [1979] and Plackett [1974], and McCullagh
cites Plackett for some of his results. The model proposed is based on a discrete random variable
with “k ordered categories of the response” with probabilities 7;(x), m(X), ..., T(x). (“In the case
of two groups, x is an indicator variable or two level factor indicating the appropriate group.”
This appears to suggest a contingency table sort of analysis, for which the “ordering” would be
superfluous.) The response variable, Y, takes values y = 1,....,k with the listed probabilities.
Define «;(x) to be the odds that ¥ < j given X. A relatively semiparametric approach is suggested,
e.g., by Agresti [2002],

exp(a; +B'x,

T, (X,) o,o.B, =0.

i exp(a, +Bix,)’

This is the multinomial logit model suggested, e.g., by Nerlove and Press [1972] and McFadden
[1971]. The problem then emerges how to accommodate ordered outcomes. The driving feature
would be Prob(y; = j|x;) > Prob(y; = j-1|x;). A “cumulative logit” formulation follows simply
enough as

). exp(a, +Bx,)

Prob(y;=j|x;)=I1.(x,) = ,o,_.,B,=0.
Or =/ = T, () =, exp(a, +Byx,)" B

Agresti [2002, p. 275] labels the version of the preceding model obtained by the restriction f3; = B
(including the last one) and the o, > a.; the “proportional odds” With this in place,
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Prob(y < /1%) g

logit[Prob(y. < j|x.)]=1o =
git[Prob(y, < j|x,)] gl—Prob(y,.sﬂx,.) ;

i

which is precisely the “ordered logit” model. Agresti [2002, p. 277] proceeds to motivate the
model with a latent regression, as done here in the previous chapter. Agresti anticipates King et
al’s [2004] work on scale heterogeneity at this point, by noting (on page 278):

In this derivation, the same parameters 3 occur for the effects on Y regardless of how the
cutpoints, o chop up the scale for the latent variable. The effect parameters are invariant
to the choice of categories for Y. If a continuous variable measuring political philosophy
has a linear regression with some predictor variables, then the same effect parameters
apply to a discrete version of political philosophy with the categories (liberal, moderate,
conservative) or (very liberal, slightly liberal, moderate, slightly conservative, very
conservative). This feature makes it possible to compare estimates from studies using
different response scales.

McCullagh’s “proportional odds model” specifies that
Ki(X) = k; x exp(-B'x),j = 1,...k.

The ratio of corresponding odds is

K(x1)/K(x2) = exp[-B'(x1 — x2)],

which is independent of j and depends only on the difference between the covariate vectors.
Given the odds ratio stated as above and defining y,(x) = m;(X) + ... + m{(x), the proportional odds
model becomes equivalent to

log[v(x)/(1-y(x))] = 6;-B'x,j = 1,...k.

This is mathematically identical to the familiar ordered choice model discussed earlier. Formally,
using a more recent notation,

Prob[y < j] = A(6; - B'x),

which once again is the ordered logit model. As the author notes, no appeal to an underlying
regression model is necessary to achieve this result. Remaining to be determined is the
mechanism by which the observed discrete random variable is assigned to £ exhaustive, exclusive
and ordered categories. The model is meant to apply to proportions, as shown in a series of
applications that follows. The application that follows immediately, however, does fall naturally
into the latent continuous measure framework, a study of tonsil sizes in a sample of 1,398
children (Holmes and Williams [1954]), shown in Table 4.1 (from McCullagh [1980, p. 111]).

Table 4.1 McCullagh Application of Ordered Outcomes Model
Tonsil Size of Carriers and Non-Carriers of Streptococcus Pyogenes

Present but Greatly

not enlarged  Enlarged enlarged Total
Carriers 19 29 24 72
Non-carriers 497 560 269 1326
Total 516 589 293 1398
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4.9 Continuation Ratio Model

For the case shown above, interpretation of the B in the “regression” will be simple, as it
will highlight the differences in the probabilities or odds for the outcomes in the two groups. For
more complicated kinds of regressors, for example, if age, height, or weight appeared in the data
set above, then interpretation of the coefficients would be much more complicated without resort
to a regression model of some sort, and a notion of “holding other things constant.” In his
analysis of this data set, Tutz [1990, 1991] argues that the higher outcomes (more to the right) can
only be reached by passing through the lower ones. This calls for a different approach, which he
labels the sequential model. The simplest case would be Agresti’s [1984] continuation ratio
model,

Prob(y =7 |y>r,x) = D(B, - B'x),

where D(.) is a transformation of the index. This yields the unconditional probabilities
' r-1 '
Prob(y =r|x)=D(6, -B)[ ] [1-D(6, -B'x)].

A variety of extensions are suggested. [For another survey of this and related models, see
Barnhart and Sampson [1994].)

4.10 The Ordered Regression Model

Anderson and Philips [1981] continue McCullagh’s development in two directions.
Researchers in this area work back and forth around the assumption of the latent continuous
variable and latent regression. Second, they introduced some results related to functional form.
As noted earlier, their departure point is “... an ordered categorical variable is a coarsely
measured version of a continuous variable not itself observable.” The model proposed is as
follows: “[I]ndividuals are grouped into £ ordered groups which are identified by an ordered
categorical variable y with arbitrarily assigned value s for the sth ordered group; s = 1,....,k. ... The
ordering of groups is not, in general, based on any numerical measurement.” (Evidently it is
based on some other latent quality, however.) A regressor vector, X, is defined. The Plackett
[1974, 1981] and McCullagh [1980] functional form is

eXp(es_ﬁ,X) S_O 1 k

Prob(y<s|x)= LS =
(y=s]x) 1+exp(6, —B'x)

where 0, <0, <.. <0, 0)=-0, 0 =+, (The author uses weak inequalities, though in order
to prevent zero probabilities for non-null events, strong inequalities are required.) It follows, as
we observed earlier, that

Prob(y = s|x) = A6, - B'x) - A(B,.1 - B'¥),

which is the “logistic model.” This is also labeled the “cumulative odds model” by McCullagh
[1980]. The authors suggest, instead, that we write

Prob(y < s|x) = ¥(6; - B'x),
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where W(.) is a “completely specified cumulative distribution function.” This is a generalized
“linear” model, but “nonlinear” versions are possible and are referred to in the discussion. The
above models will be called “ordered regression models.” (Emphasis added.) This is the first
occurrence of the term that we have encountered in this literature search.

The authors justify the model in terms of a latent unobservable, z, where, conditioned on
X, z has a logistic distribution. Although z is not observed, a related, grouped version of z, y, is
observable. Of course, this is precisely the interpretation that McElvey and Zavoina [1975] have
provided for the model. We have on the suggested basis,

y =5 if0. <z<0,(s=1,..k).

Note that assumptions are made only about the conditional distribution of z given x and y given x.
No assumption is made about the marginal distribution of x, which prompts the claim that these
models make only moderate distributional assumptions.

Anderson and Philips [1981] note “Other assumptions are possible for the form of the
distribution of z given x. One obvious choice is that this should be the normal distribution,
N(B'x,1), leading to the probit model,

Prob(y < s|x) = ®(6; - B'x).

Here, ®(.) represents the usual probit function. For practical purposes, the logistic and probit
models are virtually indistinguishable, but the logistic model of (1) and (2) is often preferred for
its computational convenience.” Thus, the ordered probit model is reborn, here in 1981.

Aitchison and Bennett [1970] is occasionally cited as another antecedent to the ordered
choice models considered here. In fact, they were concerned with a different setting altogether,
though it is intriguing to note that their formulation is precisely that used to motivate
McFadden’s conditional logit model [1974]. Since they did not consider ordered outcomes, we
will forego a detailed discussion of their results.

4.11 Other Related Models

Many authors have modified these models at various edges for different situations and
types of data. Some major references to examine for details are Agresti [1984, 1990, 2002],
Clogg and Shihadeh [1994] and Greenwood and Farewell [1988]. Before closing this review, we
note two that have particular relevance for our discussion.

4.11.1 Known Thresholds

Stewart [1983], Terza [1985] and Bhat [1994] examine a setting in which essentially the
conditions of the ordered probit model emerge, save that there is more information about the
censoring than merely the categories. An obvious example considered by these authors is given
by bracketed income data. When income data are censored into known ranges, the resulting data
generating process is precisely that of the ordered choice model except that the threshold values
are known. Suppose, for example, that y* = log of income is normally distributed with mean p =
B'x and variance 67, s0

ye=Bxtoe,

and the censoring mechanism is
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y =jif 4, <y* <4,

where A4;.; and A4; are known values. Then, the log likelihood is built up from the probabilities for
the observed outcomes;

Prob(y = j|x) = {@(Af_ﬁ,xj—q{/lf"—_m‘ﬂ. (4.8)
(e}

(e}

For this model, the parameters B and o are both identified (estimable). The ordering of the
outcomes is enforced a fortiori by the ordering of the known brackets. This model is, in fact, not
a discrete choice model in the spirit of the others that are considered here. Rather, it is a less
complicated censoring model more closely resembling the tobit model." There is a temptation to
treat this model using linear regression analysis, substituting, e.g., the midpoints of the brackets
for intermediate values and some reasonable value for the upper and lower ranges. The
temptation should be resisted, since (1) the likelihood for the data and the structural parameters is
well defined (and the estimator is available as a preprogrammed procedure in modern software)
and (2) least squares in this setting will be inconsistent. The OLS estimator will suffer from
truncation bias. The overall result is that because there is variation in x that is not associated with
variation in y, the OLS slopes will tend to be biased toward zero. The maximum likelihood
estimator, which does not display this feature, is easily obtained. We do note, however, if,
instead of midpoints, one uses for the substituted values

84, —B'x)/ 01— 4[(4, ~B'x)/ o]
o[(4, ~B'x)/o]-D[(4,, ~B'x)/o] |

Ely*| 4,1 <y*<A4;x] = B'x+o (4.9)

then, with an appropriate iterate for o as well as this implicit estimator for B, this is equivalent to
the EM algorithm [see Dempster, Laird and Rubin [1977] and Fair [1977]), and is an effective,
albeit inefficient way to compute the maximum likelihood estimators of ¢ and . (It will be slow
to converge compared to other gradient methods such as Newton’s method.) (McCullagh’s
[1980] second example is another application to income distribution data with known thresholds.)

4.11.2 Nonparallel Regressions

A second modification of the model, due to Anderson [1984] is of interest here. He notes
(on p. 4) “The ordering of the categories, or subsets of them, with respect to the regression
variables is open to question in some cases. Hence, we start with the logistic regression model
suitable for a qualitative, categorical response variable [Cox [1970], Anderson [1972]).” This is

exp(Bo, —BiX)
Zf:l exp([}o, —ﬁ;X) ,

Prob(y =y, |x) =

where By, = 0 and B; = 0 are introduced to simplify the notation. In fact, the function listed is
homogeneous of degree zero, and the “simplifications” are normalizations needed for
identification. This is precisely the multinomial logit model developed by McFadden, [1974] and
Nerlove and Press [1972]. Anderson proposes this model for unordered categorical outcomes.
He notes, in passing, however, that this model often “gives a good fit” even when the Bs are
“restricted to be parallel.” “This is particularly true when the categories are ordered.” That is to

" Tobin [1958], Amemiya [1985a, 1985b], Greene [2008a].
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suggest, the ordered choice model considered thus far embodies the restriction that the Bs are the
same. By a simple transformation of the ordered logit model, we find

logit(j) = log[Prob(y </ |x) / Pr(y > [x)] = - B, (4.10)

which means that Ologit(j)/0x = B for all j. This has come to be known as the “parallel
regressions assumption.”’ This feature of the model has motivated one form of the “generalized
ordered logit” (and probit) model. We will reconsider this generalization of the model in some
detail below.

4.12. The Latent Continuous Variable

Motivation of the ordered probability models is a recurrent issue in the literature
discussed in this chapter. The ordering of the observable, discrete outcomes, is often asserted
apart from an underlying process that could produce those outcomes. There are cases in which
the link between the two is ambiguous. The Hollingsworth scale for occupations and faculty
ranks (Agresti [1990]) are two cases suggested. In general, however, it would seem natural in
most cases that the superficial ranking of discrete outcomes would derive from some underlying,
continuous characteristic. Even the two cases mentioned can be related to an underlying
continuous, albeit unmeasurable scale of “professional achievement.” On this basis, nearly all of
the analysis to follow will be based on the latent regression model.

"'See, e.g., Long [1997, p. 141].
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S

Estimation, Inference and Analysis Using the
Ordered Choice Model

In this chapter, we will survey the elements of estimation, inference and analysis with the
ordered choice model. It will prove useful to develop an application as part of the discussion.

5.1 Application of the Ordered Choice Model to Self Assessed Health
Status

Riphahn, Wambach and Million (RWM, 2003] analyzed individual data on health care
utilization (doctor visits and hospital visits) using various models for counts. The data set is an
unbalanced panel of 7,293 German households observed from 1 to 7 times for a total of 27,326
observations, extracted from the German Socioeconomic Panel (GSOEP). (See RWM [2003] and
Greene [2008a] for discussion of the data set in detail.) Among the variables in this data set is
HSAT, a self reported health assessment that is recorded with values 0,1,..,10 (so, J = 10). Figure
5.1 shows the distribution of outcomes for the full sample: The figure reports the variable
NewHSAT, not the original variable. Forty of the 27,326 observations on HSAT in the original
data were coded with noninteger values between 6.5 and 6.95. We have changed these 40
observations to 7s. In order to construct a compact example that is sufficiently general to
illustrate the technique, we will aggregate the categories shown as follows: (0-2)=0, (3-5)=1, (6-
8)=2, (9)=3, (10)=4. (One might expect collapsing the data in this fashion to sacrifice some
information and, in turn, produce a less efficient estimator of the model parameters. See Murad
et al. [2003] for some analysis of this issue.) Figure 5.2 shows the result, once again for the full
sample, stratified by gender. The families were observed in 1984-1988, 1991 and 1995. For
purposes of the application, to maintain as closely as possible the assumptions of the model, at
this point, we have selected the most frequently observed year, 1988, for which there are a total of
4,483 observations, 2,313 males and 2,170 females. We will use the following variables in the
regression part of the model,

x = (constant, Age, Income, Education, Married, Kids).

In the original data set, Income is HHNINC (household income) and Kids is HHKIDS (household
kids). Married and Kids are binary variables, the latter indicating whether or not there are
children in the household. Descriptive statistics for the data used in the application are shown in
Table 2.1. We have used the same independent variables with the new ordered dependent
variable.

5.2 Distributional Assumptions

As suggested earlier, one of the ambiguities in the set of procedures for ordered choice
modeling is the distributional assumption. There seems to be little to determine whether the logit,
probit, or some other distribution is to be preferred. The logistic model has some mathematical
features to recommend it, but any of these, such as the computation of odds ratios can be
replicated under other assumptions, perhaps at some minor inconvenience (depending on one’s
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software). The deeper question of how the distributional assumption relates to the model
structure remains unresolved. Stewart [2003] proposes, beyond the familiar choices a
“seminonparametric generalized ordered probit” that is considerably more complicated than the
logit and probit models examined here. The model is automated in a Stata command however.
Stewart’s and other semiparametric approaches are developed in Chapter 12.
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Figure 5.1 Self Reported Health Satisfaction
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Figure 5.2 Health Satisfaction with Combined Categories
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5.3 The Estimated Ordered Probit (Logit) Model

Table 5.1 presents estimates of the ordered probit and logit models for the 1988 data set.
The estimates for the probit model imply

y*=1.97882 - .018064ge + .03556Educ + .25869Income
- .03100Married + .06065Kids + .

if p* <0

if 0 < y* <1.14835

if 1.14835 < y* < 2.54781

if 2.54781 < y* <3.05639

if y* > 3.05639.

ARSI
Il
EENIVS I S I =)

Figure 5.3 shows the implied model for a person of average age (43.44 years), education (11.418
years) and income (0.3487) who is married (1) with children (1). The figure shows the implied
probability distribution in the population for individuals with these characteristics. As we will
examine in the next section, the force of the regression model is that the probabilities change as
the characteristics (x) change. In terms of the figure, changes in the characteristics induce
changes in the placement of the partitions in the distribution and, in turn, in the probabilities of
the outcomes.

Probabilities for Estimated Ordered Probit Model
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Figure 5.3 Estimated Ordered Probit Model
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Table 5.1 Estimated Ordered Choice Models: Probit and Logit

- +
| TABLE OF CELL FREQUENCIES FOR ORDERED PROBABILITY MODELS

B it ettt et Rt e e +

| Frequency Cumulative < = Cumulative > =

| Outcome Count Percent Count Percent Count Percent |

| mmmmmmmmmm mmmm—m smmmoos oo —ooooos oo oo !

|HEALTH=00 230 5.1305 230 5.1305 4483 100.0000

|HEALTH=01 1113 24.8271 1343 29.9576 4253 94.8695

|HEALTH=02 2226 49.6542 3569 79.6119 3140 70.0424

|HEALTH=03 500 11.1532 4069 90.7651 914 20.3881

| HEALTH=04 413 9.2349 4483 100.0000 414 9.2349

Fomm————— Fom e Fmm e Fomm Fomm Fommmm +

o B it e o +
| | Ordered Logit | Ordered Probit |

| | LogL = -5749.157 | LogL = -5752.985 | \
| | LogL0 = -5875.096 | LogLO = -5875.096 |

| | Chisg = 251.8798 | Chisqg = 244.2238 |

| | PseudoRsg = .0214362 | PseudoRsqg = .0207847 |

F—————— Fm— Fm———— + Mean |
|Variable| Coef S.E. t p | Coef S.E. t P | of X
o e e o +
|Constant| 3.5179 2038 17.260 0000 9788 1162 17.034 .0000| 1.0000 |
| AGE | -.0321 0029 -11.178 0000|] -.0181 0016 -11.166 .0000] 43.4401 |
|EDUC | 0645 0125 5.174 0000 0356 0071 4.986 .0000| 11.4181 |
| INCOME | 4263 1865 2.286 0223 2587 1039 2.490 .0128] .34874
|[MARRIED | -.0645 0746 -.865 3868| -.0310 0420 -.737 .4608] 75217 |
|KIDS | 1148 0669 1.717 0861 0606 0382 1.586 .1127] .37943 |
|Mu (1) | 2.1213 0371 57.249 0000] 1.1484 0212 54.274 .0000|

|Mu (2) | 4.4346 0390 113.645 0000] 2.5478 0216 117.856 .0000]

|Mu (3) | 5.3771 0520 103.421 0000|] 3.0564 0267 115.500 .0000]

Fom——— o - o o +

5.4 The Estimated Threshold Parameters

The sample proportions might provide a motivation to choose the underlying distribution
to match the histogram of the observed outcome variable. But, the sample proportions in the
ordered choice model need not provide a histogram of the underlying distribution. For example,
Figure 5.4a provides a histogram of the variable “Husband’s Occupation” according to the
Hollingsworth scale (coded 1 — 6) in a sample of 6,366 observations.' The data seem to suggest a
leftward skew and might suggest a nonnormal distribution such as the complementary log log
model were one to consider an ordered choice model for this variable. However, there is nothing
in the formulation that would suggest a nonnormal distribution for the underlying random utility
model. The threshold parameters adjust to allocate the mass of the distribution to mimic the
sample, For this example, if the model were simply

a + g
j if -1 < y* < Hj,j:0:19293a495’

y* =
Y

(we have subtracted one from the observed variable), then the only parameters estimated would
be the constant term and the four thresholds. The six sample proportions, the sample cumulative
proportions, and implied values of the parameters are as follows:

y 0 1 2 3 4 5
p .0360 .2054 .0770 .3189 .2795 .0833
F .0360 L2414 .3184 .6373 .9167 1.0000
O (F) -a b - o M- o Hy - O W — o
Value -1.80 -0.70 -0.47 0.35 1.38 +00

! See Fair [1978] and Greene [2008, Appendix Table F24.1].
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Figure 5.4a,b shows the partitioning of the underlying normal distribution that is consistent with
these frequencies. The thresholds will adjust so that the probabilities from the normal distribution
will match the sample proportions. Note that this allocation is fully consistent with the
underlying normal distribution despite the somewhat non-normal appearance of the sample
proportions.

Hollingsworth Scale for Husband's Occupation

2236

w4 - — - — — — — — — — — — — _—

1g 4— — — — — -—_—— —— _—

Frequency

559 4— — — — — - -—_—- — — _—_——

HUSEQCC

Figure 5.4a Sample proportions

Implied Probabiliies for Hollingsworth Scale

/

.30

.20

Standard Normal Density

1 T 1 T T T T
Bl -2 1 Q 1 2 2

.0360 .2054 .0770 .3189 .2795 .0833

Figure 5.4b Implied Partitioning of Latent Normal Distribution
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5.5 Interpretation of the Model — Partial Effects and Scaled Coefficients

Interpretation of the coefficients in the ordered probit model is more complicated than in
the ordinary regression setting.' There is no natural conditional mean function in the model. The
outcome variable, y, is merely a label for the ordered, non-quantitative outcomes. As such, there
is no conditional mean function, E[y|x] to analyze. In order to interpret the parameters, one
typically refers to the probabilities themselves. The partial effects in the ordered choice model
are

5,0) = FPU=I) [ ) £, -Bx) B 6.

Neither the sign nor the magnitude of the coefficient is informative about the result above, so the
direct interpretation of the coefficients is fundamentally ambiguous. A counterpart result for a
dummy variable in the model would be obtained by using a difference of probabilities, rather than
a derivative.” That is, suppose D is a dummy variable in the model (such as Married) and y is the
coefficient on D. We would measure the effect of a change in D from 0 to 1 with all other
variables held at the values of interest (perhaps their means) using

AD) = [F(u, =B'x, +1) = F(u,, =B, +7) |- [ Fu, =B'x) — F(u,, -B'x) .

One might on occasion compute the partial effect for a dummy variable by differentiating as if it
were a continuous variable. The results will typically resemble the finite change computation,
sometimes surprisingly closely — the finite change is a discrete approximation to the derivative.
Nonetheless, the latter computation is the more appropriate one. The partial effects are shown in
Table 5.2

The implication of the preceding result is that the effect of a change in one of the
variables in the model depends on all the model parameters, the data, and which probability (cell)
is of interest. It can be negative or positive. To illustrate, we consider a change in the education
variable on the implied probabilities in Figure 5.3. Since the changes in a probability model are
typically “marginal” (small), we will exaggerate the effect a bit so that it will show up in a figure.
Consider, then, the same individual shown in Figure 5.3, except now, with a Ph.D. (college plus
four years of postgraduate work). That is, 20 years of education, instead of the average 11.4 used
earlier. The effect of an additional 8.6 years of education is shown in Figure 5.5. All five
probabilities have changed. The two at the right end of the distribution have increased while the
three at the left have decreased.

The partial effects give the impacts on the specific probabilities per unit change in the
stimulus or regressor. For example, for continuous variable Educ, we find partial effects for the
ordered probit model for the five cells of -.0034, -.00885, .00244, .00424, .00557, respectively,
which give the expected change on the probabilities per additional year of education. For the
income variable, for the highest cell, the estimated partial effect is .04055. However, some care is
needed in interpreting this in terms of a unit change. The income variable has a mean of 0.34874
and a standard deviation of 0.1632. A full unit change in income would put the average
individual nearly six standard deviations above the mean. Thus, for the marginal impact of
income, one might want to measure a change in standard deviation units. Thus, an assessment of
the impact of a change in income on the probability of the highest cell probability might be

' See, e.g., Daykin and Moffatt [2002].
? See Boes and Winkelmann [2006a] and Greene [2008a, Chapter E22].
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0.04055x0.1632 = 0.00662. Precisely how this computation should be done will vary from one
application to another.

Probit

j“— | Po=0427 | l Pi=2412 | P2=5124 ‘ P3=.1131 | | P4=.0906 ‘

T _— .'ﬂ'f‘. . I|-L1‘P'x0| - IH-z-ib'Xo . k

an - - o . ™

[
Estimated Ordered Prob with PhD (20 Years Educabon)

. N
Al Pe=0215 | | P,=1690 [é;n\ (PS: 1493 | | Pa=.1511

-B'X4 Ha-B "X Ha-f'X4

— - T T T T T

Us-BX4
T T

am - - - [T .

Figure 5.5 Partial Effect in Ordered Probit Model

Neither the signs nor the magnitudes of the coefficients are directly interpretable in the
ordered choice model. It is necessary to compute partial effects or something similar to interpret
the model meaningfully. In this computation, the only certainties in the signs of the partial effects
in this model are as follows, where we consider a variable with a positive coefficient:

o Increases in that variable will increase the probability in the highest cell and
decrease the probability in the lowest cell.

o The sum of all the changes will be zero. (The new probabilities must still sum
to one.)

e The effects will begin at Pr(0) with one or more negative values, then change
to a set of positive values; there will be one sign change. (This is the “single
crossing” feature of the model. We will reconsider this aspect in Section 6.2.1.)

These are reversed for a variable with a negative coefficient.
One might also be interested in cumulative values of the partial effects, such as

OProb(y < j[x,) TR ) _g'
T_zm:0 [/ (s =Bx) = /(1 = Bx)]B (5.3)

= —f(w, _B'Xz‘)B

See, e.g., Brewer et al. [2008]. (Note that the last term in this set, OProb(y < J)/0x;, is zero by
construction.) An example appears in Table 5.2.

Note in Table 5.1 there is a large difference in the coefficients obtained for the probit and
logit models. The logit coefficients are roughly 1.8 times as large (not uniformly). This
difference, which will always be observed, points up one of the risks in attempting to interpret
directly the coefficients in the model. This difference reflects an inherent difference in the
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scaling of the underlying variable and in the shape of the distributions. The difference can be
traced back (at least in part) to the different underlying variances in the two models. In the probit
model, o, = 1; in the logit model o, = n/\3 = 1.81. The models are roughly preserving the ratio
B/o. in the estimates. The difference is greatly diminished (though not quite eliminated) in the
partial effects reported in Table 5.2. That is the virtue of the scaling done to compute the partial
effects. The inherent characteristics of the model are essentially the same for the two functional
forms.

Table 5.2 Estimated Partial Effects for Ordered Choice Models

Fo—— et L et b Tt +
| Summary of Marginal Effects for Ordered Probability Model

| Effects computed at means. Effects for binary variables are

| computed as differences of probabilities, other variables at means. |

tomm e Bt ettt +
| Probit | Logit

|[Outcome | Effect dPy<=nn/dX dPy>=nn/dX| Effect dPy<=nn/dX dPy>=nn/dX|
o e e +
| | Continuous Variable AGE

|Y = 00 | .00173 .00173 .00000 | .00145 .00145 .00000
|y = 01 | .00450 .00623 -.00173 | 00521 00666 -.00145
Y = 02 | -.00124 .00499 -.00623 | -.00166 .00500 -.00666
|Y 03 | -.00216 .00283 -.00499 | -.00250 00250 -.00500
Y = 04 | -.00283 .00000  -.00283 | -.00250 00000 -.00250 |
fomm o it +
| | Continuous Variable EDUC

Y = 00 | -.00340 -.00340 .00000 | -.00291 -.00291 .00000 |
|Y 01 | -.00885 -.01225 .00340 | -.01046 -.01337 .00291
Y = 02 | .00244 -.00982 .01225 | .00333 -.01004 .01337
Y = 03 | .00424 -.00557 .00982 | .00502 -.00502 .01004
|Y = 04 | .00557 .00000 .00557 | .00502 .00000 .00502
tomm o o +
| | Continuous Variable INCOME

|Y = 00 | -.02476 -.02476 .00000 | -.01922 -.01922 .00000 |
|y = 01 | -.06438 -.08914 .02476 | -.06908 -.08830 .01922
Y = 02 | .01774 -.07141 .08914 | .02197 -.06632 .08830
Y = 03 | .03085 -.04055 .07141 | .03315 -.03318 .06632
Y = 04 | .04055 .00000 .04055 | .03318 .00000 .03318 |
o e e +
| | Binary(0/1) Variable MARRIED

|Y = 00 | .00293 .00293 .00000 | .00287 .00287 .00000
|y = 01 | .00771 .01064 -.00293 | .01041 .01327 -.00287
Y = 02 | -.00202 .00861 -.01064 | -.00313 .01014 -.01327
|y = 03 | -.00370 .00491 -.00861 | -.00505 .00509 -.01014
|Y = 04 | -.00491 .00000 -.00491 | -.00509 .00000 -.00509
fom— o o +
| | Binary(0/1) Variable KIDS

Y = 00 | -.00574 -.00574 .00000 | -.00511 -.00511 .00000 |
|y = 01 | -.01508 -.02081 .00574 | -.01852 -.02363 .00511
Yy = 02 | .00397 -.01684 .02081 | .00562 -.01801 .02363
Y = 03 | .00724 -.00960 .01684 | .00897 -.00904 .01801
Y = 04 | .00960 .00000 .00960 | .00904 .00000 .00904
tomm B et e +

5.5.1 Nonlinearities in the Variables

In the computation of partial effects, it is assumed that the independent variables can vary
independently. When the model contains interactions of variables, or nonlinear functions of
variables, the computation of partial effects becomes problematic.! Consider, for example, in our
model if we added variables EducSq = Educ® and Educ*Age. The estimated model is shown in
Table 5.3 with some of the partial effects. Separate partial effects are shown for Educ, Age,

! See Norton and Ai [2003] for extensive analysis of this issue.
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EducSq and EducAge, as if they were independent variables. The partial effect for education in
this model would be

OProb(y = j
& uc) = TSI [ ) ot B0 (B + 2B Bl + B Age).

As Ai and Norton [2003] argued, none of the widely used computer packages computes this sort
of result automatically. (It would be impossible for the software to anticipate every possible
nonlinear function that might appear in the index function or recognize that function if it were
implicit in a constructed variable such as EducAge.) The analyst would have to compute this for
herself. This can be computed using the results reported, as

OProb(y = j | x) + (2Educ) OProb(y = j | x) 4 e@Prob(y =Jj|x)
0" Educ" 0" EducSq" 0" EducAge"

8, (Educ) =

The derivatives shown for the zero cell in Table 5.3 are -.02028, .00057, .00004, respectively, and
the means of Age and Education are 43.44 and 11.42, respectively. Thus, the partial effect for the
probability of a zero outcome is -.00552. In our original model with the linear index function, the
estimated effect was -.00340. But, the naive computation that ignores the interaction terms
produces a value of -.02028, which is too large by a factor of 4.

Table 5.3 Estimated Expanded Ordered Probit Model

- o o tom +
| | Expanded Ordered Probit | Ordered Probit |

| | LogL = -5749.664 | LogL = -5752.985 |

| | LogLR = -5752.985 | LogL0O = -5875.096 |

| | Chisg = 6.642 | Chisg = 244.2238 |

| | PseudoRgg = .0213499° | PseudoRsg= .0207847 |

| | Degrees of Freeedom 2 | Degrees of Freedom 5 |

- Fmm Fm—————— + Mean |
|Variable| Coef. S.E. t p | Coef S.E. t P | of X
- o B e et L e e Fom +
|Constant| .7422  .5520 1.344 .1788| 1.9788 .1162 17.034 .0000] 1.0000 |
| AGE | -.0127 .0076 -1.664 .0961] -.0181 .0016 -11.166 .0000| 43.4401 |
|EDUC | 2124 .0709 2.995 .0027] .0356 .0071 4.986 .0000| 11.4181 |
| INCOME | .2583 .1044 2.474 .0134] .2587 .1039 2.490 .0128] .34874
|[MARRIED | -.0325 0421 -.772 .4404] -.0310 .0420 -.737 .4608] .75217 |
|KIDS | 0666 .0384 1.732 .0833]| .0606 .0382 1.586 .1127| .37943 |
|[EDUCSQ | -.0060 .0023 -2.541 .0110]| [135.9773 |
|EDUCAGE | -.0004 .0006 -.641 .5213] [491.7343 |
[Mu (1) | 1.1495 .0212 54.288 .0000| 1.1484 .0212 54.274 .0000|

[Mu (2) | 2.5501 .0216 117.914 .0000| 2.5478 .0216 117.856 .0000]

[Mu (3) | 3.0589 .0265 115.561 .0000| 3.0564 .0267 115.500 .0000]

+-—————— B et o o +
| Marginal Effects for Ordered Probit Model |

fo— = e et +

|Outcome | AGE EDUC EDUCSQ EDUCAGE

Y = 00 | .00121 -.02028 .00057 .00004

Y = 01 | .00316 -.05290 .00148 .00010

|y = 02 | -.00087 01458 -.00041 -.00003

|y = 03 | -.00151 .02534 -.00071 -.00005

|y = 04 | -.00198 .03326 -.00093 -.00007

tomm B ittt ittt +
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5.5.2 Average Partial Effects

In computing partial effects, we have evaluated the functions by inserting the sample
means of the regressors. That is, our computation for Educ, for example, is

dProb(y =/ |X) _ PV
= =B S, B JBa

The average partial effect, or APE, is computed instead by evaluating the partial effect for each
individual and averaging the computed effects. thus,

APE (Educ) :%Z; [y —=Bx) = (1 =B%) B

In practice, unless the sample size is very small or the data are highly skewed and affected by
outliers, this will give a very similar result. For the example suggested, the first computation
gives 0Prob(y=4)/0Educ = 0.005557 (see Table 5.2 for the probit model) and the second gives
0.005723, a difference of about 2.7%. Further discussion of the computation of APEs and
standard errors using the delta method appear in Section 2.6.6 and Greene [2008a, pp. 783-785].

5.5.3 Interpreting the Threshold Parameters

In most treatments, the threshold parameters, p,; are treated as nuisance parameters,
necessary for the computations, but of no intrinsic interest on their own. Daykin and Moffatt
[2002,p. 162] argue that in psychology applications with attitude scales, “If the statement is one
with which most people are either in strong agreement or strong disagreement, we would expect
the cut points to be tightly bunched in the middle of the distribution. If, in contrast, the statement
is one on which people are not keen to be seen expressing strong views, we would expect the cut
points to be more widely dispersed.” Thus, in the absence of other information, this suggests that
the threshold parameters can reveal some information about the preferences of the respondents.
(In contradiction, Anderson [1984, p. 4] states “The estimates of the 6, are strongly related to the
average proportion in the corresponding categories, as recourse to any specified functional form
for F(.) indicates. (See the example in Section 5.4.) Hence, the 6, parameters are not informative
about the closeness of categories. As noted above, the regression relationship is based on p'x and
is firmly one dimensional.”)

5.5.4 The Underlying Regression

One would typically not be interested in the underlying regression. The observed
variable will always be the discrete, ordered outcome. Nonetheless, the model does imply a set of
partial changes for the latent regressand,

OE[y*x]/ox = PB.

This differs from more familiar cases in that the scaling of the dependent variable has been lost
due to the censoring. Thus, it is impossible to attach any meaning to the change in the mean.
McElvey and Zavoina [1975] suggest that if one is going to base interpretation of the model on
the latent regression, then the coefficients should be “standardized.” That is, changes should be
measured in standard deviation units. A standardized regression coefficient for variable k£ would
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be
Be* = Blswe / sy+],

where sy is the standard deviation of the regressor of interest and s« is the standard deviation of
y*. Measurement of sy is straightforward based on the observed data. For sy« the authors
suggest the computation be based on the implication of the regression;

yE = p'x +¢
SO
Var[y*] = p'Zu P + o (5.4)

The two components are easily computed using the observed data and the normalized value of
o>, 1.0 or ©*/3. For our ordered logit model in Table 5.1, the estimate of s,« is 1.03156. The
results of the computation are shown in Table 5.4

Table 5.4 Transformed Latent Regression Coefficients

Variable B B*
Age -.01808 -2.23279
Educ .03556 .19325
Income .25869 .00676
Married -.03100 -.00560
Kids .06065 .01385

Some caution is needed when interpreting these. The variable that is assumed to be changing is
an underlying preference scale. The notion of a unit or standard deviation change in utility or
feeling is a bit dubious. That is among the motivations for discrete choice analysis of this sort; it
frees the analyst from having to attach units of measure to unmeasurable quantities while still
enabling them to learn about important features of preferences.

5.6 Inference
This section considers hypothesis tests about model components.
5.6.1 Inference about Coefficients

The model has been fit by maximum likelihood. The estimates are shown in Table 5.1.
The assumptions underlying the regularity conditions for maximum likelihood estimation should
be met, so inference can be based on conventional methods. Standard errors for the estimated
coefficients are computed by inverting an estimator of the negative of the expected second
derivatives of the log likelihood. This will either be based on the actual second derivatives,

-1

V,, =Est.AsyVar {BMLE} N e o’ logPr(y =y, [ X,,B 0, B4r)
H ’ ’ I i=1 A
H B A1 .,
e 0 { R MEE } 0 |:BMLE Krie J
Mg
. el
- [— NIHJ (5.5)
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or the sum of the outer products of the first derivatives (the BHHH or outer product of gradients,
OPG, estimator),

- -1
ZN Olog Pr(y = y, |Xz"BMLE’l‘1MLE) Olog Pr(y = y, |XiaﬁMLE’p"MLE)
o 3 |:ﬁMLE } a|:ﬁMLE }
Pune P

- -1
-[>) e (5.6)

Vore =

Generally, two procedures, the Wald test and the likelihood ratio test are used for testing
hypotheses. A third, the LM test, is available, but rarely used because of its complexity compared
to the other two.

Inference about a single coefficient is based on the standard “z” test. The test of a simple
null hypothesis:

Hy: Bi= B,

is tested by referring the Wald statistic,

A 0
Bk,MLE - Bk

z= A >
Est.Std.Err(B, )

to a table of the standard normal distribution. Estimated standard errors are obtained as the
square roots of the diagonals of the matrix described in the previous paragraph. For example, the
conventional test against the null hypothesis Hy:B; = 0 is reported as standard results when the
model is estimated. The test is carried out in the results shown in Table 5.1 for the estimated
model, where we find that Age, Educ and Income are “significant” determinants of the
probabilities while Married and Kids are not.

Inference about the threshold parameters would be meaningless, and is not generally
carried out. In the results below, we find a typical pattern; the threshold parameters have very
small standard errors and are “highly significant.” However, a test of the hypothesis that p, = 0
would not be useful because p, must be greater than p; and o, and py = 0. Without this ordering,
the model becomes internally inconsistent — the probabilities can be negative.

A test about more than one coefficient can be carried out using a Wald test. For a null
hypothesis of the form

Hy:RB =q,

where R is a matrix of coefficients in the linear restrictions and q is a vector of constants, the
statistic will be

W= (Rﬁ - q)' [RVR']" (Rfﬁ —q) ,
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where V is the estimated asymptotic covariance matrix of the coefficients. The difficulty of this
computation will vary from one program to another. Both Stata and NLOGIT have built in
“Wald” commands that can be used to do the computation as well as matrix algebra routines that
also allow the user to program the computation themselves. For example, the following tests the
null hypothesis that the coefficients on EducSq and EducAge in our expanded model in Table 5.3
are simultaneously zero. As noted, the statistic is treated as a chi squared statistic with degrees of
freedom equal to the number of restrictions. In the results below, for example, we see that we
would reject the hypothesis that both are zero, evidently because of the significance of the first
one.

Health
one,age,educ, income,married,kids,educsq,educage $
b_educsq ; fn2 = b_educag $

Ordered ; Lhs
; Rh
Wald ; fn

[l ©)]

| WALD procedure. Estimates and standard errors |
| for nonlinear functions and joint test of |
| nonlinear restrictions.
|
|

|
Wald Statistic = 6.64372
Prob. from Chi-squared[ 2] = .03609
e +
fomm fom e fom fomm fom— +
|Variable| Coefficient | Standard Error |b/St.Er.|P[|Z]|>z]]
tomm o o R fomm +
|Fncn (1) | -.00596** .00234587 -2.541 L0110 |
|Fncn (2) | -.00042 .00065479 -.641 .5213 |
tomm Bttt +

The counterparts for this computation in Stata would be

. oprobit health age educ income married kids educsq educage
. test educsq educage
( 1) [health]educsq = 0
( 2) [health]educage = 0
chi2 ( 2) 6.644
Prob > chi2 0.0361

The computation can be programmed directly using matrix algebra, e.g., with NLOGIT as

Matrix ; b2=b(7:8);v22=varb(7:8,7:8) $
Matrix ; list ; wald = b2"<v22>b2 $
Matrix WALD has 1 rows and 1 columns.
1
e
1] 6.64372

or using the Mata package in Stata or PROC MATRIX in SAS. In any case, using the built in
procedure has the advantage of producing the “p-value” for the statistic as well as the statistic
itself.

The likelihood ratio test will usually be simpler than the Wald test if the hypothesis is
more involved than the simple zero restrictions shown above, though it does require estimation of
both the null (restricted) and alternative (unrestricted) models. The test statistic is simply twice
the difference between the log likelihoods for the null and alternative models. For the earlier
example, the log likelihood for the (alternative) model that includes EducSq and EducAge is
-5749.664 while, as seen earlier, the log likelihood for the (null) model that omits these variables
is -5752.985. The test statistic is

LR = 2(-5749.664 — (-5752.985)) = 6.642.
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This is nearly the same as the Wald statistic and produces the same conclusion. The two tests
could conflict for a particular significance level. This is a finite sample result — asymptotically,
the two statistics have the same characteristics when the assumptions of the model are met. As a
general occurrence (albeit not necessarily), the Wald statistic will usually be larger than the LR
statistic. Purely heuristically, because it uses more information — it is based on both models — we
prefer the LR statistic.

A common test of the sort considered here is a “test of the model” in the spirit of the
overall F statistic in the linear regression model that is used to test the null hypothesis that all
coefficients in the model save the constant term are zero. The counterpart for the ordered choice
model would be the likelihood ratio test against the null hypothesis that the model contains only a
constant term and the threshold parameters. This test statistic is routinely reported with the
standard results for the estimated model by all commercial packages. For the results in Table 5.3,
we have a model chi squared of 244.2238 with five degrees of freedom. It is not necessary to
estimate the null model to carry out this test. The maximum likelihood estimates of the
parameters of the model when it contains only a constant term and the threshold parameters are
equivalent to method of moments estimators based on the following moment equations involving
the raw sample proportions:

Py, = Prob(y =0) = F(-a)

Py = Prob(y < 1) =F( - a)
P; = Prob(y < j)=F(;- o)
and so on.

These can be solved directly, in the logit case using a hand calculator (e.g., & = log(Py/(1-Py)),
i, =log(P/(1-P))+a and so on. These (with B = 0) are the usual starting values for the

iterations, so the log likelihood computed at entry to the iterative procedure provides the needed
value for the null model.

5.6.2 Testing for Structural Change or Homogeneity of Strata

The likelihood ratio test provides a more convenient approach for testing homogeneity of
strata in the data. For example, our data are separated by men and women in the introduction,
and one might be interested in testing whether the same model should be used to describe the two
groups. The counterpart to a “Chow test” (Chow [1960], Greene [2008, p. 121]) in linear
regression would be a test of group homogeneity in the choice model. The test statistic is easily
computed using

LR = 2[Zg:gmups IOng - longou/ed]~

The statistic has a limiting chi squared distribution with degrees of freedom equal to G-1 times
the number of parameters in the model (slopes and thresholds). For a test of the null hypothesis
that the same ordered choice model applies to men and women, we find logly,. = -2952.05,
logLremare = -2798.03 and loglp,ed = -5752.985. Applying the preceding result gives a chi
squared value of 5.83 with 9 degrees of freedom. The p-value is 0.7569 (the 95% critical value is
16.92). On this basis we conclude that is appropriate to pool these two subsamples. (In RWM’s
analysis, they maintained the sample division. However, they were not analyzing the health
satisfaction variable.)
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5.6.3 Robust Covariance Matrix Estimation

There are two candidates available for the estimated asymptotic covariance matrix of the
parameter estimators, -H™' based on the Hessian and (G'G)™" based on the first derivatives. [See
Section 5.6.1, (5.5) and (5.6).] The implication of the Information Matrix Equality [see Greene
[2008a, Ch. 16)] is that these two matrices estimate the same covariance matrix and are, for
practical purposes, interchangeable. A third matrix, the “robust” covariance matrix is often
computed in recent applications, that being

Vi = [H'](G'G) [H']. (5.7)

The logic of the computation can be seen by assuming that Netwon’s method is used to estimate
the parameters. The maximum likelihood estimator at the maximum will produce

(8 —0")=[-H/n] (VX! g ) o),

where 0° is the vector of parameters that the MLE converges to and o(1/n) denotes a trailing term
that converges to zero as n — o. The asymptotic variance of the MLE is obtained by multiplying
the limiting variance of the right hand side by 1/n. The trailing terms will disappear. The leading
matrix in brackets converges (we assume) to its expectation — a constant matrix. For the vector in
parentheses, if the model assumptions are correct, then by the information matrix equality, its
limiting variance will be —H/n. Two occurrences of H will cancel and we are left with Vj as the
usual estimator. But, ignoring the information matrix equality, whether it is met or not, the
asymptotic variance of the MLE will be estimable by using (1/#)G'G as an estimator of the
variance matrix of the quantity in parentheses. Then, the “robust” covariance matrix estimator
becomes the sandwich estimator given above.

If the model assumptions are correct, then the robust estimator is the same as either of the
conventional estimators. If the model assumptions are incorrect, then the robust estimator still
produces the asymptotic covariance matrix for the MLE. But, if the model assumptions are not
correct, then what is 0°? In order for this computation to be useful, it must be the case that in

A

spite of the failure of the model assumptions, 0,,, must still be a consistent estimator of the

parameters of interest, in the present case, (B’,u’)’. For the ordered probit model, any of the
following will render the estimator of the parameters inconsistent: (i) omitted variables even if
they are orthogonal to included variables, (ii) heteroscedasticity in ¢, (iii) incorrect distributional
assumption — e.g., using the logit model when the probit model is the correct one, (iv)
endogeneity of any of the regressors, (v) omission of latent heterogeneity — this is equivalent to
an omitted variable. Indeed, it is difficult to produce a model failure that the estimator is robust
to. The upshot is that either the “robust covariance matrix” estimator is the same as the other two
already considered, or it is a “robust” covariance matrix for an inconsistent estimator of the
parameters. !

! Additional commentary on this result appears in Freedman [2006].
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5.6.4 Inference About Partial Effects

Partial effects are computed using either the derivatives or first differences for discrete
variables;

3,(x) = I [ - px) - (, -Bx) B, (5.8)

or  A(dx) = [F(u, =B +7)—F(u,, =B +7) |-[ Fu, -B'x)— F(u,, —B'x)].

Since these are functions of the estimated parameters, they are subject to sampling variability and
one might desire to obtain appropriate asymptotic covariance matrices and/or confidence
intervals. For this purpose, the partial effects are typically computed at the sample means. The
delta method is used to obtain the standard errors. Let V denote the estimated asymptotic

A ’
covariance matrix for the (K+J-2)x1 parameter vector ([3’,;1') . Then, the estimator of the

asymptotic covariance matrix for each vector of partial effects is

Q=CVvV(C/,
where

. FS].A(K) aSjA(i)]'
op’ op’

The appropriate row of C is replaced with the derivatives of Af(d,X) when the effect is being
computed for a discrete variable.

Patterns of statistical significance for the partial effects will usually echo those for the
coefficients themselves. This will follow from the fact that C is of the form

C = [a@/I, 0] + [Cﬁ, C”],

where a; is the bracketed scalar term in ) ;(X). The second matrix is typically much smaller than

the first. Thus, the estimated asymptotic covariance matrix for Sj (X) = a;P typically resembles

a;’V. The scale factor would cancel out of a “z value” leaving the familiar result. It is clearly
visible in the results in Table 5.5. This result does raise a vexing question. It is conceivable for
the significance tests of 8(x;) to conflict with each other, that is, with J,,(x;) for an m # j, and/or
with a test about the associated coefficient, B;. Since d/(xx) = a;B, the tests would seem to be in
direct contradiction. The natural question for the practitioner, then, is where should the
appropriate test of significance be carried out. Opinions differ and there is no single answer. It
might logically be argued that the overall purpose of the regression analysis is to compute the
partial effects, so that is where the tests should be carried out. On the other hand, the meaning of
the test with respect to the partial effects is ambiguous, since they are functions of all the
parameters as well as the data. The number of possible contradictions is large. Our preference on
the methodological basis is for the structural coefficients, not the partial effects.

129



Modeling Ordered Choices

Table 5.5 Estimated Partial Effects with Asymptotic Standard Errors

| Marginal effects for ordered probability model |
| M.E.s for dummy variables are Pr[y|x=1]-Pr[y|x=0] |
| Names for dummy variables are marked by *. |

tomm B il L e o tomm tomm +
|Variable| Coefficient | Standard |b/St.Error |P[|Z|>z]]
| | I Error | I I
- o t-— o +-—————— +
| | These are the effects on Prob[Y=00] at means. |
| AGE | .00173 .000165 10.488 .0000 |
|EDUC | -.00340 .000692 -4.919 .0000 |
| INCOME | -.02476 .009973 -2.483 .0130 |
| *MARRIED| .00293 .003920 .747 4551 |
| *KIDS | -.00574 .003578 -1.603 .1089 |
| | These are the effects on Prob[Y=01] at means. |
| AGE | .00450 .000403 11.161 .0000 |
|EDUC | -.00885 .001775 -4.986 .0000 |
| INCOME | -.06438 .025851 -2.490 .0128 |
| *MARRIED | .00771 .010440 .738 4604 |
| *KIDS | -.01508 .009494 -1.588 L1122 |
| | These are the effects on Prob[Y=02] at means. |
| AGE | -.00124 .000170 -7.310 .0000 |
|EDUC | .00244 .000549 4.438 .0000 |
| INCOME | .01774 .007356 2.411 .0159 |
| *MARRIED| -.00202 .002611 -.774 .4387 |
| *KIDS | .00397 .002419 1.641 .1009 |
| | These are the effects on Prob[Y=03] at means. |
| AGE | -.00216 .000241 -8.958 .0000 |
|EDUC | .00424 .000901 4.709 .0000 |
| INCOME | .03085 .012559 2.457 .0140 |
| *MARRIED| -.00370 .005033 -.736 4620 |
| *KIDS | .00724 .004599 1.574 L1154 |
| | These are the effects on Prob[Y=04] at means. |
| AGE | -.00283 .000271 -10.452 .0000 |
|EDUC | .00557 .001130 4.931 .0000 |
| INCOME | .04055 .016335 2.482 .0130 |
| *MARRIED| -.00491 .006733 -.729 L4657 |
| *KIDS | .00960 .006120 1.569 1166 |
Fo— o +

5.7 Prediction — Computing Probabilities

One might want to use the model for prediction as well as inference. The natural
predictor would seem to be p* = fi'x. The unconditional predictor does not use all the
information in the sample, however. Although E[y;*|x;] = B'x;,

¢(Mj—1 _ﬁ'xi)_q)(“j _ﬁrxi)
(D(M, _B’X,‘) - q)(“j—l _ﬁrxi)

E[yi*|xi’yi :j]ZB’X,- +

for the probit model. A counterpart for the logit model can be constructed using the results in Xu,
Mittelhammer and Torrell [1994]. The second term in this prediction is the generalized residual
in (6.20). However, the underlying variable is typically unobservable, and often of no intrinsic
interest in its own right. (E.g., in the bioassay case, the “tolerance” of a particular insect would
probably be of little interest. In the preference scale case such as in our health satisfaction
example, the underlying utility is inherently unmeasurable.) The more natural exercise would be
to predict the observed outcome. Since it is discrete, the linear predictor is of little use. The
starting point would be the predicted probabilities. The model provides predictors
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A

() =F (i, =B, )= F (i, —B'x,)

=F —F L j=0,1J.

Jot

(5.9)

>

If the sample is small enough and particular observations are of interest, a simple listing might be
useful. For our sample of 4,483 observations, this would probably not be helpful. One might,
instead, tabulate predicted probabilities against variables of interest. For example, for reasons
unknown to us, the presence of children in the household appears to have a substantial
(increasing) impact on whether one reports the lowest value of health satisfaction. A set of
results is shown in Table 5.6.

Table 5.6 Mean Predicted Probabilities by Kids

R et et et +
|Variable Mean Std.Dev. Minimum Maximum |
o - +
|Stratum is KIDS = 0.000. Nobs.= 2782.000 |
fom = o +
| PO .059586 .028182 .009561 .125545

| I
|P1 | .268398 .063415 .106526 .374712 |
| P2 | .489603 .024370 .419003 .515906 |
| I
| I

| P3 .101163 .030157 .052589 .181065

| P4 .081250 .041250 .028152 .237842

e +
|Stratum is KIDS = 1.000. Nobs.= 1701.000 |
o o +
| PO | .036392 .013926 .010954 .105794 |
|P1 | .217619 .039662 .115439 .354036 |
| P2 | .509830 .009048 .443130 .515906 |
|P3 | .125049 .019454 .061673 .176725 |
| P4 | .111111 .030413 .035368 .222307 |

|A1l 4483 observations in current sample |

fommm B it +
| PO | .050786 .026325 .009561 .125545 |
|P1 | .249130 .060821 .106526 .374712 |
| P2 | .497278 .022269 .419003 .515906 |
|P3 | .110226 .029021 .052589 .181065 |
| P4 | .092580 .040207 .028152 .237842 |
B ettt +

Standard errors and confidence intervals can be computed using the delta method. These
are a bit simpler than for the partial effects, as there is no need to make a distinction between
discrete and continuous variables. The matrix of derivatives has a row for each outcome,
containing

B ra e
W)}L,):[(]Z_l(x)—fj(xi))xi (0,...,—jg_l,f,,o,...ﬂ . (5.10)

For certain variables of interest, a plot of the predicted probabilities against the values of
the variable might be useful. In our application, Age seems to be an important determinant of self
assessed health satisfaction. A plot of the predicted probabilities for this model for the values of
Age in the sample, 25 to 64, for a person who has average income and education, and is married
with children appears in Figure 5.6.
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Predicted Probabilities for Health Satisfaction

Predicted Probability

AGESIM

| ——Pi —= P —a- P2 @ P} e P4

Figure 5.6 Predicted Probabilities for Different Ages

5.8 Measuring Fit

The search for a scalar measure of model fit for ordered choice models is even more
difficult than for binary choice models (see Section 2.8). Superficially, the search is for a
counterpart to the coefficient of determination in a linear regression, R* = “proportion of the
variation in the dependent variable that is explained by variation in the independent variables.”
The search is frustrated in this case for two reasons:

e There is no “dependent variable.” In the ordered choice model, there are J+1
explained variables that are defined by m; = 1 if y; = j and 0 otherwise and
which satisfy the constraints m; = 0 or 1 and X, m; = 1. (This is true for the
bioassay case as well; the observed proportions for each i consist of the
sample means of my; for n; observations with a common x;.) The observed
variable y; is nothing more than a labeling convention for the regions of the
real line defined by the partitioning in the model specification.

e There is no “variation” (around the mean) to be explained. The outcome is
not a measure of a quantity; it is a label. There is no conditional mean, as
such, either.

For these reasons, one needs to exert a considerable amount of caution in computing and
reporting “measures of fit” in this setting.

A “fit measure” that one computes can be used for two purposes: (i) to assess the fit of
the predictions by the model to the observed data, compared to no model and (ii) to compare the
model one estimates to a different model. For the first of these, we (and a generation of others)
have suggested the overall model chi squared,

VIK+J-2] = 2[10gLusoder — 10ZL o poder]-

A transformation of this statistic that is (very) often reported in the contemporary literature is
McFadden’s [1977] “pseudo R*” which is computed as

132



Modeling Ordered Choices

2 _
RPseudo =1 - logLModel/logLNo Model-

A degrees of freedom adjusted version is sometimes reported,

AdjuSted RPseud02 = 1 - [logLNo Model _M] / logLM()dela

where M is the number of parameters in the model. The pseudo R* has the virtues that it is
bounded by 0 and 1, and increases whenever the model increases in size — that is, the pseudo R%is
larger for any model compared to a model that is nested within it. It is important to emphasize, as
is clear from the definition, it is not a measure of model fit to the data and it is not a measure of
the proportion of variation explained in any sense.

The value of the Pseudo R* in the model we have analyzed above can be found in Table
5.1 for the basic model (0.0207847) and in Table 5.4 for the expanded model (0.02135). The low
values might seem a bit surprising given the several highly significant coefficient estimates in the
reported results. However, as with the counterpart in linear regression, highly significant
coefficients need not attend a high fit measure.

A second measure for the ordered choice model was suggested by McKelvey and
Zavoina [1975]. The logic of their measure is based on predicting the underlying latent variable,
y*. The total variance in the underlying variable in the ordered choice model is

Var[y*] = p'Z B + o’

where X, is the theoretical covariance matrix of x;. The first part of this is estimable using the
maximum likelihood estimates of f and the sample covariance matrix for the data, and the second
part is known to be 1.0 or n*/3 for the probit and logit models, respectively. Thus, the authors
suggested

(e}
B'S,

LIRS

2
RMZ = 1- 7"
+ 0O
€

-

They defined the “explained” part of this computation in terms of deviations from a prediction,
e =9 -y where J, =B'x,, producing

» _ Iy
RMZ = PN = .
L -y)+n

With this computation, we obtain an improvement over the PseudoR*; for our model, Ry, =
0.06024.

Long and Freese [2006] list a variety of other measures that are computed for the ordered
choice models." These include

2/n
R2 1_|:10g LNo Model :|

Cox,Snell =
logLy/, i

' This set of results is produced by a Stata program called FitStat written by one of the authors. The
formulas below do not appear in Long and Freese or in the documentation for Stata; they are described in
long detail by UCLA/ATS [2008] among others and, piecemeal by the original developers.
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2/n
1 _ |: log LNo Model j|
RZ

logLModel
Cragg ,Uhler | Nagelkerke ~—

1 - [log LNo Model ]

2/n

In UCLA/ATS [2008], it is noted that “pseudo R-squareds” for categorical variables serve three
functions:

Measures of explained variability,
Measures of improvement from null model to fitted model,
Square of the correlation.

None of the already suggested fit measures bear any relation to the first and third of these. All are
connected to the improvement in the log likelihood by the addition of the variables in the model
to a constants only model. The log likelihood functions, themselves, do that, and what these
statistics add to the two values is a transformation that is strictly between zero and one. None can
achieve 1.0 even if the model predicts perfectly (somehow — we have not defined what would be
meant by “predict”). Nonetheless, what they do all share is that they increase as the model grows
and they are bounded by zero and one. (However, the “adjusted pseudo R can decline as

variables are added, in the same fashion as R’ for linear regression.)
UCLA/ATS [2008] observe (with reference to a binary logit model),

When analyzing data with a logistic regression, an equivalent statistic to R-squared does
not exist. [Emphasis added.] The model estimates from a logistic regression are
maximum likelihood estimates arrived at through an iterative process. They are not
calculated to minimize variance, so the OLS approach to goodness-of-fit does not apply.
However, to evaluate the goodness-of-fit of logistic models, several pseudo R-squareds
have been developed. These are "pseudo" R-squareds because they look like R-squared
in the sense that they are on a similar scale, ranging from 0 to 1 (though some pseudo R-
squareds never achieve 0 or 1) with higher values indicating better model fit, but they
cannot be interpreted as one would interpret an OLS R-squared and different pseudo R-
squareds can arrive at very different values

The notion of “model fit” in this and elsewhere relates to the log likelihood for the model, not to
an assessment of how well the model predicts the outcome variable, as it does in regression
analysis.

It seems appropriate to add a fourth item to the list above; fit measures are used to
compare models to each other, not only to baseline, “null” models. For this purpose, a handful of
other fit measures that are not normalized to the unit interval, but are based on the log likelihood
function, are often used:

Log Akaike Information Criterion = AIC = (2logL +2M)/n,

Finite Sample AIC = AICrs = AIC +2M(M+1)/(n— M- 1),
Bayes Information Criterion = BIC = (-2logL + M/logn)/n, (5.11)
Hannan-Quinn IC = HQIC = (2logL +2 M loglog n)/n.
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The information measures are all created in the spirit of adjusted R* — they reward a model for
“fit” with few parameters and small samples. A better model is one with a smaller information
criterion.'

Long and Freese [2006, p. 196] and UCAL/ATS [2008] mention two other measures that
seem (to these authors) to have received far less attention than the likelihood based measures.
These are

Count B Number of Correct Predictions
oun =

n
and

Number of Correct Predictions - n. *
Adjusted Count R* = i,
n-n;*

where n;* is the count of the most frequent outcome. The discussion is about binary choice
models, so we have to extend the idea to our ordered choice model. There is a long catalog of fit
measures for binary choice models based on this sort of computation.”> The central feature is a
fitting mechanism: Predict y = j if the model states that j is the most likely outcome. In the
binary choice case, the rule is to use as the prediction, the outcome which has probability
exceeding 0.5. For the ordered choice case, this would suggest using the rule

¥, = Jj* suchthat estimated Prob(y, = j*|X,)> estimated Pr(y, = j|x,) Vj # j*.

That is, put the predicted y in the cell with the highest probability. This rule has an aesthetic
appeal, and in the absence of priors (as in a Bayesian setting) we have not found a preferable
approach. Nonetheless, this can lead to an unexpected outcome. For our first example in Table
5.1, this rule produces the results in Table 5.7.

Table 5.7a Predicted vs. Actual Outcomes for Ordered Probit Model

| Cross tabulation of predictions.
| Row is actual, column is predicted. |
| Model=Probit. Prediction=most likely cell. |

fmm———— - - - t————- tm———- fom +
| Actuall O | 1 | 2 | 3 | 4 |Row Sum |
R R R R R e fmm - +
| 0] 0] 0] 230] 0] 0] 220 |
| 1] 0] 0] 1113] 0]l 0] 1113 |
| 2| 0] 0] 2226] 0] 0] 2226 |
| 3 o 0] 500] 0] 0] 500 |
| 4] 0] 0| 414] 0] 0] 414 |
Fmm—— - - - - - fom +
|Col Sum| 0] 0| 4483] 0] 0] 4483 |
fmmm - R R R R R fmmm +

By this method, our model, with its highly significant overall fit and several highly significant
variables seems, nonetheless, to fail utterly on this criterion. It always predicts y = 2. By the
Count R* measure, our model achieves a fit of 0.4965, which looks like a substantial
improvement over the Pseudo R* of 0.020785. Lest we become too enthusiastic about the result,
however, note that the Adjusted Count R is zero! The reason is that the model does not improve
on the model free “always predict 2,” which happens to be the most frequent outcome.

' Long and Freese mention two others, “4IC used by Stata” and “BIC used by Stata.” We have been unable

to decipher what these are.
2 See, e.g., Greene [2008a, pp. 790-793].
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The situation in which the model always predicts the same value is not uncommon. It
takes a high correlation (in some general sense) between the covariates and the outcome and a
large amount of variation in the covariates within the sample to spread the predictions across the
outcomes. Briefly, another example is provided by a standard data set used by the authors of Stata
to demonstrate the ordered choice model in their documentation. The “automobile data,”
(www.stata-press.com/data/r8/fullauto.dta) is used in [R] oprobit to model the
1977 repair records of 66 foreign and domestic cars. The variable rep77 takes values poor, fair,
average, good and excellent. The explanatory variables in the model are foreign (origin of
manufacture), length (a proxy for size) and mpg. (The computations below were done with both
Stata and NLOGIT, which produced identical results.) The predictions produced by this model
are listed below in Table 5.8. The McFadden Pseudo R*> is 0.1321. The Count R® is
(1+0+21+7+1)/66 = 0.454. The adjusted value is (30 — 27)/(66-27) = 0.077.

Table 5.8 Predicted vs. Actual Outcomes for Automobile Data

| Cross tabulation of predictions.
| Row is actual, column is predicted.
| Model=Probit. Prediction=most likely cell. |

B +-———= +———— = +———— +———— Fo—————— +
| Actual] 0 | 1 | 2 | 3 | 4 |Row sum |
B +-——— +-——— +-——— +-——— +-———- to—— +
| 0l 1] 0l 2 o 0] 3
I 1] 0l 0l 91 2 0l 11 I
| 2| 0] 1] 21 5] 0l 27
| 3 0] o 11} 7] 2] 20
I 4] 0l 0l 2| 2 1] 5 |
+o—— +-———= +———— +———— +———— +———— o +
|Col Sum| 1] 1] 45| 16| 3| 66
B +-——— +-——— +-——— +-———- +-———- o +

As we noted in Section 2.8 (in Table 2.9a,b), an alternative approach to measuring fit is
to compute the sums of the predicted probabilities in the various cells. For the ordered choice
model, this alternative computation is

(10, =0)]
I(y, =1)
=" . |0 pO .. p) 1]
10y, =)
1

The corresponding table for our health care data is shown in Table 5.7b. By this computation, the
predictive power of the model improves substantially. Note, as for the binary choice model, the
underlying logic of the table is the power of the model to predict the behavior of the market
aggregates, rather than individual behavior.
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Table 5.7b Predicted Probabilities vs. Actual Outcomes for Ordered Probit Model

Bl et il E +
| Column = Prediction, Model = Probit |
to—— = to———= +-———= t-———= +-———= t-———= +o———= +
ly(i,3)1 o | 1 | 2 | 3 | 4 |Totall
tm———— t———— t———— t———— t———— to——— Fm——— +
| 0 | 16| 66| 111] 21| 16| 230]
| 1 | 63| 294 | 549| 115] 92| 1113]|
| 2 | 110 547 1110] 249 210| 2226/
| 3 201 111 252]| 62| 55| 500]
| 4 | 19| 98| 207] 48| 421 414\
to—— = +-———= +-———= +-———= +-———= +o———= +o———= +
| Totall 228 1117| 2229] 494 | 415 4483
B it ittt +

This survey does not conclude with a proposal for the appropriate or optimal fit measure.
The search for a scalar counterpart to the R” in a linear regression does seem unproductive. Fit
measures based on the log likelihood can be used for comparing models. For this purpose, the
log likelihood itself or one of the information criteria seems sensible; the AIC dominates the
received applications. For assessing the predictions of the model, it would seem that the scalar
measures based on the log likelihood would be useless. The maximum likelihood estimator is not
computed so as to maximize the number of correction predictions — in the linear normal
regression model, the MLE of B is computed to maximize R, but that is coincidental; minimizing
e’e does maximize R. Indeed, there may be (as yet not proposed) other estimators that improve
on the MLE for predicting the outcome variable, as the Maximum Score Estimator [see Manski
[1975, 1985, 1986, 1988]) improves on the MLE of the logit or probit model for binary choice.
In any event, it does seem appropriate, if one seeks a “measure of fit” one should first decide
upon a procedure (rule) for producing the predictions, then assess, against a benchmark, how well
that method does. The Count R* measures shown above seem better suited to that specific
purpose than pseudo R* measures based on the log likelihood.

5.9 Estimation Issues

McKelvey and Zavoina [1975] provide expressions for the first and second derivatives of
the log likelihood function for the ordered probit model, and suggest Newton’s method as an
algorithm for estimation. They conjecture, however, about the possible problem of multiple roots
of the log likelihood. Pratt [1981] showed that the ordered probit model was a member of a class
of discrete choice models in which the log likelihood functions are globally concave. Thus,
estimation of the model can be counted on to converge (when it does at all), to the single root of
the log likelihood function.

5.9.1 Grouped Data

Grouped data arise when groups or sets of individuals have the same x; and the observed
outcome consists of a set of proportions over the choices. For example, in a taste test for a soft
drink, x; might consist of a specific configuration of (sweetness,color,temperature). A group of n;
individuals are presented with x;, and proportions p, pii,...,pis of the n; individuals choose
outcome i. Thus, the frequency of individuals in group i reporting outcome j is nxp;. In the
bioassay experiments discussed in Chapter 4, x; would be the dosage of insecticide administered
to a group of n; pests, and proportions p;, ps and p, are found to respond to the dosage by
surviving, becoming moribund, or dying, respectively.

The adaptation of the maximum likelihood estimator to the grouped data treatment is a
trivial modification. The log likelihood for a sample in which the stimulus, x; is repeated n; times
is
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logL=3">" 5" m, log[ F(u,~B'x)~F(u, ,~B'x)]
=Y o[ F(u, —B'x) ~ F(u, , —B'x) ] X0 m,
=Y > nylog| F(w, —B'x)~ F(u,, —B'x,) |
=y pylog[ Fu, —Bix)—F(u,  —B'x) ]

(5.12)

Mechanically, in the log likelihood for a cross section of individual data, the terms my; are
replaced with the group proportions, p;, and the observations in the log likelihood and its
derivatives are weighted by the group size.

As an example, we fit the model implied by McCullagh’s [1980] final example, on a taste
test with five treatments.' Table 5.9 reproduces the raw frequency data from the article.
McCullagh suggested a “location/scale” model,

T

Prob(y, = j|treatment =m)=A| —— |.
We fit this model by first defining five dummy variables for the treatments, d;,, = 1 if individual i
receives treatment m. To insure that the scale factors T, are positive, we used the
heteroscedasticity model in Section 7.4, with o, =exp(X._,d, ), where o, = logt,. The

m-im

equivalent model is

. M i z:tsnzl(x‘mdim M -1 z:tsnzlu’mdim
Prob(y, = j | treatment = m) = A| —— -A| —— )
exp(X _o d, ) exp(X _ o, d, )

m=1"m"im m~im

In this simple model, there will be three threshold values, but no overall constant term since the
five dummy variables sum to one. There are 25 observations in the table, less two for which the
frequencies are zero. The log likelihood function to be maximized is given in the third line of
(5.12). Estimates of the parameters are given in Table 5.10. (McCullagh reports coefficient
estimates, but it is not clear how they were computed, so we are not able to match them (or any
other results reported in the article). The ordinal arrangement of the coefficients in Table 5.9 is
the same as McCullaghs.) The log likelihood functions are

logL(constants only) =-336.936
logL(®n, =0) =-316.902
logL(full model) =-303.517

The chi squared for the full model is 66.838 with 9 degrees of freedom. Thus, the hypothesis that
the response is overall invariant to the treatment level is rejected. McCullagh also reports a
likelihood ratio statistic of 49.1 with 12 degrees of freedom. It is unclear what the null hypothesis
is in this case, however. The full model contains 13 parameters. With only a single constant term
and no scale effects it would have four. He also notes on the basis of certain patterns of cell
“residuals™ that the different scales, t, are more appropriate (than a model with no scaling).
Based on the likelihood ratio statistic of 20.068 with 5 degrees of freedom against the null
hypothesis that o, = 0, our results would agree.

" The data are from Bradley, Kattie and Koons [1962].
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Table 5.9 Grouped Data for Ordered Choice Modeling
Response frequency in a taste-testing experiment

Response

Treatment Terrible 2 3 4 Excellent Total
1 9 5 9 13 4 40
2 7 3 10 20 4 44
3 14 13 6 7 0 40
4 11 15 3 5 8 42
5 0 2 10 30 2 44

Total 41 38 38 75 18 310

Table 5.10 Estimated Ordered Choice Model Based on Grouped Data

tomm o Fom - Fomm - e +

|Variable| Coefficient | Standard |b/St.Error |P[|Z|>z]]

| | | Error | | |

e fmm fmmm fmmm e +

| === + Index function for probability

|Treat-1 | 1.08308 .029943 36.172 .0000

|Treat-2 | 1.29563 .016544 78.315 .0000

|Treat-3 | .34773 .015327 22.687 .0000

|Treat-4 | .71770 .032726 21.930 .0000 |

|Treat-5 | 1.70294 .014917 114.173 .0000

| === + Variance Function

|Treat-1 | -.27308 .212604 -1.284 .1990

|Treat-2 | -.62661 .151377 -4.139 .0000

|Treat-3 | -.58232 .249541 -2.334 .0196

|Treat-4 | -.00478 .191317 -0.025 .9801

|Treat-5 | -1.13276 .228500 -4.957 .0000

| ———————= + Threshold Parameters

|Mu (1) | 0.71174 .108824 6.540 .0000

|Mu (2) | 1.37240 .164517 8.342 .0000

|Mu (3) | 2.57028 .221216 11.619 .0000

fmmm e fmm e fmm e fmm e R +

5.9.2 Perfect Prediction

A problem of nonconvergence can be caused by a condition in the data that Long and
Freese [2006, p. 192] label “Predicting Perfectly.” If a variable in the data set predicts perfectly
one of the implicit dependent variables, that is, m; = 1 if and only if y; = j, then it will not be
possible to fit the coefficients of the model — in this instance, the corresponding threshold
parameter becomes inestimable. The suggested case is a dummy variable that takes only one
value within a particular cell — it may also take that value in other cells. Within our example,
suppose married people (Married = 1) always responded with Health = 4; i.e., married people
always report the highest health satisfaction. Then, knowing someone is married allows a perfect
prediction of Health = 4 for them. In such as case, it is necessary to drop such observations from
the sample. Stata detects this condition automatically and reports a diagnostic “Note: nn
observations completely determined. Standard errors are gquestionable.”
As it is, the diagnostic is correct. But, it is incomplete. The result might be a small sample
problem. But, if not, because the offending variable enjoys such a relationship with the outcome
variable, it is probably endogenous in the model, and not only are the standard errors
questionable, the parameter estimates themselves are as well. This is a cousin to a problem of
sample selection. The observations that have been discarded have not been done so randomly.
They have been discarded by a criterion that is specifically related to the dependent variable.
This particular feature of the model is as of this writing an obscure corner of the model
development, but there would seem to be scope for further analysis of the issue.
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5.9.3 Different Normalizations

We have noted at a few points that the normalization of the thresholds is a crucial feature
of the model. However, it is not the case that different normalizations produce different results.
Whether one assumes L, = 0 and includes an overall constant in the model, or allows i, to be a
free parameter and drops the constant, will have no implications for the log likelihood, the other
parameters, or the predictions of the model. An example to illustrate the point is useful.
Consider, once again, the car repair data discussed in the previous section. We have fit the model
using NLOGIT, which uses the first normalization and Stata which uses the second. The two sets
of results are given in Table 5.11. Note that the log likelihoods and estimates of the coefficients
in B are identical. (The differences in the standard errors result from Stata’s use of the Hessian
for the standard errors vs. NLOGIT’s use of the outer products estimator.) The first “cut point” in
the Stata results is precisely the negative of NLOGIT’s overall constant. For the remaining
threshold parameters, we can see that “cut point j”” equals NLOGIT’s (l; — o). As expected, then,
the results are identical.

5.9.4 Censoring of the Dependent Variable

In some applications, there can be a second layer of censoring of the variable of interest
in the ordered choice model. (The first level of censoring is the translation of y;* to y; by
measuring only the interval in which y;* appears.) Consider a model of educational attainment in
which the variable of interest is “education” and in which the recorded value is only 0 for primary
school, 1 for secondary school (high school), 2 for college, 3 for masters and 4 for Ph.D. If an
observation is recorded as “at least college,” for example, then values 3 and 4 are censored. This
case is easily handled using the laws of probability. The appropriate log likelihood for the
ordered choice model is

n J
logL=3" > mlogh ~F, ), (5.13)

where heretofore m;; indicated the one cell that applies to observation i, and now indicates all of
the cells that apply. For the example given, we would have m;y = 0 m;; = 0 and m; =1 forj =
2,3,4. The change in the computations of the model parameters is trivial. It should be noted, one
must know the upper bound, J, and for an observation it must be known that it is or is not
censored. Censoring of the dependent variable in an ordered choice context has appeared in
models of schooling attainment by Lillard and King [1987], Glewwe [1997] and Glewwe and
Jacoby [1994, 1995] and in duration models, where the observed outcome is the length of time
between transitions, sometimes coded as “short,” medium or long, or similarly.1

! See, e.g., Tsay [2005], Han and Hausman [1988] and Buckle and Carlson [2000].
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Table 5.11 Stata and NLOGIT Estimates of an Ordered Probit Model
. oprobit rep77 foreign length mpg

Iteration 0: log likelihood = -89.895098
Iteration 1: log likelihood = -78.141221
Iteration 2: log likelihood = -78.020314
Iteration 3: log likelihood = -78.020025
Ordered probit regression Number of obs = 66
LR chi2 (3) = 23.75
Prob > chi2 = 0.0000
Log likelihood = -78.020025 Pseudo R2 = 0.1321
rep77 | Coef Std. Err z P>|z]| [95% Conf. Interval]
_____________ o
foreign | 1.704861 .4246786 4.01 0.000 .8725057 2.537215
length | .0468675 .012648 3.71 0.000 .022078 .0716571
mpg | .1304559 .0378627 3.45 0.001 .0562464 .2046654
_____________ o
/cutl | 10.1589 3.076749 4.128586 16.18922
/cut2 | 11.21003 3.107522 5.119399 17.30066
/cut3 | 12.54561 3.155228 6.361476 18.72974
/cutd | 13.98059 3.218786 7.671888 20.2893

Skip $ (The data on rep77 contain 8 missing observations)
Ordered Probit ; Lhs = rep77 ; Rhs=one,foreign,length,mpg $

B ettt it +

| Ordered Probability Model

| Dependent variable REP77 |

| Number of observations 66

| Log likelihood function -78.02002

| Number of parameters 7 |

| Info. Criterion: AIC = 2.57636

| Restricted log likelihood -89.89510 |

| McFadden Pseudo R-squared .1320992 |

| Chi squared 23.75015 |

| Degrees of freedom 3

| Prob[ChiSgd > value] = .2816655E-04 |

| Underlying probabilities based on Normal |
B it e ettt e e e e e e +
+-—————— - o +-—————— t-—————— B +
|Variable| Coefficient | Standard Error |b/St.Er.|P[|Z|>z]]| Mean of X|
fo— = fom e fom e o o= o —— +
————————— +Index function for probability

Constant| -10.1589039 3.03379286 -3.349 .0008

FOREIGN | 1.70486053 .41520516 4.106 .0000 .31818182
LENGTH | .04686753 .01228262 3.816 .0001 189.121212
MPG | .13045591 .03696460 3.529 .0004 21.3333333
————————— +Threshold parameters for index

Mu (1) | 1.05112609 .18720281 5.615 .0000

Mu (2) | 2.38670648 .18420739 12.957 .0000

Mu (3) | 3.82169002 .28935433 13.208 .0000

141



Modeling Ordered Choices

5.9.5 Maximum Likelihood Estimation of the Ordered Choice Model

The log likelihood function for the basic ordered choice model is

logL = Z:;] niZj=0 sz 1Og|:F(l’lj _ﬁ'X[) _F(“'j—l _ﬁ'X[):I
=2 ”fozo wy log(F, , = F,;.,) (5.14)

n J
= Zi:l nfzj':o ij log PfJ’

where
n; = the group size in the grouped data (typical bioassay) case or
n; = 1 in the individual data case,
and
w;; = p;; = the proportion of group i that responds with outcome j, or
wy; = my; =1 if individual 7 chooses outcome j in the individual data case.

F(?) is the functional form in use, typically A(¢) for the ordered logit model or ®(¢) for the ordered
probit model. For the moment, we will leave the functional form indeterminate. For obtaining the
log likelihood and its derivatives, only the term logP;; is of consequence. The relevant
derivatives are

alogPi,j _ f,, _ﬁ,j—l

8[3 P (—Xi),

" (5.15)

alog Pz/ fu 510g P:/ _ _f[,j—l
F

b b

8“] Pi,_] al"lj—l

J

where f;; is the density corresponding to F;;. For the moment, we are carrying p.;, Mo and p, as if
they were unconstrained. The constraints are imposed later. Thus, the parameter vector contains
B and p, which has J+2 elements only J-1 of which are free to vary. The derivative vector
OlogP; ;/0p has J+2 elements, but only two are nonzero. The second derivatives are as follows:

! ’ 2
o log P;/ f:/ B fi,j—l _ ft/ — fi,/'—l xx
PP’ P P '

i,J i,j
o’ log P:/ _fi,'j _ (fl, B fi,_/—1)fi,j :l(_x') o log P:/ _ |:_fi,,j—1 _ (fl, B fi,_/-l)(_fi,j—l)

= — (_X')’
2 2 i
Bow; | B, £ P, £, B
[ ’ 2 ’ 2
O logh, | 17, (fj Ologh, |~f ., ((—f,.,jl)]
2 =~ | A s 2 - - s
Ou; £, B, My £, £,

L " " (5.16)
az 10g E, (_fi,j )(__fi,j—l)
Om,0u, P

The Hessian has a nonzero 2x2 block within the full (J+2)x(J+2) submatrix for p. The relevant
constraints on the terms for the fixed elements of pn are
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b

Hp =-00, o = Oa Hy =0
Fi,-l = 09 ﬁ,—l = Oa ﬁ,- '=
Fi,J =1, fi,J =0, fi,J =

b

Finally, for the two most commonly used functional forms,

logit:  F(t) =A(),
A =AU - A@)],
S'@ =AU -AO][1-2A0)],

(5.17)
probit: F(f) = (),
) =6,
S =-190).

As Pratt [1981] showed, the second derivatives matrix is negative definite, so common
gradient methods such as Newton or BFGS should be effective for maximizing the log likelihood
function. Occasionally (rarely in our experience, however), the threshold parameters can become
unordered during optimization. This points to the utility of a line search and a careful iteration. It
is possible to force the threshold parameters to be ordered by reparameterizing them. For the
model proposed in Section 8.3, we used the formulation

W = W+ oexp(oy).
starting with p,= 0.
5.9.6 Bayesian (MCMC) Estimation of the Ordered Probit Model

Bayesian estimation of the ordered probit model builds on the estimator for the binary
probit model described in Section 2.3.4. The binary probit model is

y* = B'x; + &, &~ with mean 0 and known variance, 1,

The posterior density for coefficients in the probit models is

n @ ‘ ’ A
PBly.X)= p(ﬁ)H";' i 'X’) , (5.18)
[, P®I1 @@p'x,)ap

where p(B) is the prior for B, and y, X and y* denote the full set of n observations. The Gibbs
sampler for y;* and B with an uninformative normal prior for B (zero mean, large variance) is
based on

p(:* | B,y, X) = normal with mean B'x; and variance 1, truncated at zero
truncated from below if y; = 1 and from above if y; = 0.
and
pBly*.y.X) = Ni[b,(X'X)"] where b = (X"X)"'X"y*.
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The lower triangular Cholesky matrix, L such that LL’ = (X'X)™ is computed at the outset. To
initialize the iterations, any reasonable value of B may be used. Albert and Chib [1993] suggest
the classical MLE. The iterations are then given by

1. Compute the N draws from p(y*|B,y,X).
Draws from the appropriate truncated normal can be obtained using

yi*(r) = B'x; + O [(U-DHOP'x;) + 1] if y= 1 (5.19)
and yEr) =px+ @' UOB'x) ify=0,

where U is a single draw from a standard uniform population.
2. Draw an observation on p from the posterior p(Ply*,y,X) by first computing the mean

b(r) = X" X)X"y*(r).
Use a draw, v, from the K-variate standard normal, then compute () = b(») + Lv.

The iteration cycles between steps 1 and 2 until a satisfactory number of draws is obtained (and a
burn-in number are discarded), then the retained observations on f are analyzed.
The extension to J+1 ordered outcomes is now straightforward. The model is, now,

yit = B'xi+ &, g~ N[O, 1],
yi =Jjif py <y <.

Diffuse priors are assumed for B and p, with the usual constraints on ., o and ;. Based on the
same results as before, we still have

p(B | y*a l'la Ya X) = NK[b: (X'X)-l]' (520)
pi* | p, By, X) = N(B'x;1) truncated in both tails by p;.; and p,.

We will note below how to do the simulation for y;*. Finally, Albert and Chib provide the

posterior for y; (j = 1,...,J-1), conditioned on the other threshold parameters,;

Ty =7]x1lu. * )
\ {[y, JIX0[, <y <p]+ } 521)

P B, y* pgy, v.X) o< | | - .
’ I Ly, =j+1x1[p, <y*<p,]

where the density is the posterior for 1, given the other threshold parameters, denoted p;, and the
other parameters. The steps in the Gibbs sampler consist of initializing f and p as before, now
with the MLE of the ordered probit model, then, in order,

1. Sample p; from a uniform distribution with limits

Lower = max;{max(y;*[v;=j), W1} (i.e., the maximum over the n observations),
Upper = min,{min(y;*|y; = j+1),W+1} .

Sampling from this uniform distribution is done by scaling a draw from U(0,1) by
1/(Upper — Lower).
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2. Sample y;* from the truncated normal distribution where the underlying variable has mean B'x;
and standard deviation 1 and the truncation limits are p;; and p; for the corresponding
observation on y; = j. The necessary result for this step is given in Greene [2008a, p. 575].
To sample a draw from this distribution, define P, = ®(p.; - B'x;) and Py = O, - B'x)).
Note that P, =0 if y; =0, and Py =1 if y; =J. Then, let U denote a draw from the U(0,1)
population — a single uniform draw. Then, the draw for y;* is

Y upBx; = Brx; + @ [P+ Ux (Py—Pu)].

3. Sample B from the multivariate normal population as shown earlier for the binary probit case.
The only change is the data used to compute b, now using the results of the doubly truncated
sample in step 2 immediately above.

We then cycle through steps 1 — 3 for a large number of iterations (say tens of thousands). After
discarding the first several thousand draws, the remaining draws on § and p constitute a sample
from the joint posterior. The posterior mean is estimated by the average of the draws retained
after the burn in.

A convenient aspect of the MCMC approach to estimation is that often the estimator for a
more complex model is easily obtained by adding layers to a simpler one. Consider the bivariate
ordered probit model analyzed by Biswas and Das [2002]. The model is a direct extension of the
univariate model:

ya® = Bi'xa T &1, en~ NO, 1], yu =j if po < ya™* <y
yo® = Ba'Xp T €n, en~ N[O, 1], yo = k if yi0 < y™* < 1

Corr(ei1,en) = p.

Each ordered probit is handled as before. The draws from the joint posterior of (B,,) are
obtained by a two equation FGLS regression. Conditioned on the other parameters, the two latent
regressions are a seemingly unrelated regressions system. The draws for (1;,y,) are drawn jointly
from a rectangle, with each dimension handled as in the univariate case. The draws on y;;* and
yi* are drawn from a truncated bivariate normal population.! The remaining detail is sampling
from the posterior of p. Biswas and Das handle this by defining X to be an unrestricted 2x2
covariance matrix of the two disturbances. The prior for X is assumed to be proportional to [Z[>%.
This produces a conditional posterior for X that is an inverse Wishart population.” Note that they
have introduced two new free parameters, o, and o, and are now estimating G, = po;0;.

There is a peculiar loose end in the Biswas and Das [2002] study. In the ordered choice
model, the scale parameters of the disturbances, o, = Var[g;,] are not identified and are
normalized to 1.0. Biswas and Das treated these variances as free parameters. As such, the
model they purport to estimate is not identified. The evidence is in the reported values of the
posterior means of o,” = 22.62 and &,” = 13.33. These values are far outside the reasonable range
for a choice model of this sort; they are supposed to be normalized at 1.0. (One might surmise
that they are “identified” purely by the prior; there is no sample information about them.
Redemption of the model would be obtained by formulating it in terms of a prior over p to begin
with, and imposing the necessary normalizations on o; and o,.)

! Biswas and Das suggest to do this draw by a rejection method. It can be done in a “one draw” manner
using a bivariate truncated normal analog to the method shown above. [See, e.g., Geweke [1991].
? See Train [2003] for details on sampling from this population.
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As noted earlier, the Bayesian segment of this literature is relatively compact and quite
recent. Methodological contributions are offered by Albert and Chib [1993], Koop and Tobias
[2006] and Imai et al. [2003] who have developed an “R” routine for some of the computations.
Applications include Girard and Parent [2001], Biswas and Das [2002], Czado, Heyn and Miiller
[2005], Tomoyuki et al. [2006], Ando [2006], Zhang et al. [2007], Kadam and Lenk [2008] and
Munkin and Trivedi [2008] and a handful of others. As of this writing, Bayesian analysis of
ordered choice data is a small niche in the literature, though there are many applications to binary
data.

5.9.7 Software For Estimation of Ordered Choice Models

Table 5.12 lists commercial packages that can be used to estimate basic ordered choice
models. Those marked with ‘*’ support some of the extended models such as fixed and random
effects, heteroscedasticity and heterogeneous threshold models (see Chapter 7). These
extensions can also be programmed by the user in the programming packages such as R, Matlab
and Gauss or in many cases, in the higher level matrix languages of the integrated packages such
Mata in Stata. Models with random coefficients can be fit with PROC MIXED in SAS, GLAMM in
Stata, and the random parameters routines in NLOGIT. Latent Gold and NLOGIT/LIMDEP have
built in latent class treatments for ordered choice models. Table 5.11 is a partial list of software
used in econometrics and statistics. A more complete guide appears at

http://www.oswego.edu/~economic/econsoftware.htm.

Table 5.12 Software Used for Ordered Choice Modeling
Eviews WWW.eviews.com

Gauss www.aptech.com

Latent Gold  www.statisticalinnovations.com/

LIMDEP* www.limdep.com

Matlab www.mathworks.com

MLwWIN www.cmm.bristol.ac.uk/

NLOGIT* www.nlogit.com

RATS www.estima.com

SAS WWW.Sas.com

SPSS WWW.SpPSS.com

Stata* www.stata.com

TSP www.tspintl.com

WinBugs www.mrc-bsu.cam.ac.uk/bugs/winbugs/contents.shtml
ZELIG* gking.harvard.edu/zelig/
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6

Specification Issues and Generalized Models

Anderson [1984, p. 2] discusses the inadequacy of the ordered choice model we have examined
thus far.

We argue here that the class of regression models currently available for ordered
categorical response variables is not wide enough to cover the range of problems that
arise in practice. Factors affecting the kind of regression model required are (i) the type
of ordered categorical variable, (ii) the observer error process and (iii) the
“dimensionality” of the regression relationship. These factors relate to the processes
giving rise to the observations and have been rather neglected in the literature.

Generalizations of the model, e.g., Williams [2006], have been predicated on Anderson’s
observations, as well as some observed features in data being analyzed and the underlying data
generating processes.

It is useful to distinguish between two directions of the contemporary development of the
ordered choice model. Although it hints at some subtle aspects of the model (underlying data
generating process), Anderson’s arguments direct attention primarily to the functional form of the
model and its inadequacy in certain situations. Beginning with Terza [1985], a number of authors
have focused, instead, on the fact that the model does not account adequately for individual
heterogeneity that is likely to be present in micro- level data. This chapter will consider the first
of these. Heterogeneity is examined in Chapter 7.

6.1 Functional Form Issues and the Generalized Ordered Choice Model (1)

Once again, referring to Anderson [1984, p. 2],

The dimensionality of the regression relationship between y and x is determined by the
number of linear functions required to describe the relationship. If only one linear
function is required, the relationship is one-dimensional; otherwise it is multi-
dimensional. For example, in predicting & categories of pain relief from predictors x,
suppose that different functions B,'x and ,'x are required to distinguish between the
pairs of categories (worse, same) and (same, better), respectively. Then, the relationship
is neither one-dimensional nor ordered with respect to x.”

If the relationship is not ordered, then the suggestion is that two equations, rather than a single
one, should be used to fit the two binary choices. The author’s earlier analysis (also p. 2) of the
data generating process puts a different interpretation on the argument.

For example, Anderson and Philips [1981] refer to the “extent of pain relief after
treatment:” worse, same, slight improvement, moderate improvement, marked
improvement or complete relief. In principle, there is a single, unobservable, continuous
variable related to this ordered scale, [emphasis added] but in practice, the doctor
making the assessment will use several pieces of information in making his judgment on
the observed category. For example, he might use severity of pain, kind of pain,
consistency in the time and degree of disability. We will refer to variables of the second
type as “assessed” ordered categorical variables and argue that, in general, a different
approach to modeling regression relationships is appropriate for the two types. Assessed
ordered variables occur frequently in the biomedical, social and other social sciences.
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Thus, he argues that, at least in some situations, the dependent variable is not, in fact, ordered, or
might not be. In such a case, he argues, essentially, that it makes sense to partition the outcomes,
and treat them as a set of binary choices, or at least not as a single ordered choice. The upshot is
that, at least as argued here, increasing the “dimensionality” of the fitting problem follows from
the nature of the data generating process, not (evidently) from a need to accommodate curvature
in the data.

6.1.1 Parallel Regressions
Anderson departs from the familiar ordered choice model that we have examined so far;
Prob(y <y, |x) = F(0; - B'x), s =1,....,k.

Continuing the line of argument suggested earlier, he then suggests the model,

exp(B, +B.x)

. ,s=1..k, B, =0, =0. 6.1
Efzoexp(ﬁo,'l'B;X) S Box B, (6.1)

Prob(y =y, [x) =

This is the multinomial logit model also proposed by Nerlove and Press [1972] for k unordered
choices. Later, it is observed “Model (5) [the model in (6.1)] often gives a good fit to real data,
even when the B, are restricted to be parallel. This is particularly true when the categories are
ordered.” (Emphasis added.) The implication is that the model is not intended for ordered data;
but it seems to work well when applied to ordered outcomes. By “parallel,” the author states the
restriction B; = -¢;p for a common P, where ¢; = 1 and ¢, = 0. The resulting model,

Pry=y, 1% _ exp(B,, — 0.B'x),5 =1,....k [8], (6.2)
Pr(y =y, [x)

is labeled the Stereotype Ordered Regression Model. The parametric restrictions on the model
for unordered outcomes do not enforce an ordering of the outcomes,

Pr(y < y,|x) <Pr(y <y [x). (6.3)

As Anderson notes, the model “often gives a good fit to real data.” However, no simple linear
restriction on the parameters of (6.2) can enforce (6.3). Anderson follows with a prescription for
doing so, “[t]he next step is to order the B, to obtain a regression relationship. This is achieved by
ordering the ¢,

1 = ¢l>¢2>--->¢k20- [10]

The ordered regression model [8] subject to constraints [10] will be termed the stereotype
model.” The implied probabilities still do not enforce the ordering rule for all x unless the
constant terms are also monotonically increasing; Bo; < Bo2 < ... < PBox. Thus, Anderson’s remedy
for the “parallel regressions” restriction, if we enforce the ordering of the probabilities, is a
progressive scaling of the parameter vector by the constants ¢, and a progressive shift of the
regression to the right on the real line.

Long [1997] provides an interpretation of Anderson’s parallel regressions result. He
departs from the familiar formulation of the ordered choice model.
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Prob(y < j | xi) = F(u; - B'xy).
Differentiating these functions, we have
OProb[y; < j | x;J/0x; = -y, - B'x)P. (6.3)

This defines a set of binary choice models with different constants but common slope vector, f.
If we then fix the probability at, say P = P* for any outcome, it must follow (by monotonicity of
the cdf) that f{w, - B'x,) is fixed at f*. It follows that for a particular choice of probability, we
have

OProb[y; < j | x;)/0x; = f* B =0Prob[y; < m | x;J/0x, m=0,...,J. (6.4)

where f* is the same for all j, that is, a multiple of the same 8. This intrinsic feature of the model
has been labeled the “parallel regression assumption.””

6.1.2 Testing the Parallel Regressions Assumption — The Brant Test
Brant [1990] suggests a widely used test of the parallel regressions assumption. Defining
v, = Prob(y < j|x)=F(; - px),

the logit form of the model implies that

log( y/’y szj— X, 6.5)

a “restriction” labeled the “proportional odds” restriction, or the “proportional odds model”
(McCullagh [1980]). Several approaches to examining the parallel regressions feature center on
the set of implied binary choice “models” for the probit and logit cases,

Prob(y > j | x)=F(pB'x- w),j =1,....J-1. (6.6)

One can, in principle, fit J-1 such models separately. Each should produce its own constant term
and a consistent estimator of the common B. An “informal” examination of the differences [see
Clogg and Shihadeh [1994, pp. 159-160]) should be revealing. A Lagrange multiplier test of the
hypothesis is presented by SAS Institute [2008]. Brant’s [1990] Wald test directly examines the
linear restrictions

The Wald test of this hypothesis for the ordered logit model follows from the implication of the
unrestricted model,

Proby: > j|x] = ARy + B;'x), (6.7)

"'See, e.g., Long [1997, p. 141].
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where By; = Po - 1 and A(?) is the logistic cdf, 1/(1+exp(-f)). The slope vector B; should be the
same in every equation. Thus, the specification implies J-1 binary choice “models” that can be
estimated one at a time, each with its own constant term and (by assumption) the same slope
vector. The null hypothesis is equivalent to

Hy: l3q - l31 =0, q= 2, J-1,

which can be summarized as

H()Z R|3*=0
where
I -1 0 - 0 g :
I 0 -I 0 . :
R= . , B*=| By | (6.8)
1 0 0 - - :
1B,
The Wald statistic will be
A\ a -1 A
CI-2K] = (RB¥) [RxAsy.Var[B*]xR'} (RB*). (6.9)

where ﬁ* is obtained by stacking the individual binary logit estimates of B (without the constant
terms). The asymptotic covariance matrix is computed as follows (using Brant’s results):

Est.Asy.Cov[ﬁj,ﬁm] = [Z;AU (1 —A, )Xl.x;]_l x
[ :1:1 A, (1 - [X” )xix;J[ZTZIAim (1 -A,, )X,-Xl'- }_l

and /A\,.j = A(BO it ﬁ'j.xl.) . The test can be carried out for specific coefficients by removing all but

(6.10)

the desired rows of R in the computation of the statistic.

If the probabilities in the covariance matrix are based on the individual binary logit
models, then the ordering of the probabilities is not preserved, and A;; - A;;.; < 0 is a possibility
even though the theory rules it out. In this case, the covariance matrix could fail to be positive
definite. Brant suggests using the parameters of the restricted (basic ordered choice) model
instead. Even with this practical fix, it remains true that the parameter estimates used in the test,
each of which does have its own constant term, do not preserve the ordering of the probabilities in
the model.

Table 6.1 displays the results of the Brant test for our ordered logit model of health
satisfaction. The proportional odds restriction is clearly rejected. Loosely, it appears that the
income coefficient displays the greatest variation across the cells. Both education and income
appear to fail the test when it is applied individually.
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Table 6.1 Brant Test for Parameter Homogeneity

| Brant specification test for equal coefficient |
| vectors in the ordered logit model. The model

| implies that logit[Prob(y>7j|x)]=beta(j)*x — mj

| for all j = 0,..., 3. The chi squared test is
|
|
I

I
I
I
HO:beta (0) = beta(l) = ... beta( 3)
Chi squared test statistic = 71.76435 | (78.76988 based on the
Degrees of freedom = 15 | normal distribution)
| P value = 00000
o +
o +

|Specification Tests for Individual Coefficients in Ordered Logit Model
|Degrees of freedom for each of these tests is 3

e e e e Fo———— Fo———— Fo———— to————— Fomm +
| | Brant Test | Coefficients in implied model Prob(y > j). |
|Variable| Chi-sgq P value | 0 | 1 | 2 | 3 |
B o to—m to—m - to—m Fo—m o +
| AGE | 6.28 09864 | -.0398] -.0292| -.0328| -.0248]
|EDUC | 19.89 .00018 | .1212|] .0786] .0630| -.0044]|
|INCOME | 13.32 .00398 | 1.9576| .4959] .1790| -.0206]|
|MARRIED | 1.87 .59962 | .0674] -.0228] -.1486| -.0896]|
|KIDS | 7.24 .06476 | .3218] .2158] .0189| -.1231]|
fo—— e et e F————— Fo———— Fo———— to———— Fomm - +

This naturally leads to some question of the model specification. The non-proportional
odds formulation is not a valid specification for the ordered logit model; the probabilities in the
model do not sum to one. If all the parameters can vary freely, as they do above, then each of the
J-1 binary choice models has been treated separately, and with no connection, there is no
parametric restriction on the sum of the probabilities. Moreover, there is also no parametric
restriction other than the one we seek to avoid that will preserve the ordering of the probabilities
for all values of the data — that it does so for some data sets, or is a good “approximation” still
leaves open the question of what specification failure makes sense to explain the finding, such as
ours above.

The Brant test can also be applied to the ordered probit model. Using the usual
approximation, each maximum likelihood binary choice estimator takes the form

B,=B,+H)'g, +o(l/n),

where H," is the inverse of the information matrix and g; is the gradient of the log likelihood.
Relying on the information matrix equality and the results of Berndt, Hall, Hall and Hausman
[1974], we can estimate the matrix using the outer product of gradients and estimate the
covariances of the derivatives with the sum of cross products. For the binary probit models,

_ (2qg,' _1)¢(0Lj +ﬁ;Xi)
5 = 0(2q, - Dot +B/x,]

(x.),

where g; = 1(y;>j). The estimators of the submatrices needed for the test are
-1

AoA n ’ -l n ' n ’
Est.Asy.Cov[Bj,Bm]:[ l_:lgijgij} [ l_zlgi].gl.mﬂzl_:lgimghﬂ . (6.11)

Evidently this is not the explanation for the finding in Table 6.1. When we repeated the
computations in Table 6.1 based on the ordered probit model, the chi squared statistic rose to
78.77.)
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Brant notes, that although it is a testable restriction, it is unclear what feature of the
behavior underlying the outcome has been revealed when the null “hypothesis” of parallel
regressions is rejected statistically, as it frequently is. Some suggested model failures that might
lead to rejection of the hypothesis include:

(1) Misspecification of the latent regression, B'x,

(2) Heteroscedasticity of ¢ - “nonhomogeneous dispersion of the latent variable with
varying x.”

(3) Misspecification of the distributional form for the latent variable, i.e., “nonlogistic
link function.”

He also considers a type of measurement error, such as the problem of “differential
misclassification in the y observations.” There is little optimism that the test will uncover failures
(1) or (2), since if the index or the variance are misspecified in the structural model, the
misspecification will distort the estimators in the binary choice models similarly. For the
distributional assumption, however, he shows that if some other distribution applies, such as the
extreme value distribution, then the appropriate model should echo something similar to
Anderson’s [1984] stereotype model, that is, with j-specific parameter vectors, (0,,¢,8). In this
case, rejection of the common f form in favor of the more general form would be expected.

It is not suggested that rejection of the supposed null hypothesis argues in favor of the
non-proportional odds model as the alternative model. The unanswered question is what failure
of the model does the Brant test reveal? Brant concluded,

As previously mentioned, assessment of the proportionality assumption can also be based
on fitting the augmented models (2.1) [the non-proportional odds model], as in Hutchison
[1985] and Ekholm and Palmgren [1989]. Similarly, a more directed approach can be
based on fitting (3.2) [Anderson’s [1984] stereotype model]. The augmented model
approach is attractive in that it provides a more standard theoretical framework for
developing tests. One drawback, however, is that specialized algorithms must be
developed to fit the augmented models. A more serious problem is inherent in the models
themselves. For example, if one wishes to extend the use of model (2.1) beyond the
values of x’s actually observed, the B;,’s must be constrained to ensure monotonicity of
the extrapolated y;’s. Similar difficulties pertain to (3.2). Depending on the range of
admissable values of x, this can lead to technical difficulties in fitting and the need for
nonstandard likelihood theory to allow for the possibility of estimates falling on the
boundary of the parameter space. It may be best then to view (2.1) and (3.2) not as
scientifically meaningful models, but as directional alternatives helpful in validating the
simpler proportional odds model. [Emphasis added.]

The test is useful for supporting or for casting doubt on the basic model. It does not seem to be
useful for pointing toward what might appear superficially to be an alternative specification based
on freeing the parameter vectors in y;. For example, the response of some analysts to the failure
of the base model (the ordered choice model), say as evidenced by the Brant test, is to switch to
the unordered multinomial logit model as an alternative. Williams [2006, p. 5] dismisses this
approach because the alternative proliferates parameters and is difficult to interpret. The
multinomial logit model for unordered choices produces coefficients, but it would be arduous at
best to translate them into something meaningful to describe the behavior of an ordered random
variable, such as the outcome of an attitude survey.
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6.1.3 Generalized Ordered Logit Model (1)

Quednau [1988], Clogg and Shihadeh [1994], Fahrmeir and Tutz [1994], McCullagh and
Nelder [1989] have proposed versions of the ordered choice models based essentially on the
“non-proportional odds” form given above. Fu [1998] and Williams [2006] have recently
provided working papers and a Stata program (GOLogit and GOLogit?2) that implement and
refine the model. Williams [2006] suggests that his development is an extension of Fu’s so we
focus on the latter. Motivated by the frequent rejection of the null hypothesis by Brant’s [1990]
test Williams [2006, p. 3] suggests an alternative model derived from the core specification;

exp(a; +B'x;)

Prob(y, > j)=F(a., +B'x.) = ’
(v, > )=F(a; +pix,) L+exp(a; +Bx;)

j=01,...,J-1, (6.12)

where, now, x; does not contain a constant term. (This is the form used by Brant to motivate his
analysis.) The implication is

Prob(y; = 0x;) = 1 — F(o + Bo'x)),

Prob(y; = 1|x;) = F(ow + Bo"x;)) — F(o + Bi'xy),

Prob(y; =j[x;) = F(oy.1 + Bi1'x) — F(oy + B'xy), j = 2,....J-1, (6.13)
Prob(y; =J|x;) = F(o.i + Bri'x).

We label this the “(1)” form of the generalized ordered choice model. We will examine two other
forms, with (unfortunately) the same name. [The “(1)” does not indicate first chronologically;
that would be Terza’s [1985] formulation. It is simply the first one presented in this review.]
This model is the implied alternative in Brant’s analysis, which is equivalent to logit(y;) = o; +
B/x;. It effectively treats each of the J+1 outcomes of y; as a separate event — the probabilities
vary completely independently. As Brandt notes, it should not be viewed as a valid model as it
stands. With no constraints imposed on the parameters of the model, although the probabilities
sum to one by construction, there is no assurance that probabilities for cells 1 — J-1 are positive or
that the partial sums increase as j increases. Brant anticipated this feature of the model in the
conclusion related at the end of Section 6.1.2. Long and Freese [2006, p. 221] observe this as
well, but note that “To ensure that the Pr(y = j|x) is between 0 and 1, the condition (t; - B;'X) > (1,4
- Bj-1'x) must hold.” Rewrite the restriction as (t; - t1.1) > (Bj - Bj-1)'x. Though it might hold for
the data in the sample, the only way to ensure that this is true for every possible configuration of x
is to have ;> 1;.; and B, = B;.;, which is where we began.

The problem of negative probabilities was raised earlier. Williams [2006] invoking
McCullagh and Nelder [1989, p. 155] observes

“The usefulness of non-parallel regression models is limited to some extent by the fact
that the lines must eventually intersect. Negative fitted values are then unavoidable for
some values of x, though perhaps not in the observed range. If such intersections occur in
a sufficiently remote region of the x-space, this flaw in the model need not be serious.”

This seems to be a fairly rare occurrence, and when it does occur there are often other
problems with the model, e.g. the model is overly complicated and/or there are very small
Ns for some categories of the dependent variable. gologit2 will give a warning message
whenever any in-sample predicted probabilities are negative. If it is just a few cases, it
may not be worth worrying about, but if there are many cases you may wish to modify
your model, data, or sample, or use a different statistical technique altogether.
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In practical terms, as Williams [2006] suggests, the model is usually estimable, and the problem
does not arise. If one begins the iterations with starting values obtained from the “constrained”
ordered logit model, then at least at the starting values, one is assured that all probabilities are
positive. As the iterations move away from the starting values, as any probability associated with
an observed outcome moves toward zero, it will impose a large penalty on the log likelihood — in
principle if a probability for an observation becomes negative, it exerts an infinite penalty. The
practical upshot is that, in spite of its potential for internal inconsistency, this model is likely to be
estimable. Table 6.2 shows the results for our ordered choice example. The estimates in Table
6.2 have been reordered so that coefficients associated with specific independent variables are
grouped contiguously, rather than coefficients associated with specific outcomes. Inspection of
the sets of estimates certainly suggests that the coefficients differ substantially across j. A
likelihood ratio test would be based on

151 = 2(-5713.579 — (-5752.985)) = 78.812.

The 95% critical value from the table is 24.996. Thus, the hypothesis of the restricted model is
decisively rejected.

This generalized ordered logit model detaches the observed outcomes from an underlying
continuous process. We cannot appeal to the latent regression model, “y* = o, + B,/x + €” to state
that “then y = j under some condition,” since in order to generate the y*, one would need to know
the appropriate j (appropriate o and p) in advance. The model with separate coefficient vectors
for each outcome is built around the discrete outcomes, and defines a discrete multinomial
random variable that takes values 0,..., J, not a reflection of a continuous one. In the application
in Section 6.2.1, Winkelmann and Boes [2006a] fit this model to an outcome that is tied to a
continuous underlying variable, “subjective well being.” The generalization requires a subtle, but
substantive reinterpretation of the process that produces the observed outcomes. The relationship
between the underlying “subjective well being” and the observed response to the questionnaire is
unclear.

It remains true that the “parameters” of the model can be computed, as we have done in
Table 6.2. If the ordered logit model (same ) really is appropriate, then one should replicate, at
least approximately the original “constrained” model. To some degrees, as evident in Table 6.2,
that is what occurs. As such, this could be viewed as an inefficient estimator of the original
model. But, in the same spirit as the Brant test, the same question emerges. If there is a
continuous latent variable underlying the discrete outcomes, as in Winkelmann and Boes [2006a],
then to the extent that this procedure does not mimic the original model — the separate parameter
vectors really do differ, as ours do in Table 6.2 — then what has it found? Since the model, such
as it is, is not a valid probability model for this case, the same loose end emerges. It must be
picking up some failure of the original model. One might guess that Brant’s speculations about a
set of explanations for rejection of the null hypothesis by his test would be helpful here as well.

We have labeled the model discussed here the “Generalized Ordered Choice Model (1).”
Forms “(2)” and “(3)” are discussed below. The preceding is an orthodox interpretation of the
model specification. Later, in Section 7.3, we will find that with a straightforward reinterpretation
of what is ultimately the same model structure, an internally consistent specification of a random
variable does emerge. Since the models are only superficially different, we will label the
threshold models in Section 7.1 the “(2)” forms of the Generalized Ordered Choice Model.”
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Table 6.2 Estimated Ordered Logit and Generalized Ordered Logit (1)

Ordered Probability Model
Underlying probabilities based on Logit

| I

| |

| Dependent variable HEALTH |

| Log likelihood function -5749.187

| Restricted log likelihood -5875.096 |

| Chi squared 251.8798 |

| Degrees of freedom 5

| Prob[ChiSgd > value] = .0000000
o +

- tom e +o—— o to—— +

|Variable| Coefficient |Standard|b/St.Exr|P[|Z]|>z]]|

I | |Error | I I

fo— fom e fom e o +

to—————— +Index function for probability

|Constant | 3.5179 .2038 17.260 .0000]

| AGE | -.0321 .0029 -11.178 .0000]

|EDUC | .0645 .0125 5.174 .0000]

| INCOME | .4263 .1865 2.286 .0223]

|MARRIED | -.0645 .0746 -.865 .3868]

|KIDS | .1148 .0669 1.717 .0861|

B +Threshold parameters for index

[Mu (1) | 2.1213 .0371 57.249 .0000]

|Mu (2) | 4.4346 .0390 113.645 .0000]

|Mu (3) | 5.3771 .0520 103.421 .0000]

tomm B i +

o +

| User Defined Optimization | Generalized Ordered Logit
| Maximum Likelihood Estimates | Logit Model (1)

| Log likelihood function -5713.579 |

o +

- o o to—— o +
|Variable| Coefficient | Standard |b/St.Er.|P[|Z]|>z]]

| | | Error | | | Ordered Logit
e i Fomm et Fo—m————= Fo—m————= + Estimates
|Constant| 2.69537 .606874 4.441 .0000 | a = 3.51646
| | 1.04676 .251309 4.165 .0000 | o-py = 1.39503
| | -.67133 .253798 -2.645 .0082 | a-p, = -.91697
| | -1.09368 .368911 -2.965 .0030 | oa-ps; =-1.86024
to—— B it et e T e e +

| AGE | -.04080 .007651 -5.332 .0000 | AGE

| | -.02925 .003426 -8.538 .0000 | -0.03213
| | -.03261 .003758 -8.677 .0000

| | -.02427 .004968 -4.885 .0000

to—— B ettt it e e e +

|EDUC | .12009 .038709 3.102 .0019 | EDUC

| | .07635 .015527 4.917 .0000 | 0.06467

| | .06222 .015730 3.956 .0001

| | -.00252 .023385 -.108 .9141

- o - +

| INCOME | 1.98158 .452708 4.377 .0000 | INCOME

| | .51201 .214586 2.386 .0170 | 0.42434

| | .18838 .233611 .806 L4200

| | -.11631 .285676 -.407 .6839

tomm e +

|MARRIED | .05870 .171015 .343 .7314 | MARRIED

| | -.02514 .086290 -.291 .7708 | -.06451

| | -.15166 .096590 -1.570 .1164

| | -.07179 .129624 -.554 .5797

fo— o +

|KIDS | .34731 .184095 1.887 .0592 | KIDS

| | .21913 .081866 2.6717 .0074 | 0.11452

| | .01939 .088280 .220 .8261

| | -.11322 .121602 -.931 .3518

fo— = R ittt +
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6.2 Model Implications for Partial Effects

Superficially, it seems that the ordered choice model is using a single index function,
P'x;, to describe the determination of J+1 outcomes, y =j. Even though in fact, there is only a
single outcome, y;, = T(y;*), it remains interesting to examine the particular values that y; attains.
For example, the analyst is often interested specifically in the highest or lowest cell. Brewer et al.
[2008] were interested in the top several cells in the distribution. As we noted earlier, since there
is no single natural conditional mean function, the typical analysis describes the probabilities
individually with the partial effects described in Chapter 5. Because the model is a ‘single index’
specification — there is only one B'x; in the model — a large number of constraints are imposed on
the partial effects..

6.2.1 The Single Crossing Feature of the Ordered Choice Model

The partial effects shown in the preceding examples vary with the data and the
parameters. Since the probabilities must sum to one, the partial effects for each variable must
sum to zero across the probabilities. It can also be shown that for the probit and logit models, this
set of partial derivatives will change sign exactly once in the sequence from 0 to J, a property that
Boes and Winkelmann [2006b] label the single crossing characteristic.' For a positive
coefficient, 3, the signs moving from 0 to J will begin with negative and switch once to positive
at some point in the sequence. The following Table 6.3 is extracted from Table 4 in Boes and
Winkelmann [2006b, p. 22]. (The “0-2” bracket is obtained by grouping the relatively low
number of observations with the three lowest values in the original data.) Partial effects are
shown with estimated standard errors in parentheses. The same effect can be seen in Table 5.2 for
our application.

Table 6.3 Boes and Winkelmann Estimated Partial Effects

Response 0-2 3 4 5 6 7 8 9 10

Men

OProbit -0.016 -0.014 -0.016 -0.037 -0.020 0.003 0.059 0.027 0.014
(0.003) (0.001) (0.001) (0.003) (0.009) (0.003) (0.009) (0.005) (0.005)

GOProbit -0.020 -0.022 -0.014 -0.027 -0.037 -0.005 0.088 0.039 -0.002
(0.007) (0.006) (0.004) (0.005) (0.006) (0.007) (0.033) (0.109) (0.089)

Women

OProbit -0.004 -0.005 -0.005 -0.016 -0.008 -0.003 0.020 0.012 0.008
(0.002) (0.001) (0.001) (0.005) (0.012) (0.003) (0.011) (0.004) (0.006)

GOProbit -0.009 0.005 -0.011 -0.036 -0.040 0.038 0.064 -0.008 -0.003
(0.008) (0.016) (0.020) (0.015) (0.013) (0.029) (0.116) (0.125) (0.027)

The “GOProbit” results — a probit version of Williams’s [2006] GOLogit approach —
show the effect of relaxing the single crossing restriction. However, for men, the model seems to
be preserving the effect on its own — the second crossing at y = 10, produces a marginal effect that
differs only trivially from zero, with a “z-value” of only 0.022. For women, however, there are
four crossings which make the model seem somewhat unstable. Only the estimated effects at y =
5 and 6 are statistically significant (negative), in contrast to the ordered probit model. Two of the
crossings rest on what looks like a maverick finite sample outcome at y = 3. Based only on the
signs of the effects, the results for outcomes 9 and 10 now lead to a counterintuitive suggestion
that higher incomes are associated with lowered probabilities of reporting a high subjective well
being. The authors’ description of the results (from their pages 12 and 13) suggests the appeal of
a less sharp statement about specific outcomes; the right tail result is suggested to reflect a zero
effect, which removes the remaining extra crossing:

! See, also, Crawford, Pollak and Vella [1988].
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Table 4 summarizes the marginal probability effects of income by gender.
Consider, for example, the results for men and take the ceteris paribus effect of increasing
logarithmic household income by a small amount on the probability of responding a
SWB level of “8”. Table 4 shows a value of 0.059 for the standard model. This means
that the probability of a response of “8” increases by 0.059 percentage points if we
increase logarithmic income by 0.01, which corresponds approximately to a one-percent
increase in level income. A doubling of income, i.e., a change in logarithmic income by
0.693, increases the probability of response “8” by about 0.059%0.693x100, or about 4.09
percentage points, ceteris paribus.

Comparing the MPE’s among the three different models and over all possible
outcomes, we obtain the following main results. For men all models suggest that more
income significantly reduces the probability of low SWB (0-5), and significantly
increases the probability of response “8”. For high SWB responses (9-10), the standard
model predicts a strong positive relationship between income and SWB, whereas the
generalized model and also the binary models do not find a significant effect. Since the
restricted OProbit is clearly rejected, we conclude that income has no effect on positive
well-being. Our preferred specification supports the asymmetry hypothesis for men:
higher income decreases the probability of negative well-being (low SWB), but it does not
affect the probability of positive well-being (high SWB). [Emphasis added.] For women
the relationship between income and SWB is relatively weak. While the standard model
finds small but significant effects for low and high SWB responses, the generalized
model predicts a significant negative effect only on the probability of responses “5” and
“6”. [Emphasis added.] The gender difference might be explained by social norms that
assign the role of primary income earner to men and therefore make income a relatively
more important determinant of male well-being (see also Lalive and Stutzer [2004]).

Figure 6.1 shows graphically the values in Table 6.3. The generalized model does seem to be
heightening the outcome at choice 8, or perhaps suggesting a significant spike associated with
that outcome, that needs some explanation. The force of the model extension seems to be to
produce a much more pronounced effect for outcomes 6-8 of the distribution. The fact that the
heightened impact is negative for y = 6 and positive for y = 8, followed for both genders by a
sharp return to zero at y =9, is striking.

The shortcoming of the ordered choice model that produces the single crossing result is
the linearity of the single index formulation. One could achieve the same result without resort to
the multinomial model by building the desired curvature into the index function itself. In the
figure below, we have re-estimated our original model based not on using “Health” coded 0 to 4,
but the original Health Satisfaction variable, coded 0 to 10, the same as in Boes and
Winkelmann’s study. (They are subsets of the same data base.) Income is included in linear,
squared and cubed form, so that the marginal effect of income on any outcome is

Oivcome() = [f(wy1 - B'x) — (- B'x)] x
(Bincome + 2Bincome.sq INCOME + 3Bincome.cuse INCOME?).

We have evaluated this at the means of all the variables in the model. The results are shown in
Figure 6.2 along with the results from the original model. While the effects still only cross zero
once, the formulation does not force this — we will accept the data’s word for it that the partial
effect of income does indeed (at least seem to) start negative and become positive, conforming to
intuition that greater income is broadly associated with greater health satisfaction. It is interesting
as well that the linear index model produces essentially the same results.
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Figure 6.1 Estimated Partial Effects in Boes and Winkelmann [2006b] Models
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6.2.2 Choice Invariant Ratios of Partial Effects

Boes and Winkelmann [2006a] note that for any two continuous covariates, x; and x;, the
ratio of the partial effects,

OProbly, = j|x,]/0x,, B,
oProbly, = j|x,]/0x,, B

is independent of the outcomes. This is a feature of the assumed underlying utility function, the
same as in any regression model. Any single index function model that is of the form

Prob(y; = j|x) = G; (B"x),

will have this feature. Boes and Winkelmann [2006a] develop this theme in some detail. In their
application to subjective well being,

SWB = a + BINCOMEINCOME + BUNEMPLOYMENTUNEMPLOYED +..+e¢g,

the authors are interested in the notion of “compensating variation.” For their purpose, “what is
the income increase required to offset the negative well-being effect of unemployment?” (They
finesse the binary nature of the unemployment variable by considering the issue from the point of
view of the population unemployment rate.) By equating the total differential of Prob(y = j|x) to
zero, they find that the interesting “tradeoff ratio” is the negative of the ratio of the partial effects,
as shown above. The implication of the standard model is that the tradeoff ratios are the same for
all outcomes.

In the semiparametric models developed in Chapter 12, in which it is not possible to
compute the CDF or the density — the semiparametric aspect of the model is to dispense with the
assumption of a specific density — ratios of coefficients become important outputs of the
estimation process. Stewart [2003, 2005] develops this idea at some length.

The common feature of this and the extensions preceding it are that the functional form is
built around the outcomes. The single index models considered thus far do not provide sufficient
curvature to accommodate what Anderson [1984] called the “dimensionality” of the problem.
The modifications of the ordered choice model described in the next several chapters also achieve
some of this increased “fit” but do so within the structure of the original behavioral model.

6.3 Methodological Issues

The generalizations of the model suggested above deal with the problems of parallel
regressions and single crossing. However, the heterogeneity in the parameter vector is related to
the coding of the dependent variable, not to underlying heterogeneity in the dependent variable
induced by behavioral differences. We might interpret this as a semiparametric approach to
modeling underlying heterogeneity, however, in this instance, we would expect the heterogeneity
to show up across the individuals in the sample rather than in parameter variation across the
outcomes. The failure of the Brant test to support the model with parameter homogeneity seems,
indeed, to be signaling some failure of the model. But, it is unclear what that failure is. The
problem of this generalization of the model is that the probabilities in this model need not be
positive, and there is no parametric restriction (other than the restrictive model one we started
with) that could achieve this. The restrictions would have to be functions of the data. (The
problem is noted by Williams [2006], but dismissed as a minor issue. Boes and Winkelmann
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suggest that it could be handled through a “nonlinear specification.”) The second issue is at the
theoretical level. The generalized model makes ambiguous the relationship between the
underlying preference scale, assuming there is one, and the observed discrete response.

One might still argue that there are differences across the individuals at the “low” end vs.
the “high” end of the distribution. The excerpt from Boes and Winkelmann above would suggest
this. In fact, the single crossing aspect of the model accommodates this feature. Still, something
more akin to a latent class structure would seem to apply under this interpretation. In such a
setting, one is likely to find that the high outcomes are more likely for some classes then others.
The advantage of this approach would be that the class structure can be assumed to be exogenous.

6.4 Specification Tests for Ordered Choice Models

Under the assumptions that the ordered choice model is correctly specified and the data
on y; and x; are “well behaved,” the familiar asymptotics and testing procedures used in Section
5.6 apply.' That is, we can use the familiar apparatus, namely Wald, Lagrange multiplier and
likelihood ratio procedures to test against null hypotheses that are nested within the essential
parametric model,

Prob(y;=j|x;) = F(i - B'x;) - F(w.1-B'x;) >0,7=0,1,....J.

Since the asymptotic theory relies on central limit theorems, and not on the specific distribution
of g, the same devices will apply for logit and probit models. Procedures for “exact” inference
based specifically on the distribution assumed have not been developed for ordered choice
models.”

In this section, we consider “specification tests.” That is, tests against the null
specification of the model, for which often there is no clearly defined alternative. For example, a
test of the appropriateness of the assumption that ¢; is normally distributed is considered against
the alternative that it is not. Specification tests for the ordered choice model have been obtained
essentially for two issues, functional form and distribution. The functional form question relates
to the assumption about the basic model specification,

Prob(y: >/ | x) = F(B'X; - W),/ =0,....J-1. (6.14)

The linearity of the index function is the main issue, though because the alternative hypothesis is
not clearly stated, a test against this null might pick up a variety of other failures of the model
assumption. The distributional tests are specifically directed to the question of whether normality
(or logisticality) is appropriate. Once again, the alternative hypothesis is unclear. For example, it
seems reasonable to suggest that a test against normality might be picking up the influence of an
omitted variable — perhaps one with a skewed distribution. Section 9.3 discusses a third type of
specification test, a counterpart to the Hausman [1978] test for random vs. fixed effects in a panel
data model. Since the test is considered in detail there, we will not reconsider it in this section.

6.4.1 Model Specifications — Missing Variables and Heteroscedasticity
A number of studies have considered the null specification of the ordered choice models

against specific alternatives. These tests involve three particular features of the model, missing
variables, heteroscedasticity and the distribution of €., Murphy [1994, 1996] examines the

! See Greene [2008a, Ch. 4].
? See, e.g., Mehta and Patel [1995].
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ordered logit model as a special case of the more general model

yi* = B'x; + vz + oi¢,
yi =jiaf po < y* <,

where (1) z; is a set of omitted variables that are believed to be appropriate to be in the model;
(2) o/ = (w*/3)[exp(a'hy)]*;
(3) F(g;)) = [1 +exp(-e)]®. (This is an asymmetric distribution.)

Murphy’s extended ordered logit model encompasses the familiar ordered logit model; the null
hypothesis of the restricted model would be y =0, a = 0, d = 1. In principle, the alternative
model can be fit by full information maximum likelihood. If so, then the tests of the three
specifications can be done one at a time or jointly, using Wald or Likelihood ratio tests. Murphy
proposes Lagrange multiplier tests for the three hypotheses that involve only estimating the
restricted, basic model. We will consider the missing variables and heteroscedasticity tests here,
and return to the distribution in the next section.

For the moment, we revert to the simpler distribution with 8 = 1, and examine the LM test
for missing variables and heteroscedasticity. Without the special consideration of the shape of
the distribution (3), the testing procedures are the same for the probit and logit models, so they are
given generically below. In this context, since z; is observed, not much is gained by using an LM
test for missing variables; one can just as easily fit the full model and use the LM or Wald test of
the null hypothesis that y = 0. The test for heteroscedasticity is likewise straightforward if one is
able to fit the full model with this form of heteroscedasticity.! Harvey’s [1976] model has been
the form usually used in the received applications.

Consider, first, an LM test for missing variables. The log likelihood function is

logl = z:;l Zj:o m; log[F(Mj _ﬁ,xi_y'zi)_F(Mj—l -B'x, _'Y’Zi):l- (6.15)

The LM test is carried out by estimating the model under the null hypothesis that y = 0, then
obtaining the statistic,

’ -1

B B B
LM = | EstdlogL / ol w EstVar| dlogL / 0| w EstologL / olull .(6.16)
LR Y Y )iy0

(We have reversed the usual order of y and p for convenience.) The test statistic is used to test
the hypothesis that the gradient is zero at the restricted parameter vector. When the restricted
model is fit by maximum likelihood, the derivatives with respect to B and p evaluated at the
MLESs are numerically zero, so the sample estimator of the statistic is

! The LM tests proposed by Murphy [1994, 1996] and Weiss [1997] actually apply to any form of
heteroscedasticity such that 6> = 6,°w(y,h;) such that w(0,h,) = 1. See Breusch and Pagan [1979].
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!

-1

0 B 0
IM=1| 0 EstVar| dlogL / ol n 0 . (6.17)
OlogL Y )y OlogL
lr=0 l7=0

The practical application of the test requires computation of the derivatives of the log likelihood
with respect to y, evaluated at y = 0, and an estimator of the asymptotic covariance matrix, which
we consider below. For the derivatives,

[y=0 [y=0

aY F(H,’ _ﬁ,xi _'Y'Zi) _F(“'j—l _ﬁ'xi _Y,Zi)

_ N J f(“‘j —ﬁ'xi)—f(HH _B,Xi) _
REREL {F(u, ~BX) -l —ﬁ’xi)}( "

(6.18)

It remains to obtain the appropriate asymptotic covariance matrix. A convenient estimator is the
sum of the outer products of the individual gradients, H' = [; gig/]".' Expressions for the
second derivatives matrix appear in (5.16) in Section 5.9.5. Write the second derivatives matrix

in the partitioned form

HBB’ Hﬁu’ HBV’
H= HuB’ Huu’ Huv’
Hvﬁ’ Hw’ Hw

Then, from the form of the first derivatives, it can be seen that the LM statistic equals the first
derivatives vector times the lower right submatrix of H'. Collecting terms and using the
partitioned inverse form,” this will be

o252 otne maliz 2] G o5
o ly=0 Hp’ ' nr’ oy ly=0

Weiss [1997] notes an interesting interpretation of the LM test for omitted variables. The
gradient, (0logL/0y)|y=0 given earlier can be written

! See Davidson and MacKinnon [1983,1984], MacKinnon [1992], Godfrey [1988], and Weiss [1997] on
the choice of estimator of the covariance matrix.
? Greene [2008a, Result A-74].

162



Modeling Ordered Choices

(mong S ) {Z;’-l " {f(u,-l —B'x) - S (1, —B'xi)}}
[y=0

o F(u, —B'x)— F(i,, —B'x,)
= ZZI(ZJ{Z; m,E[e, |X,,y, = j]} (6.20)
ZZL(ZI»){Z,; mz‘/GR(l)fj}-

That is, the test is based on the covariance between the (unobserved) disturbance and the omitted
variables. This is precisely the approach used in the linear regression model, where g; is
estimated directly with the residual, e;. In this case, the estimator is a “generalized residual.”"

An LM test for heteroscedasticity is essentially the same, save for the considerably more
complicated first and second derivatives. The model with heteroscedasticity (and no missing
variables) has

n H'_ﬁ/xi W _B'Xi
Sl

i O;
:Z:l:l Zj:o mn; log[E»f _E«f*']

The first derivative vector is

Ologl <, J m; 5 u, —p'x, ~ y no, -B'x,
o =2 (Ch)>T [[—Fi,_,-— 2 J{ﬁ,,- (—6_ ) S (—6_ ]H (6.22)

i,j-1 i i

(6.21)

The remaining computations are analogous to those done for the missing variables test. Note that
under the null hypothesis, 6; = 1, which considerably simplifies computing the first and second
derivatives.

6.4.2 Testing Against the Logistic and Normal Distributions

Murphy [1994, 1996] proposes an asymmetric alternative distribution for € in the ordered
logit model, the Burr type II distribution,

1

T

This has been labeled the “scobit model” (skewed logit) elsewhere and has been suggested as an
alternative to the normal and logistic distributions for binary choice models.” The density is

[ exp(—¢) 5
/= [1+ exp(—s)] [1+exp(=e)]"

! See Chesher and Irish [1987] and Gourieroux et al. [1987].
% See Murphy [1994], Smith [1989], Lechner [1991], Nagler [1994] and Stata [2008] or Econometric
Software [2007].
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For & = 1, the model reverts to the familiar logit form. Since this is fully parameterized, the
alternative model can be fit directly and a Wald or likelihood ratio test can be used to test the null
hypothesis that 6 = 1. Murphy proposes a Lagrange multiplier test that is based entirely on
computations from the ordered logit model (6 = 1).

Tests about the distribution generally revolve around alternatives to the normal. Tests of
the normality assumption build on the approach developed by Bera, Jarque and Lee [1984] for
limited dependent variable models. A parametric alternative to the normal distribution is the
Pearson family of distributions,

c —t

(o) - 2la®)]

- dt . (6.23)
[ explq(od

2

, where ¢(¢) = J‘
Ccy—cttc,t

(See Johnson, Kotz and Balakrishnan [1994].) The relationship between the moments of the
random variable and the three constants is

co = (414 — 315%) / (1014 — 1275° — 18),
c1=13 (14 +3)/ (107, — 121> — 18),
¢ = (21— 313" = 6) / (10T — 1215 — 18).

(See Weiss [1997].) (We are avoiding a conflict in notation by using t rather than the
conventional p to denote the moments of the distribution.) For the standard normal distribution,
13 = 0 and t4= 3. It follows that ¢ = 1, ¢;= 0 and ¢, = 0. Bera et al. [1984] developed an LM test
for this restriction for the censored regression model. The corresponding result for the ordered
probit model is given in Johnson [1996], Glewwe [1997] and Weiss [1997].

The test is based on the generalized residuals. For the normal distribution, we are testing
against the hypothesis that the third and fourth moments of € are t; = 0 and ©4 = 3. As before, we
cannot observe &, so the test is based on the generalized residuals,

[2+ (“’j—l - ﬁlxi)z ](I)(“’j—l - ﬁlxi) -
[2 + (M] - B'X,-)z](l)(uj _B'Xi)
CD(MJ‘ _B'X,‘) _CD(MJLI _B'Xf)

E[8?|yi:jax,‘] GR(})U{

b

, (6.24)
{[3+(ujl —Bx) 10, —BX)o(,, —B'X) —}
34(n, —B'x.)’ (1, —P'x —B'x.
Fiet 313, = .x] = Gy, L0 ~B X T08, B, ~ )
(D(Hj -B Xi)_cD(ujfl -B'x)
The full derivative vector including ¢; and ¢, evaluated at ¢; = ¢,= 0 is
B GR(1); x,
u N J GR(I),] aj N
log L = . = , .
0 0g /0 ¢ Zi:l Zj=0mt/ GR(3)4‘/’ Zi:lg” (6 25)
¢, GR