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Abstract 
 
 The nonlinear fixed effects model has two shortcomings, one practical, one methodological.  The 
practical obstacle relates to the difficulty of estimating nonlinear models with possibly thousands of dummy 
variable coefficients.  In fact, in many models of interest to practitioners, estimation of the fixed effects 
model is feasible even in panels with very large numbers of groups.  The result, though not new, appears not 
to be well known. The more difficult, methodological issue is the incidental parameters problem that raises 
questions about the statistical properties of the estimator.  There is relatively little empirical evidence on the 
behavior of the fixed effects estimator and that which has been obtained has focused almost exclusively on 
binary choice models. In this paper, we use Monte Carlo methods to examine the small sample bias in the 
tobit, truncated regression and Weibull survival models as well as the binary probit and logit and ordered 
probit discrete choice models.  We find that the estimator in the continuous response models behaves quite 
differently from the familiar and oft cited results.  Among our findings are: first, a widely accepted result that 
suggests that the probit estimator is actually relatively well behaved appears to be incorrect; second, the 
slopes in the tobit model, unlike the probit and logit models that have been studied previously, are largely 
unaffected by the incidental parameters problem, but a surprising result related to the disturbance variance 
estimator arises instead; lest one jump to a conclusion that the finite sample bias is restricted to discrete 
choice models, we submit evidence on the truncated regression, which is yet unlike the tobit in that regard - it 
is biased toward zero; fourth, we find in the Weibull model that the biases in a vector of coefficients need not 
be in the same direction;. fifth, as apparently unexamined previously, the estimated asymptotic standard 
errors for the fixed effects estimators appear uniformly to be downward biased.  Finally, we consider directly 
the issue of “consistency” in the context of the tobit model and find that widely received perceptions to the 
contrary, at least in this model, the fixed effects estimator appears to be neither biased nor inconsistent.  In 
sum, the finite sample behavior of the fixed effects estimator is much more varied than the received literature 
would suggest. 
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sample. 
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1.  Introduction 
 
 In the analysis of panel data with nonlinear models, researchers often choose between a 

random effects and a fixed effects specification.  The random effects model requires an unpalatable 

orthogonality assumption - consistency requires that the effects be uncorrelated with the included 

variables.  The fixed effects model relaxes this assumption but the estimator suffers from the 

‘incidental parameters problem’ analyzed by Neyman and Scott (1948) [see, also, Lancaster 

(2000)].  The fixed effects maximum likelihood estimator is inconsistent when T, the length of the 

panel is fixed.  In the models that have been examined in detail, it appears also to be biased in finite 

samples.  How serious these problems are in practical terms remains to be established - there is 

only a very small amount of received empirical evidence and very little theoretical foundation.  

[See, e.g., Maddala (1987) and Baltagi (2000).]  Impressions to the contrary notwithstanding, 

Neyman and Scott did not establish that the fixed effects estimator would generally be biased in a 

finite sample; they found as a side result in their analysis of asymptotic efficiency that the 

maximum likelihood estimator of the variance in a fixed effects regression model had an exact 

expectation that was (T-1)/T times the true value.  They provided no general results on small T bias.  

The only received analytic results in this regard are those for the binomial logit model established 

by Anderson (1973) and Hisao (1996).  Other results on this phenomenon are based on Monte 

Carlo studies of binary choice estimators.  [See, e.g., Heckman (1981a) and Katz (2001).] 

 There is an extensive literature on semiparametric and GMM approaches for some panel 

data models with latent heterogeneity [see, e.g., Manski (1987), Charlier et al. (1995), Chen et al. 

(1999), Honoré and Kyriazidou (2000) and Honoré and Lewbel (2002).]  Among the practical 

limitations of these estimators is that although they provide estimators of the primary slope 

parameters, they usually do not provide estimators for the full set of model parameters and thus 

preclude computation of marginal effects, probabilities or predictions for the dependent variable.  

(Indeed, some estimation techniques which estimate only the slope parameters and only “up to 
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scale” provide essentially only information about signs of coefficients and classical (“yes or no”) 

statistical significance of variables in the model..)  In contrast, the fixed effects estimator is a full 

information estimator that, under its assumptions, provides results for all model parameters 

including the parameters of the heterogeneity.  In spite of its shortcomings, the fixed effects 

estimator has some virtues which suggest that it is worth a detailed look at its properties.  This 

study will examine the behavior of the estimator in a variety of nonlinear models. 

 Most of the results in the literature are qualitative in nature.  One widely cited piece of  

empirical evidence is Heckman’s (1981b) Monte Carlo study of the probit model in which he found 

that the small sample bias of the estimator appeared to be surprisingly small.  However, his study 

examined a very narrow range of specifications, focused only on the probit model and, did not, in 

fact, examine a fixed effects model.  Heckman analyzed the bias of the fixed effects estimator in a 

random effects model – his analysis included the orthogonality assumption noted earlier.  In spite 

of its wide citation, Heckman’s results are of limited usefulness for the case in which the researcher 

contemplates the fixed effects estimator precisely because the assumptions of the random effects 

model are inappropriate. Moreover, our results below are sharply at odds with Heckman’s (even 

with his specification).    

Analysis of the fixed effects model has focused on binary choice models.1  The now 

standard result is that the fixed effects estimator is inconsistent and substantially biased away from 

zero when group sizes are small, with a bias that diminishes with increasing group size. We will 

consider some additional aspects of the estimator.  First, the two binary choice estimators that have 

been examined heretofore are narrow cases.  Recent research has been based on an increasing 

                                                           
1 The model has been studied intensively in the recent literature.  A partial list of only the most recent studies 
of the probit model includes Arellano and Honoré (2001), Cerro (2002), Chen et al. (1999), Hahn (2001), 
Katz (2001), Laisney and Lechner (2002), Lancaster (1999), and Magnac (2002).  
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availability of high quality panel data sets and on models that extend well beyond binary choice.  

There is little received evidence on the behavior of the fixed effects estimator in other models.  We 

will focus on three, the tobit and truncated regression models for limited dependent variables and 

the Weibull model for survival (duration) data.  In the case of the tobit model, a surprising result 

emerges that would be overlooked by the conventional focus on slope estimators.  In brief, the 

slope estimators in the tobit model appear not to be affected by the incidental parameters problem.  

But, the problem shows up elsewhere, in the estimated disturbance variance.  The truncated 

regression model behaves quite differently.  In this case, both the slopes and the variance are 

attenuated.  No general pattern can be asserted, however.  In the Weibull model, two slope 

coefficients are biased in opposite directions.  

This study is organized as follows:  We begin in Section 2 with a general specification for 

nonlinear models with fixed effects.  Save for a few well known cases, the potentially huge number 

of parameters presents a practical problem for estimation of this model.  In these few cases, it is 

possible to condition the constants out of the model, and base estimation of the main parameters on 

the conditional likelihood.  In most cases, this is not possible; for maximum likelihood estimation, 

all parameters must be estimated simultaneously.  Though it appears not to be widely known, in 

most cases, it is actually possible to estimate the full parameter vector even in models for which 

there is no conditional likelihood which is free of the nuisance parameters.  Some details on 

computation of the estimator are sketched in Section 2.   Section 3 contains two Monte Carlo 

studies of the fixed effects estimator.  We first revisit Heckman’s (1981b) study of the probit model 

as well as the other familiar result, that for the binary logit model.  Another discrete choice model 

that has not been examined previously, the ordered probit model, is examined here as well.  An 

additional question considered in this study has not been addressed previously.  Given that the 

fixed effects estimator is problematic, is it best to ignore the heterogeneity, use a random effects 

estimator, or use the fixed effects estimator in spite of its shortcomings?  The second study 

considers the tobit and truncated regression models and the Weibull model for censored duration 
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data.  Here, we are interested not only in the slope estimators, but the variance estimator and the 

estimators of marginal effects.  We will also examine the estimated standard errors in the fixed 

effects models.  Some conclusions are drawn in Section 4. 

The end result of this study is that the fixed effects estimator displays a much greater 

variety of behavior than suggested in the received literature.  Some of the main conclusions of this 

paper are as follows:  First, save for some well documented cases, such as the Poisson model, in 

which there actually is no incidental parameters problem, the skepticism about the fixed effects 

estimator is only broadly appropriate.  We find that for a wider range of cases for the models that 

have already been examined in the literature, the estimator is indeed biased, and in a few instances, 

substantially so even when T is fairly large.  Second, Heckman’s encouraging results for the probit 

model appear to be incorrect.  However, ignoring heterogeneity (in a probit model) is not 

necessarily worse than using the fixed effects estimator to account for it.  But, using the random 

effects estimator is worse.  Third, the slope estimators in the tobit model do not appear to be 

affected by the incidental parameters problem.  This is an unexpected result, but it must be 

tempered by a finding that the variance estimator is so affected.    The variance estimator in the 

tobit model is a crucial parameter for inference and analysis purposes.  On the other hand, the bias 

in the variance estimator appears to fall fairly quickly with increasing T.  Even given this additional 

result, one must look a bit more closely.  The marginal effects in the tobit model are much less 

biased than one might expect.  We also find that in cases in which the expected biases in the slope 

estimators do emerge, it is away from zero, but at the same time, the estimated standard errors 

appear to be biased toward zero.   The truncated regression model and Weibull models display 

various patterns that would not be predicted by already received results.  Finally, a closer look at 

the tobit model suggests that in contrast to the widely accepted result, the fixed effects estimator in 

this one case appears to be consistent as well as unbiased.  
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2.  The Fixed Effects Model and Estimator 
 

We consider a nonlinear model defined by the density for an observed random variable, yit,  
 
f(yit | xi1,xi2,...,xi,Ti) =  g(yit, β′xit  +  αi, θ) 

 
where β is the vector of slopes, θ is a vector of ancillary parameters such as a disturbance standard 

deviation, an overdispersion parameter in the Poisson model or the threshold parameters in an 

ordered probit model.  We will leave for future research models with dynamic effects; yi,t-1 does not 

appear on the right hand side of the equation.  [See, e.g., Arellano and Bond (1991), Arellano and 

Bover (1995), Ahn and Schmidt (1995), Orme (1999), Heckman (1978, 1981a), Heckman and 

MaCurdy (1980), Hahn (2001), Honoré and Kyriazidou (2000)].  The fixed effects model presents 

two disadvantages.  In a few cases, it is possible to condition the possibly large number of 

constants out of the model, and base estimation of β and θ on a conditional likelihood.  But, in 

most cases, this is not possible; for maximum likelihood estimation, all parameters must be 

estimated simultaneously.  [There are no general results.  Lancaster (2000) catalogs those which 

have been derived.]  Though it appears not to be widely known, as discussed below, in most cases, 

it is actually possible to compute the full parameter vector even in models for which there is no 

conditional likelihood which is free of the nuisance parameters.  Second, because of the incidental 

parameters problem, the unconditional fixed effects estimator is inconsistent - the asymptotic 

variance of the estimator of β does not converge to zero as N increases.  Moreover, with fixed 

group sizes, T, there appears to be a significant small sample bias in the estimator.  The familiar 

evidence in this regard is limited to the probit and logit models.  (We find, in passing, that the same 

effect is observed in the ordered probit model.)  We will examine the effect further in the context of 

three models that have continuous dependent variables, the tobit and truncated regression and 

Weibull duration models.    Our results are considerably different from the familiar findings.  We 

will also examine the behavior of the estimator of the asymptotic standard errors for the slope 

estimators.   
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2.1.  Computation of the Fixed Effects Maximum Likelihood Estimator 

The log likelihood function for a sample of N repeated observations on group i is 

logL  =  . 
1 1

,log ( ' , )iN T

i t it iit
g y

= =
+ α 

 ∑ ∑ xβ θ

 
The likelihood equations for β, θ, and α = [α1,...,αN]′,  

 ,  [ ]log /L ′′ ′ ′∂ ∂ = 0β θ α

generally do not have explicit solutions for the parameter estimates in terms of the data and must be 

solved iteratively.  In principle, maximization can proceed simply by creating and including a 

complete set of dummy variables in the model.  But, the proliferation of nuisance (incidental) 

parameters (constant terms) which increase in number with the sample size, ultimately renders 

conventional gradient based maximization of this likelihood infeasible. 

2.2.  Conditional Estimation 

 In the linear case, regression using group mean deviations sweeps out the fixed effects.  

The K slope parameters are estimated by within group least squares, a computation of order K, not 

N.  A few analogous cases of nonlinear models have been developed, such as the binomial logit 

model, 

g(yit, β′xit + αi)  =  Λ[(2yit  - 1)(β′xit + αi)] 
 
where Λ(z) = exp(z)/[1+exp(z)]. [See Chamberlain (1980), Rasch (1960), Krailo and Pike (1984), 

and Greene (2003, Chapter 21) for details.]  In this case, Σtyit is a minimal sufficient statistic for αi, 

and estimation in terms of the conditional density provides a consistent estimator of β.  Three other 

commonly used models that have this property are the Poisson and negative binomial regressions 

for count data [see Hausman, Hall, and Griliches (1984),2 Cameron and Trivedi (1998), Allison 

(2000),  Lancaster (2000) and Blundell, Griffith and Windmeijer (2002)] and the exponential 

regression model for a continuous nonnegative variable, 
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g(yit, β′xit + αi)  =  (1/λit)exp(-yit/λit), λit  =  exp(β′xit + αi), yit ≥ 0 
 
[see Munkin and Trivedi (2000)].  In all these cases, the conditional log likelihood, 
 

( )( )1 2 , 1 1 21
log log , ,...,  , , ,...i

i

N T
c i i i T t it ii

L f y y y y==
= Σ∑ x xi

                                                                                                                                                                               

 

 
is a function of β but not α, which provides a feasible estimator of the parameters that is free of the 

nuisance parameters.3  In most cases of interest to practitioners, including, for examples, those 

based on transformations of normally distributed variables such as the probit, tobit and truncated 

regression models, this method will be unusable. 

2.3.  Two Step Estimation 

 Heckman and MaCurdy (1981) suggested a 'zig-zag' sort of approach to maximization of 

the log likelihood function, dummy variable coefficients and all.  Consider the probit model.  For 

known set of fixed effect coefficients, α = (α1,...,αN)′, estimation of β is straightforward.  The log 

likelihood conditioned on these values (denoted ai), would be 

log L|a1,...,aN  =   1 1 log [(2 1 ' )i
it iit

N T
i t y a= = Φ − )( +∑ ∑ xβ

 
This can be treated as a cross section estimation problem since with known α, there is no 

connection between observations even within a group.  With given estimate of β (denoted b) the 

conditional log likelihood function for each αi, 

log Li|b =  ∑  [ ]1
log (2 1)( )iT

it it it
y z α

=
Φ − +

 

 
2 But, see Allison (2000) for documentation of an ambiguity in the Hausman et al. formulation of the 
negative binomial model. 
3 Lancaster (2000) lists several cases in which the parameters of the model can be “orthogonalized,” that is, 
transformed to a form αi*(α,β) and β such that the log likelihood reparameterized in terms of these 
parameters is separable.  The concentrated likelihood for the Poisson is an easily derived example.  As he 
notes, there is no general result which produces the orthogonalization, and the number of cases is fairly 
small. 
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where zit  =  b′xit is now a known function.  Maximizing this function for each i is straightforward.  

Heckman and MaCurdy suggested iterating back and forth between these two estimators until 

convergence is achieved.4   

There is no guarantee that this back and forth procedure will converge to the maximum of 

the log likelihood function because the Hessian is not block diagonal.  Whether either estimator is 

even consistent in the dimension of N (that is, of β) even if T is large, depends on the initial 

estimator being consistent, and it is unclear how one should obtain that consistent initial estimator.5  

For the binary choice setting, in any group in which the dependent variable is all ones or all zeros, 

there is no maximum likelihood estimator for αi - the likelihood equation for log Li has no solution 

if there is no within group variation in yit.  This feature of the model carries over to the tobit and 

binomial logit models, as the authors noted and to Chamberlain’s conditional logit model and the 

Hausman et al. estimator of the Poisson model.6  In the Poisson and negative binomial models 

cases, any group which has yit = 0 for all t contributes a zero to the log likelihood function so its 

group specific effect is not identified.  Third, irrespective of its probability limit, the estimated 

standard errors for the estimator of β will be too small, again because the Hessian is not block 

diagonal.7  The estimator at the β step does not obtain the correct submatrix of the information 

matrix. 

 

                                                           
4 Polachek and Yoon (1994, 1996) applied this approach to the stochastic frontier model. See, as well, Hall 
(1978), Borjas and Sueyoshi (1993), Berry, Pakes and Levinsohn (1995), Petrin and Train (2002) and Greene 
(2002, 2003). 
5 Polachek and Yoon’s (1996) application to a stochastic frontier model is based on an initial consistent 
estimator, OLS, so in their case, the consistency issue must be treated differently. In fact, however, though 
their initial estimator is consistent, subsequent iterates are not, since they are functions of the estimated fixed 
effects. 
6 This is not an issue in all cases, however. For example, in the linear regression model, within group 
variation in the dependent variable is not required for estimation of the individual constant term.  In the 
Poisson model, estimation of αi requires only that at least one yit differ from zero. 
7 Polachek and Yoon (1996, footnote 9) argue that since the off diagonal blocks, hγi is small (Ti terms) 
compared to the diagonal block, this effect may be minimal. But, the missing offset to the matrix being 
inverted is Σi hγi, which is of the same order. 
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2.4.  Full Maximum Likelihood Estimation 

 Maximization of the log likelihood function can, in fact, be done by ‘brute force,’ even in 

the presence of possibly thousands of nuisance parameters.  The strategy, which uses some well 

known results from matrix algebra is described in Prentice and Gloeckler (1978) [who attribute it to 

Rao (1973)], Chamberlain (1980, p. 227), Sueyoshi (1993) and Greene (2003).  No generality is 

gained by treating θ separately from β, so at this point, we will simply collect them in the single 

K×1 parameter vector γ = [β′,θ′]′.  Denote the gradient and Hessian of the log likelihood by 

gγ  =  
γ∂

∂ Llog   =   
1 1

log ( , , , )iN T it it i
i t

g y α
= =

∂
∂

xγ
γ∑ ∑  

 

gαi  =  
i

L
α∂

∂ log   =  
1

log ( , , x , )iT it it i
t

i

g y α
α=

∂
∂∑ γ

 

 
gα  =  [gα1, ... , gαN]′ 

 
g  =  [gγ′, gα′]′ 

 
and 

H =   























γ

γ

γ

γγγγγ

NNN

N

h

h
h

000'
0
00'
00'

222

111

21

h

h
h

hhhH

where 

Hγγ  =  
2

1 1

log ( , , , )
'

iN T it it i
i t

g y α
= =

∂
∂ ∂∑ ∑ xγ
γ γ

 

 

 hγi  =  
2

1

log ( , , , )iT it it i
t

i

g y α
α=

∂
∂ ∂∑ xγ
γ

 

 

 hii  =  
2

21

log ( , , , )iT it it i
t

i

g y α
α=

∂
∂

xγ∑ . 

Newton’s method for computation of the parameters will use the iteration 

ˆ
ˆ

k

 
 
 

γ
α

 =    -   H g
1

ˆ
ˆ

k−

 

 

γ
α

-1
1−k k-1  =    +   . 

1

ˆ
ˆ

k−

 
 
 

γ
α 









α

γ
∆
∆
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By taking advantage of the sparse nature of the Hessian, this can be reduced to a computation that 

involves only K×1 vectors and K×K matrices; 

 ∆γ =  - 
1

1
1

1N
i ii

ii k
h

−

=
−

  
′−  

   
∑H hγγ γ γh

1
1

N i
ii

ii k

g
h
α

=
−

 
− 

 
∑g hγ γ  

  =  - Hγγ ( gγ - Hγα
-1
ααH gα) 

 ∆αi =  - ( )1
i i

ii

g
h α ′+ hγ γ∆ . 

 
For a single index model, g(yit, β′xit + αi), with no ancillary parameters, such as the probit, 

logit,  Poisson or exponential model, this can be written in the convenient form 

∆γ  = ( )( )
1

1 1
iN T

it it i it ii t

−

= =
 ψ − − ∑ ∑ x x x x{ }  × ( )1 1

iN T
it it iii t= =

 δ − ∑ ∑ x x{ }  

and 

 ∆αi  =  
1

/ .   +  iT
it i iit=

  ′−δ ψ ∑ x γ∆  

where 
 δit   =  ∂log g(yit, β′xit + αi) /∂αi 
 
 ψit  =  ∂2log g(yit, β′xit + αi) /∂αi

2 

 
 ψi .  =   

1
iT

itt=
ψ∑

 
 ix   =  hγi / hii  =  . 

1 1
  /  i iT T

it it itt t= =
ψ ψ∑ ∑x

 
The estimator of the asymptotic covariance matrix for the slope parameters in the MLE is 

 Est.Asy.Var[ ]  =  -ˆ MLEγ
1

1

1N
i ii

iih

−

γγ γ γ=

  
′−  

   
∑H h h = -Hγγ 

 
For the separate constant terms, 

 Est.Asy.
1

' 1

1 1 1 1Cov , ( ) N
i j i i ii

ii ii jj ii

a a i j
h h h h

−

jγ γγ γ γ γ=

 
′ ′  = − = − −  
 

∑1 h H h h h  

   ( ) ji

ii ii jj

i j
h h h

 ′ − =
= −        

hh1 H γγ γγ . 

For the single index model, this is 
 

 Est.Asy.   Cov ,i ja a  = 
( )   +  i j

i

i j− = ′
ψ

1 x Vx . 
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Finally, 

 Est.Asy.Cov[ ,aˆ MLEγ i]  =  Est.Asy.Var[ ]×ˆ MLEγ i

iih
γ 

 

h
  =  -V ix . 

 
Each of these involves a moderate amount of computation, but can easily be obtained with 

existing software and computations that are linear in N and K.  Neither update vector requires 

storage or inversion of a (K+N)×(K+N) matrix; each is a function of sums of scalars and K×1 

vectors of first derivatives and mixed second derivatives.  Storage requirements for α and ∆α are 

linear in N, not quadratic.  Even for panels of tens of thousands of units, this is well within the 

capacity of the current vintage of even modest desktop computers.8  The application below, 

computed on an ordinary desktop computer, involves computation of a tobit model with N = 3,000. 

3.  Sampling Properties of the Fixed Effects Estimator 
 
 If β and θ were known, then, the MLE for αi would be based on only the Ti observations 

for group i.  This implies that the asymptotic variance for ai is O[1/Ti] and, since Ti is fixed, ai is 

inconsistent.  The estimator of β will be a function of the estimator of αi, ai,ML.  Therefore bML, the 

MLE of β is a function of a random variable which does not converge to a constant as N → ∞, so 

neither does bML.  There may be a small sample bias as well. Andersen (1973) and Hsiao (1996) 

showed analytically that in a binary logit model with a single dummy variable regressor and a 

panel in which Ti = 2 for all groups, the small sample bias is +100%.  Abrevaya (1997) shows that 

Hsiao’s result extends to more general binomial logit models as long as Ti continues to equal two. 

Our Monte Carlo results below are consistent with this result.  No general results exist for the small 

sample bias if T exceeds 2 or for other models. Generally accepted results are based on Heckman's 

(1981b) Monte Carlo study of the probit model with Ti = 8 and N = 100 in which the bias of the  

                                                           
8 Sueyoshi (1993) after deriving these results expressed some surprise that they had not been incorporated in 
commercial software.  As of this writing, it appears that LIMDEP [Econometric Software, (2003)] is still the 
only package that has done so. 
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slope estimator was toward zero (in contrast to Hsiao) and on the order of only 10%.  On this basis, 

it is often suggested that in samples at least this large, the small sample bias is probably not too 

severe.  However, our results below suggest that the pattern of overestimation in the probit model 

persists to larger T as well, and Heckman’s results appear to be too optimistic.  Neyman and Scott 

(1948) are often invoked to assert the extension of this result to other models as well.  In point of 

fact, Neyman and Scott did not claim any generality for the small sample bias of the maximum 

likelihood estimator; they observed it in passing in one narrow case (the variance of the fixed 

effects estimator in a model with no regressors) during the course of their examination of the 

asymptotic efficiency of the MLE in the presence of the nuisance parameters.  As we find below, 

there appears to be no predictable pattern to the sign, or even the presence of a small sample bias of 

the fixed effects estimator. 

3.1.  Discrete Choice Models 

 The experimental design for Heckman’s Monte Carlo analysis of the fixed effects probit 

estimator was as follows: 

Yit  =  σττi  +  βzit  +  εit, i = 1,…,100, t = 1,…,8, 

τi  ~  N[0,1], 

zit  =  0.1t + 0.5zi,t-1  +  Uit,  Uit ~ U[-0.5,0.5], zi0  =  5  +  10.0Ui0, 

εit  ~  N[0,1], 

yit  =  1[Yit  >  0]. 

[The initialization of zit is given in Nerlove (1971).]  Heckman’s results are summarized in Table 1.  

For the case of interest here, his results for the probit model with N = 100 and T = 8 suggest, in 

contrast to the evidence for the logit model, a slight downward bias in the slope estimator.  The 

striking feature of his results is how small the bias seems to be even with T as small as 8.  

We have been unable to replicate any of Heckman’s results.  Both his and our own results 

with his experimental design are shown in Table 1.  Some of the difference can be explained by 
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different random number generators.  But, this would only explain a small part of the strikingly 

different outcomes of the experiments and not the direction.  In contrast to Heckman, using his 

specification, we find that the probit estimator, like the logit estimator, is substantially biased away 

from zero when T = 8.  Consistent with expectations, the bias is far less than the 100% that appears 

when T = 2.  The table contains three sets of results.  The first are Heckman’s reported values.  The 

second and third sets of results are our computations for the same study.  Heckman based his 

conclusions on 25 replications.  To control the possibility that some of the variation is due to small 

sample effects, we have redone the analysis using 100 replications.  The results in the second and 

third row of each cell are strongly consistent with the familiar results for the logit model and with 

our additional results discussed below.  The bias in the fixed effects estimator appears to be quite 

large, and, in contrast to Heckman’s results, is away from zero in all cases.  The proportional bias 

does not appear to be a function of the parameter value. 

      Table 1.  Heckman’s Monte Carlo Study of the Fixed Effects Probit Estimator 
 β = 1.0 β = -0.1 β = -1.0 

στ
2 = 3 

0.90a 

1.286b 

1.240c 

-0.10 
-0.1314 
-0.1100 

-0.94 
-1.247 
-1.224 

στ
2 = 1 

0.91 
1.285 
1.242 

-0.09 
-0.1157 
-0.1127 

-0.95 
-1.198 
-1.200 

στ
2= 0.5 

0.93 
1.213 
1.225 

-0.10 
-0.1138 
-0.1230 

-0.96 
-1.199 
-1.185 

aReported in Heckman (1981), page 191. 
bMean of 25 replications 
cMean of 100 replications 

 
 There is an important shortcoming in the design of the foregoing experiment.  The 

underlying model is not a fixed effects model; it is a random effects model.  The signature feature 

of the fixed effects model is correlation between the effects and the included variables, and by 

construction, there is none between τi and zit in the model above.  As such, the foregoing does not 

give evidence on the point for which it is usually cited, that is, the small sample bias of the 

unconditional fixed effects estimator of the fixed effects model.  More to the point, if the researcher 
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knows that the effects are not correlated with the included variables, then a random effects 

approach should be preferable, and the issue at hand becomes whether the normal distribution 

typically assumed is a valid assumption and what are the implications if it is not.  Current 

technology provides a variety of useful approaches for random effects and random parameters 

models when it can be assumed that the effects and the included variables are orthogonal. 

We will examine the behavior of the estimator in somewhat greater detail.  We are 

interested in whether Hsiao’s result carries over to other models, and how Heckman’s results 

change when T is not equal to 8.  We will examine several index function models, the binomial 

logit, binomial probit, ordered probit, tobit, truncated regression and Weibull models.  (The 

continuous choice models are considered in the next section.)  The experiment is designed as 

follows: All models are based on the same index function: 

 wit  =  αi  +  βxit  +  δdit,  

where β = δ = 1, 

 xit  ~  N[0,12] 
 
 dit  =  1[xit  +  hit  >  0]  where  hit  ~  N[0,12] 
 
 2 =  , ~ [0,1 ]i i i iT x a a Nα +  
 
In all cases, we estimate the two coefficients on xit and dit, where both coefficients equal 1.0, and 

the fixed effects (which are not used or presented below).  The correlations between the variables 

are approximately 0.7 between xit and dit , 0.4 between αi and xit and 0.2 between αi and dit.  The 

data generating processes examined here are as follows: 

 Probit: yit  =  1[wit  +  εit  >  0],   
 
 Ordered Probit: yit  =  1[wit  +  εit  >  0] + 1[wit  +  εit  >  3],   
 
 Logit: yit  =  1[wit  +  vit  >  0], vit  =  log[uit/(1-uit)],  
 
where εit ~ N[0,12] denotes a draw from the standard normal population and uit ~ U[0,1] denotes a 

draw from the standard uniform population.  Models were fit with T = (2, 3, 5, 8, 10, 20) and with 
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N = (100, 500, 1,000).  (Note that this includes Heckman’s experiment.)  Each model specification, 

group size, and number of groups was fit 200 times with random draws for εit or uit.  For purposes 

of our analysis, we based conclusions on the N = 1,000 experiments.  The conditioning data, xit, dit 

and αi are held constant. The full set of parameters, including the dummy variable coefficients, are 

estimated using the results given earlier. For each of the specifications listed, properties of the 

sampling distribution are estimated using the 200 observations on β and δ.9 

 Table 2 lists the means of the empirical sampling distribution for the three different 

discrete choice estimators for the samples of 1,000 individuals.  At this point, we are only 

interested in the mean of the sampling distribution as a function of T, so we use only the results 

based on the largest (N) samples.  The bias of the fixed effects estimator in the binary and ordered 

choice models is large and persistent.  Even at T = 20, we find substantial biases.  With T = 2, the 

Anderson/Hsiao result is clearly evident, even more so in the ordered probit model.  Increasing the 

sample size (N) from 100 to 1,000 did nothing to remove this effect, but the increase in group size 

(T) from 2 to 20 has a very large effect.  We conclude that this is a persistent bias that can, indeed, 

be attributed to the “small T problem.”  The results for the probit model with T = 8 are the 

counterparts to Heckman’s results.  The biases in Table 2 are quite unlike those in his study.  The 

ordered probit model, which has not been examined previously, shows the same characteristic 

pattern as the binomial models. 

Table 2. Means of Empirical Sampling Distributions,  
N = 1000 Individuals Based on 200 Replications.  

 T=2 T=3 T=5 T=8 T=10 T=20 
    β         δ    β         δ    β         δ    β         δ    β         δ    β         δ 

Logit Coeff 2.020,  2.027 1.698,  1.668 1.379,  1.323 1.217,  1.156 1.161,  1.135 1.069,  1.062 

Logit M.E. 1.676  1.660 1.523   1.477 1.319   1.254 1.191   1.128 1.140   1.111 1.034   1.052 

Probit Coeff 2.083,  1.938 1.821,  1.777 1.589,  1.407 1.328,  1.243 1.247,  1.169 1.108,  1.068 

Probit M.E.  1.474  1.388 1.392   1.354  1.406   1.231  1.241   1.152  1.190  1.110  1.088   1.047 

Ord. Probit 2.328,  2.605 1.592,  1.806 1.305,  1.415 1.166,  1.220 1.131,  1.158 1.058,  1.068 
 

                                                           
9 A similar study over a range of group sizes is carried out for the binary logit model by Katz (2001). 
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 The focus on coefficient estimation in these models overlooks an important aspect of 

estimation in a binary choice model.  Unless one is only interested in signs and statistical 

significance (and, if so, then the incidental parameters problem may be a moot point), then the 

relevant object of estimation in the model is the marginal effect, not the coefficient itself.  For the 

two binary choice models, the marginal effects are 

 [ | , , ] ( )it i it it
i it i

it

E y x d f x
x

∂ α
= β α +β + δ

∂ td

t

 

for the continuous variable xit and 

 ∆E[yit|αi,xit,di]  =   -  ( )i itF xα +β + δ ( )i iF xα +β

for the dummy variable dit, where f(.) and F(.) denote the density and CDF (normal or logistic), 

respectively.  These are functions of the data, so there is in principle no ‘true’ value to be 

estimated.  But, these are typically computed at the means of the independent variables.  Taking 

this as our benchmark, the estimated values would be based on averages of zero for αi and xit and 

0.5 for dit.  The ‘true’ marginal effects would be 1×φ(0 + 1×0 + 1×.5) = 0.352 and Φ(1)  - Φ(0)  = 

0.3413 for the probit model and 1×Λ(.5)[1-Λ(.5)] = 0.235 and Λ(1) - Λ(0) = .231 for the logit 

model for xit and dit, respectively.  The estimated values would be obtained by inserting the 

estimated coefficients in the preceding expressions.  In each case, the overestimated coefficient acts 

to increase the multiplier but attenuate the scale factor, so the relationship between the marginal 

effects and the coefficients is unclear.  The second row of values for the logit and probit models in 

Table 2 gives the ratio of what would be the estimated marginal effect to the ‘true’ marginal effects 

for the logit and probit models. Comparison of the entries suggests that the biases are comparable 

for T > 5.  However, the first two columns suggest that the commonly accepted result of a 100% 

bias when T = 2 substantially overstates the case.  The bias is still large, but well under 100%.  In 

all cases save for the last, the marginal effect is closer to the true value than the coefficient 
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estimator is to its population counterpart.  We do note, these results do not redeem the estimator.  

However, they do cast some new light on a long held result, the bias for T = 2. 

The preceding analysis and its counterpart elsewhere in the literature leaves an open 

question.  Believing that the fixed effects model is appropriate for their data, but faced with the 

foregoing results, the analyst committed to a parametric approach has (at least) three alternatives: 

use the fixed effects estimator in spite of the incidental parameters issue, use the random effects 

estimator, even though it is, at least in principle, inconsistent, or ignore the heterogeneity and use 

the pooled estimator.  It is unclear which should be preferred.  All three estimators are biased and 

inconsistent.  Table 3 presents a comparison of these three estimators for the same sample design 

for the probit model with  T = 3 and T = 8, with N = 1,000.  All three estimators were computed 

with the same data, 200 times.  The table lists the sample means and the root mean squared 

deviations around the true values of 1.0 for β and δ.  For which among the three to choose, it is 

clear that the random effects estimator is overwhelmingly the worst of the three.  It is ambiguous 

whether one should use the fixed effects estimator or pool the data and ignore the heterogeneity.  

The interesting result is that while the fixed effects estimator is biased upward, the pooled 

estimator is biased downward.  For the worse case, T = 3, the bias of the pooled estimator is 

considerably smaller and the root mean squared deviation is as well.  For T = 3, without question, 

the pooled estimator is superior.  For T = 8, it is unclear.  In this case, the biases are opposite, but 

comparable.  The root mean squared error for β favors the fixed effects estimator while that for δ 

favors the pooled estimator.  The comparison is unclear.  It seems likely based on this and all the 

preceding results that for T larger than 8, the results will probably favor the fixed effects estimator.  

On the other hand, it is obvious that the better course when T is very small (between the two 

problematic ones) is the pooled estimator. 
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Table 3.  Means and Root Mean Squared Deviations of Fixed Effects, Random  
Effects and Pooled Estimators for the Probit Model 

 

 T = 3 T = 8 
 β δ β δ 
 Mean RMSE Mean RMSE Mean RMSE Mean RMSE 
Pooled   0.953   0.671   0.655   0.349   0.797   0.204   0.604   0.397 
Random   0.415   0.588   2.629   1.634   0.249   0.752   2.286   1.288 
Fixed   1.868   0.909   1.769   0.839   1.332   0.340   1.236   0.262 

3.2.  The Tobit, Truncated Regression and Weibull Models 

The tobit model was simulated using the same experimental design, with replication 

 yit  =  1[cit > 0] × cit, cit  =  wit + εit. 
 
Table 4 presents the simulation results for the tobit model specified above.  It appears that the tobit 

fixed effects estimator is not biased at all.  The result is all the more noteworthy in that in each data 

set, roughly 40 - 50% of the observations are censored.  If none of the observations were censored, 

this would be a linear regression model, and the resulting OLS estimator would be the consistent 

linear LSDV estimator.  But, with roughly 40% of the observations censored, this is a quite 

unexpected result.  However, the average of the 200 estimates of σ - the true value is also 1.0 - 

shows that the incidental parameters problem shows up in a different place here.  The estimated 

standard deviation is biased downward, though with a bias that does diminish substantially as T 

increases. This result is not innocuous.  Consider estimating the marginal effects in the tobit model 

with these results.  In general in the tobit model, for a continuous variable, δk = ∂E[yi|xi]/∂xik = 

βk×Φ(β′xi/σ) where Φ(z) is the cdf of the standard normal distribution.  This is frequently 

computed at the sample means of the data.  Based on our experimental design, the overall means of 

the variables would be zero for αi and xi and 0.5 for di.  Therefore, the scale factor estimated, using 

the true values of the slope parameters as they are (apparently) estimated consistently, would be 

Φ(0.5/σ ).  The ratio of this value computed at the average estimate of σ to the value computed at 

σ = 1 [which would be Φ(.5) = .6914] is given in the last row of the table, where it can be seen that 

for small T, there is some upward bias in the marginal effects, but far less than that in the discrete 

ˆ
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choice models.  On the other hand, at T = 8 (Heckman’s case), the tobit model appears to be 

essentially consistently estimated in spite of the incidental parameters issue.  It is tempting to 

invoke Neyman and Scott’s result mentioned earlier to explain this finding, but the censoring 

aspect of the model and the contradictory results below for the truncation model suggest that would 

be inappropriate. 

Table 4. Means of Empirical Sampling Distributions, Tobit, Truncated Regression and 
Weibull Models, N = 1000 Individuals Based on 200 Replications.  

 T=2 T=3 T=5 T=8 T=10 T=20 
Tobit Model 

β   0.991   0.985   0.997   1.000   1.001   1.008 
δ   1.083   0.991   1.010   1.008   1.004   1.00 
σ   0.644   0.768   0.864   0.914   0.928   0.964 
Scale factor   1.13   1.07   1.04   1.02   1.01   1.02 

Truncated Regression Model 
β   0.892   0.921   0.955   0.967   0.971   0.986 
δ   0.740   0.839   0.888   0.934   0.944   0.973 
σ   0.664   0.782   0.869   0.920   0.935   0.968 
Scale factor   1.033   1.021   1.006   1.004   1.0003   1.001 
Mar.Effect   0.448   0.457   0.467   0.472   0.474   0.480 

Weibull Duration Model 
β   0.706   0.773   0.806   0.832   0.836   0.861 
δ   1.284   1.207   1.170   1.128   1.117   1.085 
σ   0.512   0.659   0.767   0.826   0.847   0.878 
 

 The truncated regression model is generated by the nonlimit observations in the censored 

regression setting.  [See Hausman and Wise (1977).]  Thus, for the simple case of lower truncation 

at zero (any other point, or upper truncation is a trivial modification of the model), 

 yit*  =  αi  +  βxit  +  δdit, + εit 

 yit    =  yit*  if  yit* > 0 and is unobserved otherwise. 

The log likelihood for the truncated regression model is 

 
1 1

1log log logN T it i it it i it it
i t

y x d x dL
= =

  − α −β − δ α +β + δ  = φ − Φ     σ σ σ    
∑ ∑ 


. 
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Based on results already obtained, we can deduce how the MLE in this model is likely to behave.  

By adding and subtracting a term and using the symmetry of the normal distribution, the log 

likelihood function for the tobit model may be written 
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1log log log
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The first line of the result is the log likelihood for a truncated regression model for the nonlimit 

observations.  The second line is the log likelihood for the binary probit model.  Since σ = 1 

(though the more general case produces the same result), we can see that since the tobit estimator 

of the slopes is unbiased, and the probit estimator is biased upward, we should expect the truncated 

regression estimator to be biased downward, toward zero.  The results in Table 4 are consistent 

with this observation. 

 The simulations for the truncated regression model are produced using Geweke’s (1986) 

suggested method, 

 yit  =  αi  +  βxit  +  δdit,+ σΦ-1{uit + (1-uit)Φ[( αi  +  βxit  +  δdit)/σ]} 

where uit is a draw from the standard uniform population.  This one to one transformation produces 

a single draw from the truncated at zero normal distribution with mean αi + βxit + δdit, and standard 

σ.  The conditional mean function in the truncated regression model is 

 E[yit|αi,xit,dit]   =  αi + βxit + δdit,+ σλ[(αi + βxit + δdit)/σ] 

   =  αi + βxit + δdit,+ σλit 

where λ(z) = φ(z)/Φ(z).  For a continuous variable, xit 

 [ | , , ] 1it i it it i it it
it it

it

E y x d x d
x

 ∂ α α +β + δ = β − λ + λ  ∂ σ  
, 
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so, for estimating partial effects, the necessary scale factor is the term in square brackets.  [The 

term is bounded by zero and one.  See, e.g., Maddala (1983) or Greene (2003, Section 22.2.3).]  

Once again, the ‘true’ value would depend on the data.  Repeating the logic used for the tobit 

model, we evaluated this at the true values of αi = xit = 0 and δdit = 1(.5) with σ = 1, so that our 

population value is 0.4862.  The sample estimates would be based on δ .  As before, the 

scale factor in the table displays the average scale factor divided by the true value as well as the 

estimated marginal effect, now the scale factor times the estimated coefficient.  Though the 

coefficients and the estimated standard deviation in this model are noticeably biased, the effects are 

largely offsetting in the marginal effects, which are quite close to the true value for all sample 

sizes. 

ˆ ˆ(.5) /σ

                                                          

 Several panel data duration models have been analyzed in this setting as well.  

Chamberlain (1985) analyzed the Weibull and gamma models and showed how the fixed effects 

could be conditioned out of the models by analyzing log(yit/yi1).  Using Kalbfleisch and Prentice’s 

(1980) formulation of the model, we have the survival function 

 S(yit|αi,xit,dit)  =  exp[-(λityit)p], λit = exp[-(αi + βxit + δdit)], p = 1/σ 

and hazard function 

 h(yit|αi,xit,dit)  = λitp(λityit)p-1.10 

Duration data are often censored.  Let Qit = 1 if the observation is ‘complete’ and Qit = 0 if the 

observation is censored.  Then, the log likelihood function is 

 logL  =   [ ],
log ( | , , ) log ( | , , )it i it it it it i it iti t

S y x d Q h y x dα + α∑

Replications for the simulations are drawn by inverting the survival function to produce draws 

 logyit  =  αi + βxit + δdit  +  σlog(-log(1-uit)). 

 
10 This form reparameterizes both Chamberlain’s and Lancaster’s description of the model.  In the former, 
Chamberlain has dropped the log of the scale parameter from the log of the hazard, but nothing is lost if it is 
simply absorbed into the fixed effect. 
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Observations on logyit were censored at 3.  Once again, all three structural parameters of the model 

are equal to 1.0.  Table 4 presents the estimates for the Weibull model with censored data.  In this 

instance, the two estimators of β and δ are converging to their population values from different 

directions, β from below and δ from above.  As in the tobit case, the estimator of σ is attenuated.11  

These results for the slopes are actually contradictory if we view the Weibull model with censoring 

as a distributional alternative to the tobit model.  Evidently, the structure is more complicated than 

that. 

These findings highlight two results.  First, it is clear that the results for the binary choice 

models do not carry over to these continuous choice models.  Indeed, there is no persistent pattern 

whether the estimator is biased upward or downward, or at all in these settings.  Where there is a 

finite sample bias, it appears to be much smaller than for the probit and logit estimators.  Second, 

they suggest the ambiguity of focusing on the slope coefficients in estimation of these models. One 

might be tempted to conclude that the fixed effects estimator is unbiased in the tobit setting - by 

dint of only the coefficients, it appears to be.  But, when the slopes of the model are computed, the 

force of the small sample bias is exerted on the results through the disturbance standard deviation.  

Third, however, the results in Table 4 suggest that the conventional wisdom on the fixed effects 

estimator, which has been driven by the binary choice models, might be too pessimistic.  With T 

equal to only 5, the estimators appears to be only slightly affected by the incidental parameters 

problem.  Even at T = 3, the 7% upward bias in the marginal effects in the tobit model is likely to 

be well within the range of the sampling variability of the estimated parameter. 

                                                           
11 Lancaster (2000, p. 397) states “the estimate for θ converging to a number less than the true value.”  In his 
formulation, θ is 1/σ for the formulation above, so our results are not consistent with his assertion.  The text 
seems to suggest Chamberlain as the source of the claim, but Chamberlain does not discuss the issue, so this 
inconsistency is unresolved. 
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3.3.  Estimated Standard Errors 

 In all the cases examined, a central issue is the extra variation induced in the parameter 

estimators by the presence of the inconsistent fixed effect estimators.  Since the estimator, itself, is 

inconsistent, one should expect distortions in estimators of the asymptotic covariance matrix.  

Table 5 lists, for each model, the estimated asymptotic standard errors computed using the 

estimated second derivatives matrix and the empirical standard deviation based on the 200 

replications in the simulation, using the N = 1000, T = 8  group of estimators.  The ‘analytic’ 

estimator is obtained by averaging the 200 estimated asymptotic standard errors.  The empirical 

estimator is the sample standard deviation of the 200 estimates obtained in the simulation.  The 

latter should give a more accurate assessment of the sampling variation of the estimator while the 

former is, itself, an estimator which is affected by the incidental parameters problem.  There is 

clearly some downward bias in almost all the estimated standard errors.  The implication is that as 

a general result, test statistics such as the Wald statistics (t ratios) will tend to be too large when 

based on the analytic estimator of the asymptotic variance – estimates are biased upward and 

standard errors are biased downward.  The last two columns in the table give the percentage by 

which the diagonals of the inverse of the Hessian underestimate the sampling variance of the 

estimator. 

Table 5.  Estimated Standard Errors and Sample Standard  
Deviations of Sample Estimates 
 
 Analytic Empirical % Underestimate 
Model β δ β δ      β             δ 
Probit 0.2234 0.3008 0.2606 0.3254  14.0   7.6 
Logit 0.2324 0.3697 0.2627 0.4312  11.5  14.3 
Ordered Probit 0.1281 0.2088 0.1487 0.2392  13.9  12.7 
Tobit 0.0692 0.1296 0.0800 0.1386  13.5   6.5 
Truncation 0.0242 0.0476 0.0265 0.0431   8.7 -10.4 
Weibull 0.0175 0.0350 0.0181 0.0375   3.3   6.7 
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3.4.  Consistency and Relative Inefficiency in the Tobit Model 

 We consider, finally, the relative (in)efficiency of the estimator in a model in which there 

appears to be little or no bias in the coefficient estimator, the tobit model.  The model is respecified 

as 

 yit*  =  α  +  βxit  +  δdit  +  εit, α = 0, β = 1, δ = 1, σ = 1, εit ~ N[0,σ2], 

 yit   =  1(yit* > 0)yit* 

Thus, the true constant terms are all equal to each other and equal zero.  In this setting, the 

maximum likelihood estimator should enjoy a decided advantage over the fixed effects estimator.  

Table 6 below lists the ratio of the empirical variances of the two estimators of β for values of N of 

50, 100, 250, 500, 1,000 and 3,000 and T = 2, 3, 5, 8, 10, and 20.  (The results for estimation of δ 

are quite similar and are omitted for brevity.)  As before, each configuration is replicated 200 times 

using the same sample design as employed earlier.  The table gives the ratio of the sample 

variances of the 200 observations on each estimator.  (The bias in the analytic standard errors 

examined in the preceding section is thereby avoided.)  The table contains several surprising 

results.  First, given the number of superfluous parameters that are folded into the mix, the relative 

inefficiency of the fixed effects maximum likelihood estimator is surprisingly small.  With T = 8 

and N = 100 (Heckman’s case), the estimated standard deviation of the fixed effects estimator 

exceeds that of the MLE by only about 10%.  What is more surprising, however, is the behavior of 

the ratio as N increases.  If the fixed effects estimator is inconsistent, while by the usual results for 

maximum likelihood estimation, the MLE is consistent, then as N increases, this ratio should be 

increasing.   If the asymptotic variance of the MLE is converging to zero and the counterpart for 

the fixed effects estimator is not, this ratio should be diverging.  With the exception of the 

apparently special case of T = 2, it is not - it is relatively fixed, then falling for the larger values of 

N.  It is, therefore, unclear what is meant by “inconsistency,” at least in the setting of the tobit 

model.  The estimator is unbiased and apparently its sampling variance is declining to that of the 

 25



constrained MLE and, as a consequence, is declining absolutely as well! We note a third point not 

pursued here.  A considerable amount of research has been done to divine estimators for this model 

that bypass the (now ambiguous) incidental parameters problem.  It would be useful to see if there 

is a practical payoff, that is, how the variation in a semiparametric estimator would compare to the 

maximum likelihood fixed effects estimator.  (The robustness of the semiparametric formulations 

to, e.g., nonnormality of the underlying distribution or to heteroscedasticity is duly noted.  Indeed, 

it might be useful to measure the behavior of the ‘robust’ estimator against the maximum 

likelihood estimator in the presence of the failures of the narrow assumptions.) 

Table 6.  Ratio of  Sample Variances of Fixed Effects and Maximum  
Likelihood of Estimates of β 
 T=2 T=3 T=5 T=8 T=10 T=20 
N=50 1.80 1.62 1.30 1.24 1.17 1.03 
N=100 2.26 1.55 1.35 1.20 1.16 1.11 
N=250 2.27 1.84 1.40 1.22 1.15 1.05 
N=500 2.58 1.81 1.32 1.22 1.11 1.04 
N=1,000 2.67 1.39 1.15 1.14 1.09 1.02 
N=3,000 2.30 1.34 1.16 1.13 1.04 1.00 
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4.  Conclusions 

 
 The Monte Carlo results obtained here suggest a number of conclusions.  As widely 

believed, the fixed effects estimator shows a large finite sample bias in discrete choice models 

when T is very small.  The general results for the probit and logit models are mimicked by the 

ordered probit model.  The bias is persistent, but it does drop off rapidly as T increases to 3 and 

more.  Heckman’s widely cited result for the probit model appears to be incorrect, however.  The 

discrepancy does not appear to be a function of the mechanism used to generate the exogenous 

variables.  Heckman used Nerlove’s (1971) dynamic model whereas we used essentially a random 

cross section.  Results were similar for the two cases.  The extreme result usually cited for the 

binary choice model with T = 2 may itself be a bit of an exaggeration.  The marginal effects in 

these models are overestimated by a factor closer to 50%.  A result which has not been considered 

previously is the incidental parameters effect on estimates of the standard errors of the maximum 

likelihood estimators.  We find that while the coefficients are uniformly overestimated, the 

asymptotic variances are generally underestimated. 

Models with mixed and continuous dependent variables behave quite differently from the 

discrete choice models.  Overall, where there are biases in the estimates, they are much smaller 

than in the discrete choice models.  The estimator shows essentially no bias in the slope estimators 

of the tobit model.  But, the small sample bias appears to show up in the estimate of the disturbance 

variance.  This bias would be transmitted to estimates of marginal effects.  However, this bias 

appears to be small if T is 5 or more.  The truncated regression and Weibull models are 

contradictory, and make it clear that the direction of bias in the fixed effects model is model 

specific.  It is downward in the truncated regression and in either direction in the Weibull model.   

We also considered the behavior of the fixed effects estimator measured against the 

consistent and fully efficient maximum likelihood estimator in the tobit model.  Here the results are 

quite surprising.  First, there is little question that the fixed effects estimator of the location 
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coefficients in the model (β) display no significant bias.  When we compare the asymptotic 

variances of the two estimators the results suggest first, that relatively little efficiency loss is 

occurring.  Second, surprisingly, the relative variance of the fixed effects estimator is not  

increasing as one might expect; it is decreasing as a function of N.  The description of the fixed 

effects estimator as “inconsistent of order 1/T” at the very best, is misleading in this context; at 

worst, it is incorrect.  The results certainly seem to suggest that for this model, the fixed effects 

estimator does converge to its expectation.  This is a puzzling and anomalous result.   Finally, we 

submit that it remains to consider what would result from a like comparison of recently developed 

semiparametric estimators of the same parameters that have been proposed to avoid estimation of 

the fixed effects coefficients.  

The received studies of the fixed effects estimator have focused intensively and exclusively 

on the probit and logit binary choice models.  The technology exists to estimate fixed effects 

models in many other settings.  Given the availability of high quality panel data sets, there should 

be substantial payoff to further scrutiny of this useful model in settings other than the binary choice 

models.  The question does remain, should one use this technique?  It obviously depends on T and 

the model in question.  The reflexive negative reaction, however, because it ‘biased and 

inconsistent’ neglects a number of considerations, and might be ill advised if the alternative is a 

random effects approach or a semiparametric approach which sacrifices most of the interesting 

content of the analysis in the interest of robustness.  The preceding suggests that some further 

research on the subject would be useful.  Lancaster (2000, fn 18) notes “The fact that the 

inconsistency of ML in these models [Neyman and Scott’s simple regression models] is rather 

trivial has been unfortunate since it has, I think, obscured the general pervasiveness and difficulty 

of the incidental parameters problem in econometric models.”  The results obtained here are 

offered in strong support of his assertion. 
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