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Abstract

The maximum likelihood estimator in nonlinear panel data models with fixed effects is widely understood (with a few exceptions) to be biased and inconsistent when T, the length of the panel, is small and fixed.  However, there is surprisingly little theoretical or empirical evidence on the behavior of the estimator on which to base this conclusion. The received studies have focused almost exclusively on coefficient estimation in two binary choice models, the probit and logit models.  In this note, we use Monte Carlo methods to examine the behavior of the MLE of the fixed effects tobit model. We find that the estimator’s behavior is quite unlike the estimators of the binary choice models. Among our findings are that the location coefficients in the tobit model, unlike those in the probit and logit models, are unaffected by the ‘incidental parameters problem.’ But, a surprising result related to the disturbance variance estimator emerges instead – the finite sample bias appears here rather than in the slopes. This has implications for estimation of marginal effects and asymptotic standard errors, which are also examined in this paper.  The effects are also examined for the probit and truncated regression models, extending the range of received results in the first of these beyond the widely cited biases in the coefficient estimators.
Keywords:  Panel data, fixed effects, computation, Monte Carlo, tobit, bias, finite sample, incidental parameters problem.
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1.  Introduction

The ‘incidental parameters problem’ of the maximum likelihood estimator in the presence of fixed effects (MLE/FE) was first analyzed by Neyman and Scott (1948) in the context of the linear regression model. [See, also, Lancaster (2000).] (Throughout this discussion, the MLE/FE is understood to be the full, unconditional maximum likelihood estimator of all the fixed effects (FE) model parameters including the N dummy variable coefficients.)  Numerous subsequent analyses have examined in detail the MLE/FE in the logit and probit binary choice models. The uniformity of the results has produced a common view that the MLE/FE is, with a few exceptions such as the FE Poisson regression model, generally inconsistent when T, the length of the panel is fixed.
  In the models that have been examined in detail, it appears also to be biased in finite samples. In fact, the only received analytic results in this regard are those for the binomial logit model with T = 2. [See Hsiao (1996) and Abrevaya (1997).
]  Other results on this phenomenon are based on (numerous) Monte Carlo studies of binary choice estimators. [See, e.g., Heckman (1981), Allison (1996, 2002) and Katz (2001).
] The now standard ‘result’ is that the fixed effects estimator is inconsistent and substantially biased away from zero when group sizes are small (e.g., by 100% when T = 2), with a bias that diminishes with increasing  group size.  [See  Kalbfleisch and Sprott  (1970),  Andersen  (1973)  and  Hsiao

(1996).] However, Heckman’s (1981) widely cited Monte Carlo study of the probit model found, in contrast, that the small sample (T = 8) bias of the MLE/FE appeared to be surprisingly small, and toward zero. There is very little received evidence on the behavior of the MLE/FE in other models, and none with respect to other quantities such as marginal effects or asymptotic standard errors.

In this study, we will briefly revisit the probit binary choice model, then turn to the tobit and truncated regression models for censored and truncated data to suggest that the incidental parameters problem is more varied and complicated than the received literature would suggest.  Our analysis of the probit model suggests that the widely cited result for T greater than 2 suggested by Heckman’s study (with T = 8) is incorrect.  The behavior of the MLE/FE for that case seems to be in line with what intuition would suggest, that is, the bias continues to be upward, but diminishes with increasing T.  The tobit model is then examined to study the generality of the result.  Here, we find that the received result is not general at all.  The MLE/FEs of the slopes in the tobit model seem not to be biased in either direction. However, the MLE/FE of the variance parameter in the tobit model seems to be biased downward, so the incidental parameters problem persists, though not where one might have expected it.  This result has implications for estimation of marginal effects and asymptotic standard errors in the tobit model, which are examined here as well.  Finally, it is tempting to conclude that the incidental parameters problem affects only the variance parameter in a model with continuous variation in the dependent variable – this would parallel the Neyman and Scott results.  However, a brief look at the truncated regression model suggests that this would be incorrect as well.  We conclude that the ‘incidental parameters problem,’ such as it is, has different effects in different contexts.

Inconsistency in the fixed effects setting takes two forms.  We can show in general terms that the MLE/FE of the main model parameters (e.g., the slopes, () converges to its expectation – though that may not equal (.  The estimators of the dummy variable coefficients, (i, however, do not.  Each is based, ultimately, on a fixed sample of size T. (To show this, assume that the main parameters are known and maximize the log likelihood with respect to (i. See Section 2 below.)  The MLE/FEs of (i could be unbiased  but inconsistent because its asymptotic variance is O(1/T).  We find below that the MLE/FE of ( in the fixed effects model does converge in mean square to its expectation.  (Hahn and Newey (2002) show that the estimator has an expectation, and we show below that the asymptotic variance is O(1/N).] .  But, it is evident that at least in some cases (e.g., the probit model), those expectations are not the parameters themselves, so in these cases, the estimator is inconsistent in the more familiar sense of converging to the ‘wrong’ value. In this study, we are interested solely in the finite sample expectation of the maximum likelihood estimator, in particular, in the bias of the estimator when T is fixed.  Consistency in N with fixed T is a different issue that will not be pursued here.  Unbiasedness (to the extent we can infer it from Monte Carlo results) would imply consistency in mean square but, by implication, a persistent bias with fixed T would likewise imply inconsistency in the familiar sense of convergence in mean square to a parameter other than that ostensibly the object of estimation.  

The discussion is organized as follows:  The fixed effects model and the maximum likelihood estimator are discussed in Section 2.  The relevant received results are revisited here as well.  The experimental design for the Monte Carlo study is described in Section 3.  Three sets of results are given in Section 4.  The probit model is examined first. The results on estimation of the main parameters concur with others already in the literature.  We will extend these results to some computations not previously considered, marginal effects and asymptotic standard errors.  This section focuses on the effect of sample size (T) in a (hopefully) ordinary setting with respect to other model parameters, balance of the values of the dependent variable, and so on.  A much more extensive analysis of the tobit model follows, including variation in numerous aspects of the underlying population such as degree of censoring, different values of the parameters, different distributions for the regressor and variation in the degree of correlation between the effects and the included variables.  Finally, to continue the thread of the argument with respect to the (lack of) generality of any specific characteristic of the incidental parameters problem, we present some results for the truncated regression model.  For this model, the outcome would not have followed obviously either from received results or from any of our own results for the other two models considered.  Some conclusions are drawn in Section 5.

2.  The Fixed Effects Model and the maximum likelihood

     Estimator

The log likelihood function for a sample of N sets of T observations is

logL  =  
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, i = 1,…,N, t = 1,…,T,

where f(...) is the density that defines the model being analyzed (e.g., the tobit, probit, truncated regression, Poisson, or other). The model contains K ‘main’ parameters ( and ( - ( is any ancillary parameters such as the disturbance standard deviation, (, in the tobit model, or a null vector in, e.g., the probit model - and N ‘nuisance’ parameters, ( = [(1,...,(N](,  The group size, Ti, can vary by individual, but for convenience, with no loss of generality, it is assumed to be constant in what follows.

The likelihood equations usually do not have explicit solutions and must be solved iteratively. In principle, maximization can proceed simply by creating and including a complete set of dummy variables in the model.  But, the proliferation of constant terms which increase in number with the sample size, ultimately renders conventional gradient based maximization of this full likelihood infeasible.  In some cases, a conditional log likelihood that is a function of ( and possibly ( but not (,  provides a feasible estimator of the main parameters that is free of the nuisance parameters.
  But, in most cases of interest to practitioners, including, for examples, those based on transformations of normally distributed variables such as the probit, tobit and truncated regression models, no such parameterization is available.


Maximization of the log likelihood function can, in fact, be done by ‘brute force,’ even in the presence of possibly thousands of nuisance parameters. The strategy, which uses some well known results from matrix algebra is described in Prentice and Gloeckler (1978) [who attribute it to Rao (1973)], Chamberlain (1980, p. 227), Sueyoshi (1993) and in detail in Greene (2002, 2003). The calculation involves a moderately large amount of computation, but can easily be performed with existing software. Storage requirements for the estimation are linear in N, not quadratic. Even for panels of tens of thousands of units, this is well within the capacity of the current vintage of even modest desktop computers.  The computation, though not new, appears not to be widely known.
 The application below, computed on an ordinary desktop computer, involves estimation of fixed effects tobit, probit and truncated regression models with N = 1,000 individuals – we have applied it in models with up to 20,000 individuals.


Computation of asymptotic standard errors for the estimators of the K main parameters is based on the corresponding K(K submatrix of the negative inverse of the (K+N)((K+N) Hessian.  The sparse structure and large diagonal submatrix of the Hessian make this computation straightforward as well, even for large N.  Write the individual term in the log likelihood as
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Denote the second derivatives of the log likelihood as

Hit  =  (2logfit((,(i)/(((((,  Hi  =  (t Hit,

hit  =  (2log fit((,(i)/((((i,  hi  =  (t hit,

hit  =  (2log fit((,(i)/((i2,  hi  =  (t hit,

Then, using the results for a partitioned inverse matrix, we have


((  =  
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Examining the individual terms in this matrix shows that if the terms in the sums are well behaved, then ( is T(O(1/N).  It thus follows that if the data are well behaved, then the MLE/FE of ( converges in mean square to its expectation.  We emphasize, however, that in at least some of the cases that interest us here, E[
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ˆ

MLEFE

g

]  =  (  +  O(1/T).  Consider, in contrast, the estimator of (i.  Using the partitioned inverse results again, the element in the negative inverse of the Hessian that corresponds to (i is

hii  =  
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The second term is T(O(1/N) but the first is O(1/T), which demonstrates that with fixed T, the MLE/FE of (i is inconsistent in that its asymptotic variance does not converge to zero, irrespective of its expectation.  We have not established that the MLE/FE of (i is biased, however, so this establishes the inconsistency only in the first sense noted earlier.

2.1.  Sampling Properties of the Fixed Effects Estimator – received results

Andersen (1973) and Hsiao (1996) showed analytically that in a binary logit model with a single dummy variable regressor and a panel in which Ti = 2 for all groups, the small sample bias in the MLE/FE of ( is +100%.   Their results showed that, in fact, the MLE/FE in this model does converge to a parameter, 2(.  Abrevaya (1997) shows that Hsiao’s result extends to more general binomial logit models with regressor vectors xit as long as T continues to equal two. Our Monte Carlo results below are consistent with this result.  No general results exist for the small sample bias if T exceeds 2 or for other models including the binary probit model or for other model features such as estimators of standard errors or marginal effects.

\

2.1.  Monte carlo results

Numerous studies have empirically verified Hsiao/Abrevaya’s result for T = 2 in the logit model [e.g., Katz (2001).]  Although no analytic result has been established, this result appears (in our study below as well) to extend to the probit model.  Further generally accepted results on binomial choice models appeal to Heckman's (1981) small Monte Carlo study of the probit model with T = 8 and N = 100 in which the bias of the slope estimator appeared to be toward zero (in contrast to Hsiao) and on the order of only 10%. On this basis, it is often suggested that in samples at least this large, the small sample bias of the MLE/FE is probably not too severe. However, our results below [and Katz’s (2001)] suggest that the pattern of overestimation in the probit model persists to larger T as well, and Heckman’s results appear to be too optimistic.  Moreover, as we will pursue in the discussion to follow, the result for the binary choice models appears to provide little guidance for other settings. 

Heckman’s empirical results for the MLE/FE in a probit model are given in the first row of each cell in Table 1. The ‘fixed effects’ in Heckman’s experimental design were actually ‘random effects’ uncorrelated with the simulated regressors.  The effects were randomly generated with the regressors and disturbances, with mean zero and variance indicated in the leftmost column of the table.  Thus, in this study, the author actually analyzed the behavior of the MLE/FE in a random effects model, not a fixed effects model.   (The underlying variance of the effects does not appear to have much influence on the bias of the estimator.)

      Table 1.  Heckman’s Monte Carlo Study of the Fixed Effects Probit Estimator 

                     with K = 1, N=100 and T=8

	
	( = 1.0
	( = -0.1
	( = -1.0

	((2 = 3d
	0.90a

1.286b

1.240c
	-0.10

-0.1314

-0.1100
	-0.94

-1.247

-1.224

	((2 = 1
	0.91

1.285

1.242
	-0.09

-0.1157

-0.1127
	-0.95

-1.198

-1.200

	((2= 0.5
	0.93

1.213

1.225
	-0.10

-0.1138

-0.1230
	-0.96

-1.199

-1.185


aReported in Heckman (1981), page 191.

bMean of 25 replications

cMean of 100 replications
dVariance of the individual effects. (See text for discussion.)

Heckman’s results for the probit model with N = 100 and T = 8 suggest, in contrast to the evidence for the logit model, a slight downward bias in the slope estimator. The striking feature is how small the bias seems to be even with T as small as 8. We have been unable to replicate any of Heckman’s results.  Both his and our own results with his experimental design are shown in Table 1. The second and third values in each cell are our computations for the same experimental design.  Heckman based his conclusions on only 25 replications, so this is an extremely small study.  To examine the possibility that some of the variation is due to small sample effects, we redid the analysis using 100 replications (admittedly still small – we pursue a larger study later). As can be seen in Table 1, the differences between our and Heckman’s values are large and reverse the qualitative conclusions. Some of the difference could be explained by small sample variation, but the  difference between our results with N=25 and N=100 is small compared to the overall difference between these and the earlier results.  Another candidate might be different random number generators. But, this would only explain a small part of the strikingly different outcomes of the experiments and not the direction. 

In contrast to Heckman, using his specification, we find that the probit estimator, like the logit estimator, is substantially biased away from zero when T = 8. Consistent with expectations, the bias is far less than the 100% that appears when T = 2. The results in the second and third row of each cell are strongly consistent with the familiar results for the logit model and with our additional results discussed below. The proportional bias does not appear to be a function of the parameter value or of the variance of the individual effects.  A number of authors have examined this model in greater detail.  We will pursue it in the next section as well.  We have not examined the effect of changing the parameter values, as done here, in the probit model (we do consider this in the tobit model), but that appears not to materially affect the outcome.  The overall conclusion from our replication of Heckman’s study, from the other results in the literature, and from the additional study in Section 4, would be that in contrast to the widely cited conclusion based on this study, in the probit model, like the logit model, the upward bias of the MLE/FE persists out to larger T, and is larger than Heckman’s results suggested.  The general optimism extrapolated from this study to other model contexts when T is at least 8 appears, at least at this juncture, unwarranted.

3.  Experimental design – Monte Carlo Study 

We will now examine the behavior of the MLE/FE in somewhat greater detail.  We are interested in whether the proportional overestimation result extends to the tobit model (and the truncated regression model), how the results change when T is not equal to 2 or 8 and when N is much larger, and whether the results are dependent on other features of the model, such as the parameter values, correlation of the effects and the data, fit of the latent regression, and so on. The experiment is designed as follows:  All models are based on the same latent regression model,


wit  =  (i  +  (xit  +  (dit  +  (it
where (i is the individual specific effect, ( and ( are fixed parameters, xit is a continuously distributed independent variable, dit is a dummy variable, and (it is a normally distributed disturbance with zero mean and variance (2.  The dependent variables in the three models are


yit  =  1[wit > 0] for the probit model,


yit  =  max(0,wit) in the tobit model,


yit  =  wit if wit > 0 and is unobserved otherwise in the truncated regression model.

Likelihoods and estimation results for these models appear elsewhere [e.g., Greene (2003)], so the details on this aspect are omitted.


Data for the replications in the experiments are generated as follows: For each replication in each experiment, we generated NT observations on xit, dit and (it, N observations on (i, then NT observations on yit;

(1)  xit is sampled from one of three possible mechanisms: 

(a) xit ~ N[0,1], 

(b) xit ~ ((2 – 1)/(2, (chi-squared with one degree of freedom) a skewed distribution  

(c) xit = (xi,t-1 + zit where  zit ~ N[0, (1-(2)], which is symmetric, but autocorrelated.

       In all three designs, xit has mean zero and variance 1. We set ( = 0.0 or 0.5.

(2)   dit  =  1[(xit  +  eit)  >  0]  where  eit  ~  N[0,1]
(3)   (it ~ N[0,(2], ( is one of the parameters in the simulation.  The value of ( is varied to

       control the overall R2 in the latent regression in (6) below.

(4) 
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.  The value of W is used to control the amount of correlation between the effects and the regressors.  Large values increase the correlation.  The sign of W determines the sign of the correlation between the effects and the data.  W = 0 produces a random effects model.  Note that since dit is determined by xit, correlation is induced between (i and dit if W is nonzero.

(5)  ( and ( are determined. In most cases, ( = ( = 1, but in one set of simulations, a range

       of values of ( is considered.

(6)   wit  =  (i +  ((xit + D)  +  (dit  +  (it.

The constant D is used to control the amount of censoring in the tobit model, the location of the distribution in the truncated regression model, or the proportion of zeros and ones in the probit setting.  Positive values of the offset, D, produce (with positive () larger values of wit and thus less censoring.  The degree of censoring controlled in this fashion ranged from about 20% to about 80% in the various simulations. In most experiments, D = 0 produces roughly 40% censoring in the tobit model.

(7)   yit is generated using the transformations shown earlier.  For the truncated regression

       case, we used the inverse probability transformation.  Let vit = wit - (it.  Then,

       yit  =  (i +  ((xit + D)  +  (dit  +  (-1[(((it)  +  {1-(((it)}((-vit)] 

       where (((it) is the standard normal CDF.

All data were regenerated for each replication in each experiment, so this corresponds to a random regressors design.  The seed for the random number generator was reset to a new value at the beginning of each experiment, so no pair of models in any replication in any 

experiment are based on the same data.

Experimental results are based on 1,000 replications in each case.  The number of periods analyzed was T = 2, 3, 5, 8, 12, 15 and 20 for all of the three models indicated.
  This includes the settings in Heckman’s experiment.  The number of individuals was fixed at N = 1000 throughout.  The base case in this setting has ( = ( = ( = 1, W = 0.7, D = 0 and xit ~ N[0,1].  The resulting environment is noted in each of the sets of results below.  As the probit and truncated regression are of less interest than the tobit model, we have obtained results only for variation in T for these models. For the tobit model, various different settings of (, (, W, D, and the distribution of xit were also considered.

In each experiment, we are interested in estimation of the primary parameters, (, ( and (.  Each set of results reports the average (of 1,000 replications) of the estimated bias in these estimates, measured against the true values.  Thus, every table entry reports, for the indicated quantity,
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We are also interested in marginal effects (ME), 

MEx  = (E[y | x,d ]/(x, for the continuous variable


MEd  =  E[y|x,d = 1] – E[y|x,d = 0] for the dummy variable.

In these cases, there is no ‘true’ parameter to be estimated.  In practice, one would compute this at each data point, and average these values.
  The function that estimates the marginal effect differs across the models.  These are reported below.  In order to assess the ‘bias’ in this estimator, we have computed the marginal effect at the estimated parameters and at the true values of the same parameters (including the true individual effects) for each individual in each replication.  Each replication then produces an average ‘estimated’ ME and an average ‘true’ ME based on these two estimates.  We then compared these averages for the 1,000 replications in the same fashion as the estimated parameters.  (Thus, for marginal effects, the ‘true value’ is different for each replication because of sampling variability, though it is expected that this average effect would be relatively constant across replications.)  

As noted earlier (see footnote 6), observations i for which yit is the same for all t must be omitted from the estimating sample for the probit and tobit estimators.  This is fairly common when T is small, especially when T = 2.  The estimator easily accounts for this, but it leaves a loose end in computing the marginal effects.  In order to preserve the full sample, in replications in which some observations are bypassed in estimation, we have replaced the missing estimates of (i with the sample average of the estimated sample values.  The numbers of such groups out of 1,000 in each replication range from about 200 when T = 2 to a small handful when T reaches 5 and almost none when T is 8 or more.

Finally, we are interested in the estimated standard errors for the MLE/FEs of ( and (.  Again, these are functions of the data, but each replication produces one pair of estimates of the asymptotic standard errors.  Presumably (and evidently in the results), this estimator is  also  biased.   For each  of the  1,000 replications,  we retained  the  estimated standard errors for the estimators of ( and ( based on the estimated Hessian, as described earlier.  For the ‘true’ value, we used the sample standard deviation over the 1,000 replications of the estimates of the same two parameters.  This should give a more accurate assessment of the standard deviation of the sampling distribution of the MLE/FE for these two parameters.

Some other notes on the results reported in the tables:

(1) Numerical values given are the percentage bias in the estimators.  Negative values indicate persistent underestimation, positive values indicate persistent overestimation.  Thus, in Table 1, the value 103.1 reported for the estimator of ( indicates that the average bias estimated for this estimator is 103.1%.

(2) MEx indicates the marginal effect for the continuous variable; MEd indicates the marginal effect for the dummy variable.  The computation is shown for each model below.

(3)  SE(() and SE(() indicate the estimated standard errors for the two estimates.

(4)  R2 is the average R-squared in the latent regression model wit = (i + ((xit+D)+ (dit + (it.  It is computed for each sample in each replication as 1 - (2/SampleVar[w], then averaged over the 1,000 replications.

(5)   Censoring is the average proportion of the 1,000(T sampled wit that is less than zero

in each replication in each experiment.

(6)  Correlation is the average sample correlation between the sampled (i (repeated for the T observations for individual i) and xit.  Because of the construction of (i based on the group mean, this correlation declines with increasing T because of the increase in the within group variation in xit as T increases.  The correlation between (i and 
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 is constant, and will be slightly greater than that shown for T = 2.

4.  Results

4.1 The binomial Probit model

Table 2 shows the simulation results for the binomial probit model.  The first two rows replicate the results that are widely observed elsewhere in the literature. The roughly 100% bias for T = 2 mimics the most familiar of these.  But, note that the biases persist even out to T = 20.  The results for the probit model with T = 8 are the counterparts to Heckman’s, but the biases in Table 2 are quite unlike those in his study.  (They are quite similar to those based on the very small study in the second and third rows of each cell in Table 1.)  We conclude that this is a persistent bias that can, indeed, be attributed to the “small T problem.”  In another study [Greene (2002)], we have observed roughly the same outcomes for the ordered probit and binary logit models. The former, which has not been examined previously, shows the same characteristic pattern as the binomial choice models and suggests that the inflation in the estimates might be characteristic of the MLE/FE in discrete choice models.  

	Table 2.  Binary Probit Model Estimatesa

	Estimate
	T=2
	T=3
	T=5
	T=8
	T=12
	T=15
	T=20

	(
	 103.1
	 79.22
	 48.13
	 26.83
	 16.11
	 12.04
	  8.71

	(
	  98.49
	 76.11
	 45.34
	 24.85
	 14.71
	 11.11
	  7.96

	(b
	   N/A
	  N/A
	  N/A
	  N/A
	  N/A
	  N/A
	  N/A

	MEx
	  37.51
	 35.74
	 26.09
	 13.71
	  6.55
	  4.07
	  2.21

	MEd
	  65.59
	 52.45
	 30.45
	 14.31
	  6.30
	  3.88
	  1.89

	S.E.(()
	 -34.00
	-32.45
	-20.89
	-18.95
	-13.24
	 -9.25
	 -4.37

	S.E.(()
	 -29.53
	-26.27
	-22.91
	-10.71
	 -6.66
	 -4.63
	 -3.92

	R2
	  0.786
	  0.774
	  0.761
	  0.752
	  0.744
	  0.741
	  0.737

	Censoring
	  0.413
	  0.411
	 0.408
	  0.406
	  0.404
	  0.403
	  0.403

	Correlation
	  0.650
	  0.531
	 0.411
	  0.325
	  0.265
	  0.237
	  0.206


aSettings: ( = 1, ( = 1, ( = 1 ,W = 0.7,T = variable, D = 0.0, f(x) = N(0,1).

bNot estimated in this model.

The focus on coefficient estimation in the probit model overlooks an important aspect of estimation in a binary choice model. Unless one is only interested in signs and statistical significance (and, if so, then the incidental parameters problem may be a moot point), then the relevant object of estimation in the model is the marginal effect, not the coefficient itself.  The conditional mean function in the probit model is 

E[yit|xit,dit]  =  (((i + (xit + (dit).  

(We set D = 0 in the probit model.)  The marginal effects are


MEx  =  
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for the continuous variable, xit, and


MEd  =  (E[yit|(i,xit,di]  =  
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for the dummy variable, dit, where ((.) and ((.) denote the density and CDF of the standard normal distribution, respectively. These are functions of the data, so there is in principle no ‘true’ value to be estimated.  We have estimated the ‘bias’ in this computation for the probit model as described in the preceding section.  The values in Table 2 suggest that the simple characterization of the bias in the probit model exaggerates the effect considerably.  For x, it is clear that the upward bias of the coefficients has the effect of attenuating the scale factor to a degree that offsets the inflation of the coefficients themselves. This causes this slope to be overestimated much less than the coefficient itself.  The distortion in the marginal effect for the dummy variable is somewhat larger than that for x, but, again, much less than the associated coefficient.  This suggests that the known results might be much more pessimistic than necessary.  The biases in these estimators are far less than those in the coefficient estimators. 

Finally, the standard errors for the two coefficient estimators appear to be substantially biased downward.  This result persists through the other models and settings considered – it appears to be a general result, whether the biases in the coefficients themselves are upward, downward, or neither.  For the probit model, it is clear then, that if one is interested in the statistical significance of the estimated coefficients, the force of the incidental parameters problem will be vastly to inflate the estimated ‘t statistics’ – the mismeasurement of the standard errors will reinforce the mismeasurement in the coefficient estimators.

These results for the marginal effects hardly redeem the MLE/FE for the probit model.  However, they do cast some new light on the long held results for T = 2 and for T = 8 with N = 100, and also call into question the unqualified characterization that pervades the received results.

4.2 The tobit model

Table 3 presents simulation results for the tobit model in which the variation in the specification is provided by the group size, T. Surprisingly, the MLE/FE for the slopes appears not to be substantively biased at all – the mean estimates of ( and ( deviate from the population values by less than one percent in all cases.  The result is all the more noteworthy in that in each data set, roughly 40% of the observations are censored. (We will explore this aspect below.) If none of the observations were censored, this would be a linear regression model, and the resulting OLS estimator would be the consistent linear LSDV estimator.  With roughly 40% of the observations censored, this is a quite unexpected result.  However, the average of the 1,000 estimates of ( - the true value in this experiment is also 1.0 - shows that the incidental parameters problem shows up in a different place here. The estimated standard deviation is biased downward, though with a bias that does diminish fairly rapidly as T increases.  As we found for the probit model, the estimated standard errors based on the Hessian appear uniformly to be too small, though again, they improve as T increases.

	Table 3. Tobit Model. Effect of Group Size on Estimatesa

	Estimate
	T=2
	T=3
	T=5
	T=8
	T=12
	T=15
	T=20 

	(
	  0.67
	  0.53
	  0.50
	  0.29
	  0.098
	  0.082
	  0.047

	(
	  0.33
	  0.90
	  0.57
	  0.54
	  0.32
	  0.16
	  0.14

	(
	-36.14
	-23.54
	-13.78
	 -8.40
	 -5.54
	 -4.43
	 -3.30

	MEx
	 15.83
	  8.85
	  3.65
	  1.30
	  0.44
	  0.22
	  0.081

	MEd
	 19.67
	 11.85
	  5.08
	  2.16
	  0.89
	  0.46
	  0.27

	S.E.(()
	-32.92
	-19.00
	-11.30
	 -8.36
	 -6.21
	 -4.98
	  0.63

	S.E.(()
	-32.87
	-22.75
	-12.66
	 -7.39
	 -5.56
	 -6.19
	  0.25

	R2
	  0.785
	  0.774
	  0.761
	  0.751
	  0.744
	  0.740
	  0.736

	Censoring
	  0.413
	  0.410
	  0.408
	  0.406
	  0.405
	  0.404
	  0.403

	Correlation
	  0.650
	  0.531
	  0.411
	  0.325
	  0.265
	  0.237
	  0.206


aSettings: ( = 1, ( = 1, ( = 1,W = 0.7,T = variable, D = 0.0, f(x) = N(0,1)

The downward bias in the MLE/FE of ( is not innocuous.  Consider estimating the marginal effects in the tobit model with these results. For our specification, the conditional mean function is


E[yit | xit, dit]  =  ([((i + (xit + (dit)/(] ( [ (i + (xit + (dit]  +  (((((i + (xit + (dit).

The marginal effects are


MEx  =  
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and


MEd  =  E[yit | xit, dit=1]  -  E[yit | xit, dit = 0]


         =  ((i + (xit) ( [(it1 - ( it 0] + ( ( [(it 1 - ( it 0]  +  ( ( ( it 1
where (it 1 and (it 1 are evaluated at ((i + (xit  + ()/( and (it 0 and (it 0 are evaluated at              ((i + (xit)/(.  The downward bias in the estimator of ( inflates both MEx and MEd.  However, the estimates of the biases in this computation in Table 3 are quite modest.  Even for T as small as 5, the bias is quite small, especially compared to that in the alternative estimator, the random effects approach.  (Results are given for this estimator in Table 9.)  It would appear that for the tobit model, at least thus far, the impact of the incidental parameters is surprisingly benign.  

The finding in the preceding paragraph is crucially dependent on the regression function.  Note, for example, that if (i + (xit + (dit equals zero, then the marginal effect will equal (/2 regardless of (, and the bias in ( will be inconsequential.  MEd would be likewise unaffected by biases in 
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.  This is obviously data dependent, however, as a general result, one can see that the closer the index is to zero, on average, the smaller will be the bias in the estimated marginal effects.  Zero for the index corresponds approximately to 50% censoring (the correspondence is not exact), so the most favorable case would be in such a sample.  Table 4 below explores the effect of the degree of censoring on the estimates.  It can be seen in Table 4 that between the values of D that produce 40% and 50% censoring, the bias in the estimated marginal effects changes sign, consistent with this relationship.  Essentially, somewhere between 50% and 40% censoring, neither the estimated slopes nor the estimated marginal effects display significant bias. This suggests that even for T as low as 5, the MLE/FE for the tobit model has some redeeming credentials.


The implications are a bit less encouraging for the estimation of the asymptotic standard errors.  Table 3 reports some quite large attenuation in the estimates of the asymptotic standard errors.  Again, this result pervades all of the models and specifications that we considered.  The implication is that as a general result, test statistics such as the Wald statistics (t ratios) will tend to be too large when based on the analytic estimator of the asymptotic variance, even if the coefficients are not.
The findings thus far highlight two results. First, it is clear that the conclusions for the probit model do not extend to the tobit model.  The bias in the slope coefficients in the probit model is not replicated in the tobit model – the effect is shifted to the scaling parameter instead.  One natural interpretation might be that the implicit scaling in the probit model induced by forcing the unidentified variance of (it to equal 1.0 is somehow being underestimated, for example by 50% when T = 2.  Thus, the implicit parameter in the probit model, (/( is inflated by 100% not because ( is estimated with a bias, but because ( is underestimated by 50%.  This is consistent with the surprisingly uniform proportional scaling of the entire vector of coefficients reported in the received studies of the probit model (including ours).

Second, our results suggest, again, that focusing on the regression coefficients in estimation of the models can be misleading. One might be tempted to conclude that the fixed effects estimator is unbiased in the tobit setting - by dint of only the coefficients, it appears to be.  But, when the slopes of the model are computed, the force of the small sample bias is exerted on the results through the disturbance standard deviation. The biases are much smaller than in the probit case, but they are not negligible.  Here, the results are highly dependent on the data as well, but in a way that appears to be discernible – the crucial variable appears to be the average degree of censoring, which is apparent in the data.

Third, the results in Table 3 suggest that the conventional wisdom on the fixed effects estimator, which has been driven by the binary choice models, might again be too pessimistic. With T equal to only 5, the estimators appears to be only slightly affected by the incidental parameters problem. Even at T = 3, the 4% upward bias in the marginal effects in the tobit model is likely to be well within the range of the sampling variability of the estimated parameter and the roughly 12% downward bias in the estimated standard errors will usually not reverse a conclusion about significance.


We now consider the effect of variation in the model specification on the general findings discussed above.  The base case for these experiments has T = 5, ( = ( = ( = 1, W = .7 which produces roughly 0.4 correlation between the effects and the regressor, and D = 0.0 which produces roughly 41% censoring in the data.  With ( = 1, the fit of the latent regression is moderately high, with an R2 of roughly 0.76.  Each of these settings is varied to examine the effect on the same estimated biases.


Table 4 reports the effect of variation in the degree of censoring in the data.  This is accomplished by shifting the mean of xit away from zero by a constant, so that the overall mean of the right hand side of the regression shifts up or down.  The degree of censoring in Table 4 ranges from 0.637 to 0.203.  This has little effect on the coefficient estimates, but some fairly definite patterns emerge in the other values.  It is clear that the degree of censoring has a major effect on all estimates except the slope parameters.  As D increases, the specification moves closer to the classical regression model, so the estimator of ( should improve as well. It will not become unbiased, however – this is the original Neyman and Scott result, that even in the classical linear regression model, the MLE/FE of ( is downward biased.  (We pushed this specification further in a limited experiment with N = 100, T = 5 and D = 4.0, which produces about 1.2% censoring, and found the bias in 
[image: image14.wmf]ˆ

s

 to remain at about 11%.  At this level, the marginal effects are off by only about 2%.)  Surprisingly, the biases in the estimated marginal effects remain persistently large, but change sign somewhere between 50% and 40% censoring in the data.  This suggests a point at which the usual reporting of location parameters ((, () and marginal effects would be untainted by the incidental parameters problem. The standard errors remain consistently underestimated, however, so statistical inference remains problematic.

	Table 4.  Tobit Model: Effect of the Degree of Censoring on Estimatesa

	Estimate
	( = -1.25
	(=-0.75
	(=-0.5
	(=0
	(=0.5
	(=0.75
	(=1.0 

	(
	  0.44
	  0.52
	  0.64
	  0.34
	  0.28
	  0.165
	  0.267

	(
	  0.60
	  0.83
	  0.75
	  0.97
	  0.53
	  0.824
	  0.242

	(
	-17.85
	-16.01
	-15.14
	-13.85
	-12.70
	-12.33
	-11.69

	MEx
	-49.24
	-24.90
	-13.95
	  3.62
	 14.16
	 16.68
	 17.17

	MEd
	-57.17
	-29.38
	-15.96
	  5.49
	 15.36
	 17.25
	 15.01

	S.E.(()
	-14.14
	-15.35
	-13.10
	-18.06
	 -8.90
	 -7.51
	-11.54

	S.E.(()
	-10.72
	-12.14
	-13.76
	-15.55
	 -9.77
	 -8.59
	-13.51

	R2
	  0.761
	  0.761
	  0.762
	  0.762
	  0.761
	  0.761
	  0.762

	Censoring
	  0.637
	  0.546
	  0.500
	  0.408
	  0.320
	  0.279
	  0.203

	Correlation
	  0.411
	  0.411
	  0.411
	  0.410
	  0.410
	  0.411
	  0.411


aSettings: ( = 1, ( = 1, ( = 1,W = 0.7,T = 5, D = Variable, f(x) = N(0,1)


Tables 5 – 8 report the effects of variation in the fit of the underlying regression, the distribution of xit, differing values of ( and differing degrees of correlation between the effects and the regressor, respectively.  The R2 in the regression is varied by varying ( from 0.5 to 3.0, which varies the fit from 0.927 to 0.262.  This appears to make little difference in any of the quantities of interest here. The various measured biases appear to vary little in response to changes in this feature of the model.  Changes in the skewness of the regressor and in the value of ( seem also to produce only marginal changes in the biases in the estimated parameters, marginal effects or estimated standard errors of the estimators.  Table 8, reports the effect of the degree of correlation between (i and xit.  There seems to be little difference here as well, except that the marginal effects appear to be substantially affected.  The effect appears to be in only one direction – as the correlation rises from -.4 to +.4, the quality of the estimators of MEx and MEd deteriorates monotonically.  We do note, that even in the most extreme case, still with only T = 5, the bias remains quite moderate

	Table 5.  Tobit  Model: Effect of R2 on Estimatesa

	Estimate
	(=.5
	(=.75
	(=1
	(=1.5
	(=2.5
	(=3.0

	(
	  0.067
	  0.24
	  0.36
	  0.64
	  0.79
	  0.52

	(
	  0.368
	  0.54
	  0.73
	  1.01
	  0.76
	  1.46

	(
	-14.99
	-14.28
	-13.80
	-13.12
	-12.86
	-12.75

	MEx
	  3.77
	  3.72
	  3.64
	  3.44
	  3.14
	  3.03

	MEd
	  5.16
	  5.26
	  5.28
	  5.06
	  4.19
	  4.72

	S.E.(()
	-13.72
	-12.46
	-15.28
	-11.60
	-12.82
	-10.39

	S.E.(()
	-12.81
	-14.07
	-13.01
	 -9.61
	 -9.95
	-11.00

	R2
	  0.927
	  0.850
	  0.762
	  0.587
	  0.338
	  0.262

	Censoring
	  0.403
	  0.405
	  0.408
	  0.417
	  0.436
	  0.444

	Correlation
	  0.411
	  0.410
	  0.411
	  0.411
	  0.410
	  0.411


aSettings: ( = 1, ( = 1, ( = Variable,W = 0.7,T = 5, D = 0.0, f(x) = N(0,1)

	Table 6.  Tobit Model, Effect of Distribution of xa

	Estimate
	Normal
	Chi-Squared
	AR(1)

	(
	  0.31
	 -0.073
	  0.35

	(
	  0.95
	  1.48
	  0.93

	(
	-13.80
	-13.50
	-13.54

	MEx
	  3.68
	  6.66
	  3.33

	MEd
	  5.53
	  9.41
	  5.05

	S.E.(()
	-12.53
	-12.49
	 -7.87

	S.E.(()
	-11.41
	-13.71
	 -8.91

	R2
	  0.762
	  0.751
	  0.726

	Censoring
	  0.408
	  0.460
	  0.401

	Correlation
	  0.411
	  0.397
	  0.410


aSettings: ( = 1, ( = 1, ( = 1,W = 0.7,T = 5, D = 0.0, f(x) = Variable

	Table 7. Tobit Model, Effect of Value of (a

	Estimate
	(=-1
	(=-0.5
	(=0.5
	(=1.0
	(=1.5

	(
	  0.40
	  0.84
	  0.75
	  0.27
	  0.23

	(
	  0.36
	  0.74
	  0.73
	  0.70
	  0.63

	(
	-12.46
	-11.91
	-12.88
	-13.81
	-14.68

	MEx
	  1.20
	  3.62
	  4.75
	  3.69
	  2.88

	MEd
	  1.43
	  4.33
	  6.64
	  5.27
	  4.07

	S.E.(()
	-11.57
	 -8.86
	 -9.02
	-10.41
	-13.71

	S.E.(()
	-11.27
	-11.42
	-13.33
	-10.58
	-11.48

	R2
	  0.449
	  0.398
	  0.649
	  0.762
	  0.834

	Censoring
	  0.356
	  0.350
	  0.487
	  0.408
	  0.423

	Correlation
	  0.410
	  0.411
	  0.411
	  0.411
	  0.411


aSettings: ( = Variable, ( = 1, ( = 1,W = 0.7,T = 5, D = 0.0, f(x) = N(0,1)

	Table 8.  Tobit Model,  Effect of Correlation Between Effects and Regressora

	Estimate
	W=-1.0
	W=-0.5
	W=0.0
	W=0.5
	W=0.7
	W=1.0
	 W=1.5

	(
	  0.19
	  0.29
	  0.21
	  0.38
	  0.30
	  0.46
	  0.55

	(
	  0.088
	 -0.060
	  0.19
	  0.66
	  1.09
	  1.01
	  0.79

	(
	-13.57
	-13.57
	-13.67
	-13.79
	-13.82
	-13.65
	-13.55

	MEx
	  0.76
	  0.22
	  0.59
	  2.41
	  3.63
	  6.19
	 11.82

	MEd
	  0.93
	  0.17
	  0.90
	  3.67
	  5.63
	  8.56
	 14.83

	S.E.(()
	 -9.85
	-10.82
	-11.85
	-14.42
	-10.26
	-10.05
	-10.53

	S.E.(()
	-13.33
	-13.22
	 -9.75
	 -9.84
	 -7.76
	-11.75
	 -9.96

	R2
	  0.637
	  0.613
	  0.655
	  0.732
	  0.762
	  0.801
	  0.854

	Censoring
	  0.384
	  0.382
	  0.390
	  0.403
	  0.407
	  0.416
	  0.426

	Correlation
	 -0.428
	 -0.383
	 -0.0001
	  0.383
	  0.411
	  0.428
	  0.438


aSettings: ( = 1, ( = 1, ( = 1,W = variable ,T = 5, D = 0.0, f(x) = N(0,1)


Consider, finally, the natural alternatives to the fixed effects approach.  The random effects (RE) model adds an assumption that the effects are uncorrelated with the regressors.  In the received applications, it is also assumed that these effects, like the disturbances, are normally distributed.  The maximum likelihood estimator in this case is based on the method of Butler and Moffitt (1982).  Table 9 reports results for the extreme configuration of the model, T = 2, correlation of 0.68 (so the ‘random effects estimator’ is misspecified), about 42% censoring, and fit of about 82%.  There is no reason to expect the MLE/RE to perform well in this case.  The results bear this out.  The coefficient estimators are erratic, with the far greater bias in the estimator of (. The standard error is reasonably well estimated, but this is hardly redeeming given the 60% bias in the estimator itself.  In spite of the high intercorrelation of the effects and the regressors, the dummy variable coefficient and its standard error are estimated essentially correctly.  The variance parameter, (, is now slightly overestimated.  Surprisingly, the marginal effect of the dummy variable is also well estimated, in spite of the other effects, though there is an extremely large bias in the estimator of MEx.  

The third approach one might consider is to ignore the effects altogether and simply pool the data.  The pooled estimator behaves similarly to the random effects estimator.  It is difficult to state on the basis of Table 9 which of the three estimators would be most preferred.  On balance, if interest centers on the impact of a continuous variable, it would appear that the MLE/FE would be the preferred estimator. Surprisingly, if the analysis focused on a dummy variable, as it might in the analysis of a treatment effect, then either of the alternative estimators (RE or pooled) would dominate the MLE/FE – in spite of the presence of the fixed effects in the data.

The purpose of this paper has been to analyze the behavior of the fixed effects estimator in a fixed effects model, so we will not pursue these alternatives beyond the limited results in Table 9. We do note, however, that as second and third best approaches, our results suggest that the random effects and pooled MLEs do not perform too badly in some dimensions, even in cases in which they are clearly inappropriate.  This would appear to be a useful point to focus further research on this topic.

	Table 9.  Different Estimators for the Fixed Effects Modela

	Estimate
	Fixed Effects
	Random Effects
	Pooled

	(
	  0.67
	  59.50
	  49.47

	(
	  0.34
	   0.57
	   0.62

	(
	-36.14
	  13.67
	  15.53

	MEx
	 15.83
	  58.42
	  49.44

	MEd
	 19.67
	   1.41
	   0.063

	S.E.(()
	-32.93
	 -23.52
	  -6.16

	S.E.(()
	-32.87
	   3.74
	   0.92

	R2
	  0.785
	   0.852
	   0.786

	Censoring
	  0.413
	   0.422
	   0.413

	Correlation
	  0.650
	   0.677
	   0.650


aSettings: ( = 1, ( = 1, ( = 1,W = variable ,T = 2, D = 0.0, f(x) = N(0,1)

4.3.  The Truncated Regression Model


Table 10 reports the truncated regression counterpart results to those in Tables 2 and 3 for the probit and tobit models.  This model is less widely used than the tobit model, but serves to demonstrate some useful counterpoints.  We report these results to underscore another aspect of the MLE/FE.  It might have been tempting to conclude from the probit and tobit models, perhaps based on some common theoretical underpinnings, that the overestimation of coefficients or underestimation of the scale parameter, would be a general result.  It is not.  In estimation of the truncated regression model, the MLE/FE underestimates everything, coefficients, standard errors, and marginal effects.  So, the parameter inflation is not general.

The conditional mean function in the truncated regression is


E[y|x,d]  =  (i + (xit + (dit  +  ( ( 
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The marginal effects are


MEx  =  
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MEd  =  E[yit | xit, dit=1]  -  E[yit | xit, dit = 0]


         =    ( + ( ( [(it1 - (it0]  

where (it1 is evaluated at ((i + (xit  + ()/( and (it0 is evaluated at ((i + (xit)/(. The biases in the coefficient estimators and in the MLE/FE of ( are partially offsetting as regards

estimation of the marginal effects.  In general, if they are the objects of estimation, the MLE/FE performs quite well, even with T = 2, and only minor bias if T is at least 5.  Indeed, with T = 8, the whole set of estimates seems to be well inside the optimistic description applied to Heckman’s results for the probit model (and in the same direction).

	Table 10. Truncated Regression Model, Behavior of the MLE/FEa

	Estimate
	T=2
	T=3
	T=5
	T=8
	T=12
	T=15
	T=20

	(
	-17.13
	 -11.97
	 -7.64
	 -4.92
	 -3.41
	 -2.79
	 -2.11

	(
	-22.81
	 -17.08
	-11.21
	 -7.51
	 -5.16
	 -4.14
	 -3.27

	(
	-35.36
	 -23.42
	-14.28
	 -9.12
	 -6.21
	 -4.94
	 -3.75

	MEx
	 -7.52
	  -4.85
	 -2.87
	 -1.72
	 -1.14
	 -0.94
	 -0.67

	MEd
	-11.64
	  -8.65
	 -5.49
	 -3.64
	 -2.41
	 -1.90
	 -1.53

	S.E.(()
	-33.00
	 -21.36
	-12.30
	 -8.41
	 -3.83
	 -6.17
	 -2.62

	S.E.(()
	-31.52
	 -16.81
	 -9.45
	 -3.82
	 -7.74
	 -1.43
	 -0.61

	R2
	  0.785
	   0.774
	  0.761
	  0.752
	  0.744
	  0.740
	  0.736

	Censoring
	  0.412
	   0.410
	  0.408
	  0.406
	  0.406
	  0.404
	  0.403

	Correlation
	  0.650
	   0.530
	  0.410
	  0.325
	  0.265
	  0.237
	  0.206


aSettings: ( = 1, ( = 1, ( = 1,W = 0.7,T = variable, D = 0.0, f(x) = N(0,1)

6.  Conclusions

The Monte Carlo results obtained here suggest a number of conclusions. As widely believed, the fixed effects estimator shows a large positive finite sample bias in discrete choice models when T is very small. We have found elsewhere that this general result for the probit model is mimicked by the binomial logit and the ordered probit models. The bias is persistent, but it does drop off rapidly as T increases to 3 and more. Heckman’s widely cited result for the probit model appears to be incorrect, however.  There is no indication that the probit coefficients are ever underestimated, and even at T = 8, the bias is fairly substantial.  The discrepancy does not appear to be heavily influenced by the mechanism used to generate the exogenous variables. Heckman used Nerlove’s (1971) dynamic model whereas we used essentially a random cross section. However, in analyzing the tobit 

model, the effect of the autoregression was relatively minor.  Results were similar for the two cases and for a third case in which the distribution was very skewed. The extreme result usually cited for the binary choice model with T = 2 may itself be a bit of an exaggeration. The marginal effects in these models are misestimated by a factor closer to 50%, and this bias declines quite rapidly as well.

The tobit model behaves quite differently from the discrete choice models. The MLE/FE shows essentially no bias in the slope estimators of the tobit model. But, the small sample bias appears to show up in the estimator of the disturbance variance. This bias would be transmitted to estimates of marginal effects. However, this bias appears to be small if T is 5 or more.  Surprisingly, the major determinant of the bias in the marginal effects appears to be the degree of censoring in the data.  Somewhere near 50%, we find that the estimators of the marginal effects appear to be essentially unbiased.

Our finding with respect to estimated standard errors is uniform. In every model and in every specification, standard errors are underestimated by the MLE/FE.  This adds an additional layer of caution for the practitioner who considers use of this estimator.  Any other results notwithstanding, one should expect statistical inference to be overly optimistic in terms of significance of the estimated parameters.

We also examined the truncated regression model, where, surprisingly, the bias in the coefficients appears to be toward, rather than away from zero. Thus, what appears to be a widely accepted general result is not general at all.  The proportional bias, itself, also does not seem to appear generally.  In Greene (2004), we explored the same kinds of effects in the stochastic frontier model, and found that in the same equation, some coefficient estimators were biased toward zero while others were not – there was no discernible pattern.

The received studies of the fixed effects estimator have focused intensively and exclusively on coefficient estimation in the probit and logit binary choice models. The technology exists to estimate fixed effects models in many other settings. [See, for example, Greene (2002).]  Given the availability of high quality panel data sets, there should be substantial payoff to further scrutiny of this useful model in settings other than the binary choice models. The question does remain, should one use this technique? It obviously depends on T and the model in question. The reflexive negative reaction, however, because it ‘biased and inconsistent’ neglects a number of considerations, and might be ill advised if the alternative is a misspecified random effects model, a pooled estimator which neglects the cross unit heterogeneity, or a semiparametric approach which sacrifices most of the interesting content of the analysis in the interest of ‘robustness.’  Lancaster (2000, fn 18) notes “The fact that the inconsistency of ML in these models [Neyman and Scott’s simple regression models] is rather trivial has been unfortunate since it has, I think, obscured the general pervasiveness and difficulty of the incidental parameters problem in econometric models.”  We would add to Lancaster’s observation that the problem is not only pervasive, but manifests itself in a variety of ways that should pose a challenge to the practitioner.
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� Consider, for example, Wooldridge (2002, pp. 10-11) who, speaking generally of panel data models, states “… with fixed T, it suffers from an incidental parameters problem: except in very special cases, the estimator of (0 is inconsistent.”


� Hahn and Newey (2002) provide some broad generalities, but do not produce any firm counterparts to Hsiao and Abrevaya for any particular models.


� The probit model has been studied intensively in the recent literature.  A partial list of only the most recent studies includes Arellano and Honoré (2001), Cerro (2002), Chen et al. (1999), Hahn (2001), Katz (2001), Laisney and Lechner (2002), Lancaster (1999), and Magnac (2002). A study of the Cox model for duration data is Allison (2002).


� Examples include the linear regression model, the binomial logit model [Rasch (1960), Chamberlain (1980)], the Poisson and negative binomial regression models [Hausman, Hall and Griliches (1984)], the exponential regression model [Munkin and Trivedi (2000)] and the gamma and Weibull models for duration data [Chamberlain (1985)]. Lancaster (2000) lists several cases in which the parameters of the model can be “orthogonalized,” that is, transformed to a form (i*((,() and ( such that the log likelihood reparameterized in terms of these parameters is separable.  The concentrated likelihood for the Poisson is an easily derived example.  As he notes, there is no general result which produces the orthogonalization, and the number of cases is fairly small.


� Sueyoshi (1993) after deriving the results expressed some surprise that they had not been incorporated in commercial software.  As of this writing, it appears that LIMDEP [Econometric Software, (2003)] is still the only package that has done so.


� A practical problem that emerges in both the tobit and the probit (and the binomial logit) models, but not the truncated regression model, is that the likelihood equation for (i has no finite solution whenever yit is the same (e.g., zero) in every period.  These observations must be dropped from the estimating sample.  This is a familiar issue in the binomial logit setting – the ‘conditional’ (on the sum of yit) estimator is based on the observations for which the sum is neither 0 nor T.


� The study is replicable.  All computations were done with Version 3.0.6 (May 20, 2003) of NLOGIT (Econometric Software, Inc.).  The program commands including seeds used for the random number generators are available from the author upon request.  Details on the random number generator are given in the documentation for the software.


�A similar study over a range of group sizes is carried out for the binary logit model by Katz (2001).


� It is also common to compute the quantity just once at the data means.  This sometimes produces discernible differences in the results.  We have used the average of effects approach throughout.


� The fact that the log likelihood for the tobit model is the sum of those for the probit and truncated regression models [see Greene (2003, p. 770)] might make the attenuation of the MLE/FE of ( an expected outcome, given the positive bias in the probit estimator and the lack of bias in the tobit estimator.  We have been unable to produce an analytic underpinning for this intuition.  It appears to be a narrow special case for these three models in any event.





PAGE  
33

_1118840611.unknown

_1119014646.unknown

_1119015361.unknown

_1119093739.unknown

_1119094181.unknown

_1119021532.unknown

_1119028391.unknown

_1119015294.unknown

_1118905509.unknown

_1118909552.unknown

_1118931323.unknown

_1118905521.unknown

_1118842198.unknown

_1118825675.unknown

_1118831359.unknown

_1118817771.unknown

