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The Econometric Approach to

Efficiency Analysis

William H. Greene

2.1 Introduction

Chapter 1 describes two broad paradigms for measuring economic efficiency,
one based on an essentially nonparametric, programming approach to anal-
ysis of observed outcomes, and one based on an econometric approach to
estimation of theory-based models of production, cost, or profit. This chapter
presents an overview of techniques for econometric analysis of technical (pro-
duction) and economic (cost) efficiency. The stochastic frontier model of
Aigner, Lovell, and Schmidt (1977) is now the standard econometric platform
for this type of analysis. I survey the underlying models and econometric tech-
niques that have been used in studying technical inefficiency in the stochastic
frontier framework and present some of the recent developments in econo-
metric methodology. Applications that illustrate some of the computations
are presented in the final section.

2.1.1 Modeling production

The empirical estimation of production and cost functions is a standard exer-
cise in econometrics. The frontier production function or production frontier is
an extension of the familiar regression model based on the theoretical premise
that a production function, or its dual, the cost function, or the convex conjugate
of the two, the profit function, represents an ideal, the maximum output attain-
able given a set of inputs, the minimum cost of producing that output given
the prices of the inputs, or the maximum profit attainable given the inputs,
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outputs, and prices of the inputs. The estimation of frontier functions is the
econometric exercise of making the empirical implementation consistent with
the underlying theoretical proposition that no observed agent can exceed the
ideal. In practice, the frontier function model is (essentially) a regression model
that is fit with the recognition of the theoretical constraint that all observations
lie within the theoretical extreme. Measurement of (in)efficiency is, then, the
empirical estimation of the extent to which observed agents (fail to) achieve
the theoretical ideal. My interest in this chapter is in this latter function. The
estimated model of production, cost, or profit is the means to the objective of
measuring inefficiency. As intuition might suggest at this point, the exercise
here is a formal analysis of the “residuals” from the production or cost model.
The theory of optimization, production, and/or cost provides a description of
the ultimate source of deviations from this theoretical ideal.

2.1.2 History of thought

The literature on frontier production and cost functions and the calculation
of efficiency measures begins with Debreu (1951) and Farrell (1957) [though
there are intellectual antecedents, e.g., Hicks’s (1935) suggestion that monop-
olists would enjoy their position through the attainment of a quiet life rather
than through the pursuit of economic profits, a conjecture formalized some-
what more by Leibenstein (1966, 1975)]. Farrell suggested that one could
usefully analyze technical efficiency in terms of realized deviations from an
idealized frontier isoquant. This approach falls naturally into an economet-
ric approach in which the inefficiency is identified with disturbances in a
regression model.

The empirical estimation of production functions had begun long before
Farrell’s work, arguably with Cobb and Douglas (1928). However, until the
1950s, production functions were largely used as devices for studying the func-
tional distribution of income between capital and labor at the macroeconomic
level. The celebrated contribution of Arrow et al. (1961) marks a milestone in
this literature. The origins of empirical analysis of microeconomic production
structures can be more reasonably identified with the work of Dean (1951, a
leather belt shop), Johnston (1959, electricity generation), and, in his seminal
work on electric power generation, Nerlove (1963). It is noteworthy that all
three of these focus on costs rather than production, though Nerlove, follow-
ing Samuelson (1938) and Shephard (1953), highlighted the dual relationship
between cost and production.1 Empirical attention to production functions
at a disaggregated level is a literature that began to emerge in earnest in the
1960s (see, e.g., Hildebrand and Liu, 1965; Zellner and Revankar, 1969).

2.1.3 Empirical antecedents

The empirical literature on production and cost developed largely indepen-
dently of the discourse on frontier modeling. Least squares or some variant
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was generally used to pass a function through the middle of a cloud of points,
and residuals of both signs were, as in other areas of study, not singled out for
special treatment. The focal points of the studies in this literature were the esti-
mated parameters of the production structure, not the individual deviations
from the estimated function. An argument was made that these “averaging”
estimators were estimating the average, rather than the“best-practice”technol-
ogy. Farrell’s arguments provided an intellectual basis for redirecting attention
from the production function specifically to the deviations from that function,
and respecifying the model and the techniques accordingly. A series of papers
including Aigner and Chu (1968) and Timmer (1971) proposed specific econo-
metric models that were consistent with the frontier notions of Debreu (1951)
and Farrell (1957). The contemporary line of research on econometric models
begins with the nearly simultaneous appearance of the canonical papers of
Aigner, Lovell, and Schmidt (1977) and Meeusen and van den Broeck (1977),
who proposed the stochastic frontier models that applied researchers now use
to combine the underlying theoretical propositions with a practical economet-
ric framework. The current literature on production frontiers and efficiency
estimation combines these two lines of research.

2.1.4 Organization of the survey

This survey presents an overview of this literature and proceeds as follows:
Section 2.2 presents the microeconomic theoretical underpinnings of the

empirical models. As in the other parts of our presentation, this section gives
only a cursory survey because of the very large literature on which it is based.
The interested reader can find considerable additional detail in chapter 1 of
this book and in a gateway to the larger literature, chapter 2 of Kumbhakar
and Lovell (2000).

Section 2.3 constructs the basic econometric framework for the econo-
metric analysis of efficiency. This section also presents some intermediate
results on “deterministic” (orthodox) frontier models that adhere strictly to
the microeconomic theory. This part is brief. It is of some historical inter-
est and contains some useful perspective for the more recent work. However,
with little exception, current research on the deterministic approach to effi-
ciency analysis takes place in the environment of “data envelopment analysis”
(DEA), which is the subject of chapter 3 of this book.2 This section provides a
bridge between the formulation of orthodox frontier models and the modern
stochastic frontier models.

Section 2.4 introduces the stochastic production frontier model and
presents results on formulation and estimation of this model. Section 2.5
extends the stochastic frontier model to the analysis of cost and profits and
describes the important extension of the frontier concept to multiple-output
technologies.

Section 2.6 turns to a major econometric issue, that of accommodating
heterogeneity in the production model. The assumptions made in sections 2.4
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and 2.5 regarding the stochastic nature of technical inefficiency are narrow
and arguably unrealistic. Inefficiency is viewed as simply a random shock
distributed homogeneously across firms. These assumptions are relaxed at
the end of section 2.5 and in section 2.6. Here, I examine proposed models
that allow the mean and variance of inefficiency to vary across firms, thus
producing a richer, albeit considerably more complex, formulation. This part
of the econometric model extends the theory to the practical consideration of
observed and unobserved influences that are absent from the pure theory but
are a crucial aspect of the real-world application.

The econometric analysis continues in section 2.7 with the development
of models for panel data. Once again, this is a modeling issue that provides
a means to stretch the theory to producer behavior as it evolves through
time. The analysis pursued here goes beyond the econometric issue of how to
exploit the useful features of longitudinal data. The literature on panel data
estimation of frontier models also addresses the fundamental question of how
and whether inefficiency varies over time, and how econometric models can
be made to accommodate the theoretical propositions.

The formal measurement of inefficiency is considered in sections 2.8
and 2.9. The use of the frontier function model for estimating firm-level
inefficiency that was suggested in sections 2.3 and 2.4 is formalized in the
stochastic frontier model in section 2.8. Section 2.9 considers the separate
issue of allocative inefficiency. In this area of study, the distinction between
errors in optimization and the consequences of those errors for the goals or
objectives of optimization is made explicit. Thus, for example, the effect of
optimization errors in demand systems is viewed apart from the ultimate
impact on the costs of production.

Section 2.10 describes contemporary software for frontier estimation and
illustrates some of the computations with “live” data sets. Some conclusions
are drawn in section 2.11.

2.1.5 Preface

The literature on stochastic frontier estimation was already large at the time
of the 1993 edition of this survey and it has grown vastly in the decade plus
since then. It is simply not possible to touch upon all aspects of all the research
that has been done and is ongoing. [Even the book-length treatise Kumb-
hakar and Lovell (2000) leaves the reader to their own devices to explore the
received empirical studies.] In this survey, I introduce a number of topics and
present some of the most familiar econometric estimators and issues. Since
the earlier rendition of this survey, two topics have received great attention
in the literature are given correspondingly greater coverage here: the statisti-
cal analysis of the inefficiency estimators (the Jondrow et al., 1982, estimator
and counterparts) and panel data estimation. A few topics are treated rela-
tively superficially, not for lack of interest but because, for better or for worse,
they have not yet had great influence on how empirical work is done in this
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area. These include Bayesian estimation and semi- and nonparametric esti-
mation. Yet another topic falls somewhere between the mainstream and these.
In the analysis of inefficiency, we recognize that, in terms of costs, inefficiency
can arise from two sources: technical inefficiency, which arises when, given
the chosen inputs, output falls short of the ideal; and allocative inefficiency,
which arises from suboptimal input choices given prices and output. Tech-
nical inefficiency (the difference between output and maximal output) is, in
some sense, “pure” in that we can single out the source. Cost inefficiency, in
contrast, is a blend of the two sources, technical and allocative inefficiency.
Decomposition of cost inefficiency into its two components in a theoreti-
cally appropriate manner (the so-called “Greene problem”) has posed a vexing
challenge in this literature (see Greene, 1993, 1997, 2003c). The estimation of
“allocative” inefficiency has received some attention in the research of the past
two decades, with some interesting and creative results. However, the estima-
tion of allocative inefficiency and the decomposition have received much less
attention than the more straightforward analysis of technical inefficiency on
the production side and economic inefficiency (i.e., the blend) on the cost side.
This is due partly to the very heavy data and analytical/technical requirements
of the received approaches but mainly, when all is said and done, to the per-
sistent absence of a practical theoretically consistent solution to the original
problem. Formal analysis of allocative inefficiency requires estimation of both
a cost or production function and a complete demand system. I introduce this
topic below but spend less space on it than on the estimation of technical and
“economic” (cost) efficiency.

Note, finally, that the range of applications of the techniques described
here is also huge. Frontier analysis has been used to study inefficiency in hospi-
tal costs, electric power, commercial fishing, farming, manufacturing of many
sorts, public provision of transportation and sewer services, education, labor
markets, and a huge array of other settings.3 Both space and time precludes
any attempt to survey this side of the literature here. I hope the community
of researchers whose work is not explicitly cited here can forgive the omission
of their work, again, not for lack of interest, but for lack of space. My intent
in this chapter is to survey methods; reluctantly, I leave it to the reader to
explore the vast range of applications. The extensive table in chapter 1 (which
unfortunately is limited to twenty-first century contributions) should be very
helpful.

There have been numerous general survey-style studies of the frontiers
literature, including, of course, the earlier editions of this work: Førsund
et al. (1980) and Greene (1993, 1997). Notable among these surveys are
Bauer (1990), Battese (1992), Schmidt (1985), Cornwell and Schmidt (1996),
Kalirajan and Shand (1999), and Murillo-Zamorano (2004). There are book-
length treatments, as well, including Kumbhakar and Lovell (2000) and Coelli,
Rao, and Battese (1998).4 Given all of these, I felt it necessary to give some
thought to the end purpose of the present exercise. First, obviously, it is an
opportunity to give some exposure to the last five or six years of innovative
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research in the area. Primarily, however, I see my purpose here as providing the
interested entrant to the area a bridge from the basic principles of econometrics
and microeconomics to the specialized literature in econometric estimation
of inefficiency. As such, it is not necessary to provide a complete compendium
of either the theory or the received empirical literature. (That is fortunate,
given its volume.) Thus, my intent is to introduce the econometric practice of
efficiency estimation to the newcomer to the field.

2.2 Production and Production Functions

Let’s begin by defining a producer as an economic agent that takes a set of
inputs and transforms them either in form or in location into a set of outputs.
We keep the definition nonspecific because we desire to encompass service
organizations such as travel agents or law or medical offices. Service busi-
nesses often rearrange or redistribute information or claims to resources,
which is to say, move resources rather than transform them. The produc-
tion of public services provides one of the more interesting and important
applications of the techniques discussed in this study (see, e.g., Pestieau and
Tulkens, 1993).

2.2.1 Production

It is useful to think in terms of a producer as a simple machine. An electric
motor provides a good example. The inputs are easily definable, consisting of
a lump of capital, the motor, itself, and electricity that flows into the motor as
a precisely defined and measurable quantity of the energy input. The motor
produces two likewise precisely measurable (at least in principle) outputs,
“work,” consisting of the rotation of a shaft, and heat due to friction, which
might be viewed in economic terms as waste, or a negative or undesirable out-
put (see, e.g., Atkinson and Dorfman, 2005). Thus, in this setting, we consider
production to be the process of transforming the two inputs into the eco-
nomically useful output, work. The question of “usefulness” is crucial to the
analysis. Whether the byproducts of production are “useless” is less than obvi-
ous. Consider the production of electricity by steam generation. The excess
steam from the process might or might not be economically useful (it is in
some cities, e.g., New York and Moscow), depending, in the final analysis, on
relative prices. Conceding the importance of the distinction, we depart at this
point from the issue and focus our attention on the production of economic
“goods” that have been agreed upon a priori to be “useful” in some sense.

The economic concept of production generalizes from a simple, well-
defined engineering relationship to higher levels of aggregation such as farms,
plants, firms, industries, or, for some purposes, whole economies that engage
in the process of transforming labor and capital into gross domestic product
by some ill-defined production process. Although this interpretation stretches
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the concept perhaps to its logical limit, it is worth noting that the first empirical
analyses of production functions, by Cobb and Douglas (1928), were precisely
studies of the functional distribution of income between capital and labor in
the context of an aggregate (macroeconomic) production function.

2.2.2 Modeling production

The production function aspect of this area of study is a well-documented
part of the model. The “function” itself is, as of the time of the observation,
a relationship between inputs and outputs. It is most useful to think of it
simply as a body of knowledge. The various technical aspects of production,
such as factor substitution, economies of scale, or input demand elasticities,
while interesting in their own right, are only of tangential interest in the
present context. To the extent that a particular specification, Cobb-Douglas
versus translog, for example, imposes restrictions on these features, which then
distort our efficiency measures, we are interested in functional form. But, this
is not the primary focus.

The Cobb-Douglas and translog models overwhelmingly dominate the
applications literature in stochastic frontier and econometric inefficiency esti-
mation. (In contrast, the received literature in DEA—by construction—is
dominated by linear specifications.) The issue of functional form for the pro-
duction or cost function (or distance, profit, etc.) is generally tangential to the
analysis and not given much attention. There have been a number of studies
specifically focused on the functional form of the model. In an early entry to
this literature, Caves, Christensen (one of the creators of the translog model),
and Trethaway (1980) employed a Box-Cox functional form in the translog
model to accommodate zero values for some of the outputs.5 The same con-
sideration motivated Martinez-Budria, Jara-Diaz, and Ramos-Real (2003) in
their choice of a quadratic cost function to study the Spanish electricity indus-
try. Another proposal to generalize the functional form of the frontier model
is the Fourier flexible function used by Huang and Wang (2004) and Tsionas
(2004).

In a production (or cost) model, the choice of functional form brings
a series of implications with respect to the shape of the implied isoquants
and the values of elasticities of factor demand and factor substitution. In
particular, the Cobb-Douglas production function has universally smooth
and convex isoquants. The implied cost function is likewise well behaved. The
price to be paid for this good behavior is the strong assumption that demand
elasticities and factor shares are constant for given input prices (for all outputs),
and that Allen elasticities of factor substitution are all –1. Cost functions are
often used in efficiency analysis because they allow the analyst to specify a
model with multiple inputs. This is not straightforward on the production
side, though distance functions (see section 2.5.4) also provide an avenue. The
Cobb-Douglas multiple-output cost function has the unfortunate implication
that in output space, the output possibility frontiers are all convex instead
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of concave—thus implying output specialization. These considerations have
generally motivated the choice of flexible (second-order) functional forms,and
in this setting, the translog production model for one output and K inputs,

ln y = α +
K∑

k=1

βk ln xk + 1

2

K∑
k=1

K∑
m=1

γkm ln xk ln xm ,

or the translog multiple-output cost function for K inputs and L outputs,

ln C = α +
K∑

k=1

βk ln wk + 1

2

K∑
k=1

K∑
m=1

γkm ln wk ln wm

+
L∑

s=1

δs ln ys + 1

2

L∑
s=1

L∑
t=1

φst ln ys ln yt

+
K∑

k=1

L∑
s=1

θks ln wk ln ys ,

is most commonly used (see, e.g., Kumbhakar, 1989). These models do relax
the restrictions on demand elasticities and elasticities of substitution. How-
ever, the generality of the functional form produces a side effect: They are not
monotonic or globally convex, as is the Cobb-Douglas model. Imposing the
appropriate curvature on a translog model is a generally challenging problem.
[See Salvanes and Tjotta (1998) for methodological commentary.] Researchers
typically (one would hope) “check” the regularity conditions after estimation.
Kleit and Terrell (2001) in an analysis of the U.S. electricity industry used a
Bayesian estimator that directly imposes the necessary curvature requirements
on a two-output translog cost function. The necessary conditions, which are
data dependent—they will be a function of the specific observations—are
(1) monotonicity: sk = ∂ ln C/∂ ln wk = βk + ∑

m γkm ln wm ≥ 0, k =
1, . . . , K (nonnegative factor shares); and (2) concavity: � − S + ssT nega-
tive semidefinite, where � = [γkm], S = diag[sk ], and s = [s1, s2, . . . , sk ]T.
Monotonicity in the outputs requires ∂ ln C/∂ ln ys = δs +∑r φsr ln yr > 0.
As one might imagine, imposing data- and parameter-dependent constraints
such as these during estimation poses a considerable challenge. In this study,
Kleit and Terrell selectively cull the observations during estimation, retaining
those that satisfy the restrictions. Another recent study, O’Donnell and Coelli
(2005) also suggest a Bayesian estimator, theirs for a translog distance function
in which they impose the necessary curvature restrictions a priori, parametri-
cally. Finally, Griffiths, O’Donnell, Tan, and Cruz (2000) impose the regularity
conditions on a system of cost and cost-share equations.

The preceding is an issue that receives relatively little attention in the
stochastic frontier applications, though it is somewhat more frequently exam-
ined in the more conventional applications in production and cost modeling
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(e.g., Christensen and Greene, 1976).6 I acknowledge this aspect of modeling
production and cost at this point, but consistent with others, and in the interest
of brevity, I do not return to it in what follows.

2.2.3 Defining efficiency

The analysis of economic inefficiency stands at the heart of this entire exercise.
If one takes classical microeconomics at face value, this is a fruitless exercise, at
least regarding “competitive” markets. Functioning markets and the survivor
principle simply do not tolerate inefficiency. But, this clearly conflicts with
even the most casual empiricism. Also note that analysis of regulated industries
and government enterprises (including buses, trains, railroads, nursing homes,
waste hauling services, sewage carriage, etc.) has been among the most frequent
recent applications of frontier modeling. Because the orthodoxy of classical
microeconomics plays a much lesser role here, the conflict between theory
and practice is less compelling. I eschew a philosophical discussion of the
concept of inefficiency, technical, allocative, or otherwise. (For a very readable,
if somewhat glib discussion, the reader may begin with Førsund, Lovell, and
Schmidt, 1980).7 Alvarez, Arias, and Greene (2005) also pursue this issue from
an econometric perspective. In what follows, producers are characterized as
efficient if they have produced as much as possible with the inputs they have
actually employed or if they have produced that output at minimum cost. I
formalize the notions as we proceed.

By technical efficiency, I mean here to characterize the relationship
between observed production and some ideal, or potential production. In
the case of a single output, we can think in terms of total factor productivity,
the ratio of actual output to the optimal value as specified by a “production
function.” Two crucial issues, which receive only occasional mention in this
chapter, are the functional form of the production function and the appropri-
ate list of inputs. In both cases, specification errors can bring systematic errors
in the measurement of efficiency.

We define production as a process of transformation of a set of inputs,
denoted x ∈ R+

K , into a set of outputs, y ∈ R+
M . Henceforth, the notation z,

AQ: In
Paragraph “We
define ...” line
x ∈ R+
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first two
equations in this
paragraph,
please confirm
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copyediting
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in boldface, denotes a column vector of the variables in question, whereas the
same symbol z , in italics and not boldface, denotes a scalar, or a single input or
output. The process of transformation (rearrangement, etc.) takes place in the
context of a body of knowledge called the production function. We denote this
process of transformation by the equation T (y, x) = 0. (The use of 0 as the
normalization seems natural if we take a broad view of production against a
backdrop of the laws of conservation—if y is defined broadly enough: Neither
energy nor matter can be created nor destroyed by the transformation.)

I should emphasize that the production function is not static; technical
change is ongoing. It is interesting to reflect that, given the broadest definition,
the force of technical change would be only to change the mix of outputs
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obtained from a given set of inputs, not the quantities in total. The electric
motor provides a good example. A“more efficient”motor produces more work
and less heat (at least by the yardstick that most people would use), but, in
fact, the total amount of energy that flows from it will be the same before and
after our hypothetical technical advance. The notion of greater efficiency in
this setting is couched not in terms of total output, which must be constant,
but in terms of a subset of the outputs that are judged as useful against the
remaining outputs that arguably are less so.

The state of knowledge of a production process is characterized by an
input requirements set

L(y) = {x : (y, x) is producible}.
That is to say, for the vector of outputs y, any member of the input requirements
set is sufficient to produce the output vector. Note that this makes no mention
of efficiency, nor does it define the production function per se, except indirectly
insofar as it also defines the set of inputs that is insufficient to produce y [the
complement of L(y) in R+

K ] and, therefore, defines the limits of the producer’s
AQ: Confirm
that box is a
correct
character in line
“[the
complement ...]
and”.

abilities. The production function is defined by the isoquant

I (y) = {x : x ∈ L(y) and λx /∈ L(y) if 0 ≤ λ < 1}.
The isoquant thus defines the boundary of the input requirement set. The
isoquant is defined in terms of contraction of an input point. A more general
definition is the efficient subset

ES(y) = {x : x ∈ L(y) and x′ /∈ L(y) for x′ when x′
k ≤ xk∀k

and x′
k < xj for some j}.

The distinction between these two similar definitions is shown in figure 2.1.
Note that xA = (xA

1 , xA
2 )′ is on the isoquant but is not in the efficient subset,

since there is slack in xA
2 . But xB is in both I (y) and ES(y). When the input

X2

o X1

XA

XC

XB

I(y)

L(y)

ES(y)

Figure 2.1. Input Requirements
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requirements set is strictly convex, as is commonly assumed in econometric
applications, the distinction disappears, but the distinction between these two
sets is crucially important in DEA (discussed in chapter 3).

Shephard’s (1953) input distance function is

DI (y, x) = max

{
λ :

[
1

λ

]
x ∈ L(y)

}
.

It is clear that DI (y, x) ≥ 1 and that the isoquant is the set of x values for
which DI (y, x) = 1. The Debreu (1951)–Farrell (1957) input-based measure
of technical efficiency is

TE(y, x) = min{θ : θx ∈ L(y)}.
From the definitions, it follows that TE(y, x) ≤ 1 and that TE(y, x) =
1/DI (y, x). The Debreu-Farrell measure provides a natural starting point for
the analysis of efficiency.

The Debreu-Farrell measure is strictly defined in terms of production and
is a measure of technical efficiency. It does have a significant flaw in that it is
wedded to radial contraction or expansion of the input vector. Consider, in
figure 2.2, the implied inefficiency of input vector XA . Figure 2.2 is a con-
ventional isoquant/isocost graph for a single output being produced with two
inputs, with price ratio represented by the slope of the isocost line, ww′. With
the input vector XA normalized to length one, the Debreu-Farrell measure of
technical efficiency would be θ, but in economic terms, this measure clearly
understates the degree of inefficiency. By scaling back both inputs by the pro-
portion θ, the producer could reach the isoquant and thus achieve technical
efficiency, but by reallocating production in favor of input x1 and away from
x2, the same output could be produced at even lower cost. Thus, producer A
is both technically inefficient and allocatively inefficient. The overall efficiency
or economic efficiency of producer A is only α. Allocative inefficiency and

X2

X1

XA

uXA

aXA

W'

W

X*

Figure 2.2. Technical and Allocative Inefficiency
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its implications for econometric measurement of inefficiency are discussed in
section 2.9. Empirically decomposing (observable) overall inefficiency, 1 − α,
into its (theoretical, latent) components, technical inefficiency, (1 − θ), and
allocative inefficiency, (θ−α), is an ongoing and complex effort in the empirical
literature on efficiency estimation.

2.3 Frontier Production and Cost Functions

The theoretical underpinnings of a model of production are suggested above.8

Here we take as given the existence of a well-defined production structure char-
acterized by smooth, continuous, continuously differentiable, quasi-concave
production or transformation function. Producers are assumed to be price
takers in their input markets, so input prices are treated as exogenous. The
empirical measurement of TE(y, x) requires definition of a transformation
function. For most of this analysis, we are concerned with a single-output
production frontier. Let

y ≤ f (x)

denote the production function for the single output, y , using input vector x.
Then, an output-based Debreu-Farrell style measure of technical efficiency is.

TE(y , x) = y

f (x)
≤ 1.

Note that the measure is the conventional measure of total factor productivity
and that it need not equal the input-based measure defined earlier.

Our econometric framework embodies the Debreu-Farrell interpretation
as well as the textbook definition of a production function. Thus, we begin
with a model such as

yi = f (xi , β)TEi ,

where 0 < TE(yi , xi) ≤ 1, β is the vector of parameters of the production
function to be estimated, and i indexes the ith of N firms in a sample to be
analyzed. For present purposes, β is of secondary interest in the analysis. For
example, in the setting of the translog model, parametric functions such as
elasticities of substitution or economies of scale are of only marginal interest.
The production model is usually linear in the logs of the variables, so the
empirical counterpart takes the form

ln yi = ln f (xi , β) + ln TEi = ln f (xi , β) − ui ,

where ui ≥ 0 is a measure of technical inefficiency since ui = − ln TEi ≈
1 − TEi . Note that

TEi = exp(−ui).
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[See Jondrow et al. (1982) and Battese and Coelli (1992) for discussion and
analysis of the distinction between these two measures.] The preceding pro-
vides the central pillar of the econometric models of production that are
described below.

Formal econometric analysis of models of this sort as frontier production
functions begins with Aigner and Chu’s (1968) reformulation of a Cobb-
Douglas model. A parallel literature is devoted to the subject of DEA. The
centerpiece of DEA is the use of linear programming to wrap a quasi-convex
hull around the data in essentially the fashion of Farrell’s efficient unit iso-
quant. The hull delineates the efficient subset defined above, so, by implication,
points observed inside the hull are deemed observations on inefficient pro-
ducers. DEA differs fundamentally from the econometric approach in its
interpretation of the data-generating mechanism but is close enough in its
philosophical underpinnings to merit at least some consideration here. I turn
to the technique of DEA in the discussion of deterministic frontiers below.9

2.3.1 Least squares regression–based estimation of
frontier functions

In most applications, the production model, f (xi , β), is linear in the logs of
the inputs or functions of them, and the log of the output variable appears on
the left-hand side of the estimating equation. It is convenient to maintain that
formulation and write

ln yi = α + βTxi + εi ,

where εi = −ui , and xi is the set of whatever functions of the inputs enter
the empirical model. We assume that εi is randomly distributed across firms.
An important assumption, to be dropped later, is that the distribution of εi is
independent of all variables in the model. For present purposes, we assume
that εi is a nonzero (negative) mean, constant variance, and otherwise ordinary
regression disturbance. The assumptions thus far include E[εi |xi] ≤ 0, but
absent any other special considerations, this is a classical linear regression
model.10 The model can thus be written

ln yi = (α + E[εi]) + βTxi + (εi − E[εi]) = α ∗ +βTxi + ε∗i .

This defines a classical linear regression model. Normality of the disturbance
is precluded, since ε∗i is the difference between a random variable that is always
negative and its mean. Nonetheless, the model’s parameters can be consistently
estimated by ordinary least squares (OLS) since OLS is robust to nonnormality.
Thus, the technical parameters of the production function, with the exception
of the constant term, can be estimated consistently, if not efficiently by OLS. If
the distribution of ε were known, the parameters could be estimated more effi-
ciently by maximum likelihood (ML). Since the constant term usually reveals
nothing more than the units of measurement of the left-hand side variable in
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this model, one might wonder whether all of this is much ado about noth-
ing, or at least very little. But, one might argue that, in the present setting,
the constant is the only parameter of interest. Remember, it is the residuals
and, by construction, now E[ui |xi] that are the objects of estimation. Three
approaches may be taken to examine these components.

(1) Since only the constant term in the model is inconsistent, any infor-
mation useful for comparing firms to each other that would be conveyed by
estimation of ui from the residuals can be obtained directly from the OLS
residuals,

ei = ln yi − a∗ − bTxi = −ui + E[ui],
where b is the least squares coefficient vector in the regression of ln yi on a
constant and xi .

Thus, for example, ei − em is an unbiased and pointwise consistent
estimator of uj − um . Likewise, the ratio estimator exp(ei)/ exp(em) estimates

TEi exp(E[ui])
TEm exp(E[um]) = TEi

TEm

consistently (albeit with a finite sample bias because of the nonlinearity of the
function). For purposes of comparison of firms only, one could simply ignore
the frontier aspect of the model in estimation and proceed with the results of
OLS. This does preclude any sort of estimator of TEi or of E[ui], but for now
this is not consequential.

(2) Since the only deficiency in the OLS estimates is a displacement of
the constant term, one might proceed simply by “fixing” the regression model.
Two approaches have been suggested. Both are based on the result that the
OLS estimator of the slope parameters is consistent and unbiased, so the
OLS residuals are pointwise consistent estimators of linear translations of
the original ui values. One simple remedy is to shift the estimated production
function upward until all residuals except one, on which we hang the function,
are negative. The intercept is shifted to obtain the corrected OLS (COLS)
constant,

aCOLS = a∗ + max
i

ei .

All of the COLS residuals,

ei,COLS = ei − max
i

ei ,

satisfy the theoretical restriction. Proofs of the consistency of this COLS esti-
mator, which require only that, in a random sample drawn from the population
ui , plim mini ui = 0, appear in Gabrielsen (1975) and Greene (1980a). The
logic of the estimator was first suggested much earlier by Winsten (1957). A
lengthy application with an extension to panel data appears in Simar (1992).
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In spite of the methodological problems to be noted below, this has been a
popular approach in the analysis of panel data (see, e.g., Cornwell, Schmidt,
and Sickles, 1990; Evans et al., 2000a, 2000b).

(3) An alternative approach that requires a parametric model of the dis-
tribution of ui is modified OLS (MOLS). [The terminology was suggested by
Lovell (1993, p. 21).] The OLS residuals, save for the constant displacement,
are pointwise consistent estimates of their population counterparts, −ui . The
mean of the OLS residuals is useless—it is zero by construction. But, since the
displacement is constant, the variance and any higher order central moment
of (the negatives of) the OLS residuals will be a consistent estimator of the
counterpart of ui . Thus, if the parameters of E[ui] are identified through
the variance or, perhaps, higher moments or other statistics, then consistent
estimation of the deeper model parameters may be completed by using the
method of moments. For a simple example, suppose that ui has an exponential
distribution with mean λ. Then, the variance of ui is λ2, so the standard devi-
ation of the OLS residuals is a consistent estimator of E[ui] = λ. Since this is
a one-parameter distribution, the entire model for ui can be characterized by
this parameter and functions of it.11 The estimated frontier function can now
be displaced upward by this estimate of E[ui]. This MOLS method is a bit less
orthodox than the COLS approach described above since it is unlikely to result
in a full set of negative residuals. The typical result is shown in figure 2.3.

A counterpart to the preceding is possible for analysis of the costs of
production. In this case, the working assumption is that the estimated cost
function lies under all the data, rather than above them.

The received literature contains discussion of the notion of an “average”
frontier (an oxymoron, perhaps), as opposed to the “best-practice” frontier,
based on the distinction between OLS and some technique, such as ML, which
takes account of the frontier nature of the underlying model. One could argue
that the former is being defined with respect to an estimator, OLS, rather
than with respect to a definable, theoretically specified model. Whether the
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Figure 2.3. OLS Production Frontier Estimators
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distinction is meaningful in an economic sense is questionable. There is some
precedent for raising the question of whether the technology in use“at the fron-
tier” differs from that in the middle of the pack, so to speak (see Klotz, Madoo,
and Hansen, 1980), but the simple scaling of a loglinear production function
is unlikely to reveal much about this possibility. Indeed, the implied radial
expansion of the production function thus formulated might reveal nothing
more than different rates of adoption of Hicks neutral technical innovations.
But Førsund and Jansen (1977) argue that this difference or, more generally,
differential rates of adjustment of capital stocks across firms in an industry do
create a meaningful distinction between average and best-practice production
frontiers. Some firms in an industry might be achieving the maximum out-
put attainable, that is, be locating themselves on the frontier that applies to
them, but might not have completely adjusted their capital stock to the most
up-to-date, technically advanced available. Thus, the best-practice frontier for
an industry that reflects this full adjustment would lie outside the frontiers
applicable to some of the constituent firms (see Førsund and Hjalmarsson,
1974, for additional discussion). The description, as I show later, is akin to the
motivation for the stochastic frontier model. However, the posited differences
between firms are more systematic in this description.

2.3.2 Deterministic frontier models

Frontier functions as specified above, in which the deviation of an observation
from the theoretical maximum is attributed solely to the inefficiency of the
firm, are labeled deterministic frontier functions. This is in contrast to the
specification of the frontier in which the maximum output that a producer
can obtain is assumed to be determined both by the production function and
by random external factors such as luck or unexpected disturbances in a related
market. Under this second interpretation, the model is recast as a stochastic
frontier production function, which is the subject of section 2.4.

Aigner and Chu (1968) suggested a loglinear (Cobb-Douglas) production
function,

Yi = AXβ1
1i Xβ2

2i Ui ,

in which Ui (which corresponds to TEi) is a random disturbance between 0
and 1. Taking logs produces

ln Yi = α +
K∑

k=1

βkxki + εi

= α +
K∑

k=1

βkxki − ui ,
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where α = ln A, xki = ln Xki , and εi = ln Ui . The nonstochastic part
of the right-hand side is viewed as the frontier. It is labeled “determinis-
tic” because the stochastic component of the model is entirely contained in
the (in)efficiency term, −ui . Aigner and Chu (1968) suggested two meth-
ods of computing the parameters that would constrain the residuals ui to be
nonnegative, linear programming,

min
α,β

N∑
i=1

εi subject to ln yi − α − βTxi ≤ 0∀i,

and quadratic programming,

min
α,β

N∑
i=1

ε2
i subject to ln yi − α − βTxi ≤ 0∀i.

In both applications, the slack variables associated with the constraints pro-
duce the estimates of −ui . A number of early applications, such as Førsund
and Jansen (1977), built upon this approach both to study the technical aspects
of production and to analyze technical efficiency.

The Aigner-Chu (1968) approach satisfies the original objective. One can
compare the individual residuals based on the programming results,

ûi = α̂ + β̂Txi − ln yi ,

to each other or to an absolute standard to assess the degree of technical
(in)efficiency represented in the sample. A summary measure that could
characterize the entire sample would be the

average technical inefficiency = 1

N

N∑
i=1

ûi .

Another useful statistic would be the

average technical inefficiency = 1

N

N∑
i=1

e−ûi = Ê[TEi].

This semiparametric approach was applied in a series of studies includ-
ing Førsund and Hjalmarsson (1979), Albriktsen and Førsund (1990), and
Førsund (1992). In these studies, the authors specified the generalized
production function proposed by Zellner and Revankar (1969),

γ0 ln yi + γ1yi = α +
K∑

k=1

βkxki ,

and minimized the sum of the residuals subject to the additional constraints∑
k βk = 1 and (γ0, γ1, βk , k = 1, . . . , K ) > 0. The foci of the applications

are economies of scale and technical efficiency.
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2.3.2.1 Statistical issues

The programming procedures are not based explicitly on an assumed statisti-
cal model. The properties of the “estimators” are therefore ambiguous—they
would depend on what process actually did generate the data. (This is the logic
of much of the contemporary discussion of how to bridge the econometric
and DEA approaches to efficiency estimation. See, e.g., Simar and Wilson,
1998, 1999; see also chapter 4 of this volume.) The programming estimators
have the notable disadvantage that they do not naturally produce standard
errors for the coefficients, so inference is precluded. For present purposes, the
main disadvantage is that absent a more detailed specification, consistency of
the estimates cannot be verified, nor, as such, can consistency of the ineffi-
ciency estimates, −ui . The programming procedures might, however, have the
virtue of robustness to specification errors in the distribution of ui , though
this, too, remains to be verified and would depend on an underlying statis-
tical specification (see Simar, 1996; Cazals, Florens, and Simar, 2002). Under
the presumption that there is some common underlying stochastic process
generating the observed data, one could proceed from here by using boot-
strapping to attempt to deduce the properties of the estimators. (Again, this is
an approach that has been employed to study the behavior of DEA techniques;
see Simar and Wilson, 1998, 1999; see also chapter 4 this volume.) However,
from a larger standpoint, it is a moot point, because the estimators themselves
are no longer employed in estimating inefficiency. DEA has supplanted the
linear programming approach, and the quadratic programming approach is
now only of historical interest.

Schmidt (1976) observed that the Aigner-Chu optimization criteria could
be construed as the log-likelihood functions for models in which one-sided
residuals were distributed as exponential for the linear programming estima-
tor, and half-normal for the quadratic programming approach. This would
appear to endow the programming procedures with a statistical pedigree.
However, neither log-likelihood function has a zero root, and the Hessians
of both log-likelihoods are singular. The former contains a diagonal block
of zeros, while the latter has a zero eigenvalue.12 Therefore, one cannot base
statistical inference on the standard results for ML estimators (MLEs) in these
settings. The inference problem remains.

The statistical problem with Schmidt’s estimators is a violation of the
regularity conditions for MLE. This leaves the possibility that, for other distri-
butions, the regularity conditions might be met, and as such, a well-behaved
likelihood function for a one-sided disturbance might still be definable. Greene
(1980a) proposed a model based on the gamma distribution,

h(ui) = θP

�(P)
uP−1

i e−θui , ui ≥ 0, θ > 0, P > 2.

The density is defined for all P > 0, but P > 2 is required for a well-behaved
log-likelihood function for the frontier model.13 The gamma frontier model
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does produce a bona fide MLE, with all of the familiar properties. In principle,
the log-likelihood,

ln L(α, β, P , θ) = P ln θ − N ln �(P) + (P − 1)

N∑
i=1

ln ui − θ

N∑
i=1

ui

θ > 0, P > 2, ui = α + βTxi − yi > 0

,

can be maximized by conventional methods. The restriction that all sample
residuals must be kept strictly positive for the estimator to be computable turns
out to be a persistent and major complication for iterative search methods.
However, inference can proceed as in more conventional problems. In spite
of the practical complications, there have been several applications, includ-
ing Greene (1980a, 1980b), Stevenson (1980), Aguilar (1988), Hunt, Kim, and
Warren (1986), Chen and Tang (1989), and Hunt-McCool and Warren (1993).
An extension that adds firm-specific effects to the efficiency term is described
in Deprins and Simar (1989a). Like other deterministic frontiers, the gamma
frontier model above is largely of historical interest. The contemporary work
has focused on the stochastic frontier model as a preferable approach, for
reasons discussed below. However, the gamma frontier model has retained
some currency as the subject of several more recent studies and, in particular,
as the platform for several Bayesian estimators (see Tsionas, 2000b, 2002;
Huang, 2004; Koop et al., 1999; discussed below).

2.3.2.2 Deterministic cost frontiers

Førsund and Jansen (1977) formulated a hybrid of the linear programming
approaches and the parametric model above to extend the analysis to costs of
production. The Førsund and Jansen specification departs from a homothetic
production function,14

yi = F [f (xi)], F ′[f (xi)] > 0, f (t xi) = tf (xi)∀xi .

The empirical model is obtained by specifying

yi = F [f (xi)vi],
where vi has a beta density (with parameters θ + 1 and 1)

h(vi) = (1 + θ)vθ
i , 0 < vi < 1, θ > 0.

The cost function that corresponds to this production function is

ln Ci = ln F−1(yi) + ln c(wi) − ln vi ,

where wi is the vector of input prices, and c(wi) is the unit cost function. The
authors then derive the corresponding log-likelihood function. The param-
eters of the production function are obtained by using linear programming
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to minimize
∑N

i=1 ln Ci subject to the constraints that observed costs lie on
or above the cost frontier.15 There are three aspects of this approach that are
of interest here. First, this construction is an alternative attempt to derive the
linear programming criterion as the solution to an ML problem.16 Second, this
is one of the first applications to estimate a cost frontier instead of a produc-
tion frontier. There is some controversy to this exercise owing to the possible
contribution of allocative inefficiency to the observed estimates of firm inef-
ficiency. Third, there is a subtle sleight-of-hand used in formulating the cost
function. If the technical inefficiency component, vi , were to enter the produc-
tion function more naturally, outside the transformation of the core function,
the form in which it entered the cost frontier would be far more complicated.
On the other hand, if the inefficiency entered the production function in the
place of vixi , inside the homogeneous kernel function (in the form of input-
oriented inefficiency), then its appearance in the cost function would be yet
more complicated (see, e.g., Kumbhakar and Tsionas, 2005a; Kurkalova and
Carriquiry, 2003).

2.3.2.3 COLS and MOLS estimators

The slope parameters in the deterministic frontier models can be estimated
consistently by OLS. The constant term can be consistently estimated simply
by shifting the least squares line upward sufficiently that the largest residual is
zero. The resulting efficiency measures are −ûi = ei − maxi ei . Thus, absolute
estimators of the efficiency measures in this model are directly computable
using nothing more elaborate than OLS. In the gamma frontier model, a, the
OLS estimate of α converges to plim a = α − E[ui] = α − (P/θ). So, another
approach would be to correct the constant term using estimates of P and θ.
The gamma model also produces individual estimates of technical efficiency. A
summary statistic that might also prove useful is E[ui] = P/θ = µ, which can
be estimated with the corrected residuals. Likewise, an estimate of var[ui] =
P/θ2 = σ2

u is produced by the least squares residual variance. Combining the
two produces a standardized mean µ/σu = √

P . Here, as elsewhere, functions
of the OLS parameter estimates and residuals can be used to obtain estimates
of the underlying structural parameters. Consistent estimators of θ = P/µ

and P = θµ are easily computed. Using this correction to the least squares
constant term produces the MOLS estimator. Another useful parameter to
estimate is E[exp(−ui)] = [θ/(1 + θ)]P . A similar approach is taken by Afriat
(1972), who suggests that ui be assumed to have a one-parameter gamma
distribution, with θ = 1 in the preceding. Richmond (1974) builds on Afriat’s
model to obtain the distribution of e−u

i and then derives E[exp(−ui)] and
other population moments.17 Both authors suggest that the OLS residuals
be used to estimate these parameters. As Richmond demonstrates, P can be
consistently estimated simply by using the standard deviation of the OLS
residuals.
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2.3.2.4 Methodological questions

A fundamental practical problem with the gamma and all other deterministic
frontiers is that any measurement error and any other outcome of stochastic
variation in the dependent variable must be embedded in the one-sided dis-
turbance. In any sample, a single errant observation can have profound effects
on the estimates. Unlike measurement error in yi , this outlier problem is not
alleviated by resorting to large sample results.

There have been a number of other contributions to the econometrics lit-
erature on specification and estimation of deterministic frontier functions.
Two important papers that anticipated the stochastic frontier model dis-
cussed in the next section are Timmer (1971), which proposed a probabilistic
approach to frontier modeling that allowed some residuals to be positive, and
Aigner, Amemiya, and Poirier (1976), who, in a precursor to Aigner et al.
(1977), focused on asymmetry in the distribution of the disturbance as a
reflection of technical inefficiency. Applications of the parametric form of the
deterministic frontier model are relatively uncommon. The technical problems
are quite surmountable, but the inherent problem with the stochastic specifi-
cation and the implications of measurement error render it problematic. The
nonparametric approach based on linear programming has an intuitive appeal
and now dominates this part of the literature on frontier estimation.

2.3.3 Data envelopment analysis

DEA is a body of techniques for analyzing production, cost, revenue, and profit
data, essentially, without parameterizing the technology. This constitutes a
growth industry in the management science literature, and appears with some
frequency in economics, as well.18 We begin from the premise that there exists
a production frontier that acts to constrain the producers in an industry. With
heterogeneity across producers, they will be observed to array themselves at
varying distances from the efficient frontier. By wrapping a hull around the
observed data, we can reveal which among the set of observed producers
are closest to that frontier (or farthest from it). Presumably, the larger the
sample, the more precisely this information will be revealed. In principle,
the DEA procedure constructs a piecewise linear, quasi-convex hull around
the data points in the input space. As in our earlier discussions, technical
efficiency requires production on the frontier, which in this case is the observed
best practice. Thus, DEA is based fundamentally on a comparison among
observed producers. Once again, to argue that this defines or estimates an
ideal in any sense requires the analyst to assume, first, that there exists an
ideal production point and, second, that producers strive to achieve that goal.
Without belaboring the obvious, it is not difficult to construct situations in
which the second of these would be difficult to maintain. The service sectors of
the recently dismantled centrally planned economies of Eastern Europe come
to mind as cases in point.
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There are many survey-style treatments of DEA, including chapter 3 of this
book. Because this chapter is devoted to econometric approaches to efficiency
analysis, I eschew presentation of any of the mathematical details. Another
brief (tight) and very readable sketch of the body of techniques is given in
Murillo-Zamorano (2004, pp. 37–46).

The DEA method of modeling technical and allocative efficiency is largely
atheoretical. Its main strength may be its lack of parameterization; it requires
no assumptions about the form of the technology. The piecewise linearity of
the efficient isoquant might be problematic from a theoretical viewpoint, but
that is the price for the lack of parameterization. The main drawback is that
shared with the other deterministic frontier estimators. Any deviation of an
observation from the frontier must be attributed to inefficiency.19 There is no
provision for statistical noise or measurement error in the model. The problem
is compounded in this setting by the absence of a definable set of statistical
properties. Recent explorations in the use of bootstrapping methods has begun
to suggest solutions to this particular shortcoming (see, e.g., Xue and Harker,
1999; Simar and Wilson, 1998, 1999; Tsionas, 2001b, which used efficiency
measures produced by a DEA as priors for inefficiency in a hierarchical Bayes
estimation of a stochastic frontier).

I do not return to the subject of DEA in this chapter, so at this point I note
a few of the numerous comparisons that have been made between (nonpara-
metric) DEA and statistics-based frontier methods, both deterministic and
stochastic. Several studies have analyzed data with both DEA and parametric,
deterministic frontier estimators. For example, Bjurek, Hjalmarsson, and For-
sund (1990) used the techniques described above to study the Swedish social
insurance system. Førsund (1992) did a similar analysis of Norwegian ferries.
In both studies, the authors do not observe radical differences in the results
with the various procedures. That is perhaps not surprising since the main
differences in their specifications concerned functional form: Cobb-Douglas
for the parametric models, and piecewise linear for the nonparametric ones.
The differences in the inferences one draws often differ more sharply when
the statistical underpinnings are made more detailed in the stochastic fron-
tier model, but even here, the evidence is mixed. Ray and Mukherjee (1995),
using the Christensen and Greene (1976) data on U.S. electricity generation,
found good agreement between DEA and stochastic frontier-based estimates.
Murillo-Zamorano and Vega-Cervera (2001) find similar results for a later
(1990) sample of U.S. electricity generators. Cummins and Zi (1998) also
found concordance in their analysis of the U.S. insurance industry. Finally,
Chakraborty, Biswas, and Lewis (2001) found in analyzing public education
in Utah that the empirical results using the various techniques are largely sim-
ilar. These studies do stand in contrast to Ferrier and Lovell (1990), who found
major differences between DEA and stochastic frontier-based inefficiency esti-
mates in a multiple-out distance function fit in a large sample of American
banks. Bauer et al. (1998) likewise found substantial differences between para-
metric and nonparametric efficiency estimates for a sample of U.S. banks. In
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sum, the evidence is mixed, but it does appear that, quite frequently, the overall
pictures drawn by DEA and statistical frontier-based techniques are similar.
That the two broad classes of techniques fail to produce the same pictures of
inefficiencies poses a dilemma for regulators hoping to use the methods to
evaluate their constituents (and, since they have the same theoretical under-
pinning, casts suspicion on both methods). As noted above, this has arisen
in more than one study of the banking industry. Bauer et al. (1998) discuss
specific conditions that should appear in efficiency methods to be used for
evaluating financial institutions, with exactly this consideration in mind.

2.4 The Stochastic Frontier Model

The stochastic production frontier proposed by Aigner et al. (1977) and
Meeusen and van den Broeck (1977)20 is motivated by the idea that devia-
tions from the production “frontier” might not be entirely under the control
of the firm being studied. Under the interpretation of the deterministic frontier
of the preceding section, some external events, for example, an unusually high
number of random equipment failures, or even bad weather, might ultimately
appear to the analyst as inefficiency. Worse yet, any error or imperfection in
the specification of the model or measurement of its component variables,
including the (log) output, could likewise translate into increased inefficiency
measures. This is an unattractive feature of any deterministic frontier specifi-
cation. A more appealing formulation holds that any particular firm faces its
own production frontier, and that frontier is randomly placed by the whole
collection of stochastic elements that might enter the model outside the con-
trol of the firm. [This is a similar argument to Førsund and Jansen’s (1977)
rationale for an average vs. best-practice frontier function.] An appropriate
formulation is

yi = f (xi)TEi e
vi ,

where all terms are as defined above and vi is unrestricted. The latter
term embodies measurement errors, any other statistical noise, and random
variation of the frontier across firms. The reformulated model is

ln yi = α + βTxi + vi − ui = α + βTxi + εi .

(The issue of functional form was considered in section 2.2.2. I use the linear
specification above generically here.) As before, ui > 0, but vi may take any
value. A symmetric distribution, such as the normal distribution, is usually
assumed for vi . Thus, the stochastic frontier is α + βTxi + vi , and as before, ui

represents the inefficiency.
Note, before beginning this lengthy section, that the ultimate objective in

the econometric estimation of frontier models is to construct an estimate of ui

or at least ui − mini ui . The first step, of course, is to compute the technology
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parameters, α, β, σu , and σv (and any other parameters). It does follow that, if
the frontier model estimates are inappropriate or inconsistent, then estimation
of the inefficiency component of εi , that is, ui , is likely to be problematic, as
well. So, we first consider estimation of the technology parameters. Estimation
of ui is considered in detail in section 2.8.

2.4.1 Implications of least squares

In the basic specification above, both components of the compound distur-
bance are generally assumed to be independent and identically distributed
(iid) across observations.21 As long as E[vi −ui] is constant, the OLS estimates
of the slope parameters of the frontier function are unbiased and consistent.
The average inefficiency present in the distribution is reflected in the asymme-
try of the distribution, a quantity that is easily estimable, even with the results
of OLS, with the third moment of the residuals,

m3 = 1

N

N∑
i=1

(ε̂i − Ê[εi])3,

however estimated, as long as the slope estimators are consistent. By expanding

µ3 = E[vi − (ui − E [ui])]3,

we see that, in fact, the skewness of the distribution of the estimable distur-
bance, εi , is simply the negative of that of the latent inefficiency component,
ui . So, for example, regardless of the assumed underlying distribution, the
negative of the third moment of the OLS residuals provides a consistent esti-
mator of the skewness of the distribution of ui . Since this statistic has units
of measurement equal to the cube of those of the log of output, one might,
as a useful first step in any analysis, examine the conventional normalized
measure,

√
b3 = −m3/s3, where s is the sample standard deviation of the

residuals. Values between 0 and 4 are typical. A Wald test of the hypothesis of
no systematic inefficiency in the distribution could be based on the familiar
chi-squared test,22

χ2
1 = 1

6

[−m3

s3

]2

.

The skewness coefficient of the least squares residuals in any finite sample
could have the“wrong”sign (positive in this case). This might cast doubt on the
specification of the stochastic frontier model and suggest that the Wald test is
meaningless.23 Other tests of the stochastic frontier specification are presented
in Schmidt and Lin (1984). The skewness of the residuals turns out to be an
important indicator of the specification of the stochastic frontier model. I
emphasize, however, that this is merely a sample statistic subject to sampling
variability. The skewness is only suggestive—m3 could be positive even if the
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stochastic frontier model is correct. Indeed, for a nonnormal specification of
the random components, µ3 could be positive in the population.

2.4.2 Forming the likelihood function

We begin with a general formulation of the model and then narrow the speci-
fication to the particular models that have been proposed in the contemporary
literature. The generic form of the stochastic frontier is

ln yi = α + βTxi + vi − ui

= α + βTxi + εi .

It is convenient to start with the simplest assumptions, that

(a) fv(vi) is a symmetric distribution;
(b) vi and ui are statistically independent of each other; and
(c) vi and ui are independent and identically distributed across observations.

Thus, our starting point has both error components with constant means 0
and µ and variances σ2

v and σ2
u , respectively, over all observations. To form the

density of ln yi that underlies the likelihood function, we use these assumptions
to obtain the joint density of the components,

fv ,u(vi , ui) = fv(vi)fu(ui).

Then, εi = vi − ui , so

fε,u(εi , ui) = fu(ui)fv(εi + ui).

[The Jacobian of the transformation from (v , u) to (ε, u) is det

[
1 1
0 1

]−1

= 1.]

Finally, to obtain the marginal density of εi , we integrate ui out of the joint
density:

fε(εi) =
∫ ∞

0
fu(ui)fv(εi + ui)dui

The final step gives the contribution of observation i to the log-likelihood

ln Li(α, β, σ2
u , σ2

v | ln yi , xi) = ln fε(yi − α − βTxi |σ2
u , σ2

v).

In several important cases examined below, the integral has a convenient closed
form so that estimation of the model by ML or through Bayesian methods
based on the likelihood is straightforward. Note, however, that with current
techniques of simulation-based estimation, closed forms for integrals such as
this are not always necessary for estimation.24
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The derivation above requires a trivial modification for a cost frontier. In
this case,

ln Ci = α + βTxi + vi + ui .

(For convenience here, we retain the symbol x for the variables in the frontier
function, though in a cost function, they would be output and the input prices,
not the inputs.) Then, εi = vi + ui and fε,u(εi , ui) = fu(ui)fv(εi − ui). Since vi

is assumed to have a symmetric distribution, the second term may be written
fv(εi − ui) = fv(ui − εi). Making this simple change, we see that in order to
form the density for log cost for a particular model in which observations lie
above the frontier, it is necessary only to reverse the sign of εi where it appears
in the functional form. An example below will illustrate.

2.4.3 The normal–half-normal model

The compound disturbance in the stochastic frontier model, while asym-
metrically distributed, is, for most choices of the disturbance distributions,
otherwise well behaved. MLE is generally straightforward. The literature on
stochastic frontier models begins with Aigner et al.’s (1977) normal–half-
normal model, in which

fv(vi) = N [0, σ2
v ] = (1/σv)φ(vi/σv), −∞ < vi < ∞

and

ui = |Ui | where fU (Ui) = N [0, σ2
u] = (1/σu)φ(Ui/σu), −∞ < Ui < ∞,

where φ(.) denotes the standard normal density. The resulting density for ui is

fu(ui) = [1/�(0)](1/σu)φ(ui/σu), 0 ≤ ui < ∞,

where �(.) is the standard normal cumulative distribution function (CDF).
The symmetrically distributed vi is usually to be assumed to be normal, which
we denote f (vi) = N [0, σ2

v ]. The distribution of the compound random vari-
able εi = (vi − ui) has been derived by Weinstein (1964) and is discussed in
Aigner et al. (1977).25 The end result, maintaining the form above, is

fε(εi) = 2√
2π(σ2

u + σ2
v)

[
�

(
−εi(σu/σv)√

σ2
u + σ2

v

)]
exp

(
−ε2

i

2(σ2
u + σ2

v)

)
.

A convenient parameterization that also produces a useful interpretation is
σ2 = (σ2

u + σ2
v) and λ = σu/σv .26 Then,

fε(εi) = 2

σ
√

2π
φ
(εi

σ

) [
�

(−εiλ

σ

)]
.
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Figure 2.4. Density of a Normal Minus a Half-Normal

This density is skewed in the negative direction (see the above discussion).
Figure 2.4 illustrates the shape of the distribution for λ = 2 and σ = 1. The
constructed parameter λ = σu/σv characterizes the distribution. If λ → +∞,
the deterministic frontier results. If λ → 0, the implication is that there is no
inefficiency in the disturbance, and the model can be efficiently estimated by
OLS.

With the assumption of a half-normal distribution, we obtain E[u] =
σu

√
2/π and var[ui] = σ2

u[(π − 2)/π]. A common slip in applications is to
treat σ2

u as the variance of ui . In fact, this overstates the variance by a factor
of nearly 3! Since σu is not the standard deviation of ui , it gives a somewhat
misleading picture of the amount of inefficiency that the estimates suggest
is present in the data. Likewise, although λ is indicative of this aspect of the
model, it is primarily a convenient normalization, not necessarily a directly
interpretable parameter of the distribution. It might seem that the variance
ratio σ2

u/σ2 would be a useful indicator of the influence of the inefficiency
component in the overall variance. But again, the variance of the truncated-
normal random variable ui is var[Ui |Ui > 0] = [(π− 2)/π]σ2

u , not σ2
u . In the

decomposition of the total variance into two components, the contribution of
ui is

var[u]
var[ε] = [(π − 2)/π]σ2

u

[(π − 2)/π]σ2
u + σ2

v
.

Further details on estimation of the half-normal model may be found in
Aigner et al. (1977) and in Greene (2003a). The parameter λ is the inefficiency
component of the model. The simple regression model results if λ equals zero.
The implication would be that every firm operates on its frontier. This does
not imply, however, that one can “test” for inefficiency by the usual means,
because the polar value, λ = 0, is on the boundary of the parameter space, not
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in its interior. Standard tests, such as the Lagrange multiplier test, are likely to
be problematic.27

The log-likelihood function for the normal–half-normal stochastic fron-
tier model is

Ln L(α, β, σ, λ) = −N ln σ − constant +
N∑

i=1

{
ln �

[−εiλ

σ

]
− 1

2

[εi

σ

]2
}

,

where
εi = ln yi − α − βTxi , λ = σu/σv , σ2 = σ2

u + σ2
v , and � = the standard

normal CDF.

The log-likelihood function is quite straightforward to maximize and has
been integrated into several contemporary commercial computer packages,
including Frontier 4.1 (Coelli, 1996), LIMDEP (Greene, 2000), Stata (Stata,
Inc., 2005), and TSP (TSP International, 2005; see also Greene, 2003a, for dis-
cussion of maximizing this log-likelihood). The normal–half-normal model
has an intriguing and useful feature. Regarding an above point about the
“incorrect” skewness of the least squares, Waldman (1982) has shown that in
estimation of a stochastic production (cost) frontier with the normal–half-
normal model, if the OLS residuals, ignoring the frontier function altogether,
are positively (negatively) skewed (i.e., in the wrong direction), then the max-
imizers of the log-likelihood are OLS for (α, β, σ2) and zero for λ.28 This is
a very useful self-diagnostic on specification and estimation of this frontier
model.29

2.4.4 Normal–exponential and normal–gamma models

The assumption of half-normality has seemed unduly narrow, and numerous
alternatives have been suggested. Meeusen and van den Broeck (1977) and
Aigner et al. (1977) presented the log-likelihood and associated results for an
exponentially distributed disturbance,30

fu(ui) = θ exp(−θui), θ > 0, ui ≥ 0.

In the exponential model, σu = 1/θ. To maintain continuity, it is helpful to
use this parameterization. With this assumption,

Ln L(α, β, σv , σu)=
N∑

i=1

[
− ln σu + 1

2

(
σv

σu

)2

+ ln �

(−(εi + σ2
v/σu)

σv

)
+ εi

σu

]
.

MLE with this distribution is straightforward, as well, although, as discussed
below, there can be some complications involved with obtaining starting
values.31 The asymptotic covariance matrix of the estimated parameters is
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Figure 2.5. Half-Normal and Exponential Distributions

typically estimated by the Berndt, Hall, Hall and Hausman “outer product
of gradients” method (Greene, 2003a), though the analytic Hessians are not
overly burdensome (see Aigner et al., 1977).

The exponential model actually is qualitatively different from the half-
normal. Figure 2.5 shows the half-normal distribution with σu = 0.8—this is
the one that underlies figure 2.4—and the exponential distribution with θ =
1.659, which implies the same standard deviation [0.8(π − 2)/π = 0.603]. As
shown in figure 2.5, for a given value of the parameter, the exponential implies
a tighter clustering of the values near zero. In practice, as explored below, this
seems to make only a marginal difference in the estimated inefficiencies.

2.4.5 Bayesian estimation

Since van den Broeck et al. (1994) and Koop et al. (1994, 1995), there has
been an active and rapid development of Bayesian estimators for stochastic
frontier models.32 Rather than treat this as a separate literature, which it is
decidedly not, here I detail the basic form of the method and describe some
of the numerous extensions in the different sections below, for example, on
the gamma model and on multiple-output cost and distance functions. For
reasons noted shortly, the basic platform for the Bayesian frontier estimator
is the normal–exponential model. [I draw on Koop and Steel (2001) as a
useful pedagogy for the interested reader.33 Also, in the interest of readability,
I deviate slightly from the conventional notation in Bayesian applications
in which densities are usually formulated in terms of precision parameters
(reciprocals of variances) rather than the natural parameters of the original
model.]
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The log of the likelihood function for the normal–exponential model is

Ln L(data; α, β, σv , σu)

=
N∑

i=1

[
− ln σu + 1

2

(
σv

σu

)2

+ ln �

(−((vi − ui) + σ2
v/σu)

σv

)
+ vi − ui

σu

]

where vi − ui = yi − α − βTxi . Estimation proceeds (in principle) by specify-
ing priors over � = (α, β, σv , σu) and then deriving inferences from the joint
posterior p(�|data). In general, the joint posterior for this model cannot be
derived in closed form, so direct analysis is not feasible. Using Gibbs sampling
and known conditional posteriors, it is possible use Markov chain Monte Carlo
(MCMC) methods to sample from the marginal posteriors and use that device
to learn about the parameters and inefficiencies. In particular, for the model
parameters, we are interested in estimating E[�|data] and var[�|data] and
perhaps even more fully characterizing the density f (�|data). In addition, we
are interested in estimating the posterior mean inefficiencies E[ui |data] and
in constructing confidence intervals (or their Bayesian counterparts, highest
posterior density [HPD] intervals), again, conditioned on the data.34 The
preceding does not include features of ui in the estimation. One might,
ex post, estimate E[ui |data] (see van den Broeck et al., 1994); however, it
is more natural in this setting to include (u1, …, uN ) with � and esti-
mate the conditional means with those of the other parameters. (The
method is known as data augmentation; see Albert and Chib, 1993.) We
develop the priors for the model components, then the conditional pos-
teriors, and, finally, the Gibbs sampler for inference based on the joint
posterior.

Priors for the parameters are specified as follows: A diffuse (improper,
uninformative) prior for (α, β) would have p(α, β) ∝ 1 over all of RK+1.

AQ: Confirm
that box is not a
missing
character in line
“Prior for ...
Rk+1.

Another typical approach is to specify a proper, but relatively diffuse prior,
p(α, β) ∼ N [(α0, β0), W] where (α0, β0) is generally (0, 0) and W is large
enough to avoid having an informative prior unduly influence the posterior.35

For the stochastic elements of the frontier model, we specify p(vi |σv) ∼ nor-
mal (0, σ2

v ) and p(ui |σu) ∼ exponential(σu) independent of vi . [Note that
this is the departure point for extensions such as the gamma model (see
discussion in Koop and Steel, 2001, and the analysis below) or a Dirich-
let process (see the discussion of semiparametric estimators below).] For
specifying the priors over the variance parameters, Koop and Steel (2001)
note that

the researcher can, of course, use any prior in an attempt to reflect
his/her prior beliefs. However, a proper prior for 1/σv and σu

[maintaining our notation, not theirs] is advisable: Fernandez et al.
(1997) show that Bayesian inference is not feasible (in the sense that

wgreene
Sticky Note
text is ok
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the posterior is not well defined) under the usual improper priors
for 1/σv and σu . (p. 523)

Priors for assumed independent variance parameters in stochastic frontier
models are usually assumed to follow gamma distributions:

p(1/σv) ∼ G(1/σv |φv , Pv) = φ
Pv
v

�(Pv)
exp [−φv(1/σv)] (1/σv)

Pv−1, 1/σv ≥ 0

The usual noninformative prior for 1/σv has φv = Pv = 0 producing
p(1/σv) = (1/σv)

−1, but use of this is precluded here. Different applica-
tions use different values—there is little uniformity as to how to choose these
values, though in keeping with the aforementioned, values that produce more
diffuse priors are preferred. For the parameter of the exponential inefficiency
distribution, we likewise specify a gamma density:

p(σu) ∼ G(σu|φu , Pu) = φ
Pu
v

�(Pu)
exp [−φuσu] σPv−1

u , σu ≥ 0

Choice of the priors for the hyperparameters for the inefficiency distribution
presents something of a difficulty, since, as above, a diffuse prior derails poste-
rior inference. Many (possibly most) of the received applications have adopted
a suggestion by Koop et al. (1997, and elsewhere). Setting Pu = 1 produces an
exponential distribution for the prior over σu . We then set φu so that the prior
median of efficiency, exp(−ui), has a reasonable value. This involves setting
φu = − ln τ∗, where τ∗ is the desired median. The value 0.875 is now conven-
tional in the literature; hence,φu = 0.1335. (Note that this is a fairly tight, quite
informative prior. Koop et al. (1997, 2001) and subsequent researchers note
that results seem not to be too dependent on this assumption.) The remaining
detail is how to model the inefficiencies for the data augmentation. But that is
already done in hierarchical fashion, since

p(ui |σu) = σu exp(−σuui).

We now have the joint prior for the parameters and u = (u1, . . . , uN ),

p(�, u) = p(α, β)p(1/σv)p(σu)p(u1, . . . , uN |σu)

= p(α, β)p(1/σv)p(σu)
∏N

i=1
p(ui |σu)

In order to draw inferences about the model components, we require
information about the joint posterior

p(�, u|data) ∝ p(�, u)L(data; �, u).

The full posterior does not exist in closed form, so no analytic forms are
available for the interesting characteristics, such as E[�, u|data]. The strategy
to be adopted is to infer these values by random sampling from the posterior
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and, relying on the laws of large numbers, use statistics such as means and
variances to infer the characteristics. However, no method exists for random
sampling from this joint posterior. The Gibbs sampler provides the needed
device. In broad terms, we desire to sample from

p(�, u|data) = p[(α, β), 1/σv , σu , u1, . . . , uN |data].
As noted, this is not feasible. However, it has been shown (see Casella and
George, 1992) that the following strategy, Gibbs sampling, produces a set of
samples from the marginal posteriors, which is all we need: We construct the
conditional posteriors

p[(α, β)|1/σv , σu , u1, . . . , uN , data],
p[1/σv |(α, β), σu , u1, . . . , uN , data],
p[σu|(α, β), 1/σv , u1, . . . , uN , data],
p[ui |(α, β), 1/σv , σu|data], i = 1, . . . , N .

Random samples from these, cycling in seriatim (an MCMC iteration), pro-
duces a set of random samples from the respective marginal posteriors. (The
order of the draws does not matter.) The cycle begins at some value within
the range of each variable. Many thousands of cycles are used, with the first
several thousand discarded to eliminate the effects of the initial conditions—
for example, received reported values range from 10,000 with the first 5,000
discarded to 75,000 with every fifth draw after 10,000 retained.

It remains to derive the conditional posteriors. For the stochastic frontier
model, these are known: With all other values including ui , i = 1, . . . , N
known,

p[(α, β)|1/σv , σu , u1, . . . , uN , data] = p(α, β) × N [(a, b), σ2
vA],

where (a, b) are the least squares coefficients in the linear regression of yi + ui

on a constant and xi , and A is the inverse of the usual second moment matrix
for [1, xi]. Recall p(α, β) = 1 in our application. Random draws from the
multivariate normal distribution are simple to draw; they can be built up
from primitive draws from the standard normal with straightforward calcu-
lations (see Greene, 2003a, p. 922). The conditional densities for the variance
parameters are a bit more complicated. For the symmetric distribution,

p[1/σv |(α, β), σu , u1, . . . , uN , data] = γ (f , P∗),

where f = φv + 1
2N

∑N
i=1(yi −βTxi)

2 and P∗ = Pv +N/2. For the inefficiency
parameter,

p[σu|(α, β), 1/σv , u1, . . . , uN , data] = γ

(
1

N

N∑
i=1

ui − ln τ∗, N + 1

)
.
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Sampling from the gamma distribution is less straightforward than from the
normal but can be done with published software, such as IMSL Libraries
(Absoft, 2005). Finally, for the data augmentation step, we have

p[ui |(α, β), 1/σv , σu , data) = N +[−(yi − βTxi) + σ2
v/σu , σ2

v ],

where N +[.] denotes the truncated normal distribution.36 Sampling from a
truncated normal distribution with a given underlying mean and standard
deviation is also straightforward. Some authors (e.g., Tsionas, 2002) suggest
acceptance/rejection—draw an observation, and either accept it if it is positive,
or reject it and draw another. A simpler and smoother method requiring
but a single draw is based on the inverse probability transform: ui,r = µ +
σ�−1[Fi,r +(1−Fi,r )�(−µ/σ)], where the subscript i, r denotes the r th draw
for observation i, µ and σ are the mean and standard deviation noted above,
�−1(.) is the inverse function of the standard normal CDF, and Fi,r is a single
standard uniform, U [0, 1] draw.

These equations define the Gibbs sampler, which can be used to produce
samples from the desired marginal posterior distributions. Thus, after the
iterations, the simple means and variances of the draws produce estimates
of the means and variances of the conditional distributions, f [(α, β)|data],
f (1/σv |data), f (σu|data), and f (ui |data). (Note, again, that the last of these
is not an estimator of ui ; it is an estimator of E[ui |data]. No amount of data,
manipulated in Bayesian or classical fashion, produces a convergent estimator
of ui ; we only estimate the mean of the conditional distribution.)

2.4.6 The normal–gamma model

Stevenson (1980) and Greene (1980a, 1980b) also proposed results for the
gamma/normal distribution. In this case,

fu(ui) = σ−P
u

�(P)
exp(−ui/σu)uP−1

i , ui ≥ 0, P > 0.

Note that the exponential results if P = 1. Unlike the case of the deterministic
gamma frontier model, this model only requires P to be positive. The con-
volution with vi makes the resulting distribution of εi regular for all positive
values of P . Stevenson limited his attention to the Erlang form (integer values
of P , 1.0, and 2.0), which greatly restricts the model. Beckers and Hammond
(1987) first formally derived the log-likelihood for the convolution of a normal
and a gamma variate. The resulting functional form was intractable, however.
Greene (1990) produced an alternative formulation that highlights the rela-
tionship of the gamma model to the exponential model considered above. The
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log-likelihood function with the normal–gamma mixture is

Ln L(α, β, σv , σu) =
N∑

i=1

⎡
⎢⎣

−P ln σu − ln �(P) + ln q(P − 1, εi)

+1

2

(
σv

σu

)2

+ ln �

(−εi + σ2
v/σu

σv

)
+ εi

σu

⎤
⎥⎦ ,

where
q(r , εi) = E [zr |z > 0, εi] , z ∼ N [−εi + σ2

v/σu , σ2
v ].

The log-likelihood function can be written

Ln L(α, β, σv , σu) = ln LExponential +
N∑

i=1

[−(P − 1) ln σu − ln �(P)

+ ln q(P − 1, εi)
]

.

The q(r , ε) function is a (possibly) fractional moment of the truncated normal
distribution.37 The additional terms drop out if P equals 1, producing the
exponential model.

The gamma formulation has some appeal in that it allows for different
distributions of inefficiency. Figure 2.6 suggests the possibilities. The heav-
iest plot in figure 2.6 shows the distribution with P = 0.8. When P < 1,
the distribution only asymptotes to the vertical axis, which implies that
there is large mass near zero. The middle plot has P = 1, which is the
exponential distribution shown in figure 2.5. The lower plot shows that,
with P > 1, the distribution can be pulled away from zero, which is likely
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to be a more reasonable characterization of inefficiency at least for some
applications.
Greene’s formulation of the gamma model brought some substantial dif-
ferences from the half-normal specification in an empirical application.38

However, the greatly increased complexity of the procedure has somewhat
inhibited its application.39 van den Broeck et al. (1994) and Koop et al. (1995)
have taken a Bayesian approach to the specification of the inefficiency term
in the stochastic frontier model. The former study considers several prior
distributions for ui including half- and truncated-normal, exponential, and
the Erlang form of Greene’s normal–gamma model.40 Several other Bayesian
applications (e.g., Tsionas, 2002; Huang, 2004) have employed the gamma
model in stochastic frontier formulations—it provides a comfortable fit for
the inverted gamma conjugate priors for variance parameters. Ritter and Simar
(1997), however, have analyzed this model extensively and expressed consid-
erable skepticism about its usability for classical formulation. They found that
the parameters are very weakly identified, and estimation is exceedingly diffi-
cult. Accurate computation of the fractional moments is extremely difficult.
Note, however, that the model that Ritter and Simar (1997) focus on has only
a constant term, so their results may lack generality—they do stand as a caveat
for researchers nonetheless. Greene (2000, 2003a, 2003b) proposes a more
general approach than Ritter and Simar’s, based on MSL that seems largely to
overcome the previous problems of computation of the log-likelihood and its
derivatives.

2.4.6.1 Classical estimation of the normal–gamma model

Several recent studies have resurrected the normal–gamma model. Greene
(2003a) has produced an alternative approach to computing the complex
part of the log-likelihood function, the expectations from the truncated nor-
mal distribution, using Monte Carlo simulation, rather than attempting to
approximate the integrals directly. The method appears to produce more satis-
factory results. The obstacle to estimation is accurate computation of q(r , εi) =
E[zr |z > 0] where z ∼ N [µi , σ2

v ], µi = −(εi + σ2
v/σu). Since it is an expec-

tation, and an otherwise straightforward function, the function can be con-
sistently (pointwise) estimated with q̂(r , εi) = (1/Q)

∑Q
q=1 zr

iq , where ziq is a

random draw from the indicated truncated normal distribution. The MSL esti-
mator then replaces q(r , εi) with q̂(r , εi). The remaining complication is how to
obtain the random draws. Acceptance/rejection of a sample of draws from the
untruncated normal population is unacceptable, since the resulting function
is no longer smooth and continuous (different observations will be rejected
depending on the parameters), it will take huge numbers of draws, and it will
be very inaccurate in the tails. The alternative is to use the inverse probability
transform, which translates random draws one for one. The strategy is imple-
mented by using the generic formula for sampling from the truncated normal
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distribution,

ziq = µi + σ�−1[(1 − Fq)PL + Fq],

where εi = yi − βTxi , µi = −εi − σ2
v/σu , σ = σv , and PL = �(−µi/σ),

and Fq is a draw from the continuous uniform (0, 1) distribution. Combining
all terms, then,

Ln LS(α, β, σv , σu)

=
N∑

i=1

⎡
⎢⎢⎢⎣

−P ln σu − ln �(P) + 1

2

(
σv

σu

)2

+ ln �

(
−εi + σ2

v/σu

σv

)
+ εi

σu

+ ln

{
1

Q

∑Q
q=1

(
µi + σv�−1(Fiq + (1 − Fiq)�(−µi/σv )

)P−1
}
⎤
⎥⎥⎥⎦ .

As complicated as it is, this form is vastly simpler than the Pochammer function
invoked by Beckers and Hammond (1987) or the direct integration in Greene
(1990). The function and its derivatives are smooth and continuous in all the
parameters of the model. Further details appear in Greene (2003b, 2004a).
Vitaliano (2003) is a recent application.

2.4.6.2 Bayesian estimation of the normal–gamma model

Owing to its flexibility and its natural similarity to familiar forms of priors,
the gamma model has also attracted researchers employing Bayesian methods
to estimate stochastic frontier models. Tsionas (2002) begins with a normal–
exponential model and an assumed panel-data setting. Each unit has its own
parameter vector, βi , which is assumed to be generated by a prior normal den-
sity, N [β0, �]. Posterior means are derived for all the production parameters
using the MCMC simulation method that is now standard in Bayesian appli-
cations. Finally, the posterior distribution for the inefficiencies, uit is obtained
as a truncated normal variable with a specified mean and variance that is
a function of the other parameters in his model. Thus, estimates of uit are
obtained after obtaining posterior estimates of the other parameters.41 (The
estimation of uit and the use of panel data are both subjects of later sections
of this chapter, but the use of the normal–gamma model remains somewhat
out of the mainstream of empirical applications, so it seems appropriate to
continue the thread of the discussion here rather than later, because this model
does not figure prominently in most of the rest of the discussion.) Interest-
ingly enough, after developing the model for panel-data applications, Tsionas
(2002) applied it to a cross section—the Christensen and Greene (1976) elec-
tricity data. It seems likely that some of the fairly extreme empirical results in
his paper were a consequence of stretching the panel-data estimator to sam-
ples of one in a cross section—his results appear to imply an average efficiency
in the sample of more than 99%, which is considerably at odds with earlier
findings with the same data set.) Tsionas proceeded to extend his model to
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half-normal and Erlang (gamma with P = 1, 2, 3) distributions, employing
similar methodologies in each case.

Van den Broeck et al. (1994) and Koop et al. (1995) have also examined
the normal–Erlang model using Bayesian MCMC techniques. Surprisingly, in
an earlier paper, Tsionas (2000b), again employing MCMC techniques, exam-
ined the implications of a noninteger value of P in the normal–gamma model.
Suggestions elsewhere notwithstanding, he found that variation to noninte-
ger values of P , even within a fairly narrow range, does produce substantive
differences in the appearance of the inefficiency distribution. He continues to
examine the model with various values of P . In an indicator of the complexity
of the estimation problem, in his analysis, it becomes necessary to fix one of
the other model parameters at an assumed value to proceed with estimation.
In their Capital Asset Pricing Model (CAPM) study of mutual fund perfor-
mance, Annaert et al. (2001) also fit the Erlang model with P = 1, 2, and 3 and
then probabilistically pooled the three sets of estimates. With P fixed in each
case, the estimator itself is easily fit using the straightforward MCMC methods
mentioned above. In sum, the normal–gamma model with a free shape param-
eter has posed an ongoing challenge in the Bayesian literature, but one that
has attracted a fair amount of attention. Ultimately, the flexibility of the two-
parameter distribution and the variety of shapes that it can accommodate do
have an appeal. (One might surmise that the convenience of the conjugate prior
with the flexibility of the two-parameter gamma model make it an irresistible
target in this literature.) In the most recent attack on this vexing estimation
problem, Huang (2004) develops a full likelihood-based Bayesian estimator
for the normal–gamma model without the Erlang restriction. His results on
inefficiency estimates are essentially the same as Tsionas’s; in his full model
with parameter heterogeneity, the modal efficiency is roughly 0.99 (Huang’s
figure 4). The estimates presented in Huang’s table 1 suggest that the overall
distribution of inefficiency is roughly exponential with a mean and standard
deviation of 1/77.4337 = 0.0129. Both of these sets of implausible results are
considerably at odds with other evidence of inefficiency in the Christensen and
Greene data.42 Finally, Griffin and Steel (2004) propose a Dirichlet (semipara-
metric) specification for the inefficiencies in a semiparametric formulation of
a Bayesian model. In passing, they also fit the normal–gamma (fully paramet-
ric) model. The application is based on Koop et al.’s (1997) hospital data, so
we cannot compare the results to the foregoing. They do (apparently) find
that for most of their sample the normal–gamma model tracks the semipara-
metric model fairly well, and far better than the normal–exponential model,
which might be expected. Migon and Medici (2001) also propose method-
ology for the normal–gamma model but do not use it in their applications.
(Unlike most other studies, they ultimately gravitated to a normal–lognormal
model.)

In summary, then, it would appear that Greene (2003b) and Tsionas
(2002)/Huang (2004) have reported considerable progress in the 20-plus
year development of this strand of literature. Both estimation strategies
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based on simulation—the former in the classical tradition, the latter in the
Bayesian paradigm—appear to be reasonably (not extremely) straightfor-
ward to implement.43 What remains unsettled, at least as a caveat, is the
Ritter and Simar (1997) argument that the model is difficult to identify.
The applications seem to suggest otherwise, but extensive analysis remains
to be done.

There have been numerous Bayesian applications in the stochastic frontier
literature. A significant proportion of them are listed above, and nearly all of
the remainder (that I have located) appear at one point or another below.44 As
in most applications, since the specifications are stringent in their specification
of noninformative (diffuse) priors, the results usually differ marginally, if at all,
from MLEs derived from the classical approach.45 There are, however, some
aspects of Bayesian estimation in the stochastic frontier literature that are wor-
thy of note. First, there are now Bayesian applications to problems that have
not received much attention in the classical literature, for example, O’Donnell
and Coelli’s (2005) application in which they imposed the theoretical curva-
ture conditions on a translog distance function. The estimation of technical or
cost inefficiency poses an unusual challenge for Bayesian estimators, however.
Since estimates of inefficiency (technical or cost) are individual observation
specific, it is not possible to obtain them without assuming an informative
prior. Thus, Koop et al. (1994), Tsionas (2002), and Huang (2004) all assume
a gamma prior for ln ui with a known mean (and variance). Obviously, the
results are sensitive to the assumption. The technique of data augmentation
(Albert and Chib, 1993) is often used as a means to the end of posterior param-
eter mean estimation in models with missing data (e.g., the probit model). The
estimates of the missing data values are generally of no intrinsic interest and
are not analyzed at any length in the posterior analysis. The same technique
is used in estimating ui in stochastic frontier models, but in this setting, the
augmented data are not a means to an end—they are the end. However, it is
here that it is necessary to assume a fairly strongly informative prior in order
to have a tractable posterior with finite variance. I return to this issue in some
detail below.

In sum, some of the Bayesian applications merely demonstrate the exis-
tence of counterparts to classical estimators. Given diffuse priors, this produces
little more than an alternative method (MCMC) of maximizing the likelihood
function and then calling the new “estimate” something with a different name.
(See Kim and Schmidt, 2000, for some evidence on this point.) But, at the
same time, innovative applications that extend the model, such as Tsionas’s
(2003) dynamic model and Atkinson and Dorfman’s (2005) distance function
model, have begun to appear, as well. As of this writing, this strand of the
literature remains a significant minority. I revisit it at various points below,
but my treatment, like the literature it surveys, focuses primarily on classical,
ML-based applications.
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2.4.7 The truncated-normal model

Stevenson (1980) argued that the zero mean assumed in the Aigner et al. (1977)
model was an unnecessary restriction. He produced results for a truncated as
opposed to half-normal distribution. That is, the one-sided error term, ui is
obtained by truncating at zero the distribution of a variable with possibly
nonzero mean. The complete parameterization is

vi ∼ N [0, σ2
v ],

Ui ∼ N [µ, σ2
u], ui = |Ui |.

For convenience, let us use the parameterizations given above for λ and σ.
Then, the log-likelihood is

Ln L(α, β, σ, λ, µ) = −N

[
ln σ + 1

2
ln 2π + ln �(µ/σu)

]

+
N∑

i=1

[
−1

2

(
εi + µ

σ

)2

+ ln �

(
µ

σλ
− εiλ

σ

)]
,

where σu = λσ/
√

1 + λ2 (a derivation appears in Kumbhakar and Lovell,
2000). Starting values for the iterations in the stochastic frontier models are
typically obtained by manipulating the results of OLS to obtain method-of-
moments estimators for the parameters of the underlying distribution. There
does not appear to be a convenient method-of-moments estimator for the
mean of the truncated normal distribution. But MLE presents no unusual
difficulty. The obvious starting value for the iterations would be the estimates
for a half-normal model and zero for µ. The benefit of this additional level of
generality is the relaxation of a possibly erroneous restriction. A cost appears
to be that the log-likelihood is sometimes ill-behaved when µ is unrestricted.
As such, estimation of a nonzero µ often inflates the standard errors of the
other parameter estimators considerably, sometimes attends extreme values of
the other parameters, and quite frequently impedes or prevents convergence
of the iterations. It is also unclear how the restriction of µ to zero, as is usually
done,would affect efficiency estimates. The Bayesian applications of this model
(e.g., Tsionas, 2001a; Holloway et al., 2005) have apparently encountered less
difficulty in estimation of this model.

As explored in section 2.6, the parameters of the underlying distribution
of ui provide a mechanism for introducing heterogeneity into the distribution
of inefficiency. The mean of the distribution (or the variance or both) could
depend on factors such as industry, location, and capital vintage. One way
such factors might be introduced into the model could be to use

µi = µ0 + µT
1 zi ,
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where zi is any variables that should appear in this part of the model. As noted,
we revisit this possibility further below.

2.4.8 Estimation by COLS method-of-moments estimators

The parameters of the stochastic frontier model can be estimated using the
second and third central moments of the OLS residuals, m2 and m3. For the
half-normal model, the moment equations are

m2 =
[
π − 2

π

]
σ2

u + σ2
v ,

m3 =
√

2

π

[
1 −

(
4

π

)]
σ3

u .

(Note that m3 is negative, since the offset in εi by ui is negative.) Thus, σu and

σv are easily estimable. Since E[ui] = (2/π)
1/2σu , the adjustment of the OLS

constant term is α̂ = a + σ̂u
√

2/π. These MOLS estimators are consistent, but
inefficient in comparison to the MLEs. The degree to which they are inefficient
remains to be determined, but it is a moot point, since with current software,
full MLE is no more difficult than least squares.

Waldman (1982) has pointed out an intriguing quirk in the half-normal
model. Normally, there are two roots of the log-likelihood function for the
stochastic frontier model: one at the OLS estimates and another at the MLE.
In theory, the distribution of the compound disturbance is skewed to the
left. But, if the model is badly specified, the OLS residuals can be skewed
in the opposite direction. In this instance, the OLS results are the MLEs, and
consequently, one must estimate the one-sided terms as 0.0.46 (Note that if this
occurs, the MOLS estimate of σ is undefined.) One might view this as a built-in
diagnostic, since the phenomenon is likely to arise in a badly specified model or
in an inappropriate application. This “failure”—I use the term advisedly here,
since analysts might differ on whether the estimation tools or the analyst has
failed—occurs relatively frequently. Coelli’s (1995) formulation may be more
convenient in this regard (see note 26). He suggests the moment estimators

σ̂2 = m2 +
(

2

π

)[√
π

2

(
π

π − 4

)
m23

] 2
3

,

γ̂ =
(

1

σ̂2

)[√
π

2

(
π

π − 4

)
m3

] 2
3

,

α̂ = a +
√

2γ̂σ̂2

2
.

As before, the “wrong sign” on m3 can derail estimation of γ, but in this
instance, a convenient place to begin is with some small value; Coelli suggests
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0.05. As noted above, there is no obvious method-of-moments estimator for
µ in Stevenson’s truncated-normal model.

The MOLS estimators for the exponential model are based on the moment
equations m2 = σ2

v + σ2
u and m3 = −2σ3

u . Thus,

σ̂u = [−m3/2]
1
3 , σ̂2

v = m2 − σ̂2
u , α̂ = a + σ̂u .

For the gamma model, the MOLS estimators are

σ̂u = −(m4 − 3m2
2)/(3m3), P̂ = −m3/(2σ̂3

u), σ̂2
v = m2 − P̂ σ̂2

u , α̂ = a + P̂ σ̂u .

Any of these can be used to obtain a full set of estimates for the stochastic
frontier model parameters. They are all consistent. Thereafter, estimates of
the efficiency distributions or of the individual coefficients, −ui or TEi , can
be computed just by adjusting the OLS residuals. There is a question of the
statistical efficiency of these estimators. One specific result is given in Greene
(1980a) for the gamma-distributed, deterministic frontier model, namely, that
the ratio of the true variance of the MLE of any of the slope coefficients in the
model to its OLS counterpart is (P – 2)/P . Thus, the greater the asymmetry of
the distribution—the gamma density tends to symmetry as P increases—the
greater is efficiency gain to using MLE (see Deprins and Simar, 1985, for further
results). Of course, efficient estimation of the technical parameters is not
necessarily the point of this exercise. Indeed, for many purposes, consistency
is all that is desired. As noted, estimation of all of these models is fairly routine
with contemporary software. The preceding are likely to be more useful for
obtaining starting values for the iterations than as estimators in their own
right.

2.4.9 Other specifications for stochastic frontier models

A number of other candidates have been proposed for the parametric forms
of the stochastic frontier model. An early study by Lee (1983) proposed a
four-parameter Pearson family of distributions for the purpose of testing the
distributional assumptions of the model—the Pearson family nests a large
number of familiar distributions. The model proved much too cumbersome
for general usage, but it does suggest the possibility of alternatives to the
familiar paradigm of normality coupled with a limited range of one-sided
distributions for ui . This section surveys a few of the alternative distributions
that have been proposed for the stochastic frontier model.

The question of how to model inefficiency in a data set that spans sev-
eral time periods is a major point in the analysis of panel data. In particular,
researchers differ—and the data are inconsistent—on whether it is reasonable
to model inefficiency as a time-invariant, firm-specific effect or as an effect
that varies freely and randomly over time, or whether some intermediate for-
mulation, in which ui,t (firm i at time t ) evolves systematically, is appropriate.
This subject is revisited at length in section 2.7. Note at this point, however, a
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proposal by Tsionas (2003) that could be used to analyze this issue, at least in
part. He suggests the dynamic model

ln ui,t |zit , γ, ρ, ω, ui,t−1 ∼ N
[
γTzit + ρ ln ui,t−1, ω2

]
, t = 2, . . . , T ,

ln ui,1|zi1, γ1, ω1 ∼ N [γT
1 zi1, ω2

1],
where zi,t is a vector of exogenous effects (not the inputs). The startup process
(initial condition) is allowed to be different from the process governing the
evolution of the inefficiency. Tsionas (2003) applies the technique to Bayesian
estimation of a cost frontier estimated for a sample of 128 U.S. banks over
12 years. A multiple-output translog function is estimated. The estimated
posterior mean of ρ is 0.908, suggesting that, to some approximation, the
measured inefficiency in his sample is close to constant over time. Note that
this proposal employs a lognormal density for the inefficiency—a specification
that has been used quite infrequently (see, e.g., Migon and Medici, 2001;
Deprins and Simar, 1989b).

2.4.9.1 Other parametric models

Migon and Medici (2001) also use Bayesian methods to estimate a stochastic
frontier model with lognormal inefficiencies. Estimation is straightforward
using the MCMC methods they employ. It would be more difficult to replicate
this with orthodox classical methods, since forming the density for a normal
minus a lognormal is an unsolved problem. The method of Misra and Greene
and Misra (2003), shown below, however, which would approach the prob-
lem in essentially the same fashion as the Bayesian estimator, could easily be
adapted to a lognormal distribution. The normal–lognormal model remains
to be explored in this literature. As (possibly) a two-parameter density that
resembles the attractive gamma model, I would surmise that this specification
offers some interesting potential. Tsionas and Greene (2003) showed how the
Bayesian approach outlined above for the normal–gamma model could be
adapted to other functional forms. Motivated by the possibility that ordinary
outliers in the data might distort the estimated model and ultimately end up
expanding the range of variation of ui in the estimated model, they proposed
a Student’s t for the symmetric distribution (vi), that is, a distribution with
much thicker tails than the normal. In their discussion of the MCMC pro-
cedure, they suggested that formulation of a tractable posterior is the only
obstacle to any other distribution. (The half-normal and exponential were
demonstrated, as well.) Whether other distributions would provide any bene-
fit, or even substantively change the results, remains to be seen. [An application
that considers the lognormal and Weibull distributions in addition to those
considered here is Deprins and Simar (1989b).]

A similar consideration underlies the proposal by Greene and Misra
(2003), who essentially followed Tsionas and Greene’s (2003) suggestion, in a
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classical estimator. Recall that the density for the observed data that under-
lies the log-likelihood is obtained as follows: First, yi = βTxi + vi − ui and
εi = yi − βTxi = vi − ui . A symmetric density is assumed for vi and a one-
sided one for ui . Then, the unconditional density that enters the likelihood
function is

fε(εi |β, δ, xi) =
∫ ∞

0
fv(εi + ui)fu(ui)dui ,

where δ is any parameters in the model other than α and β, such as σu and
σv in the half-normal and exponential models. The normal–half-normal and
normal–exponential models are derived by obtaining a closed form for this
integral. Since there is no closed form for the normal–gamma model, the
relevant part of the log-likelihood is approximated by simulation. As observed
at several pointsabove, the integral above is of the form of an expectation.
In principle, it can be accurately approximated by simulation and averaging
a number of draws from the appropriate underlying population. In order to
apply the principle, the specification requires a distribution for ui from which
a random sample of draws can be obtained, and an explicit specification for
the density of vi . With these in place, a generic formulation of the simulated
log-likelihood for the stochastic frontier model would be

log LS(α, β, δ|data) =
N∑

i=1

log
1

Q

Q∑
q=1

fv [yi − α − βTxi + ui , δ].

This function is then maximized with respect to the underlying parameters.
Like the normal–gamma model discussed above, it is smooth and continuous
in the parameters. To take a specific example, the following shows an alternative
way to estimate the normal–exponential model. The density (PDF) and CDF
for the one-sided ui are

fu(ui) = (1/σu) exp(−ui/σu), F(ui) = 1 − exp(−ui/σu), ui ≥ 0, σu > 0.

Inverting F(ui) for ui reveals the strategy for generating random draws on ui :

uir = −σu ln(1 − Fir ),

where Fir is a random draw from the standard uniform distribution, U [0, 1],
which one can do with any modern econometrics package. (For simplicity,
the draw may simply be Fir , since 1 − Fir is also from the U [0, 1] popula-
tion.) The symmetric density is the normal distribution, so the simulated log-
likelihood is

Ln LS(α, β, σv , σu|data)

=
N∑

i=1

ln
1

R

R∑
r=1

1

σv
φ

[
yi − α − βTxi + (−σu log Fir )

σv

]
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This function and its derivatives are smooth and continuous in the parameters
and can be maximized by conventional means (assuming one is able to fix the
set of random draws—the same set of R draws must be used each time the
function is evaluated). The derivatives of this log-likelihood are as follows:
For convenience, let the argument of the normal density be denoted air =
yi −α−βTxi −σu ln Fir , so that the bracketed function above is just φ(air/σv).
Let θ denote the parameter vector (α, β′, σu)′. Then,

ln LS(θ, σv |data) =
N∑

i=1

ln
1

R

R∑
r=1

1

σv
φ

(
air

σv

)
,

∂ ln LS(θ, σv |data)

∂θ
=

N∑
i=1

1
R

∑R
r=1

1
σv

[(
air
σv

)]
φ
(

air
σv

)
1
σv

⎡
⎣ 1

xi

ln Fir

⎤
⎦

1
R

∑R
r=1

1
σv

φ
(

air
σv

) ,

∂ ln LS(θ, σv |data)

∂σv
=

N∑
i=1

1
R

∑R
r=1

1
σ2

v
φ
(

air
σv

) [(
air
σv

)2 − 1

]
1
R

∑R
r=1

1
σv

φ
(

air
σv

) ,

Simultaneous equation of the two gradients to zero produces the maximum
simulated likelihood (MSL) estimators. Either the (moderately complicated)
Hessian or the BHHH estimator can be used to estimate the asymptotic
covariance matrix for the estimator.

In principle, this approach can be used with any pair of densities, fv(vi),
that has a tractable functional form and fu(ui) from which a random sample
of draws can be simulated. Greene and Misra (2003) worked out several pairs.
Certainly there are others. (I noted the lognormal above, which was not con-
sidered by the authors.) There are two real questions yet to be considered in
this setting: First, again, does the distribution really matter in terms of the esti-
mates of ui? (How those are computed remains to be derived. This is revisited
below.) Second, in any event, it is unclear how one can choose among the var-
ious models. Likelihood ratio tests are inappropriate, because the models are
not nested. Vuong’s (1989) test for nonnested models probably is appropriate,
but it is for pairs of competing models, and there may be more than two here.

Researchers in a number of areas (e.g., Cameron et al., 2004) in their anal-
ysis of health care) have suggested the copula method of formalizing bivariate
relationships when the marginal distributions are known but the joint distri-
bution remains to be determined. For the stochastic frontier model, the tool
suggests a means to consider the possibility of specifying a model in which the
inefficiency, ui , might be correlated with the firm-specific idiosyncratic noise,
vi . The underlying economics may require a bit of investigation, but econo-
metrically, this possibility points toward relaxing yet one more restriction in
the stochastic frontier model. Smith (2004) has used the method to analyze
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(yet again) Christensen and Greene’s (1976) electricity generation cost data
and the panel data on airlines listed in Greene (1997). Interestingly enough,
the copula model applied to the electricity data produce some fairly sub-
stantial changes compared to the standard normal–half-normal model. The
chi-squared test with one degree of freedom for the copula model against the
null of the standard model is 5.32, while the 95% critical value is 3.84. As
noted, the economic interpretation of the richer model specification needs to
be solidified, but the empirical results suggest an intriguing possibility. This is
a nascent literature, so I have no further empirical results to report.

2.4.9.2 Semiparametric models

The stochastic frontier model considered thus far is fully parameterize—the
production model is specified in full, and the full distributions of vi and ui are
known up to the specific values of the parameters, which are estimated using
either classical or Bayesian methods. Ongoing research has sought flexible
specifications of the technology model and the distributions involved that
relax the assumptions of the model. There have been many explorations in the
production model and extensions of the distributions. The normal–gamma
model, with its richer specification, for example, represents one such model
extension. In addition, there have been numerous proposals to move away from
specific distributional assumptions. The semiparametric approaches described
here retain the essential framework of the stochastic frontier but relax the
assumption of a specific distribution for vi or ui , or both.

Fan, Li, and Weersink (1996) suggested modifying the production model:

yi = g (xi) + vi − ui ,

where g (xi) remains to be specified. Since nearly all applications of the
stochastic frontier model employ either the Cobb-Douglas or translog form, a
semiparametric specification here represents relaxing one assumption restric-
tion in the model, though it retains the fundamental stochastic (in their
case, normal–exponential) specification. Huang and Fu (1999) continued
this line of inquiry. In a similar analysis, Koop et al. (1994) specify a “semi-
nonparametric” stochastic frontier cost function of the form

ln Ci = H (yi) + ln c(wi) + vi + ui ,

where H (y) is specified semiparametrically, in terms of polynomials in the
log of output and ln c(w) is a Cobb-Douglas or translog function of the input
prices.

In a series of studies, Park and Simar (1994), Park et al. (1998), Adams
et al. (1999), Sickles et al. (2002), and Sickles (2005) have explored the
implications of a variety of distributional assumptions on estimation in the
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panel-data model

yit = βTxit + αi + εit .

Absent their much more general assumptions, this is a conventional fixed- or
random-effects linear regression model. The various extensions involve differ-
ent assumptions about εit , the relationships between αi and xit , and so on. The
stochastic frontier aspect of the model is embodied in the use of αi −maxj(αj)

in the estimation of inefficiency, in the fashion of the deterministic frontier
models discussed above. Instrumental variable, ML, generalized least squares
(GLS), and generalized method of moments (GMM) estimation methods all
appear in the different treatments. This body of results extends the assump-
tions behind the deterministic frontier models in a variety of directions but is
not directed at the stochastic frontier model. The semiparametric nature of the
model relates to the very loose specification of the effects and their relationship
to the frontier. Section 2.7 returns to the discussion of panel models.

One way to extend the normal–half-normal stochastic frontier model
(or others) with respect to the distribution of vi is the finite mixture approach
suggested by Tsionas and Greene (2003). I return to the methodological aspects
of the finite mixture model below; for the moment, let us examine only the
model formulation. The frontier model is formulated in terms of J “classes”
so that, within a particular class,

fε(εi | class = j) = 2√
2π(σ2

u + σ2
vj)

⎡
⎢⎣�
⎛
⎜⎝ − εi(σu/σvj)√

σ2
u + σ2

vj

⎞
⎟⎠
⎤
⎥⎦ exp

(
−ε2

i

2(σ2
u + σ2

vj)

)
,

εi = yi − α − βTxi .

(Note that the indexation over classes pertains to the variance of the symmetric
component of εi , σv ,j .) We thus have a class-specific stochastic frontier model.
The unconditional model is a probability weighted mixture over the J classes,

fε(εi) =
∑

j

πj fε(εi |class = j), 0 < πj < 1,
∑

j

πj = 1.

The mixing probabilities are additional parameters to be estimated. The
resulting unconditional model preserves the symmetry of the two-sided error
component but provides a degree of flexibility that is somewhat greater than
the simpler half-normal model. The mixture of normals is, with a finite
number of classes, nonnormal.

This model lends itself well to either Bayesian (Tsionas and Greene, 2003)
or classical (Orea and Kumbhakar, 2004; Greene, 2004a, 2005; Tsionas and
Greene, 2003) estimation methods. The likelihood function is defined over
fε(εi) in the usual way and, with the one caveat about the number of classes
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noted below, is not particularly difficult to maximize.47 After estimation, a con-
ditional (posterior) estimate of the class that applies to a particular observation
can be deduced using Bayes theorem:

prob[class = j|yi] = f (yi |class = j)prob[class = j]∑J
j=1 f (yi |class = j)prob[class = j] = π̂j|i

One would then assign an individual observation to the most likely class.
Subsequent analysis, for example, efficiency estimation (see section 2.5), would
then be based on the respective class for each observation.

Orea and Kumbhakar (2004), Tsionas and Greene (2003), and Greene
(2004a, 2005) have extended this model in two directions. First, they allow
the entire frontier model, not just the variance of the symmetric error term,
to vary across classes. This represents a discrete change in the interpretation
of the model. For the case above, the mixture model is essentially a way to
generalize the distribution of one of the two error components. For the fully
mixed models, we would reinterpret the formulation as representing a latent
regime classification. In Greene (2004b), for example, the latent class model is
proposed (ultimately with very limited success) as a means of accommodat-
ing heterogeneity in the extremely heterogeneous World Health Organization
(Evans et al., 2000a, 2000b) data set. The implication of the more general
model is that firms are classified into a set of different technologies and effi-
ciency distributions. The specific classification is unknown to the analyst,
hence the probabilistic mixing distribution. (This has a distinctly Bayesian
flavor to it, as, in fact, the individual firm does reside in a specific class, but the
analyst has only a set of priors, or mixing probabilities, to suggest which.) The
second extension in the latter papers is to allow heterogeneity in the mixing
probabilities:

πij = exp(θT
j zi)∑J

j=1 exp(θT
j zi)

, θJ = 0

The remainder of the model is a class-specific stochastic frontier model

fε(εi | class = j) = 2

σj
φ

(
εi |j
σj

)[
�

(−λjεi |j
σj

)]
,

εi |j = yi − αj − βT
j xi

.

This form of the model has all parameters varying by class. By suitable equal-
ity restrictions, however, subsets of the coefficients, such as the technology
parameters, α and β, can be made generic.

There remains a modeling loose end in this framework. The number of
classes has been assumed to be known, but there is no reason to expect this.
How to determine the appropriate number of classes is an ongoing problem
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in this literature. In principle, one could use a likelihood ratio test to test
down from a J class model to a J − 1 class model. However, the number of
degrees of freedom for the test is ambiguous. If the model parameters are the
same in two classes, then the number of classes is reduced by one whether
or not the two probabilities are similarly restricted. One cannot test “up”
from a J − 1 class model to a J class model, because if the correct model
has J classes, then the J − 1 class model estimators will be inconsistent. A
number of researchers have produced proposals for handling this problem,
many of them involving information criteria such as the Akaike information
criterion.

The latent class approach provides a means to build a large amount of
cross-firm heterogeneity into the model. As discussed in section 2.6, this is
a major, important extension of the model. With a sufficiently large number
of classes, one can achieve quite a large amount of generality. As the number
of classes grows, the model approximates a full random-parameters model,
which is reconsidered in section 2.7.

The recent literature contains a number of studies of semiparametric
approaches to frontier modeling. As discussed above, the “semiparametric”
aspect of the model means different things in different studies. Sickles et al.
(2002) and Sickles (2005) have loosened the assumptions about the “effects”
in a deterministic frontier model. Orea, Kumbhakar, Greene, Tsionas, and
others have relaxed the assumptions about all the model parameters through
a finite mixture approach. Note, finally, two studies, Kopp and Mullahy (1989)
and Griffin and Steel (2004), that have retained the essential structure of
the stochastic frontier model but specifically focused on the specification of
the inefficiency random variable, ui . Kopp and Mullahy (1989) have derived
GMM estimators for the stochastic frontier model that require only that the
distribution of vi be symmetric, that the distribution of ui be defined over the
positive half of the real line, and that moments of ui and vi up to order six be
finite. This provides a high level of generality, but at the very high cost that the
method produces no definable estimate of ui , which ultimately is the point
of the exercise. Under the assumptions made thus far, OLS estimates of the
model with an adjusted constant term (α+ E[ui]) satisfies the assumptions of
the Gauss Markov theorem. Griffin and Steel (2004) explore what one might
reluctantly call a “normal–Dirichlet model”:

yit = α + βTxit + vit − ui ,

where the model is all as above specified save for ui ∼ F , a“random probability
measure generated by a Dirichlet process.” A variety of parametric settings
are explored, with the finding that the results (estimates of E[ui |data]—a
Bayesian estimator) are fairly strongly dependent on the assumptions. It does
emerge that a fully parametric, normal–gamma model (estimated, again, using
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MCMC procedures) fairly well resembles the much more general Dirichlet
results.

2.4.9.3 Nonparametric approaches

Kumbhakar, Park, Simar, and Tsionas (2005; see also Kumbhakar and Tsionas,
2002) suggested the following nonparametric approach. The global MLE of
the parameters of the normal–half-normal model48 are[

α̂, β̂, σ̂, λ̂
]

MLE
= arg max ln L(α, β, σ, λ| data)

=
N∑

i=1

2

σ
φ
(εi

σ

) [
�

(−εiλ

σ

)]
.

Local maximization of the log-likelihood for the nonparametric model
involves the following: Choose a multivariate kernel function

K (d) = (2π)−m/2|H|−1/2 exp[−(1/2)dTH−1d],
where d is a difference vector (defined below), m is the number of parameters
in β, H = hS where S is the sample covariance of the variables on the right-
hand side, and h is a bandwidth.49 Then, for a particular value of x∗, the local
estimator is defined by[

α̂, β̂, σ̂, λ̂
]
(x∗) = arg max ln LK (α, β, σ, λ| data)

=
N∑

i=1

2

σ
φ
(εi

σ

) [
�

(−εiλ

σ

)]
K (xi − x∗).

A full vector of parameters is defined for each vector x∗ chosen. The authors
suggest four reasons to prefer this approach: (1) There can be no functional
form misspecification, since the full-parameter vector is a function of the data
at every point. (2) The variances are also functions of x, so the model allows
for heteroskedasticity of unknown form. (I return to this issue below.) (3) In
their truncation model, the mean of the underlying inefficiency distribution
is also a function of x, which represents a considerable generalization of the
model. (4) This model generalizes Berger and Humphrey’s (1991, 1992) thick
frontier. While Berger and Humphrey’s approach fits the model to specific
quartiles of the data, this model fits the frontier at all points of the sample.

In a series of studies, Berger and Humphrey (e.g., 1991, 1992) analyze what
they label the “thick frontier” approach to efficiency estimation. The analysis
proceeds by first dividing the sample into classes by size and then within
the size classes further subdividing the observations on the basis of average
costs. “Best-practice” frontier models are then fit to the lowest quartiles of
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the size classes using OLS or GLS. Berger and Humphrey (1991) analyze a
three-output translog cost function. They argue that this approach combines
the logic of the DEA “best practice,” data-driven analysis and the appealing
feature of the stochastic frontier model that combines both randomness in
the frontier (its “thickness”) with a formal model of inefficiency. However, the
thick frontier approach is somewhat less parameterized than the stochastic
frontier while at the same time having more structure than DEA. A number
of authors (e.g., Mester, 1994; Wagenvoort and Schure, 2005) have used the
thick frontier method to analyze cost inefficiency in the banking industry.
Berger and Humphrey (1992) is a panel-data approach that adds exogenous
heterogeneity to the basic model. (See section 2.6 for additional material on
heterogeneity in efficiency analysis.) To the extent that it isolates inefficiency
in the data, this technique is a nonparametric frontier estimator insofar as no
distribution is assumed. A thoroughly detailed application of the thick frontier
concept is given in Lang and Welzel (1998).

Note, finally, that the entire body of results on DEA can be viewed as
a distribution-free, nonparametric approach to frontier estimation and effi-
ciency analysis. Because DEA is treated in great detail in chapter 3, I do not
pursue the subject here. Another concise, very readable introduction to the
topic is given in Murillo-Zamorano (2004).

2.4.9.4 Conclusion

All of these studies suggest that there is considerable scope for alternatives
to the original normal–half-normal model of Aigner et al. All have appeared
in applications in the literature. Nonetheless, the normal–half-normal model,
along with some of the variants discussed below (e.g., the heteroskedastic
model) has provided the most frequent specification for the recent research.

2.5 Stochastic Frontier Cost Functions, Multiple Outputs,
and Distance and Profit Functions: Alternatives to the
Production Frontier

This section discusses a variety of specifications that model production
and (in)efficiency in functional forms that differ from the single-output
production function examined up to this point.

2.5.1 Multiple-output production functions

The formal theory of production departs from the transformation function
that links the vector of outputs, y, to the vector of inputs, x:

T (y, x) = 0
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As it stands, some further assumptions are obviously needed to produce the
framework for an empirical model. By assuming homothetic separability, the
function may be written in the form

A(y) = f (x)

(see Fernandez et al., 2000, for discussion of this assumption). The function
A(y) is an output aggregator that links the “aggregate output” to a familiar
production function. The assumption is a fairly strong one, but with it in place,
we have the platform for an analysis of (in)efficiency along the lines already
considered. Fernandez et al. (2000) proposed the multiple-output production
model, (

M∑
m=1

α
q
my

q
i,t ,m

)1/q

= βTxit + vit − uit .

Inefficiency in this setting reflects the failure of the firm to achieve the max-
imum aggregate output attainable. Note that the model does not address
the economic question of whether the chosen output mix is optimal with
respect to the output prices and input costs. That would require a profit func-
tion approach. Fernandez et al. (2000) apply the method to a panel of U.S.
banks—the 798-bank, 10-year panel analyzed by Berger (1993) and Adams
et al. (1999).50 Fernandez et al. (1999, 2000, 2002, 2005) have extended this
model to allow for “bads,” that is, undesirable inputs. Their model consists
of parallel equations for the “goods” (dairy output of milk and other goods
in Dutch dairy farms) and “bads” (nitrogen discharge). The two equations
are treated as a Seemingly Unrelated Regressions system and are fit (as is the
banking model) using Bayesian MCMC methods. The study of the electric
power industry by Atkinson and Dorfman (2005) takes a similar approach,
but fits more naturally in section 2.5.4, which examines it in a bit more detail.

2.5.2 Stochastic frontier cost functions

Under a set of regularity conditions (see Shephard, 1953; Nerlove, 1963), an
alternative representation of the production technology is the cost function,

C(y , w) = min{wTx : f (x) ≥ y},
where w is the vector of exogenously determined input prices. The cost func-
tion gives the minimum expenditure needed to produce a given output, y . If
a producer is technically inefficient, then its costs of production must exceed
the theoretical minimum. It seems natural, then, to consider a frontier cost
function as an alternative to the frontier production function model. The inter-
pretation of the inefficiency terms in an empirical model is complicated a bit
by the dual approach to estimation, however. Suppose that, on the production
side of the model, the representation of a one-sided error term as reflective
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purely of technical inefficiency is appropriate. The computation is conditional
on the inputs chosen, so whether the choice of inputs is itself allocatively effi-
cient is a side issue. On the cost side, however, any errors in optimization,
technical or allocative, must show up as higher costs. As such, a producer that
we might assess as operating technically efficiently by a production function
measure might still appear inefficient viz-à-viz a cost function.

Similar arguments would apply to a profit function. This does not preclude
either formulation, but one should bear in mind the possible ambiguities in
interpretation in these alternative models. It might make more sense, then, to
relabel the result on the cost side as“cost inefficiency.”The strict interpretation
of technical inefficiency in the sense of Farrell may be problematic, but it seems
counterproductive to let this be a straightjacket. The argument that there is a
cost frontier that would apply to any given producer would have no less validity.
Deviations from the cost frontier could then be interpreted as the reflection of
both technical and allocative inefficiency. At the same time, both inefficiencies
have a behavioral interpretation, and whatever effect is carried over to the
production side is induced, instead. The same logic would carry over to a profit
function. The upshot of this argument is that estimation techniques that seek
to decompose cost inefficiency into an allocative and a true Farrell measure of
technical inefficiency may neglect to account for the direct influence of output
itself on the residual inefficiency once allocative inefficiency is accounted for.

Let us begin by examining the costs of production of a single output condi-
tioned on the actual input choices. That is, neglecting the first-order conditions
for optimality of the input choices, we consider the implications for the costs
of production of technical inefficiency. For simplicity, we assume constant
returns to scale. The production function, f (x), is linearly homogeneous and
therefore homothetic. For homothetic production functions,51

y = F [f (x)],
where F(t ) is a continuous and monotonically increasing function when t
is positive. We have the fundamental result (from Shephard, 1953) that the
corresponding cost function is

C(y , w) = F−1(y)c(w),

where c(w) is the unit cost function. For the stochastic frontier production
function, then

yi = f (xi)TEie
vi ,

so that the cost function is

Ci = F−1(y)c(wi)

[
1

TEi

]
e−vi .

This corresponds to Farrell’s (1957) original efficiency measure, that is, the
cost savings that would be realized if output were produced efficiently. The
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theoretical counterpart would be the input-based measure. In logs, then,

ln Ci = ln F−1(y) + ln c(wi) − ln TEi − vi .

In terms of our original model, then, the stochastic cost frontier is

ln Ci = ln F−1(y) + ln c(wi) − vi + ui ,

which is what might be expected. The sign on vi is inconsequential since its
mean is zero and the distribution is symmetric (normal).

Now, suppose there are economies of scale in production. For the simplest
case, we assume a Cobb-Douglas function with degree of homogeneity γ. The
stochastic frontier cost function will be

ln Ci = A′ + β ln w1i + (1 − β) ln w2i + 1

γ
ln yi + 1

γ
(−vi) + 1

γ
ui .

Therefore, the composed disturbance on the cost frontier is

ε′i = 1

γ
(−vi + ui).

The upshot is that the presence of economies of scale on the production side
blurs somewhat the reflection of technical inefficiency on the cost side. The
preceding result is general for a production function that exhibits a fixed degree
of homogeneity.52

Evidently, the simple interpretation of the one-sided error on the cost
side as a Farrell measure of inefficiency is inappropriate unless the measure is
redefined in terms of costs, rather than output. That is, one might choose to make
costs, rather than output, the standard against which efficiency is measured.
At least in this context, this is nothing more than a matter of interpretation. It
is equally clear that by some further manipulation, the estimated inefficiency
obtained in the context of a cost function can be translated into a Farrell
measure of technical inefficiency, that is, just by multiplying it by γ.

For the simple case above in which the production function is homo-
geneous, the effect of economies of scale can be removed by rescaling the
estimated disturbance. A corresponding adjustment may be possible in more
involved models such as the translog model. Suppose that the production
function is homothetic, but not homogeneous. For convenience, let

G(yi) = F−1(yi).

Then

ln Ci = ln c(wi) + ln G(yi).

The formulation above is clearly a special case. Unless ln G(.) is linear in ln yi , as
it is when the production function is homogeneous, the technical inefficiency
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may be carried over to the cost function in a very complicated manner.53

The usual assumption that ui in the stochastic frontier cost function can vary
independently of yi may be problematic.54

Any errors in production decisions would have to translate into costs of
production higher than the theoretical norm. Likewise, in the context of a
profit function, any errors of optimization would necessarily translate into
lower profits for the producer. But, at the same time, the stochastic nature
of the production frontier would imply that the theoretical minimum cost
frontier would also be stochastic. Some recent applications that have been
based on cost functions have made this explicit by further decomposing the
stochastic term in the cost function to produce

ln Ci = ln C(yi , wi) + vi + ui + Ai ,

where Ai is strictly attributable to allocative inefficiency (see, e.g., chapter 4 in
Kumbhakar and Lovell, 2000).

The preceding describes the production and cost of the firm in long-run
“equilibrium.” (The concept must be qualified, because it is unclear whether it
is appropriate to characterize an inefficient firm as being in equilibrium.) For
the short term, in which there are fixed inputs, the variable cost function is

ln CF = ln C(y , w, xF ).

As before, relative to optimal costs, any deviation from optimality must trans-
late into higher costs. Thus, for example, with one output and one fixed input,
one might analyze a translog variable cost function

ln CF = α +
K∑

k=1

βk ln wk + βF ln F + βy ln y

+ 1

2

K∑
k=1

K∑
l=1

γkl ln wk ln wl + 1

2
γFF ln2 F + 1

2
γyy ln2 y .

+
K∑

k=1

γkF ln wk ln F +
K∑

k=1

γky ln wk ln y + γFy ln F ln y + vi + ui

In their analysis of Swiss nursing homes, Farsi and Filippini (2003) specified
a cost function with labor and capital treated as variable factors and number
of beds treated as a fixed input. The variable cost function provides a useful
datum; the shadow cost of a fixed input is −∂CF /∂xF . For the translog variable
cost function, this would be

−∂CF

∂F
= −F

CF
(βF + γFF ln F +

K∑
k=1

γkF ln wk + γFy ln y).
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2.5.3 Multiple-output cost functions

A significant advantage of analyzing efficiency on the cost side is the ease with
which multiple outputs can be accommodated. Consider a transformation
function

T (y, x) = 0,

where y is a vector of M outputs and x is a vector of K inputs. Assuming that
production satisfies the necessary regularity conditions (including monotonic-
ity, smoothness, and quasiconcavity), we may deduce that the cost function is
of the form

ln Ci = ln C(y1, . . . , yM , w1, . . . , wK ),

where the cost function is monotonic in outputs, monotonic in each input
price, linearly homogeneous in the input prices, and so on. How we proceed
from here, and how “inefficiency” enters the specification, depends crucially
on the assumptions and will highlight the utility of not allowing the input
versus output orientation discussed above to straightjacket the analysis.

Many analyses have proceeded directly to specification of a multiple-
output translog cost function

ln Ci = α +
K∑

k=1

β ln wik + 1

2

K∑
k=1

K∑
l=1

γkl ln wik ln wil

+
M∑

m=1

δ ln yim + 1

2

M∑
m=1

M∑
r=1

φmr ln yim ln yir

+
M∑

m=1

K∑
k=1

κmk ln yim ln wik + vi + ui

.

(One could also analyze a multiple-output variable cost function, with one
or more fixed factors.) Note that there is no necessary assumption of homo-
theticity or separability on the production side. Tsionas and Greene (2003)
analyze a cost frontier for U.S. banks in which there are five outputs and five
inputs. In this formulation, ui is interpreted as “economic inefficiency.” Thus,
the source of ui is either technical or allocative inefficiency, or both.

Analyses of two industries in particular, health care and banking, have
yielded a rich crop of applications and development of new methods. Data in
the banking industry are of particularly high quality. A few of the innovative
studies in banking are as follows:55

• Lang and Welzel (1998) fit a translog, five-output, three-input cost
function to German banking data. The study develops the thick frontier
estimator.
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• Ferrier and Lovell (1990) fit a multiple-output cost function to U.S.
banking data. Among the innovations in this study were a
decomposition of cost inefficiency into technical and allocative
components and the inclusion of a large number of “environmental”
variables in the cost function.

• Huang and Wang (2004) used the Fourier functional form in
conjunction with a translog kernel to study a sample of Taiwanese banks.

• Tsionas and Greene (2003) fit a finite mixture of translog
multiple-output cost functions to U.S. banks. Orea and Kumbhakar
(2004) fit a similar mixture of translog functions using a panel of
Spanish banks.

In each of these cases, the cost functions involved three or five outputs, mul-
tiple inputs, and a variety of model specifications. The methodologies span
the range of techniques already listed, including both classical and Bayesian
methods. The health care industry also provides a natural setting for multiple-
output cost frontier analysis. In the banking industry studies, a challenging
specification issue is how to identify the inputs and outputs and how to distin-
guish them—for example, are commercial loans, which produce loan interest
income, an input or an output? A reading of the many received studies suggests
that researchers have come to some agreement on these questions. In health
care, there are difficult issues of identifying what the outputs are and, in some
cases, measuring them. For example, the measurement of quality is a recurrent
theme in this literature. Another question concerns residents in hospital cost
studies—is training of residents an input or an output? Again, there are many
questions in the literature, but there does seem to be at least broad agreement.
A few studies that illustrate the analyses are as follows:

• Koop et al. (1997) use Bayesian methods to fit translog cost frontiers to a
panel of U.S. hospitals. In their study, the outputs are number of
discharges, number of inpatient days, number of beds, number of
outpatient visits, and a case mix index. They also included a quasi-fixed
input, capital in their cost function.

• Rosko (2001) analyzes a panel of U.S. hospitals. The translog cost
function includes outputs inpatient discharges and outpatient visits. The
mix of cases is also considered in this study but not as an output variable.
A variety of panel-data techniques (Battese and Coelli, 1995) and models
for heterogeneity in inefficiency are placed in the specification.

• Linna (1998) is similar to Rosko (2001) but also considers
nonparametric (DEA) bases of inefficiency.

• Farsi and Filippini’s (2003) analysis of Swiss nursing home costs analyzes
a single output but includes two indicators of quality: a “dependency”
index that reflects the intensity of care received by the facility’s patients,
and a nursing staff ratio.
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2.5.4 Distance functions

The multiple-output cost frontier and the transformation function provide
convenient vehicles for analyzing inefficiency in multiple-output contexts.
Another approach that has proved useful in numerous empirical studies is
based on the distance function. For output vector y and input vector x,
Shephard’s (1953) input distance function is DI (y, x) = max(λ : x/λ is on
the isoquant for y). It is clear that DI (y, x) ≥ 1 and that the isoquant is the
set of x values for which DI (y, x) = 1. The corresponding output distance
function would be DO(x, y) = min(λ : y/λ is producible with x). In this
instance, DO(y, x) ≤ 1. The definitions suggest efficiency measures, as noted
earlier. Thus, the input distance suggests the degree to which x exceeds the
input requirement for production of y, which we would identify with cost, or
“economic” inefficiency. Likewise, the output distance suggests the degree to
which output falls short of what can be produced with a given input vector, x,
which relates to the technical inefficiency we have examined thus far.

To put these functions in the form of an econometric model, we use the
restrictions implied by the underlying theory, namely, that the input distance
function is linearly homogeneous in the inputs and the output distance func-
tion is linearly homogeneous in the outputs (see Kumbhakar et al., 2004).
Thus, we normalize the input distance function on the (arbitrarily chosen)
first input, x1, and the output distance function on y1 to write

x1DI (x2/x1, x3/x1, . . . , xK /x1, y)TI = 1,

where TI is the technical inefficiency index, 0 ≤ TI ≤ 1. In similar fashion, we
can formulate the output distance function,

y1DO(x, y2/y1, y3/y1, . . . , yM /y1)TO = 1,

where TO is the economic inefficiency index, TO ≥ 1. This formulation pro-
vides a natural framework for a stochastic frontier model. Most applications
have used the translog form. Doing likewise, we write

0 = ln x1 + ln DI (x2/x1, x3/x1, . . . , xK /x1, y) + v + ln[exp(−u)],
where the deterministic part of the equation is formulated as the production
model, v captures the idiosyncratic part of the model as usual, and u > 0
produces TI = exp(−u). For the output distance function, a similar strategy
produces

0 = ln y1 + ln DO(x, y2/y1, y3/y1, . . . , yM /y1) + v + ln[exp(u)].
Finally, in order to form a model that is amenable to familiar estimation
techniques, we would shift the normalized variable to the left-hand side of the
equation. Thus, the input distance stochastic frontier model would appear

− ln x1 = ln DI (x2/x1, x3/x1, . . . , xK /x1, y) + v − u,
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and likewise for the output distance equation. Some methodological issues
remain. As stated, it would seem that both input and output models would
carry some type of simultaneous equations aspect, so that conventional esti-
mators such as OLS would be persistently biased. Coelli (2000) and Cuesta and
Orea (2002) consider these issues theoretically. Note that these methodologi-
cally oriented examinations come after the leading applications of the distance
function technique (e.g., Sickles et al., 2002; Coelli and Perelman, 1996, 1999,
2000; all of which used the translog form as the modeling platform).

The distance function bears close resemblance to other specifications
for studying efficiency. Thus, there have been comparisons of inefficiency
estimates obtained from estimated distance functions to the counterparts
obtained from DEA studies (see Coelli and Perelman, 1999; Sickles et al.,
2002). Atkinson, Fare, and Primont (2003) used the concept of the distance
function to derive a shadow cost function with which they studied allocative
inefficiency. Finally, O’Donnell and Coelli (2005) forced the classical curvature
(regulatory) conditions on their estimated distance function. They suggested
their method of imposing restrictions on parameters in a Bayesian framework
as an alternative to Kleit and Terrell (2001)—they used a Metropolis-Hastings
procedure as opposed to Kleit and Terrell’s accept/reject iteration.

Atkinson and Dorfman (2005) have extended the distance function
method to include both desirable and undesirable outputs in the generation
of electricity. The translog input distance function is of the form

0 = γ0 + T (yg , yb , t , x) + vit − uit ,

where yg is a vector of “goods” (residential and commercial/industrial genera-
tion), yb is a vector of “bads” (sulfur dioxide emissions), t is a time trend, and
x is a vector of inputs (fuel, labor, and capital). T (…) is a full translog function.
The underlying theory imposes a large number of linear constraints on the
(also large number of) model parameters. In this study, the “bad” is treated
as a “technology shifter” (in contrast to Fernandez et al., 2000, who treated
nitrogen runoff in dairy farming as an undesirable output). The estimator
in this study is an elaborate form of Bayesian method of moments (see Kim,
2002; Zellner and Tobias, 2001).

2.5.5 Profit functions

The methodology described earlier can, in principle, be extended to revenue
and profit functions. In terms of the received empirical literature, these two
approaches have been less actively pursued than production, cost, and distance
functions. Two explanations stand out. First, the estimation of a profit func-
tion would require a much greater range of assumptions about producer and
market behavior. While production and cost functions are clearly reflective
of individual firm optimization behavior, the profit function requires addi-
tional assumptions about market structure and price setting. Second, the data



FRIED: “CHAP02” — 2007/8/24 — 19:02 — PAGE 150 — #59

150 The Measurement of Productive Efficiency and Productivity Growth

demands for profit functions are considerably greater than those for cost and
production functions.

A full implementation of a model for a profit frontier would include a pro-
duction function and the first-order conditions for optimization (see Kumb-
hakar and Bhattacharyya, 1992; Kumbhakar and Lovell, 2000; Kumbhakar,
2001). For a multiple-output firm/industry, it would also require equations
for the optimal mix and levels of the outputs. A full simultaneous equations
framework (replete with many nonlinearities) is detailed in Kumbhakar and
Lovell (2000; see also chapter 5). The authors also discuss the possibil-
ity of a “variable” profit function that takes some inputs as fixed. Again,
the underlying assumptions behind such a model require much detail. The
profit function framework shares a characteristic with the cost function;
profit “inefficiency” would be a mix of both technical and allocative inef-
ficiency. Moreover, there is a third layer that does not enter any of the
frameworks considered thus far. For given output prices, any deviation from
the optimal mix of outputs must reduce profits. Thus, this model presents
yet another application of the “Greene problem” (discussed in greater detail
below). Kumbhakar and Lovell (2000, p. 214) list a number of applica-
tions of different approaches to profit function estimation. Not surprisingly,
because of the ready availability of very high-quality data, several of these
studies (e.g., Akhavein et al., 1994; Berger and Mester, 1997; Humphrey
and Pulley, 1997; Lozano-Vivas,1997) analyze (in)efficiency in the banking
industry.

2.5.6 Output-oriented and input-oriented inefficiency

For output vector y and input vector x, Shephard’s (1953) input distance
function is DI (y, x) = max(λ : x/λ is on the isoquant for y); DI (y, x)
≥ 1. The corresponding output distance function would be DO(x, y) =
min(θ : y/θ is producible with x); DO(y, x) ≤ 1. The input distance sug-
gests the degree to which x exceeds the input requirement for production of
y, which we would identify with cost, or “economic” inefficiency. The out-
put distance suggests the degree to which output falls short of what can be
produced with a given input vector, x, which relates to the technical inef-
ficiency examined thus far. The definitions suggest efficiency measures, as
noted above. The translation of these notions into frontier models has pro-
duced the familiar modeling platforms for production of a single output.
Skipping the obvious algebraic steps, we have the generic stochastic frontier
model

yi = f (xi)θi exp(vi),

or

ln yi = ln f (xi) + vi + ln θI ,
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where θi = exp(−ui) in our model for output-oriented inefficiency. Tak-
ing logs produces our familiar stochastic frontier production model. For
input-oriented inefficiency, we have the less commonly used formulation,

yi = f (λixi) exp(vi),

or

ln yi = ln f (λixi) + vi .

In this formulation, the form of inefficiency in the production model is less
clear. For example, moving to the usual Cobb-Douglas or translog model
leaves a complicated function of (ln xki + ln λi).

Most of the received applications have measured output-oriented ineffi-
ciency on the production side. On the cost side of the production model, the
roles of the two measures are reversed. Neglecting vi for the moment purely
for convenience), we have

yi = θi f (xi) ⇔ Ci = g (yi/θi , wi),

so unless yi enters the cost function (log)linearly, the form that θi takes in
the cost function will be complicated. In contrast, for input-oriented technical
inefficiency, we have

yi = f (λixi) ⇔ Ci = g (yi , wi/λi).

For technologies that satisfy the regularity conditions for the dual relationships
to exist, the cost function must be linearly homogeneous in the input prices.
Thus, we must have

Ci = (1/λi)g (yi , wi).

Taking logs here and using the usual interpretation of λi produces

ln Ci = ln g (yi , wi) − ln λii

= ln g (yi , wi) + ui .

Thus, we see that familiar applications of stochastic cost frontiers are based on
a measure of input inefficiency. [I.e., unless it is assumed that the production
function is homogeneous. If so, then ln Ci = (1/γ) ln(yi/θi)c(wi), where γ is
the degree of homogeneity (see Christensen and Greene, 1976). In this case,
input- and output-oriented inefficiency will be indistinguishable.]

Numerous applications have analyzed the distinction between input- and
output-oriented inefficiency. Atkinson and Cornwell (1993), using panel data
and a linear fixed-effects (deterministic frontier) model, found (perhaps not
surprisingly) that the two assumptions produced different rankings of obser-
vations. As they point out, the distinction “matters.” In similar kinds of
analyses, Kumbhakar et al. (2004) and Alvarez et al. (2004) tested for the
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presence of the two types of inefficiency. The latter study proceeded more
or less on the lines of Atkinson and Cornwell (1993), using a panel-data set
on Spanish dairy farms. Orea and Kumbhakar (2004). fit both input- and
output-oriented models, and a hybrid that included both. They used a Vuong
(1989) test was to test for the specification. Kurkalova and Carriquiry (2003)
(using a technique suggested by Reinhard, Lovell, and Thijssen, 1999) esti-
mated output-oriented inefficiency measures and then translated them ex
post into input-oriented measures. Huang and Wang (2004) have also fit sep-
arate cost frontier models for input- and output-oriented inefficiency, in their
case using the Fourier flexible form.

The preceding studies have steered around the inherent difficulty of the
input orientation on the production side. Consider, in particular, a translog
model, where we assume, as other authors have (looking ahead), panel data
and time invariance for the inefficiency term. Thus,

ln yit = α +
K∑

k=1

βk(ln xi,t ,k − ui)

+ 1

2

K∑
k=1

K∑
l=1

γkl(ln xi,t ,k − ui)(ln xi,t ,l − ui) + vi,t ,

where ui ≥ 0. Consistent with the received work, we would assume that ui

has a half-normal or exponential (or gamma or lognormal) distribution. As
usual, estimation of the parameters is complicated by the presence of the
unobserved ui . Consider the following approach based on MSL suggested by
Kumbhakar and Tsionas (2004). (We have stripped their derivation down to
its bare essentials here and changed notation a bit.) Note, first, that ui is the
same for all t and for all k, for a given i.

For convenience, write

zi,t ,k(ui) = ln xi,t ,k − ui .

Conditioned on ui , each term in the log-likelihood for yit is the log of the
corresponding normal density (for vi,t ), so

ln L|u =
N∑

i=1

⎡
⎣−Ti

2
ln 2π − 1

2σ2

Ti∑
t=1

(
ln yit − T

[
zi,t (ui)

])2⎤⎦ .

where

T
[
zi,t (ui)

] = α +
K∑

k=1
βkzi,t ,k(ui) + 1

2

K∑
k=1

K∑
l=1

γkl zi,t ,k(ui)zi,t ,l(ui).
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The inefficiency term must be integrated out of the log-likelihood before it
can be maximized. The unconditional log-likelihood is

ln L =
N∑

i=1

∫
ui

⎡
⎣−Ti

2
ln 2π − 1

2σ2

Ti∑
t=1

(
ln yit − T

[
zi,t (ui)

])2⎤⎦ p(ui)dui .

The integrals cannot be expressed in closed form, so as it is above, this
log-likelihood is not usable. However, for the distributions mentioned (half-
normal, exponential), random draws on ui are easily obtainable. A usable
simulated log-likelihood function is

ln LS =
N∑

i=1

1

R

R∑
r=1

⎡
⎣−Ti

2
ln 2π − 1

2σ2

Ti∑
t=1

(
ln yit − T

[
zi,t (ui,r )

])2⎤⎦ .

Maximizing ln LS produces estimates of all of the model parameters. [Tsionas
(2004) shows how the Fourier transform produces an alternative, possibly sim-
pler and faster algorithm for this optimization.] Ex post, it is useful to obtain an
estimate of ui—this was the purpose of the exercise to begin with. Kumbhakar
and Tsionas (2004) suggest a method of approximating E[ui |parameters,data].
I suggest a different (albeit similar) approach in section 2.7.

There is an element of ambiguity in the model as specified. Which form,
input or output, is appropriate for a given setting? Alvarez et al. (2004) sug-
gested that a given firm could be operating in either regime at any time. In
their analysis of European railroads, they treated the input and output dis-
tance functions as two latent regimes in a finite mixture model. In essence,
their model allows the data to sort themselves into the two regimes rather
than arbitrarily assuming that all observations obey one or the other at the
outset.

2.6 Heterogeneity in Stochastic Frontier Function Models

This section is devoted to the issue of between firm heterogeneity in stochastic
frontier modeling. We depart from a “pure” production model,

ln yit = α + βTxit + vit − uit ,

or cost model,

ln Cit = C(yit , wit ; β) + vit + uit ,

in which vit ∼ N [0, σ2
v ] and uit has some distribution characterized by a

constant mean, µ and constant variance, σ2
u—sometimes both embodied in a

single parameter, as in the exponential model. At this departure point, we say
that the technology and the inefficiency distributions across individuals and
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time are homogeneous. They have the same parameters both in the production
or cost function and in the inefficiency distribution. Of course, even at this
point, that is not quite true, since the “stochastic” part of the stochastic frontier
model specifically models the production technology as having a firm-specific
(and time-specific) shift factor, vit . Thus, at the outset, what we mean by
homogeneity in the model is that firms differ only with respect to this random,
noisy shift factor. We now wish to incorporate other forms of heterogeneity
in the model. This includes, among other features, heteroskedasticity in the
random parts of the model and shifts in the technology that are explainable
in terms of variables that are neither inputs nor outputs. We begin by defining
more precisely what we have in mind by heterogeneity.

2.6.1 Heterogeneity

One important way to categorize heterogeneity is between observable and
unobservable heterogeneity. By observable heterogeneity, we mean as reflected
in measured variables. This would include specific shift factors that operate on
the production or cost function (or elsewhere in the model). For example, in
his study of hospital costs, Linna (1998) has an “exogenous” variable reflecting
case mix in the cost function. How such variables should enter the model is
an important question. (In brainstorming sessions on frontier modeling with
my colleagues, we call this “where do we put the z ’s?”) They might shift the
production function or the inefficiency distribution (i.e., enter the regression
functions) or scale them (i.e., enter in the form of heteroskedasticity), or some
combination of both (see Alvarez, Amsler, Orea and Schmidt, 2006, on the
“scaling property”) All of these possibilities fall in the category of observable
heterogeneity (as I see it).

Unobserved heterogeneity, in contrast, enters the model in the form of
“effects.”This is usually viewed fundamentally as an issue of panel data, though
I don’t necessarily see it that way. Unobserved heterogeneity might (in prin-
ciple, perhaps, always) reflect missing variables in the model. When these are
not missing factors of production, or their unit prices, they have to be labeled
as something different, however. Unobserved heterogeneity enters our model
as characteristics, usually time invariant, that may or may not be related to
the variables already in the model. We submit that unobserved heterogeneity
should be considered as distinct from the unobservable object of most of our
study, technical or cost inefficiency. For example, Greene (2004b) analyzes the
problem of distinguishing the two in the World Health Organization’s (WHO,
2000) vastly heterogeneous panel-data set on world health care attainment
that includes 191 countries—virtually all of the world’s population. I examine
the issue in some detail below.

A related issue is parameter, or technology heterogeneity. Several studies
to be discussed below have analyzed models with some type of shifting or
cross-firm variation in the structural parameters of the model. Many of these
are the sort of “random-parameter” models that are, again, usually associated
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with modeling in panel-data sets. I digress at this point to pin down a pos-
sibly misleading part of the modeling vernacular. In the numerous Bayesian
treatments of frontier modeling, the parameters of the model are treated as
“random,” but the randomness in this context is not what I mean by parameter
heterogeneity. In this discussion, what I intend by random parameters [e.g., in
Huang (2004) or Orea and Kumbhakar’s (2004) latent class model] is random
difference across firms or individuals. The “randomness” of the parameters in
a Bayesian treatment reflects “uncertainty” of the analyst, not heterogeneity
across firms. I suggest the following litmus test: The parameter vector in a
“random-parameters model” will contain an observation subscript “i,” as in

ln yit = αi + βT
i xit + vit − uit .

The Bayesian counterpart to this is the “hierarchical model,” which adds to the
preceding priors that might appear as βi ∼ N [β, a�]; β ∼ N [0, �] (see, e.g.,
Tsionas, 2002; Huang, 2004). Variation in parameters is an important element
of many studies. It can also be partly observable, for example, as in Kurkalova
and Carriquiry (2003), in which parameters are allowed to vary systematically
over time.56

A second, very important issue is the distinction between heterogeneity
(latent or otherwise) in the production model and heterogeneity in the inef-
ficiency model. These two have quite different implications for modeling and
for estimation. Most of the literature on heterogeneity is focused on the latter,
although to the extent that omitted heterogeneity in the production or cost
model always shows up somewhere else (i.e., in the estimated features of uit ),
they are not unrelated.

2.6.2 One-step and two-step models

In cases in which heterogeneity is observable, we are sometimes interested
in models in which those observables enter in the form of parameterized
functions of “exogenous variables.” The leading case is in which these vari-
ables are believed to affect the distribution of inefficiency. For example, in
Greene (2004b), it is suggested that in the provision of health care, per
capita income, and the distribution of income are relevant determinants of
the efficiency of health care delivery. In such cases, researchers have often
analyzed (in)efficiency in two steps. In the first, conventional estimates of
inefficiency are obtained without accounting for these exogenous influences
(see section 2.8 for estimation of ui). In the second step, these estimates are
regressed or otherwise correlated with the exogenous factors (see, e.g., Greene,
2004b, table 6; Annaert et al., 2001).57 It is easy to make a convincing argu-
ment that not accounting for the exogenous influences at the first step will
induce a persistent bias in the estimates that are carried forward into the sec-
ond. This is analyzed at length in Wang and Schmidt (2002), who argue that
this is akin to an omitted variable problem in the linear regression model.
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The biases in estimated coefficients will be propagated in subsidiary estimates
computed using those coefficients. Caudill and Ford (1993) and Caudill et al.
(1995) provide evidence of such first-level biases in estimated technology
coefficients that result from neglected heteroskedasticity. Wang and Schmidt
(2002) take the analysis another step to consider how this bias affects estimates
of “inefficiency.”58 In their model, the neglected heterogeneity “scales” both
the mean and variance of the inefficiency distribution. Ultimately, the case
made by these authors is that when heterogeneity in the model is parame-
terized in terms of observables, those features should all appear in the model
at the first step. In what follows, I will assume this is the case—the various
model extensions noted below all presume “full information” (usually ML)
estimation at the first step.

2.6.3 Shifting the production and cost function

I have mentioned numerous applications in which exogenous variables that
are not outputs, inputs, or input prices enter the model. Among the exam-
ples are time changes that likely reflect technological change [e.g., Berger and
Mester (1997), the case mix variables in Linna’s (1998) hospital cost study,
and exogenous country effects such as form of government and climate in
Greene (2004b)]. Little is changed in the model by adding exogenous shifts,
environment variables, technical change, and so on, to the production, cost,
or distance function, as in

ln yit = f (xit , β) + g (zit , δ) + h(t ) + vit − uit ;

however, it must be noted that there is a potential identification issue. The
model is obviously indistinguishable from an otherwise“pure”model in which
the inefficiency component is u∗

it = g (zit , δ)+ h(t )− uit . It is up to the model
builder to resolve at the outset whether the exogenous factors are part of
the technology heterogeneity or whether they are elements of the inefficiency
distribution.

The more pernicious identification problem arises in panel-data models
in which there is unobservable, time-invariant heterogeneity. A perennial issue
in the analysis of efficiency is whether inefficiency is time invariant or varies
through time (systematically or haphazardly). I examine several models that
relate to this question in this section. In the WHO health care model (Evans
et al., 2000a, 2000b), technical inefficiency is deduced from a fixed-effects
model (see Schmidt and Sickles, 1984),

ln yit = a0 + βTxit + vit − [max
j

(aj) − ai].

In this application (and others of the same type), any unobserved time-
invariant heterogeneity must be captured in the estimated “inefficiency,”
[maxj(aj) − ai]. For the WHO data, this component is potentially enormous,
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because these are country-level data. A random-effects–style model (see, e.g.,
Pitt and Lee, 1981; Koop et al., 1997),

ln yit = α + βTxit + vit − ui ,

fares no better—it simply layers on the additional assumption that both inef-
ficiency and heterogeneity are uncorrelated with xit . To accommodate this
undesirable feature of both treatments, Greene (2004a, 2004b, 2005) proposes
“true” fixed- and random-effects models,

ln yit = ai + βTxit + vit − uit

and

ln yit = (α + wi) + βTxit + vit − uit .59

In both cases, the assumptions of the stochastic frontier model are main-
tained, so the estimators are ML—in the former case by including the dummy
variables in the model and in the latter case by MSL. Note that these mod-
els substantively change the assumptions about the time-invariant effects.
In the prior specifications, the time-invariant term is entirely time-invariant
inefficiency, and time-invariant heterogeneity is either assumed away or inad-
vertently buried in it. In the “true” effects model, all time-invariant effects are
treated as unobserved heterogeneity, and the inefficiency component varies
freely through time. Doubtless, the “truth” is somewhere between the two
extremes. Unfortunately, there is an identification issue that is only resolved
through nonsample information (i.e., additional assumptions). Farsi et al.
(2003) have studied the impact of the different assumptions in a model of
nursing home costs and found, perhaps not surprisingly, that the differences
are quite noticeable. Kotzian (2005) extends the notion a bit to full-parameter
vector heterogeneity and finds, likewise, that accounting for heterogeneity has
substantial impacts on measured inefficiency.

2.6.4 Parameter variation and heterogeneous technologies

In the frontiers context, cross-firm parameter variation would be viewed
as heterogeneity in the technology being employed (see Huang, 2004, for
discussion). The idea of parameter variability in regression models was pro-
posed by Hildreth and Houck (1968), among others, who applied the idea to
linear regression models. The guiding wisdom in many treatments is still
provided by the linear model. Textbook treatments of random-parameter
models thus often analyze the generalized regression model and methods of
“mixing” group-specific least squares estimates—essentially a GLS estimator.
Kalirajan and Obwona (1994) is an early application in the frontiers literature.
More contemporary treatments have couched parameter variation in terms
of parameter heterogeneity, generally in panel-data models. In general, such
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models, both classical and Bayesian, are handled through likelihood-based and
often simulation methods.60

When the parameter variation reflects observable heterogeneity, it is
straightforward to build it directly in the model. Thus, Kotzian (2005) uses
interactions with group-specific dummy variables to accommodate group dif-
ferences in a model of health care attainment. Kurklova and Carriquiry (2003)
do similarly with time variation in a production model for farm production.

A number of recent treatments have modeled technology heterogeneity
with less systematic variation. In Orea and Kumbhakar (2004), Greene (2005),
and O’Donnell and Griffiths (2004), a latent class specification is suggested to
accommodate heterogeneity across firms in the sample. In the first two of these,
the formulation captures differences in groups of firms within the sample.
O’Donnell and Griffiths (2004), in contrast, use the latent class formulation to
capture the effects of different weather “regimes” on rice farming. The latent
class model, in general, is a stochastic frontier model,

ln yit |q = fq(xit , βq) + vit |q − uit |q,

where q indicates the class or regime. Class membership is unknown, so the
model proceeds to add the sorting probabilities,

prob[class = q|zi] = p(q|zi).

Note how exogenous factors may (but need not) enter the class probabilities.
O’Donnell and Griffiths (2004) document a Bayesian MCMC method of esti-
mating the model. Greene (2005) and Orea and Kumbhakar (2004) use ML
methods instead.

Tsionas (2002) and Huang (2004) proposed a hierarchical Bayesian
approach to frontier modeling with heterogeneous technologies. Tsionas’s
stochastic frontier model [applied to the Christensen and Greene (1976)
electricity generation data] is

ln yit = α + βT
i xit + vit − uit ,

f (vit )=N [0, σ2], p(σ)=inverted gamma(s, M )∝ exp(−s/(2σ2)(σ2)−(M+1)/2,

f (uit ) = θ exp(−θuit ), p(θ) = gamma(q, N ) = θN−1 exp(−qθ)[qN /�(N )],
p(βi) = N [β, �], p(β) = “flat” ∝ 1, p(α) ∝ 1,

p(�) = inverted Wishart ∝ |�|−(K+v+1)/2 exp(−tr�−1W/2).

Assumed values for the elements of the priors, s, M , q, N , v , and W are dis-
cussed. The prior for θ is crucial. As Tsionas (2002) notes, q = − ln r∗ is a
crucial element in many studies (e.g., Koop et al., 1997). In most of these,
the researchers use r∗ = 0.875, implying a prior median efficiency of 87.5%
when N = 1 (exponential). Tsionas reports that he used N = 1 (exponential
prior for θ), but q = 10−6, which implies essentially a flat prior for θ over
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the entire positive half line. For the other parameters, he reports prior values
s = 10−6 and M = 1, so p(σ) ∝ 1/σ (approximately), which is a Jeffrey’s
(noninformative) prior; v = 1, and W = 10−6I, so p(�) is almost flat also.
An MCMC-based Gibbs sampler is described for estimation. The parameter
estimates (posterior means) are reasonable, but the estimated posterior mean
for θ in the full model is 75.12, implying an inefficiency distribution concen-
trated almost entirely at zero (“near perfect efficiency”—as he notes, estimated
efficiencies are almost uniformly above 0.99). Using the same data, van den
Broeck et al. (1994) found values ranging from 0.83 to 0.91 when r∗ = 0.875
and even lower when r∗ = 0.50. The difference is attributed to the exten-
sion of the model to individual-specific parameters. (The classical MLE of θ is
approximately 10, which implies median efficiency of roughly 93%.)

Tsionas (2002) hints at relaxing the exponential distribution assumption
for f (uit ) to allow the more flexible gamma distribution (see Greene, 1993,
2004b), but only suggests how to fit the Erlang form (integer P) of the model
for P = 1 (as above), 2, and 3. Huang (2004) presents a full extension of the
model to the gamma distribution for uit ,

f (uit ) = uP−1
it exp(−θuit )[θP/�(P)].

A second extension allows a subset of the parameters to remain equal across
firms—Huang (2004) uses this to force the constant term to be the same
for all firms, while the other parameters remain firm specific. The author is
(ironically) vague about what prior is used for the parameters of f (uit ). P is
taken to have gamma prior with parameters (1, 1)—that is, exponential with
mean 1. But, for q in p(θ), he suggests that he is following van den Broeck et al.
(1994) and Tsionas (2002), who use completely different values. A footnote
suggests something in the neighborhood of 0.8 is used for − ln r∗ = q. Huang’s
final results do not differ much from Tsionas’s. The posterior means for θ and
P are 77.433 (Tsionas found 77.12) and 0.9063 (Tsionas forced the latter to
equal 1). Huang (2004) likewise finds posterior estimates of mean efficiency
that differ only trivially from 0.99. The values that he finds when he assumes
homogeneous technologies are more in line with van den Broeck et al. (1994,
their figure 2).

These results are not plausible. I surmise that they result from fitting
a separate parameter vector to every observation in a cross section, some-
thing that cannot be done with classical, MSL procedures. The Gibbs sampler
(MCMC) method has no built-in mechanism that will break down when one
attempts to do so. (One could trace the Gibbs samples from different starting
points in the chain and look for failures to converge. That does not appear to
have been done here.) Consider a classical alternative. In Greene (2005), the
random-parameters model

ln yit = αi + βT
i xit + vit − ui ,

(αi , βi) ∼ N [(α, β), �],
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vit ∼ N [0, σ2
v ],

uit ∼ N [0, σ2
u]

is estimated by MSL. (An extension is proposed that allows the mean of the
normal distribution to include a term �zi which produces a two-level model
and adds an additional layer of heterogeneity in the model.) As a general rule,
the classical estimator of this (any) random-parameters model does not work
very well in a cross section. For the same data used in the preceding two studies,
the MSL estimates appear quite reasonable, with the exception of the estimate
of σv , which goes nearly to zero. All of the variation in vit is soaked up by the
firm-specific parameters, leaving nothing for the idiosyncratic disturbance.
(In contrast, in the hierarchical Bayes model, all the variation in u is absorbed
elsewhere in the estimated model.) The estimated efficiency values from this
model (discussed further in the next section) are 0.984 (the result of a numer-
ical problem in manipulating the near zero value of σv), for every firm in the
sample—equally implausible. If the normal–gamma model discussed above,
with nonrandom (homogeneous) coefficients, is fit by MSL, the estimated
efficiencies from that model (EFFG) produce the kernel density plot shown in
figure 2.7. This figure is virtually identical to Huang’s (2004) figure 2, which
does likewise for the homogeneous technologies model, even including the
small second mode near 0.67. To explore the idea suggested above, I divided
the sample into 20 size classes and fit the random-parameters model with these
20 groups treated as a panel. The results corresponding to figure 2.7 appear in
figure 2.8.

These results are strikingly at odds with the Bayesian estimates. To return
to the issue of parameter heterogeneity, note that these are firm-level, not
plant-level, data and that most of these firms are fairly large multiplant utilities.
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Figure 2.7. Estimated Efficiencies for Electric Power Generation
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Figure 2.8. Efficiencies for Heterogeneous Technologies Model

The proposition that there are the very large differences in technology across
firms suggested by the large parameter variances estimated in the hetero-
geneous parameter models seems dubious. The statistical issue of computing
individual-specific coefficients in a cross section and the underlying economics
suggest that these results need a much closer look.

2.6.5 Location effects on the inefficiency model

Thus far, we have analyzed different approaches to introducing heterogene-
ity in the technology into the stochastic frontier while retaining the simple
additive homogeneous inefficiency term. Let us now turn attention to models
that consider the location and scale of the inefficiency itself. Heterogeneity
of the sort examined above is also a natural place to focus the discussion. A
central issue in this specification search is how to handle the possibility of
time variation in inefficiency in a model for panel data. This is considered in
section 2.7.

Kumbhakar’s (1993) “production risk model,”

ln yit = α + T (ln xit , β) + g (xit , δ)εit ,

where g (xit , δ) = ∑
k δkxitk in a translog model (log-quadratic) and εit =

τi +λt + vit , is similar. In this case, inefficiency is estimated with g (xit , δ̂)(α̂+
τ̂i) − maxj [g (xit , δ̂)(α̂ + τ̂j)].

Whether inefficiency can be appropriately modeled in the preceding fash-
ion is the subject of some debate. Forcing a pattern of any sort on all firms
in the sample is restrictive. (Of course, it is less so than assuming there is no
variation at all.) Another approach to capturing variation in inefficiency is the
addition of a nonnegative effect directly to the production function. Deprins
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and Simar (1989b) suggested E[u|zi] = exp(δTzi), which produces the model

ln yi = ln f (xi , β) − exp(δTzi) + εI ,

where E[εi] = 0. A formal specification for the distribution of ε completes the
model. This approach is somewhat cumbersome analytically, because it loses
the essential nature of the nonnegative inefficiency. Kumbhakar, Ghosh, and
McGuckin (1991) suggested a similar specification,

ui = δTzi + εI ,

with similar shortcomings. Constraining the sign of ui is difficult in the speci-
fications considered thus far. Kumbhakar et al.’s (1991) solution has been used
in many recent applications:

ui = |N [δTzi , σ
2
u]|

Reifschneider and Stevenson’s (1991) proposal to address the issue is

ln yi = α + βTxi − d(δ, zi) − u∗
i + vi ,

where both d(δ, zi) and u∗
i are positive. Specifying d(δ, zi) = exp(δTzi)

and u∗
i ∼ N +[0, σ2

u] satisfies the requirement. This is, of course, similar to
Kumbhakar et al.’s (1991) model, but with an additional constraint satisfied.
Reifschneider and Stevenson (1991) apply the model with truncated normal,
exponential, and Erlang distributions assumed for ui . Actually, the model is
overspecified, since it is not necessary for both exp(δTzi) and u∗

i to be posi-

tive for ui = u∗
i + exp(δTzi) to be positive. Huang and Liu (1994) complete

the specification by formulating the model so that only u∗
i ≥ − exp(δTzi) is

built into the model. This is done by using a truncated normal rather than
a half-normal distribution for u∗

i . [In Huang and Liu’s formulation, the shift
function also includes the levels of the inputs. This has implications for the
elasticities as well as some ambiguous implications for whether inefficiency
is input or output oriented. Battese and Coelli (1995) propose a specification
that is generally similar to that of Huang and Liu (1994).] Since the truncation
point enters the log-likelihood function nonlinearly, even for a linear func-
tion for d(δ, zi), this substantially complicates the estimation. On the other
hand, by manipulating the model a bit, we can show that the Huang and Liu
model can be obtained from Stevenson’s (1980) truncated-normal model just
by replacing εi with εi + d(δ, zi) and υi with υi + d(δ, zi)—Huang and Liu
specified di = δ′z i for a set of variables that need not appear in the produc-
tion function. The model proposed by Kumbhakar et al. (1991) is, likewise,
equivalent to that of Huang and Liu (1994).

A number of other variations on this theme have been suggested. Battese,
Rambaldi, and Wan (1994) use

yi = f (xi , β) + d(δ, zi)(ui + vi).
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Note the use of an additive as opposed to multiplicative disturbance in this
model. Battese et al. were interested specifically in modeling yi in “natural
units” (the authors” term). Technical efficiency in this model, defined as

TEi = E[yi |ui , xi]
E[yi |ui = 0, xi] = 1 − di

fi
ui ,

clearly depends on di . [Note that since yi is positive, TEi ∈ (0, 1).] Battese
et al. present the log-likelihood function for this model with Cobb-Douglas
specifications for f (·) and d(·) in an appendix. Estimation is, at least in prin-
ciple, straightforward, though the use of the additive form of the disturbance
probably unnecessarily complicates the function and the maximization pro-
cess. There is, however, a purpose to doing so; the main subject of the paper is
production risk, defined for the kth input as

ηk = ∂var[yi |ui , xi]
∂xki

= 2βk
var[yi |ui , xi]

xki

for their model.
Last, an intuitively appealing modification of Battese et al.’s (1994)

formulation is

ln yi = f (xi , β) + vi − diui ,

where,as before, di is a nonnegative function and ui has one of the distributions
specified above. Suppose that we assume Stevenson’s truncated-normal model
for ui . Then, by using the change of variable formula, it is easy to show that
diui has a truncated normal distribution, as well; when ri = diui ,

h(ri) =
[

1

diσu

]
φ[(r i − diµ)/diσu]

� [diµ/diσu]
.

Therefore, the log-likelihood function and all of the subsequent results needed
for estimating the technical efficiency values for the observations can be
obtained for this model just by replacing µ with µi = diµ and σu with
σui = diσu in Stevenson’s model. This implies that the transformed param-

eters, σ = (σ2
u + σ2

v)
1/2 and λ = σu/σv , will now be functions of di . An

application of this model is Caudill and Ford (1993), who use this formula-
tion with µ = 0 and di = [f (xi , β)]δ. This adds a single new parameter to the
model, δ. Since the authors are interested in the effects of the heteroskedasticity
on the parameter estimates, it remains for subsequent researchers to establish
how, if at all, this (and, for that matter, any of the aforementioned models)
changes the estimates of ui and TEi .

2.6.6 Shifting the underlying mean of ui

The discussion thus far [with the exception of Huang and Liu’s (1994) model]
has treated the distributions of the stochastic component of the frontier, vi , and
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the inefficiency component, ui , as homogeneous populations, with constant
mean and variance and fixed distribution. Heterogeneity in the model arises
only in the inputs (and any other control variables) in the production or cost
functions. But, there is ample evidence that both of these characteristics can
vary widely across firms, as well.

A natural starting point for accommodating heterogeneity in the ineffi-
ciency model is in the location of the distribution. Figure 2.9 shows the form
of the density for a truncated-normal model for three values of µ : −0.5, 0.0
(the half-normal model), and 0.5. Clearly, the value of µ makes a considerable
difference in the shape of the distribution. Firm-specific heterogeneity can
easily be incorporated into the model as follows:

yi = β′xi + vi − ui ,

vi ∼ N [0, σ2
v ],

ui = |Ui |,

where Ui ∼ N [µi , σ2
u], µi = µ0 + µ′

1zi .

As noted, this is the same as the reduced form of the model proposed by Huang
and Liu (1994). The difference is that, here, the heterogeneity is specifically
designed as the location parameter in the underlying distribution. One might
include in zi industry-specific effects or other technological attributes. For
example, an analysis of production in the airline industry might include load
factor (the proportion of seat-miles flown that are also passenger-miles, a
number that has often varied around 0.75 in this industry). This brings a
relatively minor change in the estimator (in principle), though in practice, the
numerical properties of the estimator do change considerably. The modified
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log-likelihood is now

Ln L(α, β, σ, λ, µ0, µ1) = −N

[
ln σ + 1

2
ln 2π + ln �(µi/σu)

]

+
N∑

i=1

[
−1

2

(
εi + µi

σ

)2

+ ln �

(
µi

σλ
− εiλ

σ

)] ,

where λ = σu/σv , σ2 = σ2
u + σ2

v and σu = λσ/
√

1 + λ2. The sign of εi is
reversed in the two appearances for estimation of a cost or output distance
frontier. This is a relatively minor modification of the original normal–half-
normal, though the interpretation has changed substantively.

2.6.7 Heteroskedasticity

As in other settings, there is no reason to assume that heterogeneity would be
limited to the mean of the inefficiency. A model that allows heteroskedasticity
in ui or vi is a straightforward extension. A convenient generic form would be

var[vi |hi] = σ2
v gv(hi , δ), gv(hi , 0) = 1,

var[Ui |hi] = σ2
ugu(hi , τ), gu(hi , 0) = 1

(see Reifschneider and Stevenson, 1991; Simar, Lovell, and Eeckhaut, 1994).
We have assumed that the same variables appear in both functions, although
with suitably placed zeros in the parameter vectors, this can be relaxed. The
normalization gv(hi , 0) = 1 is used to nest the homoskedastic model within
the broader one. The two functions are assumed to be strictly continuous and
differentiable in their arguments. In applications, linear functions (e.g., 1 +
δThi) are likely to be inadequate, because they would allow negative variances.
Likewise, a function of the form σ2

ui = σ2
u(βTxi)

δ (Caudill and Fort, 1993;
Caudill et al., 1995) does not prevent invalid computations.61 Reifschneider
and Stevenson also suggestedσ2

ui = σ2
u+gu(hi , τ),which requires gu(hi , τ) ≥ 0

and gu(hi , 0) = 0. A more convenient form is the exponential,

gv(hi , δ) = [exp(δThi)]2 and gu(hi , τ) = [exp(τThi)]2

(Hadri,1999).62 For estimation, it is necessary to revert to the parameterization
that is explicit in the two variances, σ2

vi and σ2
ui , rather than the form in λ

and σ2, because if either of the underlying variances is heterogeneous, then
both of these reduced-form parameters must be heterogeneous, but not in an
obvious fashion. The resulting log-likelihood is somewhat cumbersome, but
quite manageable computationally. The complication that arises still results
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from the heterogeneity in the mean:

Ln L(α, β, σu , σv , δ, τ, µ0, µ1)

= −N

2
ln 2π +

N∑
i=1

[ln σi] +
N∑

i=1

ln �

[
µi

σui

]

+
N∑

i=1

[
−1

2

(
εi + µi

σi

)2

+ ln �

(
µi

σi(σui/σvi)
− εi(σui/σvi)

σi

)]

σi =
√

σ2
v [exp(δThi)]2 + σ2

u[exp(τThi)]2

=
√

σ2
vi + σ2

ui

There are numerous applications, including Caudill and Ford (1993), Caudill
et al. (1995), Hadri (1999), and Hadri et al. (2003a, 2003b), that specify a
model with heteroskedasticity in both error components.

2.6.8 The scaling property

Wang and Schmidt (2002) and Alvarez, Amsler, Orea, and Schmidt (2006)
suggest a semiparametric approach to accounting for exogenous influences
that they label the “scaling property” proposed by Simar et al. (1994). Thus,

ui = u(δ, zi) = h(δ, zi) × u∗
i ,

where u∗
i is a nonnegative random variable whose distribution does not involve

zi and h(δ, zi) is a nonnegative function. [For our purposes, we will also require
that h(δ, zi) be continuous in δ, though this is not strictly required for the
model to be internally consistent.] The extension goes beyond heteroskedas-
ticity, because it implies E[ui] = h(δ, zi)E[u∗

i ]. Simar et al. (1994) exploit
this to develop a nonlinear least squares estimator that does not require a
distributional assumption. The likelihood function for the half- or truncated-
normal or exponential model is not particularly difficult, however, though
it does carry some testable restrictions that relate the mean and variance
of the underlying distribution of ui (for further explorations of the scal-
ing property, see Alvarez, Amsler, Orea, and Schmidt, 2006; see also related
results in Bhattacharyya, Kumbhakar, and Bhattacharyya, 1995). Candidates
for h(δ, zi) are the usual ones, linear, δTzi and exponential, exp(δ′zi). Simar
et al. suggest the truncated normal N [µ, σ2

u]+ as a convenient specification
that carries all of their assumptions. Wang and Schmidt (2002) then provide a
lengthy argument why conventional estimators of the production parameters
and the JLMS (Jondrow, Lovell, Materov, and Schmidt, 1982) estimates of ui

will be seriously biased. The same arguments apply to estimates of TEi =
exp(−ui).
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Several parts of the earlier literature predate Wang and Schmidt (2002).
Kumbhakaret al. (1991), Huang and Liu (1994), and Battese and Coelli (1995)
have all considered normal–truncated-normal models in which µi = δ′zi .
Reifschneider and Stevenson (1991), Caudill and Ford (1993), and Caudill,
Ford, and Gropper (1995) suggested different functional forms for the vari-
ance, such as σui = σu × exp(δTzi). None of these formulations satisfies
the scaling property, though a combination does. Let h(δ, zi) = exp(δTzi)

and assume the truncated-normal model. Then it follows that ui = |Ui |,
Ui ∼ N {µ × exp(δTzi), [σu × exp(δTzi)]2}. Wang (2002) proposes a model
that specifically violates the scaling property, σ2

ui = exp(δTzi) and µi = δTzi ,
to examine nonneutral shifts of the production function. Alvarez,Amsler, Orea
and Schmidt (2006) examine the various specifications that are encompassed
by this formulation. We note, in all these specifications, the underlying mean
of ui is functionally related to the variance. This is a testable restriction.

The scaling property adds some useful dimensions to the stochastic fron-
tier model. First, it allows firm heterogeneity to show up by shrinking or
inflating the inefficiency distribution without changing its basic shape. Sec-
ond, if ui = h(δ, zi) × u∗

i , then ∂ ln ui/∂zi = ∂ ln h(δ, zi)/∂zi irrespective of
the underlying distribution of ui*. Third, in principle, the model parameters
can be estimated by nonlinear least squares without a distributional assump-
tion (for discussion, see Alvarez et al., 2006; Kumbhakar and Lovell, 2000).
Given the robustness of estimates of ui explored in the preceding section, we
suspect that this is a minor virtue. Moreover, the full model with this assump-
tion built into it is not a major modification of the normal–truncated-normal
model already considered, though it does have one built in ambiguity that we
now explore. We will allow both ui and vi to be exponentially heteroskedastic.
The log-likelihood for Wang and Schmidt’s (2002) model is then

Ln L(α, β, δ, γ, µ0) = −(N/2) ln 2π −
N∑

i=1

[ln σi + ln �(µi/σui)]

+
N∑

i=1

[
−1

2

(
εi + µi

σi

)2

+ ln �

(
µi

σiλi
− εiλi

σi

)]

where
µi = µ exp(δTzi), σui = σu exp(δTzi), σvi = σv exp(γTzi),

λi = σui/σvi , and σi =
√

σ2
vi + σ2

ui .

We allow for σui and σvi to differ by placing zeros in the parameter vectors
where needed to allow different variables to appear in the functions. Note that
there is a set of equality restrictions built into the model, across µi and σui .
Also, though σu and σv must be positive [they could be written as exp(δ0) and
exp(γ0) to impose this], µ must be allowed to have either sign.



FRIED: “CHAP02” — 2007/8/24 — 19:02 — PAGE 168 — #77

168 The Measurement of Productive Efficiency and Productivity Growth

Wang and Schmidt (2002) provide a Monte Carlo analysis of the biases
that result if the scaling property is ignored. The point is well taken. It is also
useful, however, to view the scaling property as an alternative specification of
the stochastic frontier model that may or may not be consistent with the data
(i.e., the underlying population). The assumption is easy to test, because we
can simply relax the equality restriction that links the mean and the standard
deviation of the distribution. (Note, however, that there remains what is prob-
ably a minor restriction in the Wang and Schmidt model, that with or without
the scaling property imposed, the specification of the mean does not allow for
a linear shift of µi independent of zi ; there is no free constant term in the
equation for µi . For this reason, even with the exponential specification for
the variances, the truncation model is usually specified with µi = µ0 + δTzi .)

2.7 Panel-Data Models

When producers are observed at several points in time, three shortcomings
in the foregoing analysis can be handled explicitly.63 In the stochastic frontier
model, it is necessary to assume that the firm-specific level of inefficiency is
uncorrelated with the input levels. This may be unwarranted. Some of the
specifications discussed above (e.g., Huang and Liu, 1994) reconstructed the
inefficiency term in the model to include functions of x. The assumption
of normality for the noise term and half- or truncated normality for the
inefficiency, while probably relatively benign, is yet another assumption that
one might prefer not to make. A few alternatives are noted in the preceding.
Nonetheless, under certain assumptions, more robust panel-data treatments
are likely to bring improvements in the estimates. A fundamental question
concerns whether inefficiency is properly modeled as fixed over time. The
point is moot in a cross section, of course. However, it is very relevant in
the analysis of panel data. Intuition should suggest that the longer the panel,
the “better” will be the estimator of time-invariant inefficiency in the model,
however computed. But, at the same time, the longer the time period of the
observation, the less tenable the assumption becomes. This is a perennial issue
in this literature, without a simple solution.

In this section, we will detail several models for inefficiency that are
amenable to analysis in panel-data sets. Actual computation of estimators
of ui or uit are considered in section 2.8. Treatments of firm and time varia-
tion in inefficiency are usefully distinguished in two dimensions. The first, as
mentioned, is whether we wish to assume that it is time varying or not. Sec-
ond, we consider models that make only minimal distributional assumptions
about inefficiency (“fixed-effects” models) and models that make specific dis-
tributional assumptions such as those made above: half-normal, exponential,
and so forth. The former have a virtue of robustness, but this comes at a cost
of a downward bias (see Kim and Schmidt, 2000). The latter make possibly
restrictive assumptions but bring the benefit of increased precision.
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There are N firms and Ti observations on each. (It is customary to assume
that Ti is constant across firms, but this is never actually necessary.) If obser-
vations on uit and vit are independent over time as well as across individuals,
then the panel nature of the data set is irrelevant and the models discussed
above will apply to the pooled data set. But, if one is willing to make further
assumptions about the nature of the inefficiency, a number of new possibilities
arise. We consider several of them here.

2.7.1 Time variation in inefficiency

A large proportion of the research on panel-data applications analyzes
(essentially) a deterministic frontier in the context of “fixed-effects” models:

ln yit = α + βTxit + ai + vit,

where ai is the fixed effect normalized in some way to accommodate the
nonzero constant. This regression style model is typically identified with the
fixed-effects linear model. If the ui values are treated as firm-specific con-
stants, the model may be estimated by OLS, as a “fixed-effects” model (using
the “within-groups” transformation if the number of firms is too large to
accommodate with simple OLS).64 It is more useful here to think in terms of
the specification being distribution free, particularly in view of the Bayesian
treatments in which the distinction between “fixed” and “random” effects
is ambiguous. Development of this model begins with Schmidt and Sickles
(1984), who propose essentially a deterministic frontier treatment of estimated
inefficiencies

ûi = max
j

(âj) − âi .

Sickles (2005) presents a wide variety of approaches and interpretations of
this model. Note the assumption of time invariance in this treatment. One
individual in the sample is fully efficient (ui = 0), and others are compared to
it, rather than to an absolute standard.

This fixed-effects approach has the distinct advantage of dispensing with
the assumption that the firm inefficiencies are uncorrelated with the input
levels. Moreover, no assumption of normality is needed. Finally, this approach
shares the consistency property of the deterministic frontier model in the esti-
mation of ui . This estimate is consistent in Ti , which may, in practice, be quite
small. But, as noted above, this consistency may make no economic sense—the
longer the time interval, the less tenable the time invariance assumption.

An extension suggested by Kumbhakar (1990, 1993) is to add a “time”
effect, γt , to the fixed-effects model. Strictly in terms of estimation, the statis-
tical properties of ct = γ̂t depend on N , which is more likely to be amenable
to conventional analyses. This can be treated as a fixed- or random-effects
model, of course. In either case, it is necessary to compensate for the presence
of the time effect in the model. However, since the time effect is the same for all
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firms in each period, the earlier expression for ûi would now define ûit rather
than ûi . This does relax the assumption of time invariance of the production
function, but it does not add to the specification of the inefficiency term in
the model. The modification considered next does.

Kumbhakar and Hjalmarsson (1995) also suggested a precursor to
Greene’s (2004a) true fixed- and random-effects models. They proposed

uit = τi + ait

where ait ∼ N +[0, σ2]. They suggested a two-step estimation procedure that
begins with either OLS/dummy variables or feasible GLS and proceeds to a
second-step analysis to estimate τi . (Greene’s estimators are full information
MLEs that use only a single step.) Heshmati and Kumbhakar (1994) and
Kumbhakar and Heshmati (1995) consider methodological aspects of these
models, including how to accommodate technical change.

Cornwell et al. (1990) propose to accommodate systematic variation in
inefficiency, by replacing ai with

ait = αi0 + αi1t + αi2t 2.

Inefficiency is still modeled using uit = max(ait ) − ait . With this modi-
fied specification, the most efficient firm can change from period to period.
Also, since the maximum (or minimum, for a cost frontier) is period spe-
cific and need not apply to the same firm in every period, this will interrupt
the quadratic relationship between time and the inefficiencies. [Kumbhakar
(1990) proposes some modifications of this model and examines the implica-
tions of several kinds of restrictions on the parameters.] The signature feature
of this formulation is that inefficiency for a given firm evolves systematically
over time. Cornwell et al. (1990) analyze the estimation problem in this model
at some length (see also Hausman and Taylor, 1981). For large N , this presents
a fairly cumbersome problem of estimation (note 65 notwithstanding). But,
for data sets of the size in many applications, this enhanced fixed-effects model
can comfortably be estimated by simple,unadorned least squares.65 Alternative
approaches are suggested by Kumbhakar (1991a), Kumbhakar and Heshmati
(1995), and Kumbhakar and Hjalmarsson (1995). Applications are given by,
for example, Cornwell et al. (1990), Schmidt and Sickles (1984), and Gong and
Sickles (1989), who apply the preceding to a cost frontier model; and Good,
Roller, and Sickles (1993, 1995), Good and Sickles (1995), and Good, Nadiri,
Roller, and Sickles (1993), who use various models to analyze the airline indus-
try. Some semiparametric variations on the Cornwell et al. (1990) approach
are discussed in Park, Sickles, and Simar (1998) and Park and Simar (1992).

Lee and Schmidt (1993) proposed a less heavily parameterized fixed-
effects frontier model,

ln yit = βTxit + ait + vit ,
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where ait = θt ai , θt is a set of time dummy variable coefficients, and, as before,
ûit = maxi(θ̂t âi) − θ̂t âi . This differs from the familiar fixed-effects model,
αit = θt + δi , in two ways. First, the model is nonlinear and requires a more
complicated estimator. Second, it allows the unobserved firm effect to vary over
time. A benefit is that time-invariant firm effects may now be accommodated.
The authors describe both fixed- and random-effects treatments of θt .

Numerous similarly motivated specifications have been proposed for the
stochastic frontier model

ln yit = α + βTxit + vit − uit .

Two that have proved useful in applications are Kumbhakar’s (1990) model,

uit = ui/[1 + exp(γ1t + γ2t 2)],
and Battese and Coelli’s (1992) formulation (which is the model of choice in
many recent applications),

uit = ui × exp[−η(t − T )].
An alternative formulation that allows the variance effect to be nonmono-
tonic is

uit = ui × exp[η1(t − T ) + η2(t − T )2].
In all formulations, ui = |Ui | ∼ N +[0, σ2

u]. The Battese and Coelli model
has been extended to the truncated-normal model, as well, in Kumbhakar and
Orea (2004) and Greene (2004a). Cuesta (2000) also proposed a modification,
with firm-specific scale factors, ηi , in the scaling function. The authors present
full details on the log-likelihood, its derivatives, and the computation of E[u|ε]
and E[e−u|ε].

Tsionas (2003) proposed an autoregressive model in which inefficiency
evolves via an autoregressive process:

ln uit = γTzit + ρ ln ui,t−1 + wit

(Specific assumptions are also made for the initial value, which would be
important here because the typical panel in this setting is very short.) The
autoregressive process embodies “new sources of inefficiency.” In Tsionas’s
Bayesian MCMC treatment, the Gibbs sampler is used to draw observations
directly from the posterior for uit rather than using the JLMS (Jondrow, Lovell,
Materov, and Schmidt, 1982) estimator ex post to estimate firm- and time-
specific inefficiency. In an application to U.S. banks, he finds the posterior
mean ρ = 0.91, which implies that the process is almost static. The implied
short- and long-run efficiencies for the whole sample range around 60%.

2.7.2 Distributional assumptions

If the assumption of independence of the inefficiencies and input levels can be
maintained, then a random-effects approach brings some benefits in precision.
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One advantage of the random-effects model is that it allows time-invariant
firm-specific attributes, such as the capital stock of a firm that is not growing,
to enter the model. The familiar random-effects regression model is easily
adapted to the stochastic frontier model. There are also some interesting
variants in the recently received literature. We consider the basic model first.

The relevant log-likelihood for a random-effects model with a half-normal
distribution has been derived by Lee and Tyler (1978) and Pitt and Lee (1981)
and is discussed further by Battese and Coelli (1988).66 The truncated-normal
model of Stevenson (1980) is adopted here for generality and in order to
maintain consistency with Battese and Coelli (1988), who provide a number
of interesting results for this model. The half-normal model can be produced
simply by restricting µ to equal 0. We also allow the underlying mean to
be heterogeneous. Note, as well, that the extension of the model to include
multiplicative heteroskedasticity in vit and/or uit is straightforward. I omit
this detail in the interest of brevity. The structural model is, then,

yit = α + βTxit + vit − uit ,

ui ∼ |N [µi , σ
2
u]|

vit ∼ N [0, σ2
v ].

As before, there are Ti observations on the ith firm. Battese and Coelli (1988)
and Battese, Coelli, and Colby (1989) have extensively analyzed this model,
with Stevenson’s extension to the truncated normal distribution for ui . They
also provide the counterpart to the JLMS (Jondrow et al., 1982) estimator of
ui . With our reparameterization, their result is

E[ui |εi,1, εi,2, . . . , εi,Ti ] = µ∗
i + σi∗

[
φ(µ∗

i /σi∗)

�(−µ∗
i /σi∗)

]
,

µ∗
i = γiµ + (1 − γi)(−ε̄i),

εit = yit − α − βTxit ,

γi = 1/(1 + λTi),

λ = σ2
u/σ2

v ,

σ2
i∗ = γi σ2

u .

As Ti → ∞, γi → 0, and the entire expression collapses to −ε̄i , which in turn
converges to ui , as might be expected. As Schmidt and Sickles (1984) observe,
this can be interpreted as the advantage of having observed uiN times. Taking
the mean averages out the noise contained in vit , which only occurs once. It is
worth noting that the preceding, perhaps with the simplifying assumption that
µ = 0, could be employed after estimation of the random-effects model by
GLS, rather than ML. The aforementioned corrections to the moment-based
variance estimators would be required, of course. Battese and Coelli (1988,
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1992) have also derived the panel-data counterpart to E[e−ui |εi ],

E[exp(−ui)|εi1, εi2, . . . , εiTi ] =
[
�[(µ∗

i /σ∗i) − σ∗i]
�(µ∗

i /σ∗i)

]
exp[−µi∗ + 1

2σ2
i∗ ].

2.7.3 Fixed-effects, random-effects, and Bayesian approaches

An obstacle to the fixed-effects approach is the presence of time-invariant
attributes of the firms. If the model is conditioned on firm attributes such as
the capital stock, location, or some other characteristics, and if these do not
vary over time, then the Least Squares Dummy Variable estimator cannot be
computed as shown above. Worse yet, if these effects are simply omitted from
the model, then they will reappear in the fixed effects, masquerading as inef-
ficiency (or lack of), when obviously they should be classified otherwise. The
question is one of identification. Hausman and Taylor (1981) have discussed
conditions for identification of such effects and methods of estimation that
might prove useful. However, the economic content of this discussion may
be at odds with the algebraic and statistical content. Regardless of how fixed
effects enter the model discussed above, they will reappear in the estimates of
inefficiency and thereby create some ambiguity in the interpretation of these
estimates. As such, alternative treatments, such as the random-effects model,
may be preferable.

Consider the base case model,

ln yit = α + βTxit + vit − ui ,

where either the fixed-effects interpretation described above or the random-
effects model described in the next subsection is adopted. The time-invariant
element in the model, ui , is intended to capture all and only the firm-specific
inefficiency. If there are time-invariant effects, such as heterogeneity, in the
data, they must also appear in ui whether they belong there or not. [This is
exactly the opposite of the argument made by Kumbhakar and Hjalmarsson
(1995), who argued that the time-varying vit would inappropriately capture
time-varying inefficiency.] In analyzing the WHO panel data on 191 countries,
Greene (2004b) argued that under either interpretation, ui would be absorbing
a large amount of cross-country heterogeneity that would inappropriately be
measured as inefficiency. He proposed a “true” fixed-effects model,

ln yit = αi + βTxit + vit − uit ,

vit ∼ N [0, σ2
v ],

uit ∼ |N [0, σ2]|,
which is precisely a normal–half-normal (or truncated-normal or exponential)
stochastic frontier model with the firm dummy variables included. This model
is a very minor extension of existing models that nonetheless has seen little
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use. Most panel-data sets in this literature are quite small, so the number of
dummy variable coefficients is usually manageable—Greene (2003a, 2004a,
2004b, 2005) shows how to fit the model with large numbers of firms, but
in point of fact, in common applications where there are only a few dozen
firms or so, this is trivial. The formulation does assume that inefficiency varies
randomly across time, however, which is the substantive change in the model.
As noted above, the “truth” is probably somewhere between these two strong
assumptions. Greene (2005) also considers a “true random-effects” model
that modifies the parameterized models in the next section, in this case, a
random-parameters (random-constant) model

ln yit = (α + wi) + βTxit + vit − uit ,

vit ∼ N [0, σ2
v ],

uit ∼ |N [0, σ2
u]|,

wi ∼ with mean 0 and finite variance.

[Note this is the complement to Huang’s (2004) model, which contained a
homogeneous constant term and heterogeneous slope vectors.] This model is
fit by MSL methods. Farsi et al. (2003) examined the relative behavior of these
four models in a study of Swiss nursing homes and noted a preference for the
true random-effects specification.

The preceding sections have noted a variety of applications of Bayesian
methods to estimation of stochastic frontier models. As the next section turns
specifically to the estimation of inefficiencies, uit , or efficiency, exp(−uit ),
note the essential component of the Bayesian approach. Koop, Osiewalski,
and Steel (1997; KOS) and numerous references cited there and above lay
out this method. For the “fixed-effects” approach,67 the model is simply a
linear regression model with firm dummy variables. The Bayesian inference
problem is simply that of the linear model with normal disturbances and
K + N regressors. The posterior mean estimator of the slopes and constants
are the least squares coefficients and

α̂i = ȳi − β̂
T

x̄i .

Estimation of ui is done in precisely the same fashion as it classical counterpart:

ûi = (max
j

α̂j) − α̂i

(Posterior variances and statistical inference are considered in the next
section.) Thus, with noninformative priors, the Bayesian estimators are iden-
tical to their classical counterparts (of course). For the “random-effects”
approach, ui values are treated as missing data. The technique of data aug-
mentation is used for estimation. The simplest model specification, based on
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KOS (see also Tsionas, 2002), would be

ln yit = α + βTxit + vit − ui ,

p(vit ) = N [0, σ2], p(σ) = inverted gamma(s, M )

∝ exp
[−s/(2σ 2)

]
(σ 2)−(M+1)/2,

p(uit ) = (1/λ) exp(−ui/λ), p(λ) to be determined,

p(β) = “flat” ∝ 1, p(α) ∝ 1.

The Gibbs sampler for this model is quite simple—see KOS for details. The
controversial part is the necessary informative prior density for λ. Kim and
Schmidt (2000) describe several alternative approaches.

We note that this formulation has the same two shortcomings as its
classical counterpart. The “fixed-effects” form cannot accommodate any time-
invariant covariates. Neither the fixed- nor the random-effects form has any
provision for unmeasured time-invariant heterogeneity. The true fixed- and
random-effects models could also be accommodated in this framework. For
the true fixed-effects model,

ln yit = αi + βTxit + vit − uit ,

p(vit ) = N [0, σ2], p(σ) = inverted gamma(s, M ),

p(uit ) = (1/λ) exp(−ui/λ), p(λ) to be determined,

p(β) = “flat” ∝ 1, p(αi) ∝ 1.

This is KOS’s random-effects form with a complete set of firm-specific con-
stants and inefficiency both firm and time varying. The joint posterior would
involve the N + K regression parameters, σ, λ, and all NT missing values uit .
With an ample data set, this is essentially the same as KOS’s random-effects
model—the dimensionality of the parameter space increases (dramatically
so), but the computations are the same. One advantage of this formulation
is that the difficult inference problem associated with ûi = (maxj α̂j) − α̂i is
avoided. For the true random-effects model, we would have

ln yit = αi + βTxit + vit + wi − uit ,

p(vit ) = N [0, σ2], p(σ) = inverted gamma(s, M ),

p(wi) = N [0, τ2], p(τ) = inverted gamma(r , T ),

p(uit ) = (1/λ) exp(−uit /λ), p(λ) to be determined,

p(β) =∝ 1, p(α) ∝ 1.

Note that wi is time invariant. Once again, this is the same as KOS’s random-
effects model. Now, the data augmentation problem is over N +NT dimensions
for the values of wi and uit .
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2.8 Estimation of Technical Inefficiency

Arguably, the main purpose of the preceding is to lay the groundwork for esti-
mation of inefficiency, that is, ui or TEi = exp(−ui). For example, along with
an abundance of DEA applications, regulators in many fields have begun to
employ efficiency analyses such as those discussed here to compare and ana-
lyze regulated firms and to set policies (see, e.g., the discussion in chapter 1).
Bauer et al. (1998) sounded some cautions for regulators who might use the
results of the analysis described here in their oversight of financial institu-
tions. Among others, regulators are keenly interested in these techniques. This
section describes methods of using the estimated models to estimate technical
inefficiency in the stochastic frontier setting.

The core model we have used to reach this point is

ln yit = α + βTxit + vit − uit ,

where we allow for observations across firms and time. The various model
forms, including normal–half-normal, truncation, exponential, and gamma
models with heterogeneity of various sorts, panel-data and cross-section
treatments, and Bayesian and classical frameworks, have all provided plat-
forms on which the main objective of the estimation is pursued: analysis of
inefficiency, uit .

The estimation effort in the preceding sections is all prelude to estimation
of the inefficiency term in the equation, uit , or some function of it. Note,
before continuing, a variety of obstacles to that objective. Foremost is the
fundamental result that the inefficiency component of the model, uit , must be
observed indirectly. In the model as stated, the data and estimates provide only
estimates of εit = vit − uit . We will have to devise a strategy for disentangling
these, if possible. Second, regardless of how we proceed, we must cope not only
with a noisy signal (vit with uit ), but we must acknowledge estimation error
in our estimate—α and β are not known with certainty. For the “fixed-effects”
estimators, estimation of technical inefficiency is only relative. Recall in this
setting, the model is

ln yit = αi + βTxit + vit ,

and the estimator is ui = max(αj)−αi . Finally, adding to the difficult estima-
tion problem is the complication of devising a method of recognizing a degree
of uncertainty in the estimate. A point estimate of uit may be insufficient. It is
one thing to suggest that inefficiency is on the order of 10%, but quite another
to suggest that one’s best guess is from 0 to 35% with a mean of 10%, which
conveys considerably less information.

This section details some known results about estimation of technical
inefficiency. [Kim and Schmidt (2000) is a useful source for more complete
presentation.] I consider both fixed-effects and stochastic frontier estimators,
and briefly visit Bayesian as well as the classical estimator. The focus of the
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discussion is the workhorse of this branch of the literature, Jondrow et al.’s
(1982) conditional mean estimator.

2.8.1 Estimators of technical inefficiency in the stochastic
frontier model

However the parameters of the model are computed, the residual, yit − β̂
T

xit

estimates εit , not uit . The standard estimator of uit , is the conditional mean
function, E[uit |εit ]. Recall

f (uit |εi) = f (uit , εit )

f (εit )
= f (uit )f (εit |uit )

f (εit )

= fu(uit )fv(εit + uit )∫∞
0 fu(uit )fv(εit + uit )duit

.

We will use as the estimator the conditional mean from the conditional
distribution,

E(uit |εit ) =
∫∞

0 uit fu(uit )fv(εit + uit )duit∫∞
0 fu(uit )fv(εit + uit )duit

.

In several leading cases, this function has a known form.68 JLMS (Jondrow,
Lovell, Materov, and Schmidt, 1982) present the explicit result for the half-
normal model,

E[uit |εit ] =
[

σλ

1 + λ2

] [
µ̃it + φ(µ̃it )

�(µ̃it )

]
, µ̃it = −λεit

σ
,

where φ(.) and �(.) are the density and CDF of the standard normal distribu-
tion. For the truncated-normal model, the result is obtained by replacing µ̃it

with µ̃it + µσ2
u/σ2. The corresponding expressions for the exponential and

gamma models are

E [uit |εit ] = zit + σv
φ(zit /σv)

�(zit /σv)
, zit = εit − σ2

v/σu

and

E[uit |εit ] = q(P , εit )

q(P − 1, εit )
,

respectively.69 Note, for the gamma model, that this must be computed by
simulation (see section 2.4.6). The estimator of uit in the random-parameters
model (Greene, 2005) is also computed by simulation.

Battese and Coelli (1988) suggested the alternative estimator

E[TEti |εit ] = E[exp(−uit )|εit ].
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For the truncated-normal model (which includes the half-normal case),
this is

E[exp(−uit )|εit ] = �[(µ∗
it /σ∗) − σ∗]

�[(µ∗
it /σ∗)] exp

[
−µ∗

it + 1

2
σ2∗
]

,

where
µ∗

it = µ̃it + µσ2
u/σ2.

Recalling the approximation uit ≈ 1−TEit , Battese and Coelli (1988) observed
that the difference between the two estimates reflects the inaccuracy of the
approximation 1 − uit to exp(−uit ). For the JLMS results, Battese and Coelli
report the alternative estimate based on the preceding as 8.9% as opposed to
9.6% for the conditional mean. The difference is fairly small in this instance,
but many studies report technical efficiency values considerably less than the
90% they reported.

Some additional results that are useful for the practitioner are, first,
that estimation of cost inefficiency based on the preceding results can be
accomplished simply by changing the sign of ε where it appears in any expres-
sion. Second, for analysis of a panel with time-invariant effects, Kim and
Schmidt (2000) point out that one need only replace ε with the group mean
< ε-overbar >i , and σ2

v with σ2
v/T to obtain the appropriate results. Finally,

in all these expressions, the heterogeneous or heteroskedastic models may be
imposed simply by employing the firm-specific formulations for µ, σu , and/or
σv . In what follows, I limit attention to a simple model and leave the extensions
in these directions to be employed by the practitioner as needed.

2.8.2 Characteristics of the estimator

I digress at this point to note some possible misperceptions in the literature
(abetted, alas, by the Greene [1993] survey). The JLMS estimator is unbiased
as an estimator of uit only in the sense that it has the same expectation that uit

does. It does not estimate uit unbiasedly in the sense that in repeated sampling,
the mean of a set of observations on E[uit |εit ] would equal uit . They would
not. First, the notion of repeated sampling is itself inconsistent with the defini-
tion, since the estimator is conditioned on a specific set of data. This does not
mean that it is conditioned on the data for a particular firm—it is conditioned
on a specific yit and xit . To see the logic of this objection, consider that there
is nothing inconsistent in doing the analysis on a sample that contains two
firms that have identical yit and xit , but different uit . Indeed, that is precisely
the point of the stochastic frontier model. Thus, the estimator E[uit |εit ] is an
estimator of the mean of the distribution that produces these two observa-
tions with this particular yit and xit . There is nothing in its construction that
makes us expect the JLMS estimator to be an unbiased estimator of either
one of the two hypothetical draws on uit . It is an estimator of the mean of
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this conditional distribution from which both are drawn. The empirical esti-
mator based on the ML or Bayesian parameter estimates is not unbiased for
E[uit |εit ] either, by the way, since it is a nonlinear function of the parameter
estimators.

In general, the empirical estimator of E[uit |εit ] is a consistent estimator,
for the usual reasons. Again, it is a conditioned on a particular (yit , xit ), so
the JLMS estimator is not based on a sample of one at all. The estimator,
computed using the MLEs or random draws from the posterior, converges to
the true conditional mean function. That is,

plim

⎧⎪⎨
⎪⎩
[

σ̂λ̂

1 + λ̂2

](
µ̂i + ϕ(µ̂it )

�(µ̂it )

) ∣∣∣∣∣∣∣µ̂it =
−
(

yit − β̂
T

xit

)
λ̂

σ̂

⎫⎪⎬
⎪⎭ = E[uit |εit ] .

The JLMS estimator is not a consistent estimator of uit either, again for the
reasons noted above. No amount of data can reveal uit perfectly in the stochas-
tic frontier model. It can in a panel-data model in which it is assumed that
uit is time invariant, since then, like any common-effects model, a method-of-
moments estimator of the“effect”is consistent in T . But, absent this possibility,
the JLMS estimator does not converge to uit . (And, note once again, the idea
that ui would remain the same long enough for asymptotics with respect to
T to apply would require some difficult economic justification.) On the other
hand, it does converge to something: E[uit |yit , xit , β, . . .]. But, again, this is not
uit ; it is the mean of the distribution from which uit is generated.

The foregoing extends to Bayesian estimation, as well, notwithstanding the
reflexive assertion that Bayesian inference is “exact” (while classical inference is
inexact) that now fashionably precedes every Bayesian analysis. Indeed, a closer
look at the Bayesian estimator of uit in the “standard model” is revealing. In
the Gibbs sampling MCMC iterations in the standard, normal–exponential
model, we have

p(uit |β, σ2
v , σu , yit , xit ) = truncated at zero N

[
βTxit − yit − σ2

v/σu , σ2
v

]
(see Koop et al., 1995, p. 357). The Gibbs sampler draws observations from
this distribution in the cycle. At any particular draw, a close look at this dis-
tribution shows that its conditional mean is precisely the JLMS estimator for
the exponential distribution, for the specific values of the parameters at that
cycle. (It would seem pathological if anything else emerged, since the estimator
is, ultimately, the posterior mean in the conditional distribution.) Does this
estimator “converge” to something? Ultimately, we hope to sample from the
marginal posterior p(uit |xit , yit ), but clearly at every step on the way, this is
going to be computed using draws that employ some model parameters. So,
where does this end up? With noninformative priors, the Bayesian posterior
means of the parameters are going to converge to the same point that the MLEs
converge to. (This is merely the well-known result that, with noninformative
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priors, the likelihood function must eventually dominate the posterior, and
the mode of the likelihood converges to the posterior mean as the sample size
grows without bound.) The end result of this argument is that the Bayesian
estimators of uit are based on the same estimator as the classical estimator.
The former estimates E[uit |εit ] by sampling from p(uit |yit , xit , E[β|data], etc.),
while the latter computes the function directly using the MLEs. Therefore, the
Bayesian estimator, like the classical one, is not a consistent estimator of uit .
Nor is it unbiased, again, for the same reasons.

Aside from what are likely to be minor numerical differences, the Bayesian
and classical estimators differ in two other respects. [See Kim and Schmidt
(2000) and the above study of the gamma model for examples.] The sampling
variance of the MLE-based estimator will be larger than its Bayesian counter-
part, for the usual reasons. However, this raises another important similarity.
The difference in the sampling behavior of the statistics speaks to the behavior
of the statistic, not to a difference in the quantity being estimated. That is,
we have yet to examine var[uit |εit ], which is the same regardless of how we
choose to estimate it. Kim and Schmidt (2000) have examined this in detail. I
briefly note their results below. A remaining aspect of this comparison, how-
ever, concerns how “confidence intervals” for uit are constructed. A natural (at
least intuitively appealing) strategy is to use the (admittedly flawed) estimator
E[uit |εit ] and bracket it with two lengths of an estimate of (var[uit |εit ])1/2.
This is essentially what the classical estimators discussed below attempt to
do. Indeed, it is becoming customary in both settings to report both the point
and variance estimators. But, for the Bayesian estimator, this is a demonstrably
suboptimal strategy. Since, for example, for the exponential model, it is known
exactly that the posterior density is truncated normal, which is asymmetric,
an “HPD interval” containing the usual 95% of the distribution will be less
than four standard deviations wide. Bayesian estimators typically include pic-
tures of the posterior density for a few observations. Delineation of the HPD
intervals in these densities might be a useful addition to the reported results.

2.8.3 Does the distribution matter?

Many authors have pursued the question in the section title, in cross-section
and panel-data sets, across a variety of platforms. Most of the received results
suggest the encouraging finding that the estimates of inefficiency are reason-
ably robust to the model specification. Since all results are application specific,
however, the question does not have an analytical answer. In order to continue
that thread of discussion, we consider a small example, following along the
presentation in Kumbhakar and Lovell (2000). The authors report estimates
based on the cost frontier estimated in Greene (1990) using the Christensen
and Greene (1976) electricity data (described further below). Kumbhakar and
Lovell obtained rank correlations for estimates of inefficiencies from the four
distributions examined above that ranged from a low of 0.7467 (exponential
and gamma) to a high of 0.9803 (half-normal and truncated normal). The
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results below based on these same data are considerably stronger. I suspect
that at least two reasons lie behind this: First, the results below are based on a
full translog model, which is probably a more appropriate functional form—
Christensen and Greene (1976) found likewise; second, the simulation-based
estimator for the gamma model appears to be a considerably better algorithm
than the brute force method used in the above studies. We also fit a production
function, rather than a cost function.

The first application (there are several others to follow in later sections) is
an extension of Christensen and Greene’s (1976) estimates of a translog cost
function for U.S. electricity generation in 1970. The sample consists of data
on 123 American (fossil-fueled) electric-generating companies. The data set
contains the variables described in table 2.1. The authors (and Kumbhakar
and Lovell, 2000) used these data to fit a translog cost function in a single
output (generation) based on three inputs: capital, labor, and fuel. I obtained
physical input figures from the cost, factor shares, and input prices and then
used these data to fit a translog production function.

Data on physical units are obtained by computing xk , = cost ×
sharek/pricek . The translog production function is then

ln y = α +
∑

k=K ,L,F

βk ln xk +
∑

k=K ,L,F

∑
m=K ,L,F

γkm ln xk ln xm + vi − ui .

Estimates of the parameters of the stochastic frontier functions under various
assumptions are shown in table 2.2. (The data are not normalized.) The OLS
and method-of-moments estimators for the variance parameters are given in
the first column. For brevity, standard errors and indicators of significance are
omitted, because at this point the purpose is only to compare the coefficient
estimates. Based on the differences in the parameter estimates in table 2.2,

Table 2.1
Descriptive Statistics for Christensen and Greene Electricity Data (123
Observations)

Variable Mean Standard Deviation Minimum Maximum

Cost 48.467 64.0636 0.1304 282.9401
Output 9501.146 12512.82 4.0 72247.0
Capital price 72.895 9.516264 39.127 92.65
Capital share 0.22776 0.060103 0.0981 0.4571
Labor price 7988.560 1252.83 5063.49 10963.9
Labor share 0.14286 0.0563198 0.0527 0.03291
Fuel price 30.80661 7.928241 9.0 50.4516
Fuel share 0.62783 0.088789 0.02435 0.08136
Capital 0.14397 0.19558 0.000179168 1.28401
Labor 0.074440 0.00098891 0.000004341821 0.00490297
Fuel 1.00465 1.28670 0.002641465 6.9757
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Table 2.2
Estimated Stochastic Frontier Production Functions

Parameter OLS Half-Normal Truncated Exponential Gamma

α 5.381 6.199 7.137 7.136 7.037
βK 1.364 1.272 1.296 1.299 1.335
βL −1.403 −1.174 −0.910 −0.911 −0.942
βF 1.327 1.224 0.978 0.976 0.964
γKK 0.479 0.469 0.397 0.394 0.346
γLL −0.204 −0.170 −0.139 −0.139 −0.148
γFF 0.319 0.316 0.301 0.300 0.276
γKL 0.051 0.041 0.065 0.066 0.084
γKF −0.581 −0.562 −0.502 −0.500 −0.463
γLF 0.204 0.185 0.133 0.132 0.120
λ 0.218 0.956 15.791 0.806 1.071
σ 0.127 0.144 1.481 0.120 0.133
µ NA NA −29.084 NA NA
P NA NA NA NA 0.674
σu 0.02714 0.0995 1.477 0.0750 0.097
σv 0.1244 0.1041 0.0936 0.0931 0.0906
Ln L 85.996 86.292 88.186 88.209 88.849

it does appear that the functional form matters considerably. However, the
estimates of E[ui |εi] tell a quite different story. Figure 2.10 and tables 2.3 and
2.4 show that the JLMS estimates of ui are almost identical. The agreement
between the exponential and truncated-normal model is striking. Note that
the correlation matrix shows both raw correlations among the estimates and
rank correlations based on the ranks of the inefficiencies. These results are
considerably closer than those found by Kumbhakar and Lovell (2000). The
parameter estimates for the truncated-normal model do look extreme. In fact,
judging from the estimate of σ2, the truncated-normal model has considerably
altered the results. The estimate of σ is 1.481 compared to 0.144 for the half-
normal model, a 10-fold increase. The very large estimate of µ suggests, in
turn, that the inefficiency estimates should be drastically affected, but this
turns out not to be the case. The argument of the function E[u|ε] can be
written as [a(−ε) + (1 − a)µ], where a = σ2

u/σ2. For these data, a is roughly
0.9945, so, in fact, µ hardly figures into the estimated inefficiencies at all. The
kernel density estimate in figure 2.11 based on the estimates of ui for the
truncated-normal model is essentially identical to that obtained for the other
three sets of estimates. The estimated residuals, ei , from the truncation model
look essentially the same as for the other distributions, as well. We conclude,
based on this example, as noted above, that the estimated inefficiencies seem
quite robust to the model specification.

We note, finally, a caution about figure 2.11 (and counterparts in many
other studies, such as the nearly identical figure 2 in Huang, 2004): The density
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Figure 2.10. Scatter Plots of Inefficiencies from Various Specifications

Table 2.3
Descriptive Statistics for Estimates of E[ui |εi] (123 Observations)

Distribution Mean Standard Deviation Minimum Maximum

Half-normal 0.07902 0.03246 0.02630 0.27446
Truncated normal 0.07462 0.05936 0.01824 0.47040
Exponential 0.07480 0.06001 0.01810 0.47324
Gamma 0.06530 0.06967 0.01136 0.49552

Table 2.4
Pearson and Spearman Rank Correlations for Estimates of E[ui |εi]a

Half-Normal Truncated Normal Exponential Gamma

Half-normal 1.00000 0.99280 0.99248 0.95540
Truncated normal 0.95291 1.00000 0.99994 0.96864
Exponential 0.95158 0.99998 1.00000 0.96897
Gamma 0.91163 0.98940 0.99019 1.00000

a Pearson correlations below diagonal; Spearman rank correlations above diagonal.

estimator above shows the distribution of a sample of estimates of E[ui |εi],
not a sample of estimates of ui . (Huang’s figures are correctly identified as
such.) The mean of the estimators is correctly suggested by the figure. How-
ever, the spread of the distribution of ui is understated by this figure. In
this bivariate distribution, var(E[ui |εi]) = var[ui] − E(var[ui |εi]). There
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Figure 2.11. Kernel Density Estimator for Mean Efficiency

is no reason to expect the latter term in this expression to be small. We
can get a quick suggestion of the extent of this error with a small numer-
ical experiment. We take the normal–half-normal results as the basis. We
take the estimates in table 2.2 as if they were the true parameters. Thus,
σu = 0.0995, σv = 0.1041, σ = 0.144, λ = 0.9558. Derived from these,
we have E[u] = σuφ(0)/�(0) = 0.07939, var[u] = σ2

u(π−2)/π = 0.003598,
var[ε] = σ2

v + var[u] = 0.0144. Now, using E[u|ε] = JLMS(ε) as given above,
a function of ε, we use the delta method to approximate the variance of E[u|ε].
This value based on the results above is 0.008067, so the standard deviation
is 0.0284 which is roughly the standard deviation of the data shown in the
kernel density estimator above. (This value approximates the 0.03246 in the
table.) However, the unconditional standard deviation of u, which is what we
actually desire, is the square root of 0.003598, or about 0.05998. The upshot
is that, as this example demonstrates, descriptive statistics and kernel density
estimators based on the JLMS estimators correctly show the expectation of u
but underestimate the variation. Ultimately, a quick indication of the extent is
suggested by λ; the smaller is λ, the worse the distortion will be.70

2.8.4 Confidence intervals for inefficiency

Horrace and Schmidt (1996, 2000) suggest a useful extension of the JLMS
result. Jondrow et al. (1982) have shown that the distribution of ui |εi is
that of an N [µ∗

i , σ∗] random variable, truncated from the left at zero, where
µ∗

i = −εiλ
2/(1 + λ2) and σ∗ = σλ/(1 + λ2). This result and standard

results for the truncated normal distribution (see, e.g., Greene, 2003a) can
be used to obtain the conditional mean and variance of ui |εi . With these in
hand, one can construct some of the features of the distribution of ui |εi or
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E[TEi |εi] = E[exp(–ui)|εi]. The literature on this subject, including the impor-
tant contributions of Bera and Sharma (1999) and Kim and Schmidt (2000),
refers generally to “confidence intervals” for ui |εi . For reasons that will be clear
shortly, we will not use that term—at least not yet, until we have made more
precise what we are estimating.

For locating 100(1 − α)% of the conditional distribution of ui |εi , we use
the following system of equations:

σ2 = σ2
v + σ2

u

λ = σu/σv

µ∗
i = −εiσ

2
u/σ2 = −εiλ

2/(1 + λ2)

σ∗ = σuσv/σ = σλ/(1 + λ2)

LBi = µ∗
i + σ∗�−1

[
1 −

(
1 − α

2

)
�
(
µ∗

i /σ
∗)]

UBi = µ∗
i + σ∗�−1

[
1 − α

2
�
(
µ∗

i /σ
∗)]

Then, if the elements were the true parameters, the region [LBi , UBi] would
encompass 100(1 − α)% of the distribution of ui |εi . Although the received
papers based on classical methods have labeled this a confidence interval for
ui , I emphatically disagree. It is a range that encompasses 100(1 − α)% of
the probability in the conditional distribution of ui |εi . The range is based
on E[ui |εi], not ui itself. This is not a semantic fine point. Once again,
note that, in a sample that contains two identical observations in terms
of yi , xi, they could have quite different ui , yet this construction produces
the same “interval” for both. The interval is “centered” at the estimator of
the conditional mean, E[ui |εi], not the estimator of ui itself, as a conven-
tional “confidence interval” would be. The distinction is more transparent
in a Bayesian context. In drawing the Gibbs sample, the Bayesian estimator
is explicitly sampling from, and characterizing the conditional distribution
of, ui |εi , not constructing any kind of interval that brackets a particu-
lar ui—that is not possible.71 For constructing “confidence intervals” for
TEi |εi , it is necessary only to compute TE UBi = exp(−LBi) and TE
LBi = exp(−UBi).

These limits are conditioned on known values of the parameters, so they
ignore any variation in the parameter estimates used to construct them. Thus,
we regard this as a minimal width interval.72

2.8.5 Fixed-effects estimators

Numerous recent studies have approached efficiency analysis with a fixed-
effects model. This frees the analyst from having to layer a distributional
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assumption on the inefficiency element of the model. The model departs from
the usual assumptions,

yit = α + βTxit + vit − ui .

We define αi = α − ui , then

yit = αi + βTxit + vit ,

then ui = α – αi . Estimation proceeds via least squares, Interest in this setting
focuses on the relative inefficiencies, which are estimated via

α̂i = ȳi − β̂
T

x̄i

= αi + v̄i − (β̂ − β)Tx̄i ;

α̂ = max
j

(α̂j)

ûi = α̂ − α̂i .

Technically, efficiency is estimated in the usual fashion via TEi = exp(−ui).
By construction, these estimates are relative to the most efficient (at
least estimated as such) firm in the sample, whereas the estimates of
ui in the stochastic frontier model are absolute—relative to zero, that
is. Horrace and Schmidt (1996, 2000) and Kim and Schmidt (2000)
describe methods of computing asymptotic variances and doing statis-
tical inference for these MCB (“multiple comparisons with the best”)
estimators.

The MCB computations are reasonably complicated. Kim and Schmidt
(2000) suggest an alternative bootstrapping procedure (see also Horrace and
Richards, 2005). The procedure departs a bit from familiar applications of the
bootstrap. The model is fit using the full observed sample as specified above.
Bootstrap iterations are constructed by then resampling from the estimated

normal distribution of vit and computing the bootstrap sample, y(b)
it = α̂i +

β̂
T

xit + v̂(b)
it . The sample of sets of estimates of ui are used to make inference

about the distributions of inefficiency. They also note that these estimators are
prone to a downward bias. Kim and Schmidt (2000) propose an adjustment
to deal with the bias.

There is a fundamental difference between this approach and the one
detailed above for the stochastic frontier model. In this case, the estimator
is ûi = α̂ − α̂i , not E[ui |εi]. There is no “noise” in this estimator. Thus, the
“confidence interval” in this setting is for ui , not for the mean of the distribu-
tion that generates ui . But, it must be borne in mind that the ui underlying
the computations is only relative to the (estimate of the) minimum ui in the
sample.
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2.8.6 The Bayesian estimators

Koop et al. (1997) describe procedures for Bayesian estimation of both
“fixed-effects” and “random-effects” models for technical inefficiency. We have
detailed both of these above. In the fixed-effects approach, they merely add the
firm-specific intercepts to the classical normal regression model; the posterior
means are the usual within-groups estimators. The posterior distribution is,
however, multivariate t , rather than multivariate normal. Since the number
of degrees of freedom in any reasonable data set will be sufficiently large to
render the posterior essentially normal, it follows that the Bayesian estimators
of αi are the same as the classical ones, as will be the confidence intervals. For
the comparisons to the best, ûi = maxj(α̂j) − α̂i , “exact” inference will be dif-
ficult, because the precise distribution will remain complicated even though
the marginal posterior is known. However, simple Monte Carlo analysis can
be used to reveal characteristics such as the percentiles of the distribution for
each ûi . The authors do note that although a similar analysis can be used for
TEi = exp(−ûi), this estimator will have a built in downward bias. No sim-
ple solution is proposed. For the “random-effects,” that is, stochastic frontier
model, the Gibbs sampler with data augmentation described above is used
both for point estimation of E[ui |εi] and for interval estimation—both mean
and variance (and quantiles) of the conditional distribution are computed
during the MCMC iterations, so no post estimation processing, other than
arranging the sample data, is necessary.

2.8.7 A comparison

Kim and Schmidt (2000) compared the several estimators discussed above
in four applications. Consistent with the experiment in section 2.8.3, they
found that the different estimators do tell very similar stories. The overall
conclusions are that Bayesian and classical estimators of comparable models
give comparable results, and by and large, fixed-effects estimators produce
greater inefficiency estimates than random effects. Based on the above results
and Greene (2004a, 2004b), I would conjecture that at least some of this is due
to the role of latent heterogeneity that is not otherwise accommodated in the
model. This would be, of course, subject to further investigation.

2.9 Allocative Inefficiency and the Greene Problem

A classic application of the theory of the preceding discussion is the Averch and
Johnson (1955) hypothesis that rate-of-return regulation of electric utilities in
the United States in the 1950s led to“gold plating”of physical facilities. Utilities
were alleged (by economists, at least) to be wasting money on excessively
capitalized facilities. This type of inefficiency would clearly fall under what
we have labeled “economic inefficiency” and would fall outside the scope of
technical inefficiency. Allocative inefficiency refers to the extent to which the
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input choices fail to satisfy the marginal equivalences for cost minimization
or profit maximization. The essential element of a complete model would
be a cost or profit function with a demand system in which failure to satisfy
the optimization conditions for profit maximization or cost minimization,
irrespective of what happens on the production side, translates into lower
profits or higher costs. The vexing problem, which has come to be known as
the “Greene problem” (see the first edition of this survey, Greene, 1993), is
the formulation of a complete system in which the demands are derived from
the cost function by Shephard’s lemma, or a profit function by Hotelling’s
(1932) lemma, and in which deviations from the optimality conditions in any
direction translate to lower profits or higher costs.

Several approaches to measuring allocative inefficiency based on cost
functions and demand systems have been suggested. See Greene (1993), for
details on some of these early specifications. Lovell and Sickles (1983), for
example, analyze a system of output supply and input demand equations.
Unfortunately, no method is yet in the mainstream that allows convenient
analysis of this type of inefficiency in the context of a fully integrated fron-
tier model. [See Kumbhakar and Tsionas (2004, 2005a) for some significant
progress in this direction. Kumbhakar and Lovell (2000, chapter 6) also dis-
cuss some of the elements of what would be a complete model.] Some of
these models are based on the notion of shadow prices and shadow costs—the
nonoptimality of the input choices is taken to reflect “optimality” with respect
to the “wrong” or “shadow” prices. Some of the early work in this direction
is detailed in the 1993 edition of this survey. A recent study that takes this
approach is Atkinson, Fare, and Primont (2003).

Research in this area that would lead to a convenient mainstream method-
ology remains at an early stage (note the aforementioned), so I leave for
the next version of this survey to lay out the details of the emerging
research.

2.10 Applications

In order to illustrate the techniques described above, this section presents some
limited studies based on several widely traveled data sets. The Christensen
and Greene (1976) electricity generation cross-section data have been used
by many researchers, particularly those studying Bayesian methods. A small
panel-data set from the pre-deregulation U.S. domestic airline industry
(admittedly now quite outdated) that was previously used (e.g., in Kumbhakar,
1991a, 1991b) provides a convenient device for illustrating some of the more
straightforward fixed- and random-effects techniques.73 The banking data set
used by Kumbhakar and Tsionas (2002) and by Tsionas and Greene (2003) pro-
vides a larger, more homogeneous panel that we can use to study some of the
more recently proposed panel-data techniques. Finally, WHO (2000) panel-
data set on health care attainment has been used by numerous researchers
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for studying different approaches to efficiency modeling (e.g., Evans et al.,
2000a, 2000b; Greene, 2004b; Gravelle et al., 2002a, 2002b; Hollingsworth and
Wildman, 2002). For our purposes, these data are a well-focused example of a
heterogeneous panel.

As noted in the introduction to this chapter, the body of literature on
stochastic frontier estimation is very large and growing rapidly. There have
been many methodological innovations in the techniques, some of which have
“stuck” and are now in the broad range of tools familiar to practitioners, and
others of which have proved less popular. The range of computations in this
section is very far from exhaustive. The purpose here is only to illustrate some
of the most commonly used methods, not to apply the complete catalogue
of the empirical tools that appear in the literature. This section begins with a
description of computer programs that are currently used for frontier estima-
tion. Subsequent subsections provide some additional details on the data sets
and the series of applications.

As noted above, the applications are based on four well-known data
sets. This section provides some additional details on the data. The
actual data sets are available from my home page (http://http://www.stern.
nyu.edu/∼wgreene) in the form of generic Excel spreadsheet (.xls) files and
LIMDEP project (.lpj) files. The LIMDEP command sets used to generate the
results are also posted so that interested readers can replicate the empirical
results.74 Each of the four applications illustrates some particular aspect or
feature of stochastic frontier estimation. We begin with a basic stochastic cost
frontier model estimated for U.S. electric power generators.

2.10.1 Computer software

The analysis presented below is carried out using version 8 of LIMDEP (Econo-
metric Software, Inc., 2000). Some of the techniques are available in other
packages. Of course, least squares and variants thereof can be handled with
any econometrics program. Basic panel-data operations for linear regression
models (linear fixed- and random-effects estimation) can be carried out with
most econometrics packages, such as SAS (SAS Institute, Inc., 2005), TSP (TSP
International, 2005), RATS (Estima, 2005), Stata (Stata, Inc., 2005), LIMDEP,
EViews (QMS, 2005), or Gauss (Aptech Systems, Inc., 2005). Low-level lan-
guages such as Matlab, Gauss, S-plus, Fortran, and C++ can be used to carry
out most if not all of the computations described here,but contemporary, com-
mercially available software obviates the extensive programming that would
be needed for most techniques.75

In specific terms, the contemporary software offers essentially the follow-
ing: TSP supports the basic cross-section version of the normal–half-normal
stochastic frontier model. The cross-sectional version of the stochastic frontier
model is actually quite straightforward and, for example, is easily pro-
grammed with Matlab, Gauss, R, or Fortran, or even with the command
languages in Stata, LIMDEP, or TSP. Coelli’s (1996) Frontier 4.1 also handles
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a few additional cross-section and panel-data variants of the stochastic fron-
tier model.76 To date, only two general econometrics programs, Stata and
LIMDEP/NLOGIT, contain as supported procedures more than the basic
stochastic frontier estimator. Stata provides estimators for the half- and
truncated-normal and exponential models for cross sections (with het-
eroskedasticity in the distribution of ui), and panel-data variants for the
Battese and Coelli (1992, 1995) specifications. LIMDEP and NLOGIT include
all of these and a variety of additional specifications for heteroskedasticity and
heterogeneity for cross sections and numerous additional panel-data specifi-
cations for fixed-effects, random-effects, random-parameters, and latent class
models.

The preceding are all single-equation methods and estimators. Simultane-
ous estimation of a cost function and a demand system based on a multivariate
normal distribution for all disturbances presents no particular obstacle with
modern software (once again, TSP, LIMDEP, RATS, Gauss). But, there is no
general-purpose program yet available for handling a properly specified system
of cost and demand equations that would estimate both technical and alloca-
tive inefficiency (i.e., solve the Greene problem). Kumbhakar and Tsionas
(2004, 2005a, 2005b, 2005c) used Gauss for Bayesian and classical estimation
of their technical/allocative inefficiency analysis systems.

There seems to be no general-purpose software for Bayesian estimation of
stochastic frontier models. A few authors have offered downloadable code; for
example, Griffin and Steel (2004) provide in “zipped” format some C++ code
that users will have to compile on their own computer systems. O’Donnell and
Griffiths (2004) offer their Matlab code. Other Bayesian estimators appear to
have been based on Gauss or Matlab code and the freely distributed WinBugs
(MRC, 2005) package. As a general proposition, there seem to be a great
variety of ad hoc strategies adopted more or less “on the fly” (e.g., Metropolis
Hastings algorithms for intractable integrals, experimentation with different
priors to see how they affect the results, different strategies for using specified
draws from the Markov chain). The lack of a general-purpose program such as
Frontier seems natural.77 I did find a reference to“BSFM: a Computer Program
for Bayesian Stochastic Frontier Models” by Arickx et al. (1997), but no later
reference seems to appear. Since nearly all of the development of Bayesian
estimators for stochastic frontier model has occurred after 1997, this is of
limited usefulness unless it has been further developed. For better or worse,
practitioners who opt for the Bayesian approach to modeling will likely be
using their own custom-written computer code.

2.10.2 The stochastic frontier model: electricity generation

The Christensen and Greene (1976) data have been used by many researchers
to develop stochastic frontier estimators, both classical and Bayesian. The
data are a 1970 cross section of 123 American electric utilities.78 The main
outcome variables are generation (output) in billions of kilowatt hours and



FRIED: “CHAP02” — 2007/8/24 — 19:02 — PAGE 191 — #100

The Econometric Approach to Efficiency Analysis 191

total cost ($million) consisting of total capital, labor, and fuel cost incurred
at the generation stage of production. Other variables in the data set are the
prices and cost shares for the three inputs. Remaining variables, including logs
and squares and products of logs, are derived. The basic data set is described
in table 2.1.

2.10.2.1 Cost frontier model specification

The original Christensen and Greene (1976) study was centered on a translog
cost function. Many recent applications use the Cobb-Douglas model for the
goal function, though the translog function is common, as well. (Variables are
provided in the data set for the full translog model for the interested reader.)
In order to provide a comparison with numerous other estimates that appear
in the recent literature, we will analyze a homothetic, but not homogeneous,
version of the cost function, constructed by adding a quadratic term in log
output to the Cobb-Douglas cost function:

ln(C/PF ) = β1 + β2 ln(PK /PF ) + β3 ln(PL/PF )

+ β4 ln y + β5(1/2 ln2 y) + ε

This is the form used in the Bayesian analyses discussed below and the
applications discussed above.

2.10.2.2 Corrected and modified least squares estimators

OLS estimates of the cost function are presented in the first column of table 2.5.
Linear homogeneity in prices has been imposed by normalizing cost, PK and
PL , by the price of fuel, PF . The functional form conforms to a homothetic but

Table 2.5
Estimated Stochastic Cost Frontiers (Standard Errors in Parentheses)

Variable Least Squares Half-Normal Exponential Gamma

Constant −7.294 (0.344) −7.494 (0.330) −7.634 (0.327) −7.652 (0.355)
Ln PK /PF 0.0748 (0.0616) 0.0553 (0.0600) 0.0332 (0.0586) 0.0293 (0.0656)
Ln PL/PF 0.2608 (0.0681) 0.2606 (0.0655) 0.2701 (0.0632) 0.2727 (0.0678)
Ln y 0.3909 (0.0370) 0.4110 (0.0360) 0.4398 (0.0383) 0.4458 (0.0462)
1/2 ln2 y 0.0624 (0.00515) 0.0606 (0.00493) 0.0575 (0.00506) 0.0568 (0.00604)
λ = σu/σv NA 1.373 NA NA
σ = (σ2

u + σ2
v )

1/2 0.1439 0.1849 NA NA
θ NA NA 10.263 8.425
P NA NA 1.000 0.6702
σu (= 1/θ for exp.) 0.1439 0.1494 0.09742 0.09716
σv NA 0.1088 0.1044 0.1060
Log-likelihood 66.4736 66.8650 67.9610 68.1542
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not homogeneous production function (see Christensen and Greene, 1976).
Economies of scale ES in this model are measured by the scale elasticity:

ES = {1/[β4 + β5 ln y]} − 1

The estimated coefficients are in line with expectations. The theoretical values
for the capital, labor, and fuel coefficients are the factor shares. The sample
averages of 0.23, 0.14, and 0.63 are reasonably consistent with the coefficients
of 0.07, 0.26, and 0.67. Scale economies range from 100% for the smallest
firms to minus 10% for the very largest—the mean is 0.13, which is roughly
what was observed in the original study based on a translog model.

The least squares residuals, ei , provide implied estimates of inefficiencies.
Under the assumption of a deterministic frontier, we can obtain estimates of ui

by adjusting the intercept of the estimated production or cost function until
all residuals (save one that will be zero) have the correct sign. Thus, for the pro-
duction frontier, ûi = maxi(ei)−ei while for a cost frontier, ûi = ei −mini(ei).
Under the deterministic frontier interpretation, the mean, ū, and variance, s2,
of the derived estimates of ui can be used to compute method-of-moments
estimators for the underlying parameters. The moment equations and esti-
mates of the various parameters are reported in table 2.6. The sample mean
and variance provide conflicting estimates of θ for the exponential distribu-
tion. We use a GMM estimator to reconcile them. The sample mean ū was
used as an initial consistent estimator, γ0, of E[u] = γ = 1/θ. [Note that here,
ū = − mini(ei).] The weighting matrix was then W = 1/N 2 times the 2 × 2
moment matrix for mi1 = (ūi − γ0) and mi2 = [(ûi − ū)2 − γ2

0]. We then

Table 2.6
Method of Moments Estimators for Efficiency Distribution for Deterministic
Frontier Model Based on OLS Residuals

Estimator Exponential Gamma Half-Normal

Population Moments
E[ui] 1/θ P/θ (2/π)1/2σu

Var[ui] 1/θ2 P/θ2 [(π − 2)/π]σ2
u

E[exp(−ui)] [θ/(1 + θ)] [θ/(1 + θ)]P 2�(−σu) exp(σ2
u/2)

Implied Estimatesa

σu 0.3930 0.1415 0.2348
θ 2.544 2.258 NA
P 1.000 1.021 NA
E[exp(−ui)] 0.7179 0.6424 0.8371
Sample mean efficiencyb 0.6425 0.6425 0.6425

a σu = 1/θ for exponential, σu = P1/2/θ for gamma.
b Sample average of exp(−ui).
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minimized with respect to γ the quadratic form

q = [(ū − γ), (s2
u − γ2)]TW−1[(ū − γ), (s2

u − γ2)].79

We use the sample variance to form the estimator for the half-normal frontier.
The estimated mean technical efficiency, E[exp(−ui)], can be computed using
the sample moment or by using the estimated functions of the underlying
parameters for the specific model. Overall, the three models produce estimates
of mean cost efficiency ranging from 64% to 84%. This is considerably lower
than other estimates produced from these data for these models (e.g., see the
discussion of the Bayesian estimators below).

Under the assumption of a stochastic frontier model, each raw residual ei

is an estimate of

yi − (α − E[ui]) − βT xi = vi − (ui − E[ui]).

Moments of the disturbances now involve σ2
v , as well as the parameters of the

distribution of u. The moment equations for the parameters of the distribution
of ui in the models are as follows:

Exponential: θ = (−2/m3)
1/3, P = 1.0, σv = (m2 − 1/θ2)1/2,

α = a + 1/θ

Gamma: θ = −3m3/(m4 − 3m2
2), P = (−1/2)θ3m3,

σv = (m2 − P/θ2)1/2, α = a + P/θ

Half-normal: σu = {m3/[(2/π)1/2(1 − [4/π])]}1/3,
σv = (m2 − [(π − 2)/π]σ2

u)1/2, α = a + σu(2/π)1/2

Counterparts to the results just given for the normal–gamma, normal–
exponential, and normal–half-normal models based on the first four central
moments (the first is zero) are given in table 2.7. I emphasize that all of
these estimators are consistent. They are demonstrably less efficient than the
MLEs, but the extent to which this affects the end results remains to be shown.
The estimates do seem somewhat erratic—particularly compared to the MLEs
given further below. However, the estimates clearly show that allowing for

Table 2.7
Method of Moments Estimates for Stochastic
Frontier Models Based on OLS Residuals

Exponential Gamma Half-Normal

θ 23.62 1.467 NA
P 1.000 0.0002399 NA
σu 0.0424 0.0106 0.08864
σv 0.1344 0.1406 0.1304
α −7.256 −7.294 −7.223
E[exp(−u)] 0.9594 0.9999 0.9330
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the firm-specific stochastic effect vi considerably reduces the estimated coef-
ficients of inefficiency—the average efficiency rises from about 70% to more
than 90%. Clearly, what is estimated to be a considerable amount of ran-
dom noise in the stochastic frontier model is identified as inefficiency in the
deterministic frontier model.

2.10.2.3 MLE of the stochastic cost frontier model

Table 2.5 contains the MLEs of the half-normal, exponential, and gamma
stochastic cost frontier models. Though the structural parameters are still
fairly variable, the estimated distributions of ui implied by these estimates are
much more stable than the method-of-moments estimators based on OLS.
Estimates of the firm-specific inefficiencies, E[ui |εi], were computed using the
JLMS method. Descriptive statistics appear in table 2.8. Figure 2.12 displays
the estimated distribution for the efficiency terms from the gamma model.

Table 2.8
Descriptive Statistics for JLMS Estimates of E[ui |εi] Based on
MLEs of Stochastic Frontier Models

Model Mean Standard Dev. Minimum Maximum

Normal 0.11867 0.060984 0.029822 0.37860
Exponential 0.097438 0.076407 0.022822 0.51387
Gamma 0.081423 0.077979 0.016044 0.52984

Estimated Efficiency Distribution Based on Gamma Model
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Figure 2.12. Kernel Density Estimate for Estimated Mean Efficiencies Based on
Normal–Gamma Stochastic Frontier Model
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The three estimates are very similar: The correlations are 0.968 for (nor-
mal, exponential), 0.944 for (normal, gamma), and 0.994 for (exponential,
gamma). Figure 2.13 shows the three sets of estimates. The observations are
sorted by output, so the figure also suggests that the large estimates for ui

mostly correspond to very small outputs, which is to be expected. Finally,
figure 2.14 shows the upper and lower confidence bounds for the total effi-
ciency estimates using the Horrace and Schmidt (1996) and Bera and Sharma
(1999) procedures described in section 2.8 for the normal–half-normal
results.
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2.10.2.4 Bayesian and classical estimates of the normal–gamma
frontier model

The Aigner-Lovell-Schmidt normal–half-normal model has provided the cen-
terpiece of the stochastic frontier model specification in the large majority
of studies. However, the literature contains a long succession of attempts
to generalize the model, as discussed above. One of the enduring strands
of research, beginning with Greene (1980a) and most recently augmented
by Huang (2004), has been the development of the normal–gamma model.
The original proposal in Greene (1980) suggested a deterministic fron-
tier model with gamma distributed inefficiencies: εi = ui and f (ui) =
[λP/�(P)] exp(−λui)uP−1

i . The deterministic frontier approach in general,
and this specification in particular, has since taken a back seat in the evo-
lution of the model. Beckers and Hammond (1987) and Greene (1990)
proposed a stochastic frontier form of the gamma model. The normal–
gamma model was not successfully implemented in either study. Its title
notwithstanding, the complexity of the former seems to have prevented
implementation. The latter presented a potentially simpler approach, but
numerical difficulties examined closely by van den Broeck at al. (1994)
and Ritter and Simar (1997) suggested that the classical MLEs suggested
for the model in Greene (1990) were not accurately computed. Bayesian
estimators were suggested in van den Broeck et al. (1994, 1995), which
demonstrated the feasibility of the Bayesian method. Greene (2003b) has
proposed a simulation-based MLE that appears to surmount the numer-
ical problems. Concurrently, Huang’s (2004) extension of Tsionas’s (2002)
and van den Broeck et al.’s (1994) Bayesian estimator brought considerable
progress in allowing full variation in the crucial shape parameter in the gamma
model.80

There have been numerous Bayesian applications of the stochastic frontier
model since about 1995 (see, e.g., Koop et al., 1994; Kim and Schmidt, 2000).
Owing to the mathematical convenience of the exponential and gamma densi-
ties, most of these have relied on the normal–exponential and normal–gamma
specification. The theoretical development of the Bayesian approach has often
applied the normal–gamma model, and in this strand of the literature, the
Christensen and Greene (1976) data used here have provided a convenient
common ground. First in the line are van den Broeck et al. (1994) and Koop
et al. (1995), who fit the same quadratic model used above. The primary
innovation in their study was to propose a data augmentation algorithm that
produced posterior estimates of the inefficiency terms, ui , along with the tech-
nology parameters.81 As has been observed elsewhere (see Koop et al., 1997),
estimation of the counterpart of a fixed-effects model in the Bayesian paradigm
requires an informative prior. In their case, they equivalently assumed that ui

were drawn from a gamma prior with prior median efficiency r∗ = 0.875.
As shown below, their findings were actually quite similar to those presented
here.82
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Following on van den Broeck et al.’s (1994) model, which assumes the
Erlang (integer P) form of the normal–gamma model, Tsionas (2002) shows
how the assumptions can be relaxed and the algorithm updated. Unlike Koop
et al. (1995), who used importance sampling, Tsionas used a Gibbs sampler
to draw observations from the posterior. In addition, his proposed method
produces a hierarchical Bayesian estimator (ostensibly suggested for panel
data) that yields firm-specific estimates for the technology parameters in the
cost function as well as the firm-specific inefficiencies, ui . It is useful to lay out
Tsionas’s specification in some detail. The cost model is

yit = α + βT
i xit + vit + uit ,

where, initially, f (uit ) = θ exp(−θuit ). Later, this is extended to the two-
parameter gamma model given above. Independent priors for the model are
specified: α, βi ∼ N [(a, b), �], i = 1, . . . , N ; (a, b) ∼ N [(0, 0), W]; � ∼
inverted Wishart; θ ∼ two-parameter gamma; σv ∼ inverted gamma. Under
his specification, uit values are draws from an exponential population with
parameter θ, where the prior mean for θ is, in turn, q = − ln r∗. [Lengthy
details on this specification are given in Tsionas’s (2002) paper.] The Gibbs
sampler for Tsionas’s method for exponentially distributed uit (P = 1) is as
follows:

1. Draw βi from a conditional normal distribution.
2. Draw σ from a conditional gamma distribution.
3. Draw (a, b) from a conditional normal distribution.
4. Draw � from a conditional inverted Wishart distribution.
5. Draw uit from a conditional truncated normal distribution.
6. Draw θ from a conditional gamma distribution.

The samples from the posterior distributions are obtained by cycling through
these steps. The slightly more general cases of P = 2 and P = 3 are also
considered. These cases greatly complicate step 5—direct sampling of random
draws from the conditional distribution of uit becomes impossible when P is
not equal to one. Tsionas proposes a separate algorithm developed in a separate
paper (Tsionas, 2000a), whereas Huang (2004) suggests a Metropolis Hastings
strategy in his study.

Huang (2004) notes incorrectly that Tsionas allows noninteger values of
P in his implementation. Huang, in contrast, does and specifies continuous
gamma priors for both θ and P in his model. He goes on to discuss sampling
from the posterior distribution of uit under the fully general specification.
Thus, arguably, Huang brings full generality to the normal–gamma model.
In comparison to Greene’s approach, the extension would be the hierarchical
Bayes extension of the model to allow separate coefficient vectors even in a
cross section. Whether this is actually a feasible extension remains for ongoing
research to establish. It is worth noting that the Tsionas and Huang methods
have established a method of obtaining posterior means and variances (indeed,
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entire distributions) for 761 parameters, [(αi , βi , ui), i = 1, . . . , 123]a, b, �, P ,
θ, σu) based on a sample that contained 615 values in total on cost, log output
and its square, and the logs of the two price ratios.

Table 2.9 displays the sets of estimates of the gamma frontier models
obtained by classical MLE methods and the preferred set of Bayesian estimates
(posterior means) from each of the three studies. The structural parameter
estimates are somewhat similar.83 The striking aspect of the results is in the
estimated inefficiencies. van den Broeck et al.’s estimates are quite close to
those here. Tsionas reports an implausible set of estimates that imply that
every firm is at least 99.9% efficient. Huang’s results for the heterogeneous
translog model (firm-specific parameters) are essentially the same as Tsionas’s,
but those for his homogeneous parameters model are almost identical to those
presented here. Indeed, figure 2 in Huang (2004, p. 286) is indistinguishable
from figure 2.12, even including the slight second mode around abscissa of
0.67. Moreover, figure 1 in van den Broeck et al. (1994, p. 290) is likewise
strikingly similar to figure 2.12 and Huang’s figure 2.

With Tsionas (2002), Huang (2004), and Greene (2003b), it does seem
that the technological problem of the normal–gamma model has largely been
solved. The extension to “random” parameters yielded by the former two in
cross-section data does seem overly optimistic. The random-parameters form
has been extended to classical“mixed-model”estimation in, for example, Train
(2003) and Greene (2003a, 2004b), with attendant “estimators” of the condi-
tional means of individual specific parameter vectors. In both the classical
and Bayesian frameworks, it seems at this juncture an interesting to pursue
the question of what the implications are of extracting more posterior esti-
mates of parameter distributions than there are numbers in the sample. In

Table 2.9
Estimates of the Normal–Gamma Stochastic Frontier Model (Coefficients or
Posterior Means Only)

Greene van den Broeck Tsionas Huang

Exponential Gammaa Gamma Gamma Random Fixed

Constant −7.6336 −7.652 −7.479 −7.416 −7.217 −7.4784
Lny 0.4398 0.4458 0.4276 0.445 0.3668 0.4447
Ln2y 0.02875 0.02839 0.0295 0.023 0.0335 0.0284
LnPL/PF 0.2701 0.2727 0.2492 0.247 0.2517 0.2346
LnPK /PF 0.03319 0.02933 0.0449 0.043 0.0695 0.0590
θ 10.263 8.425 11.273 75.12 77.4337 9.9025
P 1.0000 0.6702 1.0000 1.000 0.9063 0.9575∑

v 0.1044 0.1060 0.1136 0.0781 0.0374 0.1114
Ln L 67.961 68.154 NA NA NA NA
Mean effect 0.9072 0.9276 0.91 0.999 0.9891 0.9103

aSimulations for maximum simulated likelihood are computed using 200 Halton draws.
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the end, however, as others have also observed, there appears to be notably
little difference between the Bayesian posterior mean and classical MLEs of
the stochastic frontier model.

2.10.2.5 Duality between production and cost functions

Christensen and Greene (1976) studied, among other aspects of costs, the
appropriate form of the production and cost function. Their specification
search ultimately led to a translog cost function that was dual to a nonho-
mothetic production function. With linear homogeneity in the factor prices
imposed, the full cost specification is
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Likelihood ratio tests firmly favored the full translog model over the restricted,
homothetic technology that results if the final two terms are omitted. In trans-
lating this estimation exercise to the present stochastic frontier exercise, we find
that in the nonhomothetic version, the estimate of λ (and with it, any evidence
of inefficiency) virtually disappears. With a homothetic function, the estimates
of σu and σv are 0.16826 and 0.09831; thus, u accounts for about 52% of the
total variance of [(π − 2)/π]σ2

u + σ2
v . With the full nonhomothetic form,

these fall to 0.0000 and 0.13742, respectively. That is, the nonhomotheticity
terms have picked up some of the idiosyncratic variation (in v) and all of the
variation in u. Since the previous frontier analyses of these data have all used
restricted versions of the cost function, this raises some interesting questions
as to what our predecessors have actually found. It does seem reasonable to
guess that estimates of inefficiency all equal to zero are themselves implausi-
ble as well, so some intriguing possibilities remain for future researchers to
sort out.

With the preceding as a backdrop, we recompute the cost function using
the homothetic form (θyK = θyL = 0) and recompute the JLMS estimators
of cost inefficiency, E[u|ε]. We also compute a translog production frontier,
without restricting it to homogeneity. The full unrestricted translog frontier
would be

ln y = α0 +
∑

j=K ,L,F

βj ln Xj + 1

2

∑
j=K ,L,F

∑
m=K ,L,F

γjm ln Xj ln Xm + v − u.

(Estimates of the frontier parameters are omitted in the interest of brevity.)
We do impose the symmetry restrictions on the second-order terms. (I did
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not check or impose the second-order monotonicity or quasiconcavity con-
ditions.) As noted above, the relationship between the “inefficiency” in
production and that from the cost function is confounded by at least two
factors. In the absence of allocative inefficiency, if there are economies of scale,
then ui in the cost function would equal 1/r times its counterpart on the
production side where r is the degree of homogeneity. The second source of
ambiguity is the allocative inefficiency that will enter the cost inefficiency but
not the technical (production) inefficiency. Acknowledging this possibility, we
compute the JLMS estimates of ui from both functions. Using the production
function parameters, we then compute the implied (local) scale elasticity,

ES =
∑

j=K ,L,F

∂ ln y

∂ ln Xj
=

∑
j=K ,L,F

⎡
⎣βj + 1

2

∑
m=K ,L,F

γjm ln Xm

⎤
⎦ .

We then divide each estimated inefficiency from the cost function by this
elasticity computed from the production frontier. Figure 2.15 displays the
scatter plot of these two sets of inefficiency estimates, which, with the expected
variation, are clearly indicating the same “story” about inefficiency in these
data. (The correlation between the two sets of estimates is 0.579.) Note that
the mean inefficiency on the cost side of 0.124 (oddly close to the standard
Bayesian prior value of 0.125) is noticeably larger than its counterpart on the
production side of 0.080. It is tempting to attribute the difference to allocative
inefficiency, which would not appear on the production side, as well as to a
small distortion that results from the effect of economies of scale.
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2.10.3 Time-invariant and time-varying inefficiency: airlines
panel data

These data are from the pre-deregulation days of the U.S. domestic airline
industry. The data are an extension of Caves et al. (1980) and Trethaway
and Windle (1983). The original raw data set is a balanced panel of 25 firms
observed over 15 years (1970–1984). After removing observations because of
strikes, mergers, and missing values, the panel becomes an unbalanced one
with a total of 256 observations on 25 firms. In a few cases, the time series
contain gaps. Some of the models discussed above, notably Battese and Coelli
(1992, 1995) and Cornwell et al. (1990), involve functions of time, t , which
would have to be computed carefully to ensure the correct treatment of “time”;
the gaps must be accounted for in the computations. Also, for firms that are
not observed in the first year of the overall data set, when we consider functions
of “time” with respect to a baseline, in keeping with the spirit of the stochastic
frontier model, this baseline will be for the specific firm, not for the overall
sample window. The unbalanced panel has 256 observations with Ti = 4, 7,
11, and 13 (one firm each), 12 (two firms) 9, 10, and 14 (three firms), 2 (four
firms), and 15 (six firms). We will use these data to estimate frontier models
with panel data and time-varying and time-invariant inefficiency.

Production and cost frontiers are fit for a five-input Cobb-Douglas pro-
duction function: The inputs are labor, fuel, flight equipment, materials, and
ground property. Labor is an index of 15 types of employees. Fuel is an index
based on total consumption. The remaining variables are types of capital. It
might be preferable to aggregate these into a single index, but for present
purposes, little would be gained. Output aggregates four types of service: reg-
ular passenger service, charter service, mail, and other freight. Costs are also
conditioned on two control variables: (log) average stage length, which may
capture an economy of scale not reflected directly in the output variable, and
load factor, which partly reflects the capital utilization rate. We also condition
on the number of points served so as to attempt to capture network effects on
costs. The data are described in table 2.10.

2.10.3.1 Cobb-Douglas production frontiers

We first fit a Cobb-Douglas production function. This estimation illustrates
a common problem that arises in fitting stochastic frontier models. The
least squares residuals are positively skewed—the theory predicts they will
be negatively skewed. We are thus unable to compute the usual first-round,
method-of-moments estimators of λ and σ to begin the iterations. This find-
ing does not prevent computation of the stochastic frontier model. However,
it does necessitate some other strategy for starting the iterations. To force
the issue, we simply reverse the sign of the third moment of the OLS resid-
uals and proceed. Consistent with Waldman (1982), however, we then find
that the log-likelihood function for the estimated model differs only trivially
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Table 2.10
Airlines Data

Variable Mean Standard Deviation Description

FIRM 11.8398438 7.09001883 Firm, i = 1, . . . , 25
OUTPUT 0.628784239 0.591862922 Output, index
COST 1172861.09 1197945.05 Total cost
MTL 0.751572192 0.642973957 Material, quantity
FUEL 0.583878603 0.503828645 Fuel, quantity
EQPT 0.651682905 0.567659248 Equipment, quantity
LABOR 0.595048662 0.508245612 Labor, quantity
PROP 0.656212972 0.692635345 Property, quantity
PM 491733.758 165628.591 Materials price
PF 427637.977 316179.137 Fuel price
PE 266391.048 110114.994 Equipment price
PL 669768.628 269367.140 Labor price
PP 40699.8592 19405.2501 Property price
LOADFCTR 0.526460328 0.120249828 Load factor
STAGE 492.642179 308.399978 Average stage length
POINTS 70.1328125 29.6541823 Number of points served

from the log-likelihood for a linear regression model with no one-sided error
term. However, the estimates of σu , σv , λ, and σ are quite reasonable, as are
the remaining parameters and the estimated inefficiencies; indeed, the esti-
mate of λ is statistically significant, suggesting that there is, indeed, evidence
of technical inefficiency in the data.84 The conclusion to be drawn is that,
for this data set, and more generally, when the OLS residuals are positively
skewed (negatively for a cost frontier), then there is a second maximizer of the
log-likelihood, OLS, that may be superior to the stochastic frontier. For our
data, the two modes produce roughly equal log-likelihood values. For pur-
poses of the analysis, the finding does suggest that one might want to take a
critical look at the model specification and its consistency with the data before
proceeding.

The least squares and MLEs of the parameters are given in table 2.11.
The Pitt and Lee (1981) random-effects model is also fitted, which assumes
that technical inefficiency is fixed through time and still half-normally dis-
tributed. The parameter estimates appear in table 2.11. Figure 2.16 shows the
relationship between the two sets of estimates of E[ui |εi]. Unfortunately, they
are far from consistent. Note the widely different estimates of σu : 0.07 in the
pooled model and 0.27 in the Pitt and Lee (1981) model. The time-invariant
estimates vary widely across firms and are, in general, far larger. The time-
varying values actually display relatively little within firm variation—there
does not appear to be very much time variation in inefficiency suggested by
these results. We might surmise that the time-invariant estimates are actually
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Table 2.11
Estimated Cobb-Douglas Production Frontiers (Standard Errors in
Parentheses)

Variable Least Squares Pooled Frontier Random Effects

Constant −1.1124 (0.0102) −1.0584 (0.0233) −0.8801 (0.0302)

Ln fuel 0.3828 (0.0712) 0.3835 (0.0704) 0.2110 (0.0951)

Ln materials 0.7192 (0.0773) 0.7167 (0.0765) 0.8170 (0.0666)

Ln equipment 0.2192 (0.0739) 0.2196 (0.0730) 0.3602 (0.120)

Ln labor −0.4101 (0.0645) −0.4114 (0.0638) −0.3166 (0.0770)

Ln property 0.1880 (0.0298) 0.1897 (0.0296) 0.1131 (0.0224)

λ 0.0 0.43515 2.2975
σ 0.1624 0.16933 0.29003
σu 0.0 0.06757 0.26593
σv 0.1624 0.15527 0.11575
Log-likelihood 105.0588 105.0617 155.3240
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Figure 2.16. Pooled Time-Varying Versus Time-Invariant Inefficiencies

dominated by heterogeneity not related to inefficiency. In sum, these results
are so inconsistent that, if anything, they suggest a serious specification prob-
lem with at least one of the two models. Let us turn to the cost specification to
investigate.

2.10.3.2 Stochastic cost frontiers

Estimates of the Cobb-Douglas stochastic frontier cost function are given
in table 2.12, with the least squares results for comparison. Cost and the
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Table 2.12
Estimated Stochastic Cost Frontier Models (Standard Errors in Parentheses)

Variable Least Squares Half-Normal Truncated Normal

Constant −13.610 (0.0865) −13.670 (0.0848) −13.782 (0.145)

Ln(PM /PP ) 1.953 (0.0754) 1.9598 (0.0726) 1.9556 (0.0666)

Ln(PF /PP ) −0.6562 (0.0141) −0.6601 (0.0139) −0.6590 (0.01516)

Ln(PL/PP ) −0.06088 (0.0533) −0.07540 (0.0532) −0.08667 (0.0577)

Ln(PE/PP ) −0.1935 (0.0690) −0.1840 (0.0663) −0.1652 (0.0546)

Ln y 0.01054 (0.0133) 0.01063 (0.0129) 0.007384 (0.0145)

1/2 ln2 y 0.009166 (0.00435) 0.008714 (0.00427) 0.007919 (0.00444)

Constant NA NA −0.1372 (0.777)

Load factor −0.4712 (0.103) −0.4265 (0.0992) 0.5603 (0.318)

Ln stage length 0.03828 (0.00889) 0.03495 (0.00858) −0.04397 (0.0437)

Points 0.00007144 (0.000252) 0.00001464 (0.000250) −0.0002034 (0.000285)

λ 0.0 0.88157 1.05196
σ 0.08915 0.10285 0.09214
σu 0.0 0.06801 0.06678
σv 0.08915 0.07715 0.06348
Log-likelihood 260.7117 261.1061 261.3801

remaining prices are normalized on the property price. Additional “shift fac-
tors” that appear in the cost equation are load factor, the log of stage length,
and the number of points served. These three variables affect costs the way
we might expect. Note at the outset that three of the price coefficients have
the wrong sign, so the model is suspect from this point on. But let us con-
tinue for the sake of the example. We compute the JLMS estimates of E[ui |εi]
from the MLEs of the estimated cost frontier. They are essentially uncorre-
lated (r = 0.04) with their counterparts from the production frontier. As
noted above, this adds to the impression that there is something amiss with
the specification of the model—we suspect the production model. The kernel
density estimator for exp(−ui) based on the JLMS estimates in figure 2.17
appears reasonable, and at least numerically consistent with the production
model. However, like other descriptive statistics, it does mask the very large
differences between the individual production and cost estimates. Table 2.12
also presents results for the normal–truncated-normal model in which

ui = |Ui |, E[Ui] = µ0 + µ1(load factor)i + µ2 ln(stage length)i

+ µ3pointsi

That is, these three exogenous influences are now assumed to shift the distribu-
tion of inefficiency rather than the cost function itself. Based on the estimates
and statistical significance, this model change does not appear to improve it.
Surprisingly, the estimated inefficiencies are almost the same.
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Figure 2.17. Kernel Estimator for E[exp(−ui)]

Table 2.13
Estimated Stochastic Cost Frontier Models (Standard Errors in Parentheses)

Time-Invariant Inefficiency Time-Varying Inefficiency

Fixed Random Fixed Random
Variable Effect Effect Effect Effecta

Constant NA −13.548 (0.373) NA −13.540 (0.0552)

Ln(PM /PP ) 1.7741 (0.0869) 2.0037 (0.0763) 1.8970 (0.101) 2.0092 (0.0457)

Ln(PF /PP ) −0.5347 (0.0180) −0.6440 (0.0260) −0.7115 (0.020) −0.6417 (0.00962)

Ln(PL/PP ) −0.01503 (0.0525) −0.07291 (0.0952) −0.04252 (0.0625) −0.07231 (0.0377)

Ln(PE /PP ) −0.2225 (0.0753) −0.2643 (0.0632) −0.05125 (0.0898) −0.2711 (0.0383)

Ln y −0.1990 (0.0473) 0.01781 (0.0360) 0.03840 (0.0404) 0.01580 (0.00932)

1/2 ln2 y −0.009713 (0.00824) 0.0119 (0.00833) 0.008306 (00872) 0.01221 (0.00307)

Load factor −0.4918 (0.183) −0.4482 (0.172) −0.4148 (0.180) −0.4576 (0.0500)

Ln Stage length −0.001397 (0.0114) 0.03326 (0.0378) 0.05870 (0.0133) 0.032823 (0.00443)

Points −0.0006279 (0.0005) −0.000134 (0.000743) 0.000631 (0.0006) −0.000119 (0.0002)

λ 0.0 0.58809 0.5243 0.50148
σ 0.07526 0.09668 0.10475 0.08900
σu 0.0 0.04901 0.04865 0.03990
σv 0.07526 0.08334 0.09278 0.07956
Log-likelihood 317.2061 263.2849 247.2508 262.4393

a Estimated standard deviation of w is 0.03306.

2.10.3.3 Panel-data models for costs

Table 2.13 presents estimates of the fixed-effects linear regression and Pitt and
Lee random-effects models. The behavior of the latter was discussed above.
Figure 2.18 shows the results for the Schmidt and Sickles (1984) calculations
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based on the fixed effects. Note, again, that the estimates of ui are vastly larger
for this estimator than for the pooled stochastic frontier cost or production
model. We also fit a “true” fixed-effects model with these data, with some
surprising results. The model is

ln(C/PP )it =
∑

k

βk ln(Pk/PP )+βy ln yit +βyy

(
1

2
ln2 yit

)
+ γ1(load factor)it

+ γ2 ln(stage)it + γ3pointsit +
∑

i

αidit + vit + uit ,

that is, a stochastic cost frontier model with half-normal inefficiency and
with the firm dummy variables. The log-likelihood function has two distinct
modes. At one, the values of the parameters are quite reasonable, and the value
of the log-likelihood is 247.2508, compared to 261.1061 for the linear model
without the firm dummy variables. A second maximum of the log-likelihood
occurs at the least squares dummy variable estimator—the estimated value
of λ is 0.00004226—where the log-likelihood value is 317.2061. We conclude
that this model is saturated. While the model that assumes that there is no
unobserved heterogeneity and that inefficiency is time invariant (the Pitt and
Lee model) creates extreme and apparently distorted values for the ineffi-
ciency, this model that assumes that all time-invariant effects are heterogeneity
and that inefficiency varies haphazardly over time appears to be overspeci-
fied. Finally, to continue this line of inquiry, we fit the “true random-effects
model,”

ln(C/PP )it = (α + wi) +
∑

k

βk ln(Pk/PP ) + βy ln yit + βyy

(
1

2
ln2 yit

)

+ γ1(load factor)it + γ2 ln(stage)it + γ3pointsit + vit + uit ,
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where wi picks up time-invariant heterogeneity assumed to be uncorrelated
with everything else in the model, and vit + uit are the familiar stochastic
frontier specification. This model is fit by MSL, using 100 Halton draws for
the simulations. Note that this model is an extension of the pooled stochastic
frontier model, not the Pitt and Lee model. Figure 2.19 plots the estimated inef-
ficiencies from the two true effects models. The striking agreement is consistent
with results found in other studies. In general (see Kim and Schmidt, 2000, for
commentary), the differences from one specification to another do not usu-
ally hang so much on whether one uses a fixed- or random-effects approach
as they do on other aspects of the specification. On the other hand, note also
the above findings that distributional assumptions do not appear to be a cru-
cial determinant, either. Nor, it turns out, does the difference between Bayesian
and classical treatments often amount to very much. One conclusion that does
appear to stand out from the results here, and in Greene (2004a, 2004b, 2005),
is that the assumption of time invariance in inefficiency does bring very large
effects compared to a model in which inefficiency varies through time.

A final note, the log-likelihood for the true random-effects model is
262.4393, compared to 261.1061 for the pooled model. Chi squared is only
2.666, so we would not reject the hypothesis of the pooled model. The evidence
for a panel-data treatment with these data is something less than compelling.
As a final indication, we use the Breusch and Pagan (1980) Lagrange multiplier
statistic from the simple linear model. The value is only 1.48. As a chi squared
with one degree of freedom, this reinforces the above conclusion: For these
data, a pooled model is preferable to any panel-data treatment.

2.10.4 Random- and fixed-effects models: data on U.S. banks

Data for this study are taken from the Commercial Bank Holding Company
Database maintained by the Chicago Federal Reserve Bank.85 Data are derived
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from the Report of Condition and Income (Call Report) for all U.S. commer-
cial banks that report to the Federal Reserve Banks and the Federal Deposit
Insurance Corporation. A random sample of 500 banks from a total of more
than 5,000 was used. This is a balanced panel of five observations (1996–2000)
on each of 500 banks. Observations consist of total costs, Cit , five outputs, ymit ,
and the unit prices, denoted wkit , of five inputs, xkit . The measured variables
used to construct the data set used in the analysis are described in table 2.14
(descriptive statistics are omitted for lack of meaning and interest).

The transformed variables contained in the maintained data set and used
in the study to follow (the names in the data file) are given in table 2.15. The
banking data are used typically to fit multiple-output translog models (see, e.g.,
Kumbhakar and Tsionas, 2004, 2005a, 2005b). In the interest of maintaining

Table 2.14
Data Used in Cost Frontier Analysis of Banking

Variable Description

Cit Total cost of transformation of financial and physical resources
into loans and investments = the sum of the five cost items
described below

y1it Installment loans to individuals for personal and household
expenses

y2it Real estate loans

y3it Business loans

y4it Federal funds sold and securities purchased under agreements to
resell

y5it Other assets

w1it Price of labor, average wage per employee

w2it Price of capital = expenses on premises and fixed assets divided
by the dollar value of premises and fixed assets

w3it Price of purchased funds = interest expense on money market
deposits plus expense of federal funds purchased and securities
sold under agreements to repurchase plus interest expense on
demand notes issued by the U.S. Treasury divided by the dollar
value of purchased funds

w4it Price of interest-bearing deposits in total transaction accounts =
interest expense on interest-bearing categories of total transaction
accounts

w5it Price of interest-bearing deposits in total nontransaction accounts
= interest expense on total deposits minus interest expense on
money market deposit accounts divided by the dollar value of
interest-bearing deposits in total nontransaction accounts

t Trend variable; t = 1, 2, 3, 4, 5 for years 1996, 1997, 1998, 1999,
2000



FRIED: “CHAP02” — 2007/8/24 — 19:02 — PAGE 209 — #118

The Econometric Approach to Efficiency Analysis 209

Table 2.15
Variables Used in Cost Frontier Analysis of Banking

Variable Description

C Log(Cost/w5)

y1, . . . , y5 Logs of outputs

y Log of sum of all five outputs

w1, . . . , w4 Log (w1/w5), . . . , log(w4/w5)

y11, y12, . . . 1/2 Squares and cross-products of log output variables

w11, w12, . . . 1/2 Squares and cross-products of log price ratio variables

w1y1, . . . , w4y5 Cross products of log price ratios times log outputs

t2 1/2t 2

tw1, . . . , tw4 Cross products of t with log price ratios

ty1, . . . , ty5 Cross products of t with log outputs

a simple example for our application, I have combined the outputs into a
single scale variable, which is the simple sum of the five outputs. Whether
the aggregation would be appropriate given the technology is debatable—it
would be testable—but in the interest of keeping the presentation simple,
we will maintain the hypothesis. In addition, though these data are detailed
and “clean enough” to enable estimation of translog models, we will, again
in the interest of simplicity, restrict attention to variants of the (more or less
standard) Cobb-Douglas cost function with the additional squared term in
log output.

In this application, we will examine some additional panel-data esti-
mators, including fixed-effects, random-effects, random-parameters, and the
Battese and Coelli (1992, 1995) model of systematic time variation in
inefficiency.

2.10.4.1 Estimating inefficiency and unobserved heterogeneity

The observations in this data set are relatively homogeneous. They do differ
substantially with respect to scale. However, the technology of banking is well
known and smoothly dispersed, and there is little reason to expect latent het-
erogeneity to be a major factor. In this application, we will examine the impact
of the different specifications for unobserved heterogeneity on estimates of
cost inefficiency. Table 2.16 presents estimated parameters for simplest forms
of the five common specifications:

ln

(
C

w5

)
= α + γy ln y + γyy

(
1

2
ln2 y

)
+

4∑
k=1

βk ln

(
wk

w5

)
+ v + u
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Table 2.16
Estimated Stochastic Cost Frontier Models

Pooled Time-Varying Effects Time-Invariant Effects

Variable Half-Normal Truncateda Randomb Fixed Random Fixed

Constant −0.066983 −0.16838 −0.065942 Varies 0.51228 Varies
Lny 0.66914 0.69865 0.66959 0.65829 0.58515 0.58556
1/2 ln2 y 0.023879 0.021374 0.023835 0.024922 0.030907 0.030743
Lnw1/w5 0.38815 0.38733 0.38764 0.39766 0.39721 0.38387
Lnw2/w5 0.020565 0.02010 0.020758 0.016966 0.032037 0.036016
Lnw3/w5 0.17959 0.17730 0.17995 0.17259 0.17780 0.18758
Lnw4/w5 0.13479 0.13442 0.13483 0.133419 0.13784 0.13823
λ 1.81064 18.33032 1.82158 1.88219 0.30418 0.0
σ 0.31866 3.07476 0.31796 0.40601 0.23572 0.22750
σu 0.27894 3.07019 0.27872 0.35854 0.06860 0.0
σv 0.15406 0.16749 0.15301 0.19049 0.22552 0.22750
Log-likelihood 183.9359 207.0714 184.0844 234.4165 136.6902 436.8185

a MLE of µ is 60.03185.
b MLE of σw is 0.01891958.

Pooled: ln(C/w5)it = α + βTxit + vit + uit

• This model is estimated by ML as discussed above. The JLMS estimator
is used to estimate uit .

Random Effects : ln(C/w5)it = α + βTxit + vit + ui

• This is the Pitt and Lee (1981) model, also fit by ML. The form of the
log-likelihood appears in Pitt and Lee (1981) and Greene (2000). The
JLMS estimator is used by replacing εit with ε̄i and σ2 with σ2/T (see
Kim and Schmidt, 2000).

Fixed Effects : ln(C/w5)it = α0 + βTxit + vit + (αi − α0)

• This is the Schmidt and Sickles (1984) approach, fit be ordinary
(within-groups) OLS, followed by translation of the constants:
ui = ai − min(ai).

True Random Effects : ln(C/w5)it = (α + wi) + βTxit + vit + uit

• The model is developed in Greene (2005). The parameters are estimated
by MSL. The JLMS estimator is employed by integrating wi out of
E[uit |εit (wi)]. That is, εit is a function of wi , and then wi is integrated
out of uit .

True Fixed Effects : ln(C/w5)it = αi + βTxit + vit + uit

• The model is estimated by brute force ML using the methods described
in Greene (2004a). The JLMS estimator is used directly for uit .
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Parameter estimates are given table 2.16 to enable comparison of the models.
Standard errors are omitted in the interest of brevity.

The estimated parameters are consistent across frameworks but differ
surprisingly with respect to the assumption of whether the inefficiency is
assumed to be time invariant or not. This finding is consistent with what
we have observed elsewhere. In terms of its impact on model estimates, the
assumption of time invariance seems to have much greater influence than the
difference between fixed and random effects. Note, within the assumption of
time-varying inefficiency, that neither the fixed- nor the random-effects model
is preferred to the pooled model based on the likelihood ratio statistic. (The
likelihood function rises substantially for the fixed-effects model, but with 499
degrees of freedom, the value of 100.96 is far from significant.) The truncation
model displays the characteristic erratic behavior. The technology parameters
are quite stable, but the truncation model substantially alters the estimated
distribution of uit . Superficially, the truncation model appears more reason-
able. Figure 2.20 compares the estimated distributions—the upper figure is
for E[uit |εit ] for the half-normal model.
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Table 2.17
Descriptive Statistics for Estimated Inefficiencies

Model Mean SD Skewness Minimum Maximum

Pooled 0.220143 0.127907 1.59129 0.0371616 0.795649
True fixed effects 0.255033 0.118152 1.61515 0.0658233 1.02899
True random effects 0.220369 0.130749 1.84823 0.0372414 1.18654
Random effects 0.0546 0.0168001 2.07666 0.0266957 0.165469
Fixed effects 0.291174 0.106474 0.472136 0 0.764483
Truncated normal 0.128167 0.0684533 1.96499 0.0341525 0.54011
Latent class 0.110435 0.082082 2.13809 0.0157056 0.703589
Random parameters 0.199054 0.1217 1.89409 0.0340895 1.08773

Table 2.18
Correlations among Inefficiency Estimates

Pooled Truncated True RE True FE Random Fixed

Pooled 1.00000
Truncated 0.44376 1.00000
True FE 0.99567 0.44473 1.00000
True RE 0.90975 0.10552 0.91713 1.00000
Random 0.44354 0.99716 0.44570 0.10565 1.00000
Fixed 0.44675 0.95960 0.44159 0.08743 0.96629 1.00000

FE, fixed effects; RE, random effects.

Descriptive statistics for the estimates of E[uit |εit ] (or E[ui |εit , t =
1, . . . , T ] in the case of the time-invariant models) are given in tables 2.17 and
2.18. For the time-invariant cases, consistent with the model, the fixed value
of ui is repeated for the five observations for bank i. Among the notable fea-
tures of the results are the high correlation between random- and fixed-effects
estimates, but the far lower correlations across the two modeling platforms,
time-varying and time-invariant effects. This is once again consistent with
results observed elsewhere. Finally, scatter plots of the sets of estimates are
consistent with what is suggested in tables 2.17 and 2.18. When estimates from
one model that assumes uit varies across time are plotted against another, the
estimates are essentially the same. However, as observed in Greene (2004a,
2004b), when, for example, the estimates of uit (or the group means) from
either true effects model are plotted against (repeated) ui from the model with
time-invariant inefficiency, the plot confirms that the estimates are almost
uncorrelated.

2.10.4.2 Parameter heterogeneity

Finally, we consider the two classical methods of allowing for parameter het-
erogeneity in the model, the random-parameters model and the latent class
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model, which allows for discrete parameter variation. Both depart from the
normal–half-normal stochastic frontier model.

The random-parameters model is

yit = αi + βT
i xit + vit + uit

(αi , β
T
i )T ∼ N [(α0, βT

0 )T, �].
The technology parameters are allowed to vary randomly (normally) across
firms. The marginal distributions of the random components, uit and vit ,
are assumed to be common. The model is estimated by MSL as described in
Greene (2004a).86 It is useful to digress briefly to document the computation
of the estimators of E[uit |εit ]. For convenience, let θ = (α, βT)T denote the
full vector of parameters, so θi is what appears in the model. We can write the
random-parameters component of the model as

θi = θ + wi,

where wi ∼ N[0, �].
During estimation, we go a step further, and write wi = �hi, where ��T = �
and hi ∼ N [0, I]. Then, the JLMS estimator conditioned on wi is

Ê[uit |εit (wi)] = λσ

1 + λ2

[−εit (wi)λ

σ
+ φ[−εit (wi)λ/σ]

�[−εit (wi)λ/σ]
]

,

where εit (wii) = yit − (θ + wi)
T(1, xit).

We now must integrate wi out of the expression; the unconditional
estimator will be

ˆ̂E[uit |data] = Ewi Ê[uit |εit (wi)]

=
∫
wi

λσ

1 + λ2

[−εit (wi)λ

σ
+ φ[−εit (wi)λ/σ]

�[−εit (wi)λ/σ]
]

f (wi)dwi .

(This is essentially the same as the Bayesian posterior mean estimator of the
same quantity.) We are conditioning on all the data for this observation, includ-
ing the dependent variable. Thus, what we have denoted f (wi) is actually
f (wi|datai). The simulation-based estimator will condition out the dependent
variable (for discussion, see Train, 2003, chapter 10; Greene, 2003a). The inte-
gral cannot be computed in closed form, so it is approximated by simulation.
The estimator is

ˆ̂ES[uit |data] = 1

R

R∑
r=1

f̂ir
λσ

1 + λ2

[−εit (wir )λ

σ
+ φ[−εit (wir )λ/σ]

�[−εit (wir )λ/σ]
]

,

where draws from the distribution of wi are obtained as �hi , where hi is a
vector of primitive draws from the standard normal distribution and recall
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��T = �.87 The weights in the summation are

f̂ir = Lir
1
R

∑R
r=1 Lir

,

where Lir is the joint likelihood (not the log) for the T observations for indi-
vidual (bank) i computed at θir , λ, σ. Note that the full set of computations is
done ex post based on the MLEs of λ, σ, (α0, β0), and �. (In implementation,
it is convenient to compute this quantity at the same time the simulated log-
likelihood is computed, so it does not actually require very much additional
computation—at the final iteration, these conditional estimates are present as
a byproduct of the computation of the likelihood.)

Estimation of the latent class model is described in section 2.4.9.2. For
estimates of E[uit |εit ], we use the following strategy. [Again, I sketch only
the overview. For further details, Greene (2003a, chapter 16) has additional
material.] The latent class stochastic frontier model estimates consist of
(αj , βj , λj , σj , πj), where j indicates the jth of J classes and πj is the uncon-
ditional (counterpart to “prior”) probability of membership in the jth class.
The conditional probabilities of class membership for bank i are obtained via
Bayes theorem; these equal

π(j|i) = πj L(i|j)∑J
j=1 πj L(i|j) ,

where L(i|j) is the likelihood (not its log) for bank i, computed at the parame-
ters specific to class j . (These are the counterparts to posterior probabilities in
a Bayesian treatment.) Let E[uit |εit , j] denote the JLMS estimator of E[uit |εit ]
in specific class j—that is, computed using the parameters of class j . Then, our
estimate of E[uit |εit ] is

Ê[uit |εit ] =
J∑

j=1

π(j|i)Ê[uit |εit , j].

The computations are done ex post, based on the MLEs of (αj , βj , λj , σj , πj),
j = 1, . . . , J . (As in the random-parameters model, this computation is actu-
ally done at the same time the log-likelihood is computed, each time it is
computed, so that at convergence, the estimated inefficiencies are already
computed as a byproduct of the optimization process.)

Table 2.19 contains estimates of the parameters for the pooled stochastic
frontier model, a full random-parameters model, and a three-class latent class
model. (Three was chosen more or less arbitrarily for this pedagogy. In prac-
tice, one would do a more systematic search for the right number of classes.)
The full covariance matrix for the random parameters (not shown) is com-
puted using ����T, where � is the lower triangular, Cholesky decomposition
of the correlation matrix and � is the diagonal matrix of standard deviations
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Table 2.19
Estimates of Stochastic Frontier Models with Parameter Heterogeneity

Random Parameters Latent Class

Variable Pooled Means SD 1:π1=0.2765 2:π2=0.3656 3:π3=0.3579

Constant −0.066983 0.60582 0.94844 0.97366 −1.76168 2.86413
Ln y 0.66914 0.62883 0.08092 0.48163 0.92320 0.49111
1/2 ln2 y 0.023879 0.027914 0.00763 0.039745 0.0025294 0.040041
Lnw1/wP5 0.38815 0.31048 0.06313 0.38237 0.444271 0.067207
Lnw2/w5 0.020565 0.025300 0.05939 0.064287 −0.036128 0.026086
Lnw3/w5 0.17959 0.14430 0.15692 0.15152 0.22077 −0.00040723
Lnw/w5 0.13479 0.10129 0.06767 0.143330 0.15303 −0.018279
λ 1.81064 2.27161 0.0 2.23409 1.20080 2.62612
σ 0.31866 0.29715 0.0 0.39960 0.23755 0.25030
σu 0.27894 0.27196 0.0 0.36473 0.18255 0.23392
σv 0.15406 0.11972 0.0 0.16325 0.15202 0.089073
Log 183.9359 249.0411 310.7142

-likelihood

that are shown in table 2.19. I emphasize that the estimated “standard devi-
ations” (SD) in table 2.19 are not standard errors (one would not divide the
means by the standard deviations to compute t ratios). These are the estimates
of the standard deviations of the marginal distributions of the parameters dis-
tributed across the banks in the sample. The sampling “standard errors” are
not shown below. As the results suggest, particularly in the latent class model,
there is a fair amount of variation across firms in the frontier model param-
eters. For the present purposes, the more important question is the impact
on the estimated inefficiencies. This is shown in the composite scatter plots
in figure 2.21. The two upper figures plot the heterogeneous models against
the pooled, base-case stochastic frontier model. The lower panel plots the two
random-parameters models. There is, as one might expect, strong similarity
across the three sets of estimates. Nonetheless, it is evident that the effects
are not negligible. To assess whether the greater generality of the random-
parameters approaches are indicated as necessary by the data, we can revert
back to a likelihood ratio test. For the random-parameters model, the chi-
squared statistic is 130.21 with 28 degrees of freedom (the number of free
elements in �). The critical value is 41.33, so the hypothesis of homogene-
ity would be rejected. For the latent class model, the chi-squared statistic is
253.56. The number of degrees of freedom is unclear, since if the parameters
are constrained across the three classes, the same model results regardless of
the unconditional values of πj . This suggests that 18 is the appropriate count.
If, instead, one must also assume that the three values of πj equal one-third,
then 20 is the appropriate count. In either case, the critical value would be
far below the sample statistic. Note, finally, that the framework does not pro-
vide an obvious way to choose between continuous and discrete parameter
variation.
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Figure 2.21. Estimated Inefficiencies from Pooled (top) and Random-Parameter
(bottom) Models

2.10.5 Heterogeneity in production: WHO data

These data are a country-level panel on health care attainment. The two main
variables of interest are“disability-adjusted life expectancy”(DALE) and“com-
posite health attainment” (COMP). The former is a standard variable used to
measure health care attainment. The latter is an innovative survey-based mea-
sure created by the researchers at WHO. The health attainments are viewed
as the outputs of a production (function) process and were modeled in this
fashion by WHO (2000) and Greene (2004b). Two input variables are health
expenditure (HEXP) and education levels (EDUC). There are a number of
other covariates in the data set that I view as shifters of the production func-
tion or as influences on the level of inefficiency, but not direct inputs into the
production process. The data are measured for five years, 1993–1997. How-
ever, only COMP, DALE, HEXP, and EDUC actually vary across the years; the
other variables are time invariant, dated 1997. In addition, as discussed by
Gravelle et al. (2002a, 2002b), among others, there is relatively little actual
time (within country) variation in these data; the within-groups variation for
the time-varying variables accounts for less than 2% of the total. This rather
limits what can be done in terms of panel-data analysis. However, in spite of
this limitation, this data set provides an interesting platform for placing het-
erogeneity in a stochastic frontier model. [The examples to follow will build
on Greene (2004b).] The WHO data are described in table 2.20.
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Table 2.20
World Health Organization Data on Health Care Attainment

Variable Mean SD Description

COMP 75.0062726 12.2051123 Composite health care attainment

DALE 58.3082712 12.1442590 Disability-adjusted life expectancy

HEXP 548.214857 694.216237 Health expenditure per capita, PPP
units

EDUC 6.31753664 2.73370613 Education, years

WBNUMBER 138.989286 79.8358634 World Bank country number

COUNTRY 97.3421751 54.0810680 Country number omitting internal
units

OECD 0.279761905 0.449149577 OECD member country, dummy
variable

SMALL 0.373809524 1.20221479 Zero or number if internal state or
province

YEAR 1995.21310 1.42464932 Year (1993–1997) (T = year — 1992;
Tyy = year dummy variable)

GDPC 8135.10785 7891.20036 Per capita GDP in PPP units

POPDEN 953.119353 2871.84294 Population density per square
Kilometer

GINI 0.379477914 0.090206941 Gini coefficient for income
distribution

TROPICS 0.463095238 0.498933251 Dummy variable for tropical location

PUBTHE 58.1553571 20.2340835 Proportion of health spending paid by
government

GEFF 0.113293978 0.915983955 World bank government effectiveness
measure

VOICE 0.192624849 0.952225978 World bank measure of
democratization

I have placed these data on my home page (http://http://www.stern.nyu.
edu/∼wgreene (Publications))for the interested reader who wishes to replicate
or extend our results. Some of the variables listed in table 2.20 (e.g., PUBTHE,
SMALL) are not used here but are listed as a guide for the reader. These data and
the issue they address have been analyzed and discussed widely by researchers
at many sites. Greene (2004b) is part of that discussion. I do not replicate
any of these studies here. Rather, we will use a subset of the data set (actually,
most of it) to examine a few additional models that were not estimated above.
Note some features of the data set and analysis: First, the WHO data consist
of an unbalanced panel on 191 countries plus a large number of smaller polit-
ical units (e.g., states of Mexico, Canadian provinces); 140 of the countries
were observed in all five years (1993–1997), one (Algeria) was observed in
four years, and the remaining units were all observed once, in 1997. Purely
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for convenience and for purposes of our pedagogy here, we will limit our
attention to the balanced panel of the 140 countries observed in all five years.
Second, given that the outcome variables in the model (life expectancy and
composite health care attainment) are not obviously quantitative measures
such as cost or physical output units, the numerical values of efficiency mea-
sures (uit ) have ambiguous meaning. To accommodate this, the researchers
at WHO focused their attention on rankings of efficiency measures, rather
than on values. Third, the WHO study was innovative in several respects,
notably in its attempt to include many (all) countries, in contrast to above
studies that nearly always focused on the 30 member countries of the Organi-
sation for Economic Co-operation (OECD). However, little attention was paid
in the WHO studies (Evans et al., 2000a, 2000b) to the distinction between
OECD and non-OECD countries in the results, perhaps by design. Greene
(2004b) found a striking distinction in the results between the two groups.
In short, nearly all of the “action” in the inefficiency distributions pertains
to the non-OECD observations. The OECD countries area always clustered
near the origin. This is an important angle that might be pursued in further
analysis.

The WHO study treated the process of health care provision at the national
level as a production process,

healthit = f (educationit , expenditureit ).

Whether it is reasonable to view the outcome here as an optimization process
in which agents maximized the production of “health” while using these two
inputs is, of course, debatable. For better or worse, the model employed is

ln healthit = α + β1 ln HEXPit + β2 ln EDUCit + β3 ln2 EDUCit + vit − uit .

Differences among subsequent researchers concerned the functional form, the
stochastic specification, and the method of handling the cross heterogeneity.
We will explore a few of those issues here, though not with an eye toward
commenting on other received analyses. We are interested in two modeling
aspects in this section. As noted above, in some applications, notably this
one, there are covariates that arguably affect production and/or efficiency.
The modeling question raised above is, “where do we put the z ’s?” That is,
how should measured heterogeneity enter the model? Unfortunately, there
are numerous choices, and no clearly right answer, as will become obvi-
ous presently. The number of possibilities is yet doubled here, as we have
two outcome variables to study. Without attempting to resolve the ques-
tion, I present a handful of model estimates under different formulations
to illustrate the techniques. We have no basis on which to prefer any par-
ticular one at this juncture. The interested reader may wish to continue
the analysis. The second feature we examine, briefly further below, is the
extent to which accommodating measured (and unmeasured) heterogene-
ity affects estimates of inefficiency. It is straightforward to make a case that,
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under most reasonable specifications, inappropriate treatment of heterogene-
ity will distort estimates of inefficiency. Whether it will affect rankings of
inefficiencies, which were the focus of attention in the WHO study, is, however,
unresolved.

2.10.5.1 Accommodating measured heterogeneity

We will define the vectors

xit = ln HEXPit , ln EDUCit , ln2 EDUCit ,

zi,p = TROPICSi , ln POPDENi ,

zi,e = GINIi , ln GDPCi , GEFFi , VOICEi , OECDi .

Note that the latter two are time invariant; only the outputs and inputs are
measured in all years. We will condition the production directly on zi,p . The
other vector of covariates will enter the efficiency models at various points
as shown below. Obviously, other arrangements of the variables are possible.
It seems natural that location and population density are less policy related
than the other variables and so appear more naturally as shift parameters in
the production function. Other assignments might also seem appropriate; the
interested reader may wish to experiment—for example, Greene (2004b) also
included a time trend in zi,e . Tables 2.21–2.23 present estimates for the fol-
lowing models:

Stochastic Frontier: Normal–Half-Normal (Aigner et al., 1977)

ln healthit = α + βTxit + θT
p zi,p + θT

e zi,e + vit − uit

vit ∼ N [0, σ2
v ]

uit = |Uit |, Uit ∼ N [0, σ2
u]

Normal–Truncated Normal (Stevenson, 1980)

ln healthit = α + βTxit + θT
p zi,p + vit − uit

vit ∼ N [0, σ2
v ]

uit = |Uit |, Uit ∼ N [µ + θT
e zi,e , σ2

u]

Heteroskedastic Normal (singly or doubly; Hadri, 1999, and Hadri et al.,
2003a,b)

ln healthit = α + βTxit + θT
p zi,p + vit − uit

vit ∼ N [0, σ2
vi]; σvi = σv × exp(γT

pv zi,e)

uit = |Uit |, Uit ∼ N [0, σ2
ui]; σui = σu × exp(γT

puzi,e)
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Table 2.21
Estimated Heterogeneous Stochastic Frontier Models for lnDALE

Variable Half-Normal Model Truncated-Normal Model

Constant 3.50708 3.50885 3.28004 3.90626∗
EXP. 0.066364 0.065318 0.019171 0.03532∗
EDUC. 0.288112 0.307518 0.277322 0.22911∗
EDUC.2 −0.110175 −0.12711 −0.11729 −0.12480∗
TROPICS −0.025347 −0.016577 −0.12480
LnPOPDEN 0.0013475 −0.00028902 0.0014070

Shift Production Function Production Mean of Ui
Function

Constant 2.33052∗
GINI −0.21864 −0.090319 1.90648∗
LnGDPC 0.072409 −0.0096963 −0.40107∗
GEFF −0.0088535 0.010164 —

0.0047021
VOICE 0.012679 0.016304∗ —

0.00092454
OECD −0.045681 −0.018195 −2.82321

Noise and Inefficiency Distributions
λ 5.72629 5.19739 6.31057 9.92754
σ 0.21063 0.20669 0.20223 0.20818
σu 0.21063 0.20297 0.19974 0.20713
σv 0.03623 0.03905 0.03165 0.02086
Log-likelihood 501.4585 506.1130 536.9086 859.4868

∗ Statistically significant at the 95% level.

The truncation and heteroskedasticity models can be combined and per-
muted. The formulation of the Alvarez et al (2006). scaling model shows one
possibility:

Scaling (Alvarez, Amsler, Orea and Schmidt, 2006)

ln healthit = α + βTxit + θT
p zi,p + vit − uit

vit ∼ N [0, σ2
v ]

uit = |Uit |, Uit ∼ N [µi , σ2
ui]; µi = µ × exp(γT

puzi,e)σui

= σu × exp(γT
puzi,e)

Note that the scale factors on the mean and standard deviation of the distri-
bution of uit are identical. This constraint can be relaxed, though if so, the
model no longer obeys the scaling property suggested by the authors. Alvarez
et al. suggested linear rather than loglinear scale factors. This is potentially
problematic since the linear function is not constrained to be positive, and it
is not possible to impose the constraint on the optimization procedure. As a
final candidate for a platform for the measured heterogeneity, we consider a
latent class formulation in which allows both the production and efficiency
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Table 2.23
Estimated Latent Class Stochastic Frontier Model

Variable Half-Normal Class 1 Class 2

Constant 3.28004 3.53884 2.91203
EXP. 0.019171 0.044493 0.025945
EDUC. 0.277322 0.33199 −0.072499
EDUC. −0.11729 −0.15674 0.12832
TROPICS −0.016577 −0.001768 −0.0079229
LnPOPDEN −0.00028902 −0.0033528 0.0058591
GINI −0.21864 −0.185551 −0.48646
LnGDPC 0.072409 0.016297 0.12076
GEFF. −0.0088535 0.00056079 0.13722
VOICE 0.012679 0.013583 −0.17573
OECD −0.045681 −0.022626 0.10688
Class probability 1.00000 0.83916 0.16084
λ 6.31057 1.86032 8.50170
σ 0.20223 0.071261 0.11716
σu 0.19974 0.062768 0.116365
σv 0.03165 0.033740 0.013687
Log-likelihood 536.9086 1011.858

heterogeneity to enter the production function, and the efficiency heterogene-
ity also to enter the class probabilities. The model is

Latent class (Greene, 2004a; Orea and Kumbhakar, 2004)

ln healthit |j = αj + βT
j xit + θT

p,j zi,p + θT
e,j zi,e + vit − uit

vit |j ∼ N [0, σ2
v ,j ]

uit |j = |Uit |j|, Uit |j ∼ N [0, σ2
uj ]

Class probability: πi,j = exp(τ0j + τT
j zi,e)/

∑
j exp(τ0j + τT

j zi,e)

The latent class model can be applied in a cross-section or pooled model. Since
we have a panel model, we will fit this as such—the force of the treatment is
that the class probabilities apply unchanged to all five observations for each
country.

My purpose here is to illustrate computation of the models. The JLMS
estimator of E[u|ε] is computed using all the above results. Since there are
so many combinations of the models available, each with its own implied
set of estimates, I forgo a secondary analysis of the implied inefficiency esti-
mates, with one exception. An important specification issue for analysts—the
subject of this exercise—is the effect of the measured covariates, the “zs,”
on estimates of E[u|ε] or E[exp(−u)|ε]. To pursue this issue, researchers
often estimate the generic frontier model without the covariates and then,
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Table 2.24
Second-Step Regression of Estimates of E[u|ε] on Covariates

Stochastic Frontier Production Heterogeneous Truncated Normal

Variable Estimate t-Ratio Estimate t-Ratio

Constant 0.27632 8.802 0.23059 14.790
Tropics 0.018463 3.431 0.0021116 0.790
LnPOPDEN −0.0010252 −0.905 −0.00024979 −0.444
GINI 0.15700 5.537 0.056483 4.011
lnGDPC −0.027559 −7.842 −0.019621 −11.243
GEFF. 0.010052 2.165 0.0039423 1.710
VOICE −0.0031805 −0.888 −0.0025433 −1.431
OECD 0.035059 4.661 −0.017854 −4.780
R2 0.2576678 0.5346847
SE 0.0533936 0.026517

in a second step, regress the estimated (in)efficiencies on the covariates.
Wang and Schmidt (2002) have cautioned against this, arguing that the
omission of the covariates at the “first step” is tantamount to the omit-
ted variable problem in ordinary regression. Nonetheless, this procedure is
fairly common and, indeed, is routine in the DEA literature. (In fact, the
first step of DEA provides no mechanism for including the z values in the
model, so this is to be expected.) Table 2.24 shows a second-step analysis
of the estimates from the generic model and from the truncated regression
model.

Table 2.21 shows the impact of introducing the observed indicators
of heterogeneity directly into the production model and into the mean of
Ui . The first three columns show the estimation of the half-normal model
with progressively more extensive lists of covariates. The base production
parameters change relatively little. However, the estimate of σu gets pro-
gressively smaller, though less than we might have expected. The last set of
results shows the normal–truncated-normal model, with the full set of effects
both in the production function and in the inefficiency distribution. Intu-
ition might suggest, however incorrectly, that estimation of the model with
the variables in both the production function and in E[Ui] would be diffi-
cult because of weak identification—a multicollinearity problem, if nothing
else. In fact, estimation of the model was routine. For the example, coef-
ficients that were “significant” in this model are indicated by asterisks. Of
the 19 parameters estimated in the full model, 12 “t -ratios” were larger
than 1.0, and only three were less than 0.5. Figure 2.22 shows the ker-
nel density estimators for the sample of estimates of E[ui |εi] for the least
specified model, at the left, and the most general model, at the right. The
x-axes of the two figures are the same. The much tighter distribution of the
latter is consistent with expectations about introducing heterogeneity into
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Figure 2.22. Kernel Density Estimates for Inefficiency Distributions

the model. (I have no theory at this point for the bimodality of the two
estimates.)

Table 2.22 displays the estimated parameters for models in which
the heterogeneity appears in the variances rather than the means. The
results do illustrate the computations. It is difficult to frame a prior for
whether heterogeneity in the mean of the variance would be the preferred
model. That would depend on the application. One interesting outcome
is shown in figure 2.23, which plots the estimates of E[u|ε] for the dou-
bly heteroskedastic model. Though the shape of the distribution is more
in line with priors, its range is much larger than that for the preceding
model, in which the heterogeneity is in the mean. This may suggest a
basis on which to formulate the preferred model. The third set of results
displays the Alvarez Amsler, Orea and Schmidt (2006). “scaling model.”
Again, it is difficult to form priors, but note here that the assumption
of the scaling model has the result that nearly all of the variation in ε

(and some not found before) is shifted from v to u, compared to the
truncation model in table 2.21 and the doubly heteroskedastic model in
table 2.22.

The final set of results, in table 2.23, show a two-class latent class model.
In the model estimated, the efficiency covariates, zi,e , are also determinants of
the class probabilities (in the form of a binomial logit model with these as the
independent variables).

Table 2.24 displays regression results when the JLMS estimates of E[u|ε]
are regressed on the observed indicators of heterogeneity. The estimates
computed from the half-normal stochastic frontier model contain only
expenditure, education, and its square. In those computed from the normal–
truncated-normal model, all variables listed appear in the production func-
tion, and the GINI coefficient, lnGDP, and so on, also appear in the mean of the
inefficiency distribution. Table 2.24 reveals that the heterogeneity significantly
improves the prediction of E[u|ε]. The stochastic frontier results confirm
our expectation, that omitted heterogeneity is an important element of the
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Figure 2.23. Kernel Density for Inefficiencies on Doubly Heteroskedastic Model

measurement of inefficiency in these data. Intuition might suggest some-
thing amiss in the normal–truncated-normal results. Since the heterogeneity
is already in the equation, shouldn’t it be absent from the residuals? Yes, but
no, because the JLMS estimator of E[u|e] is not the residual; it is explicitly
a function of the data. Thus, there is no surprise in the normal–truncated-
normal results in table 2.24. Note also that the fit of the “regression” is
considerably in the truncated-normal model. The much lower value of s
(0.0265 vs. 0.0534) reflects the purging of these heterogeneity effects from
the estimates of inefficiency. Table 2.24 casts no light on whether the omis-
sion of heterogeneity has significantly impacted the estimates of E[u|ε],
save for the apparently lower values. Figure 2.24 plots the two sets of esti-
mates against each other.88 What the figure reveals is that there is much less
correlation between the two than one might hope for—the simple corre-
lation is about 0.7. If we correlate the ranks, instead, the rank correlation
is about 0.65. As a final exercise, we compute the country means of the
estimates and then compute the ranks. The scatter plot of the two sets
of ranks is shown in figure 2.25. The plot is illuminating. It shows, first,
that, in fact, the rankings are crucially dependent on the treatment of het-
erogeneity. This was the original premise in Greene (2004b). Second, the
nicely arranged line of points at the upper left of the figure consists of
the 30 OECD countries whose high rankings (low estimates) are clearly
evident.

2.10.5.2 The effect of mishandled heterogeneity on inefficiency
measurement

The possibility that unmeasured heterogeneity could masquerade as technical
inefficiency has at least an intuitive appeal. To examine the issue, let us compare
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the estimates of E[u|ε] from a generic, surely underspecified model,

ln healthit = α + βTxit + vit − uit ,

to several alternatives:

• True random effects: ln healthit = (α + wi) + βTxit + vit − uit
• True fixed effects: ln healthit = αi + βTxit + vit − uit
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• Heterogeneous truncated-normal model

ln healthit = α + βTxit + θT
p zi,p + vit − uit

vit ∼ N [0, σ2
v ]

uit = |Uit |, Uit ∼ N [µ + θT
e zi,e , σ2

u]
In each case, our expectation is that the explicit treatment of heterogeneity
(unobserved or measured) should purge the disturbance of this effect. The
interesting question is whether the effect being purged would have initially
been placed in uit (our conditional mean estimate of it) or in vit . [Note that
there is no ambiguity about the outcome in the deterministic frontier method-
ology analyzed, e.g., in Cornwell et al. (1990) and in Schmidt and Sickles (1984)
or in the Pitt and Lee (1981) random-effects model. A demonstration of the
effect in these data appears in Greene (2004a, 2004b).]

Table 2.25 gives descriptive statistics for the four sets of estimates of
E[uit |εit ] for both health outcomes. Note, first, that the assumption of the
true random-effects model, that the unobserved heterogeneity is uncorre-
lated with the observed variables, seems extremely unlikely to be correct. The
results in table 2.25 seem consistent with this: The estimated inefficiencies
are an order of magnitude smaller than the other three. For the others, we
see the anticipated effect. The average values are significantly smaller for the
models that accommodate heterogeneity (truncation and true fixed effects).
The kernel density estimators in figure 2.26 show that the latter distributions
are also much tighter. The left pair is for DALE ; the right is for COMP. The
upper figure of each pair is the density estimator for the results based on the
true fixed-effects estimator. The lower one is the estimator for the base model
with no terms for heterogeneity.

Table 2.25
Descriptive statistics for Estimates of E[u|ε]
Model Mean SD Minimum Maximum

Ln DALE

Base 0.11580 0.061660 0.12211 0.21060
True fixed effect 0.077081 0.012237 0.042582 0.17549
True random effect 0.011091 0.0059746 0.0013537 0.074813
Truncation 0.088570 0.043287 0.0094572 0.13648

Ln COMP
Base 0.069964 0.034603 0.0075750 0.11065
True fixed effect 0.042728 0.010689 0.018934 0.13264
True random effect 0.0 0.0 0.0 0.0
Truncation 0.038745 0.014894 0.00308415 0.048302
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2.11 Conclusions

Current practice includes two approaches to efficiency measurement: the
programming approach and the econometric approach. The deterministic
frontier models presented in section 2.3 represent a hybrid of these two
approaches. Although it is difficult to draw general conclusions from a single
study, the results of this one concur with the common perception that the
main advantage of the econometric approach lies in its ability to shift the
deleterious effect of measurement error away from estimates of efficiency. The
values produced by the deterministic estimators section 2.10.3 seem not only
to be implausibly large, but also to distort the expected relationship between
cost and production frontiers.

The stochastic frontier approach has a number of virtues, notably its
internal consistency and its ease of implementation. For single-equation,
cross-section analysis, with modern computer software, the stochastic frontier
model is not appreciably more complex than a linear regression model. The
possibility of adding a shift parameter to it, and the numerous interesting ancil-
lary calculations derived by Jondrow et al. (1982) and Battese and Coelli (1992,
1995) suggest that the half-normal model is the most useful formulation. Other
variants such as the truncated-normal model with heterogeneity in the mean
allow for great flexibility in the modeling tools.
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Panel data open up numerous interesting possibilities. Approaches based
on regression analysis of the fixed- and random-effects models have the appeal
of robustness and the potential for a consistent estimator of inefficiency. The
fixed-effects model does carry with it the necessity that the analyst revert back,
essentially, to the deterministic frontier model. The random-effects model,
on the other hand, has the appeal of the single-equation stochastic frontier.
However, as in other settings, the drawback to this approach is that the effects
must be assumed to be uncorrelated with the regressors (factors). This is likely
to be minor in this context. It is routinely assumed in any event. The impact
of the assumption of time invariance of inefficiency seems to be the one large
effect of model specification. Consistent with other researchers, we have found
in this study that estimates of technical and cost inefficiency are quite robust
to distributional assumptions, to the choice of fixed or random effects and
to methodology, Bayesian versus classical, but they are quite sensitive to the
crucial assumption of time invariance (or the lack thereof).

Notes

1. Some econometric issues that arise in the analysis of primal productions and
dual cost functions are discussed in Paris and Caputo (2004).

2. Some current research is directed at blurring this distinction by suggesting a
statistical underpinning for DEA. Because DEA is the subject of subsequent chapters
in this book, I do not visit the topic here.

3. A more complete listing appears in chapter 1.
4. A second edition of the latter is forthcoming as of this writing.
5. This does not fully solve the problem of zero values in the data, because the

appropriate standard errors for the Box-Cox model still require the logarithms of the
variables. See Greene (2003a, p. 174).

6. A few other applications do note the idea, including Koop et al. (1994, 1997),
Tsionas (2002), and Kumbhakar and Tsionas (2005a). Mention of the “regularity con-
ditions” (to be kept distinct from the regularity conditions for maximum likelihood
estimators) is common in the frontier applications, though relatively few actually
impose them. It is more common to “check” the conditions after estimation. For
example, Farsi and Filippini (2003) estimated a translog cost frontier for Swiss nursing
homes and observed ex post that the estimated parameters did not satisfy the con-
cavity conditions in the input prices. This result was attributed to the price-setting
mechanism in this market.

7. Førsund et al. (1980, pp. 21–23) argue that economic dogma has essentially
painted its proponents into a corner. Every action taken by an economic agent must
be efficient, or else it would not have been taken. This takes a bit of artful footwork in
some cases.

8. See chapter 1 for a more complete exposition.
9. There is a tendency on the part of many authors in economics to equate an

estimation technique with a model. In few places is this more evident than in the
literature on DEA.
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10. A crucial assumption that was discussed early in this literature, but is now
implicit, is that there is no correlation between xi and εi in the model. Refer to Zellner,
Kmenta, and Dreze (1966) for discussion of the proposition that deviations of the
observed factor demands xi from the cost-minimizing or profit-maximizing values
could be uncorrelated with the deviation of yi from its ideal counterpart as specified
by the production function. Further discussion and a model specification appear in
Sickles and Streitweiser (1992).

11. See Richmond (1974) for the application to this distribution. Afriat (1972)
examined TEi similarly under the assumption of a beta distribution.

12. See Greene (1980a) for discussion.
13. See Greene (1980a) for technical details and Deprins and Simar (1985, 1989b)

for some corrections to the derivations.
14. See Christensen and Greene (1976) for discussion. The outer transformation is

strictly monotonic, and the inner function is linearly homogeneous.
15. The constrained linear programming solution is not the maximizer of the log-

likelihood function.
16. This is an antecedent to the recent DEA literature (e.g., Bankar, 1993,

1997) that has attempted to cast the linear programming approach as the max-
imizer of a log-likelihood function. An application, among many, that compares
econometric approaches to this linear programming methodology is Ferrier and
Lovell (1990).

17. As we can see from the expression for E[e−ui ], when θ = 1, E[e−ui ] is 2−P ,
which is Richmond’s result.

18. For discussion, see Lovell (1993), Ali and Seiford (1993), and chapter 3 of this
volume.

19. For extensive commentary on this issue, see Schmidt (1985). Banker and Maindi-
ratta (1988) show how DEA gives an upper bound for efficiency. With input price data,
one can also use the technique to compute a lower bound.

20. An application that appeared concurrently is Battese and Corra (1977).
21. Recent research has begun to investigate the possibility of correlation across

the two components of the composed disturbance. The econometric issues are con-
siderable; e.g., identification is a problem. The underlying economics are equally
problematic. As of this writing (mid-2007), the returns on this model extension are far
from complete, so I eschew further consideration of the possibility.

22. See Schmidt and Lin (1984) for this test and Coelli (1995) for a slightly different
form of the test. The statistic appears in a slightly different form in Pagan and Hall
(1983).

23. This need not be the case. The skewness of εi is entirely due to ui , and as
long as ui is positive, in fact, the skewness could go in either direction. Nonetheless,
in the most common formulations of the stochastic frontier model, involving the
normal distribution, the skewness provides an important diagnostic check on the
model specification.

24. See Train (2003), Greene (2003a, section 17.8; 2005), and Greene and Misra
(2003).

25. The derivation appears in many other sources, e.g., Pitt and Lee (1981), Greene
(1990), and Kumbhakar and Lovell (2000).

26. An alternative parameterization that is convenient for some other forms of the
model is γ = σ2

u/σ2. See Battese and Corra (1977), Battese (1992), Coelli (1991), and
Greene (2000, chapter 28).
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27. The standard statistics, LM, Wald, and LR, are quite well defined, even at λ = 0,
which presents something of a conundrum in this model. There is, in fact, no problem
computing a test statistic, but problems of interpretation arise. For related commen-
tary, see Breusch and Pagan (1980). The corresponding argument regarding testing for
a one-sided error term would be the same. In this case, the parametric “restriction”
would be λ → +∞ or (1/λ) → 0, which would be difficult to test formally. More
encouraging and useful results are given in Coelli (1995), who shows that the likeli-
hood ratio statistic has a limiting distribution that is a tractable mix of chi-squared
variates.

28. The log-likelihood for the normal–half-normal model has two roots, one at OLS
with λ = 0 and one at the MLE with positive λ. In the event noted, the first solution
is “superior” to the second.

29. It does create a bit of a dilemma for the practitioner. In itself, the result is an
important diagnostic for the model specification. However, it does not carry over to
other model formulations and more elaborate extensions. As such, one might choose
to proceed despite the warning. Then again, some of the estimators of these elaborate
models use the“plain vanilla”ALS frontier estimates as starting values for the iterations.
In this case, at least the warning will be heard. I note, for the benefit of the practitioner,
that the occurrence of this result is not indicative of a problem with the data or the
software—it signals a mismatch between the model and the data. The appropriate
conclusion to draw is that the data do not contain evidence of inefficiency. A more
encouraging result, however, is that this result is specific to the half-normal model
above. Other formulations of the model, or more highly developed specifications,
might well reveal the presence of inefficiency. That is, this finding can emerge from
several sources.

30. Of course, this assumption is no less restrictive than half-normality.
31. One apparently reliable strategy is based on OLS for the slopes, and the method

of moments for the remaining parameters.
32. My literature search returned roughly 35 references in total. Most are described

in the various sections to follow, so I eschew a rote listing of them here. I will wait for
my next edition of this survey before applying any generic appellation to the nascent
Bayesian literature, because at least 16 of those 35 studies were produced by the same
four authors. Suffice to say, as of this writing, the Bayesian methodology has made a
significant contribution to the larger literature.

33. Other treatments that contain useful entry-level introductory material are
Osiewalski and Steel (1998), Kleit and Terrell (2001), Tsionas (2001a), and Kim and
Schmidt (2000).

34. Impressions (and assertions) to the contrary notwithstanding, neither Bayesian
nor classical procedures estimate ui , conditionally or otherwise. They estimate the
conditional mean function, E[ui |data], the mean of the conditional distribution of the
population that generated ui . Section 2.8 revisits this issue.

35. For the production or cost model, Koop and Steel (2001) suggest a refinement
to include p(β) ∝ an indicator function that includes the regularity conditions. [This
device is used by Kleit and Terrell (2001).] For example, in a Cobb-Douglas model,
we require the elasticities to be positive. As stated, their “indicator function” cannot
actually be a “prior” in a flexible functional form, since the regularity conditions are
only local and functions of the present data. Given the ambiguity, we will maintain
the simpler prior over the technology parameters and leave the question to be resolved
elsewhere.
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36. Note a point here that appears to have been lost in the received Bayesian
applications that frequently cite the shortcomings of the JLMS (Jondrow, Lovell,
Materov, and Schmidt, 1982) “estimator” of ui . The conditional mean being esti-
mated at the data augmentation step of the Gibbs sampler is precisely the same
conditional mean function that is computed by the classical estimator using the JLMS
results. This is not surprising, of course, since, in fact, conditional means are all that
can be estimated in this context under either methodology. I return to this point
below.

37. The closed form for a few integer values may be found in Amemiya (1973).
38. However, there is some evidence given by van den Broeck et al. (1994) that

Greene’s results may have been influenced by some complications in the numeri-
cal procedures. Coincidentally, these authors (p. 17) likewise experience considerable
difficulty in estimating a nonzero µ in the truncated-normal model.

39. The difficulty lies in accurately computing the moment of the truncated normal
distribution [the q(r , εi) function]. An equally complex model that has also not been
used empirically is Lee’s (1983) four-parameter Pearson family of distributions.

40. The authors obtain some results in this study which suggest that Greene’s results
were heavily influenced by the method of approximating the integrals q(r , εi). Their
results are reasonably strong, though clearly the extension to noninteger P would be
useful.

41. Estimation of the posterior mean of uit requires sampling from the truncated
normal distribution. Tsionas (2002) suggests acceptance/rejection and a modification
thereof for the troublesome tail areas. The inverse probability transformation discussed
above would be an improvement.

42. In my literature search, I found, up to mid-2005, roughly 35 applications of
Bayesian methods to frontier modeling; five of these, those mentioned above, use the
Christensen and Greene (1976; CG) data, and one (Kleit and Terrell, 2001) builds on
the principles in CG but uses an updated data set. [The widely circulated “classical”
study by Bera and Sharma (1999) also uses these data.] Curiously, Kleit and Terrell
(2001) argue that the CG data are outdated (possibly so), but also that the CG data
were a “limited sample of fossil fuel electric generators” (p. 524). In fact, the CG 1970
firm-level sample contained within a percent or two the entire universe of privately
owned fossil-fueled generators in the United States in 1970, whereas their updated
plant-level data set included 78 of the several hundred U.S. generators in 1996. This
adds a useful layer to the use of the CG data as an application. While the Bayesian
methods limit their inferences to the sample data, classical (“asymptotic”) methods
attempt to extend the reach of the results to the broader population. But, for these
data, in that year, the sample is the population. There remains, therefore, some scope
for researchers to dig a bit deeper and examine the differences between Bayesian and
classical results—small though they usually are. It is also striking that, although one
of the oft-touted virtues of the Bayesian methodology is that it enables the researcher
to incorporate “prior information,” not one of these six studies used a single result
from CG or any of the other studies in formulating their “priors” for any of the model
parameters or the inefficiency estimates. In the same fashion, several studies (e.g.,
Tsionas, 2000b; Smith, 2004) have used the airline panel data in Greene (1997), but,
again, none of these found useful prior information in any of the predecessors. I note
(only) three studies: Tsionas (2001b), in which prior (DEA efficiency) estimates are
incorporated in the estimation priors, and Kim and Schmidt (2000) and O’Donnell
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and Coelli (2005), which use the classical MLEs for the variance parameters, for the
study at hand.

43. Of course, once they are added to commercial software, the issue of difficulty of
implementation becomes a moot point.

44. See van den Broeck et al. (1994), Osiewalski and Steel (1998), Koop and Steel
(2001), and Tsionas (2001a) for surveys and introductory analyses.

45. This is to be expected given the well-known result that, in the presence of dif-
fuse priors, the Bayesian posterior mean will converge to the mode of the likelihood
function—in the absence of prior information, the likelihood function dominates the
Bayesian estimator. See Kim and Schmidt (2000) for commentary.

46. The results are extended in Lee (1993), who addresses the issue of inference in
the stochastic frontier model at the boundary of the parameter space, λ = 0.

47. There is a complication in the Bayesian approach to estimation of this model that
does not arise in the classical method—the “labeling problem.” A Bayesian estimator
must actually decide a priori which class is which and make a distinction during
estimation. An approach that is sometimes used is to identify as “class 1” the class with
the largest prior class probability, and the others similarly. The classical MLE just allows
the classes to fall out of the maximization process.

48. The authors analyzed the truncated-normal model and considered a cost frontier
model. I have simplified the formulation a bit for purposes of the description, and
changed the parameterization slightly, as well.

49. There is a minor ambiguity in Kumbhakar et al. (2005). The authors define m
to be the number of parameters in the model, but the definition of the kernel function
is only consistent with m equal the number of variables in xi.

50. Koop (2001) also applied this approach to the output of major league baseball
players were the four outputs are singles, doubles and triples, home runs, and walks and
the“inputs” are time, team, and league dummy variables—illustrative of the technique,
but perhaps of limited policy relevance.

51. See Christensen and Greene (1976).
52. Some additional useful related results appear in Kumbhakar (1991b) and in

Kumbhakar and Lovell (2000).
53. Note what would be the utility of the Førsund and Jansen’s (1977) input-oriented

efficiency formulation, yi = F [f (TEi xi)]. Under this assumption, the cost function
would always be of the form ln Ci = ln F−1(y) + ln c(wi) − vi − ln TEi . See Alvarez,
Arias, and Greene (2005) for an analysis along these lines that explicitly accounts for
the internal relationships and Alvarez et al. (2004) for an analysis of mixtures of input
and output-oriented inefficiency models.

54. The lack of invariance to the units of measurement of output also conflicts with
the useful Farrell measure of economic efficiency.

55. As I noted in the preface (section 2.1.5), my apologies to the very large number
of researchers whose work is not listed here. For these two industries, there are scores
of applications, and in the interest of brevity, I can list only a few of them. Those chosen
are only illustrative of these very large literatures.

56. In a remarkably obscure study, Greene (1983) proposed a translog cost model in
which all parameters were of the form θk,t = θk,0+θk,1t . The Kurkalova and Carriquiry
(2003) study does likewise, although with only two periods, their formulation is much
simpler. Cornwell et al. (1990) added a quadratic term, θk,2t2.

57. This approach has become essentially standard in the DEA literature.
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58. It does not follow automatically that biases in the estimates of the parameters
of the production or cost function will translate into biases in estimates of inefficiency
(though the evidence does suggest it does). In a linear regression model, omitted
variable biases in coefficients do not always translate into biases in forecasts. Under
some reasonable assumptions, one can, e.g., safely truncate a distributed lag model.

59. These models are anticipated in Kumbhakar and Hjalmarsson (1995), who
proposed representing time-varying inefficiency with equivalents to these models.
Their proposed estimators do not maintain the stochastic frontier specification, how-
ever. Methodological issues are discussed in Heshmati and Kumbhakar (1994) and
Kumbhakar and Heshmati (1995).

60. Swamy and Tavlas (2001) label these “first-generation” and “second-generation”
methods. In the current literature, one can find a vast library of treatments on “mixed”
models,“hierarchical”models,“multilevel” models, and“random-parameters”models,
all of which are the same. Applications can be found in every area in the social sciences.

61. Their study demonstrated, as one might guess from the functional form, that
ignoring heteroskedasticity of this form would lead to persistent biases in MLEs of the
production or cost function parameters.

62. A Monte Carlo study of the properties of this model is Guermat and Hadri
(1999). The exponential model with nonmonotonic effects on estimated inefficiency
is examined at length in Wang (2002). An application of the doubly heteroskedastic
model is Hadri et al. (2003a, 2003b).

63. See Schmidt and Sickles (1984).
64. There seems to be a presumption in some writings that the fixed-effects model

when fit to panel data must be computed by using the “within” transformation (devi-
ations from group means). In fact, this is merely a means to another end and, with
modern software, some of which is quite capable of estimating regressions with hun-
dreds of coefficients (even with desktop computers), may be quite unnecessary. The
point is that this ought not to be construed as any sort of model in itself; it is merely a
computational device usable for solving a practical problem. Note this is the motivation
behind Greene’s (2005) “true” fixed-effects model.

65. For example, their model involved 14 basic coefficients and a [α, γ, δ]i for each
of eight firms, a total of 38 coefficients. This is well within the reach of any modern
regression package, even on a desktop computer. The point is that there are few practical
obstacles to computing estimators for the various frontier models given the current
state of computer software.

66. Kumbhakar (1991a) proposes a hybrid of the frontier model and a two-way
random-effects model. The disturbance specification is εit = wi + ct + vit − uit

(my notation) in which wi , ct , and vit constitute, with normal distributions, a more
or less conventional model by Balestra and Nerlove (1968), but uit is the truncation
of a normally distributed variable with mean µit (which may depend on exogenous
variables). Thus, the fact that uit is positive embodies the frontier aspect of the model,
but the panel nature of the model is carried by wi and ct . Once again, this is essentially
the same as Greene’s (2004a) true random-effects model.

67. In the Bayesian framework, the distinction between fixed and random effects
does not have the same interpretation as in the classical framework. As will be evident
momentarily, the distinction becomes simply whether the inefficiencies are treated as
parameters or as missing data. Estimation is the same either way.

68. Greene and Misra (2003) discuss simulation-based estimation of this quantity
for cases in which the precise functional form is not known.
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69. For the gamma model, E[ur
it |εit ] = q(P + r − 1, εit )/q(P − 1, εit ).

70. I have also investigated experimentally the relationship between the JLMS esti-
mator and the actual inefficiencies when the latter are “known.” Not surprisingly, I
found that the overall quality of the estimator degrades with smaller λ values, that is,
with larger noise components, v . What was a bit surprising was that the JLMS estimator
tends systematically to underpredict u when u is small and overpredict it when u is
large—again, with improvement as λ increases.

71. There is one other small point that might be considered in either a Bayesian
or a classical context. The interval thus constructed is not as short as it might be. In
order to encompass 100(1 – α)% of this asymmetric distribution, with the narrowest
interval possible, we should find the equivalent of the Bayesian HPD interval. For the
truncated normal distribution, we can actually deduce what this is. Suppose we wish
to capture 95% of the mass of the distribution. For a density in which more than 2.5%
of the untruncated distribution is to the left of zero (and this will be most of the time),
the shortest interval will be from zero to the 95th percentile of the truncated normal
distribution. By construction, this interval will be shorter than one that puts 2.5% of
the mass from zero to L and 2.5% of the mass to the right of U . A simple figure makes
this obvious.

72. See Bera and Sharma (1999) and Hjalmarsson, Kumbhakar, and Heshmati
(1996). Bera and Sharma also provide the expressions needed for the Battese and
Coelli measures, E[TEi |εi].

73. There have been a number of panel-data analyses of this industry, including
Sickles (1987), Sickles, Good, and Johnson (1986), Schmidt and Sickles (1984), Good,
Nadiri, Roller, and Sickles (1993), Good, Roller, and Sickles (1993), Good, Roller, and
Sickles (1995), Good and Sickles (1995), and Alam and Sickles (1998, 2000), and the
references cited therein.

74. Results extracted from other studies, notably the Bayesian estimates reported
in section 2.10.2.1, were not replicated here. Researchers who wish to replicate those
results should contact the original authors.

75. There are no general-purpose econometric packages that specifically contain
MLEs for deterministic frontier models, though there are any number of programs
with which the linear and quadratic programming “estimators” can be computed.
Likewise, the gamma model with only one-sided residuals can be programmed but
presents an exceedingly difficult problem for conventional estimation.

76. A separate package,downloadable at no cost (as is Frontier 4.2),distributed by the
Center for Efficiency and Productivity Analysis at the University of Queensland in Aus-
tralia, can be used for DEA (http://http://www.scripting.com/frontier/newReleases/
Frontier42.html).

77. The lack of replicability in empirical econometrics has been widely documented
and is, ultimately, a major challenge and shortcoming of a large amount of contempo-
rary research (see, e.g., Anderson et al., 2005). Even a cursory reading of the Bayesian
applications of stochastic frontier modeling will suggest how difficult it would be to
replicate this type of work the way it is currently documented.

78. The original data set contained the 123 observations discussed above and 35
holding company aggregates of some of the firms. My data file contains all 158
observations, but we will be using only the 123 firm-level observations.

79. Using the standard deviation of ui rather than the mean as the initial esti-
mator of γ to form the weighting matrix led to an implausible value of θ in excess
of 6.0.
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80. The parameter heterogeneity feature of these two applications takes the model
in a different direction. It appears that this feature has induced the peculiar findings
with respect to inefficiency, but that is aside from the specification issue.

81. Their conclusion,“This paradigm thus allows direct posterior inference on firm-
specific efficiencies, avoiding the much criticized two-step procedure of Jondrow et al.
(1982),” overreaches a bit. Subsequent researchers continue to rely comfortably on
JLMS and the extensions suggested by Horrace and Schmidt (1996), Bera and Sharma
(1999), and Kim and Schmidt (2000). And, as shown above, the Bayesian posterior
estimators are essentially the same as the classical JLMS estimator.

82. Kim and Schmidt (2000) found, likewise, that the Bayesian and classical estima-
tors when applied to the same model under the same assumptions tended to produce
essentially the same results.

83. It appears that there might have been some small differences in the data used—
the “fixed-parameter” estimates reported seem to resemble, but not quite equal, our
classical, least squares estimates or our normal–gamma estimates. Because we are
interested here only in the methodology, I leave it to subsequent researchers to fine-tune
the comparison.

84. If we restrict the sample to only the firms with all 15 years of data, the entire
problem vanishes, and there is no problem fitting the stochastic production frontier
model. As a general rule, we would not do the specification search in this fashion, so
we will not pursue this angle.

85. These data were developed and provided by S. Kumbhakar and E. Tsionas. Their
assistance is gratefully acknowledged here.

86. This model as given would be the classical counterpart to a hierarchical Bayes
formulation, e.g., in Tsionas (2002). The fixed values of λ and σ would correspond to
flat priors, which would lead to the MLEs.

87. In our implementation of this procedure, we do not actually use random draws
from the distribution. The terms in the simulation are built up from Halton sequences,
which are deterministic. Details on this method of integration appear in Train (2003)
and Greene (2003a).

88. The wall of points at the right in the scatter plot is the value produced for
relatively extreme observations, where the numerical limit of our ability to compute
the standard normal CDF is reached: at about 8.9 standard deviations.
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