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Abstract 
 
 This paper surveys recently developed approaches to analyzing panel data with nonlinear models.  
We summarize a number of results on estimation of fixed and random effects models in nonlinear modeling 
frameworks such as discrete choice, count data, duration, censored data, sample selection, stochastic 
frontier and, generally, models that are nonlinear both in parameters and variables.  We show that 
notwithstanding their methodological shortcomings, fixed effects are much more practical than heretofore 
reflected in the literature.  For random effects models, we develop an extension of a random parameters 
model that has been used extensively, but only in the discrete choice literature.  This model subsumes the 
random effects model, but is far more flexible and general, and overcomes some of the familiar 
shortcomings of the simple additive random effects model as usually formulated.  Once again, the range of 
applications is extended beyond the familiar discrete choice setting.  Finally, we draw together several 
strands of applications of a model that has taken a semiparametric approach to individual heterogeneity in 
panel data, the latent class model.  A fairly straightforward extension is suggested that should make this 
more widely useable by practitioners.  Many of the underlying results already appear in the literature, but, 
once again, the range of applications is smaller than it could be. 
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1.  Introduction 
 
 The linear regression model has been called the automobile of economics (econometrics).  
By extension, in the of analysis of panel data, the linear fixed and random effects models have 
surely provided most of the thinking on the subject.  However, quite a bit of what is generally 
assumed about estimation of models for panel data is based on results in the linear model, such as 
the utility of group mean deviations and instrumental variables estimators, that do not carry over 
to nonlinear models such as discrete choice and censored data models.  Numerous other authors 
have noted this, and have, in reaction, injected a subtle pessimism and reluctance into the 
discussion.  [See, e.g., Hsiao (1986, 1996) and, especially, Nerlove (2000).]  This paper will 
explore some of those differences and demonstrate that, although the observation is correct, quite 
natural, surprisingly straightforward extensions of the most useful forms of panel data results can 
be developed even for extremely complicated nonlinear models.   
 The contemporary literature on estimating panel data models that are outside the reach of 
the classical linear regression is vast and growing rapidly.  Model formulation is a major issue 
and is the subject of book length symposia [e.g., much of Matyas and Sevestre (1996)].  
Estimation techniques span the entire range of tools developed in econometrics.  No single study 
could hope to collect all of them.  The objective of this one is to survey a set of recently 
developed techniques that extend the body of tools used by the analyst in single equation, 
nonlinear models.  The most familiar applications of these techniques are in qualitative and 
limited dependent variable models, but, as suggested below, the classes are considerably wider 
than that. 
 
1.1.  The Linear Regression Model with Individual Heterogeneity 
 
 The linear regression model with individual specific effects is 
 
 yit  =  ββββ′′′′xit  +  αi  +  εit, t = 1,...,T(i), i = i,...,N, 

E[εit|xi1,xi2,...,xiT(i)]   =  0,  

Var[εit|xi1,xi2,...,xiT(i)]  = σ2. 
 
Note that we have assumed the strictly exogenous regressors case in the conditional moments, 
[see Woolridge (1995)] and have not assumed equal sized groups in the panel.  The vector ββββ is a 
constant vector of parameters that is of primary interest, αi embodies the group specific 
heterogeneity, which may be observable in principle (as reflected in the estimable coefficient on a 
group specific dummy variable in the fixed effects model) or unobservable (as in the group 
specific disturbance in the random effects model).  Note, as well that we have not included time 
specific effects, of the form γt.  These are, in fact, often used in this model, and our omission 
could be substantive.   With respect to the fixed effects estimator discussed below, since the 
number of periods is usually fairly small, the omission is easily remedied just by adding a set of 
time specific dummy variables to the model.  Our interest is in the more complicated case in 
which N is too large to do likewise for the group effects, for example in analyzing census based 
data sets in which N might number in the tens of thousands.  For random effects models, we 
acknowledge that this omission might actually be relevant to a complete model specification.  
The analysis of two way models, both fixed and random effects, has been well worked out in the 
linear case.  A full extension to the nonlinear models considered in this paper remains for further 
research.  From this point forward, we focus on the common case of one way, group effect 
models. 
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1.2.  Fixed Effects 
 
 The parameters of the linear model with fixed individual effects can be estimated by 
ordinary least squares.  The practical obstacle of the large number of individual coefficients is 
overcome by employing the Frisch-Waugh (1933) theorem to estimate the parameter vector in 
parts.  The "least squares dummy variable" (LSDV) or "within groups" estimator of ββββ is 
computed by the least squares regression of yit* = (yit - .iy ) on the same transformation of xit 
where the averages are group specific means.  The individual specific dummy variable 
coefficients can be estimated using group specific averages of residuals, as seen in the discussion 
of this model in contemporary textbooks such as Greene (2000, Chapter 14).  We note that the 
slope parameters can be estimated using simple first differences as well.  However, using first 
differences induces autocorrelation into the resulting disturbance, so this produces a 
complication.  [If T(i) equals two, the approaches are the same.]  Other estimators are appropriate 
under different specifications [see, e.g., Arellano and Bover (1995) and Hausman and Taylor 
(1981) who consider instrumental variables].  We will not consider these here, as the linear model 
is only the departure point, not the focus of this paper. 

The fixed effects approach has a compelling virtue; it allows the effects to be correlated 
with the included variables.  On the other hand, it mandates estimation of a large number of 
coefficients, which implies a loss of degrees of freedom.  As regards estimation of ββββ, this 
shortcoming can be overstated.  The typical panel of interest in this paper has many groups, so the 
contribution of a few degrees of freedom by each one adds to a large total.  Estimation of αi is 
another matter.  The individual effects are estimated with the group specific data.  That is, αi is 
estimated with T(i) observations.  Since T(i) might be small, and is, moreover, fixed, there is no 
argument for consistency of this estimator.  Note, however, the estimator of αi is inconsistent not 
because it estimates some other parameter, but because its variance does not go to zero in the 
sampling framework under consideration.  This is an important point in what follows.  In the 
linear model, the inconsistency of ai, the estimator of αi does not carry through into b, the 
estimator of ββββ.  The reason is that the group specific mean is a sufficient statistic; the incidental 
parameters problem is avoided.  The LSDV estimator bLSDV is not a function of the fixed effects 
estimators, ai,LSDV. 
 
1.3.  Random Effects 
 

The random effects model is a generalized linear model; if αi is a group specific random 
disturbance with zero conditional mean and constant conditional variance, σα

2, then 
 
Cov[εit,εis| xi1,xi2,...,xiT(i)]  =  σα

2  +  1(t = s)σε
2  ∀  t,s | i and ∀  i. 

 
Cov[εit,εjs| xi1,xi2,...,xiT(i)]  =  0  ∀  t,s | i ≠ j and ∀  i and j. 

 
The random effects linear model can be estimated by two step, feasible GLS.  Different 
combinations of the residual variances from the linear model with no effects, the group means 
regression and the dummy variables produce a variety of consistent estimators of the variance 
components.  [See Baltagi (1995).]  Thereafter, feasible GLS is carried out by using the variance 
estimators to mimic the generalized linear regression of (yit - θi .iy ) on the same transformation of 
xit where θi  =  1 - {σε

2/[T(i)σα
2 + σε

2]}1/2.   Once again, the literature contains vast discussion of 
alternative estimation approaches and extensions of this model, including dynamic models [see, 
e.g., Judson and Owen (1999)], instrumental variables [Arellano and Bover (1995)], and GMM 
estimation [Ahn and Schmidt (1995), among others in the same issue of the Journal of 
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Econometrics].  The primary virtue of the random effects model is its parsimony; it adds only a 
single parameter to the model.  It's major shortcoming is its failure to allow for the likely 
correlation of the latent effects with the included variables - a fact which motivated the fixed 
effects approach in the first place. 
 
1.4.  Random Parameters 
 
 Swamy (1971) and Swamy and Arora (1972), and Swamy et. al. (1988a, b, 1989) suggest 
an extension of the random effects model to 
 
 yit   =  ββββi′′′′xit  +  εit, , t = 1,...,T(i), i = i,...,N 

 ββββi =  ββββ  +  vi 
 
where E[v]  =  0 and Var[vi] = ΩΩΩΩ.  By substituting the second equation into the first, it can be seen 
that this model is a generalized, groupwise heteroscedastic model.  The proponents devised a 
generalized least squares estimator based on a matrix weighted mixture of group specific least 
squares estimators.  This approach has guided much of the thinking about random parameters 
models, but it is much more restrictive than current technology provides.  On the other hand, as a 
basis for model development, this formulation provides a fundamentally useful way to think 
about heterogeneity in panel data. 
 
1.5.  Modeling Frameworks 
 
 The linear model discussed above provides the benchmark for discussion of nonlinear 
frameworks.  [See Matyas (1996) for a lengthy and diverse symposium.]  Much of the writing on 
the subject documents the complications in extending these modeling frameworks to models such 
as the probit and logit models for binary choice or the biases that result when individual effects 
are ignored.  Not all of this is so pessimistic, of course; for example, Verbeek (1990), Nijman and 
Verbeek (1992), Verbeek and Nijman (1992) and Zabel (1992) discuss specific approaches to 
estimating sample selection models with individual effects.  Many of the developments discussed 
in this paper appear in some form in extensions of the aforementioned to binary choice and a few 
limited dependent variables.  We will suggest numerous other applications below, and in Greene 
(2001).  In what follows, several unified frameworks for nonlinear modeling with fixed and 
random effects and random parameters are developed in detail. 
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2.  Nonlinear Models 
 

We will confine attention at this point to nonlinear models defined by the density for an 
observed random variable, yit,  

 
f(yit | xi1,xi2,...,xiT(i)) =  g(yit, ββββ′′′′xit  +  αi, θθθθ) 

 
where θθθθ is a vector of ancillary parameters such as a scale parameter, or, for example in the 
Poisson model, an overdispersion parameter.  As is standard in the literature, we have narrowed 
our focus to linear index function models, though the results below do not really mandate this; it 
is merely a convenience.  The set of models to be considered is narrowed in other ways as well at 
this point.  We will rule out dynamic effects; yi,t-1 does not appear on the right hand side of the 
equation.  (See, e.g., Arellano and Bond (1991), Arellano and Bover (1995), Ahn and Schmidt 
(1995), Orme (1999), Heckman and MaCurdy(1980)].  Multiple equation models, such as VAR's 
are also left for later extensions.  [See Holtz-Eakin (1988) and Holtz-Eakin, Newey and 
Rosen(1988, 1989).]  Lastly, note that only the current data appear directly in the density for the 
current yit.  This is also a matter of convenience; the formulation of the model could be rearranged 
to relax this restriction with no additional complication.  [See, again, Woolridge (1995).] 

We will also be limiting attention to parametric approaches to modeling.  The density is 
assumed to be fully defined.  This makes maximum likelihood the estimator of choice.1  Certainly 
non- and semiparametric formulations might be more general, but they do not solve the problems 
discussed at the outset, and they create new ones for interpretation in the bargain.  (We return to 
this in the conclusions.)  While IV and GMM estimation has been used to great advantage in 
recent applications,2 our narrow assumptions have made them less attractive than direct 
maximization of the log likelihood.  (We will revisit this issue below.) 
 The likelihood function for a sample of N observations is 
 
 L  =  ,1 ',()(

1 iititygiT
t

N
i α+β∏∏ == x θθθθ), 

 
How one proceeds at this point depends on the model, both for αi (fixed, random, or something 
else) and for the random process, embodied in the density function.  We will, as noted, be 
considering both fixed and random effects models, as well as an extension of the latter.  
Nonlinearity of the model is established by the likelihood equations, 
 

 0=
β∂

∂ Llog , 

 

 NiL
i

,...,1,0log ==
α∂

∂ , 

 

                                                           
1 There has been a considerable amount of research on GMM estimation of limited dependent and 
qualitative choice models.  At least some of this, however, forces an unnecessarily difficult solution on an 
otherwise straightforward problem.  Consider, for example, Lechner and Breitung (1996), who develop 
GMM estimators for the probit and tobit models with exogenous right hand side variables.  In view of the 
results obtained here, in these two cases (and many others), GMM will represent an inferior estimator in the 
presence of an available, preferable alternative.  (Certainly in more complicated settings, such as dynamic 
models, the advantage will turn the other way.) 
2 See, e.g., Ahn and Schmidt (1995) for analysis of a dynamic linear model and Montalvo (1997) for 
application to a general formulation of models for counts such as the Poisson regression model. 
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 0=
∂

∂
θθθθ

Llog , 

 
which do not have explicit solutions for the parameters in terms of the data and must, therefore, 
be solved iteratively.  In random effects cases, we estimate not αi, but the parameters of a 
marginal density for αi, f(αi|θθθθ), where the already assumed ancillary parameter vector, θθθθ, would 
include any additional parameters, such as the σα

2 in the random effects linear model.  
 We note before leaving this discussion of generalities that the received literature contains 
a very large amount of discussion of the issues considered in this paper, in various forms and 
settings.  We will see many of them below.  However, a search of this literature suggests that the 
large majority of the applications of techniques that resemble these is focused on two particular 
applications, the probit model for binary choice and various extensions of the Poisson regression 
model for counts.  These two do provide natural settings for the applications for the techniques 
discussed here.  However, our presentation will be in fully general terms.  The range of models 
that already appear in the literature is quite broad.  How broad is suggested by the list of already 
developed estimation procedures detailed in Appendix B. 
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3.  Models with Fixed Effects 
 
 In this section, we will consider models which include the dummy variables for fixed 
effects.  A number of methodological issues are considered first.  Then, the practical results used 
for fitting models with fixed effects are laid out in full. 
 The log likelihood function for this model is 
 
 log L  =  ,',(log1

)(
1 iititygN

i
iT

t α+= = xββββ θθθθ) 
 
In principle, maximization can proceed simply by creating and including a complete set of 
dummy variables in the model.  Surprisingly, this seems not to be common, in spite of the fact 
that although the theory is generally laid out in terms of a possibly infinite N, many applications 
involve quite a small, manageable number of groups.  [Consider, for example, Schmidt, and 
Sickles' (1984) widely cited study of the stochastic frontier model, in which they fit a fixed 
effects linear model in a setting in which the stochastic frontier model would be wholly 
appropriate, using quite a small sample.  See, as well, Cornwell, Schmidt, and Sickles (1990).]  
Nonetheless, at some point, this approach does become unusable with current technology.  We 
are interested in a method that would accommodate a panel with, say, 50,000 groups, which 
would mandate estimating a total of 50,000 + Kβ + Kθ parameters.  That said, we will be 
suggesting just that.  Looking ahead, what makes this impractical is a second derivatives matrix 
(or some approximation to it) with 50,000 rows and columns.  But, that consideration is 
misleading, a proposition we will return to presently. 
 
3.1.  Methodological Issues in Fixed Effects Models 
 
 The practical issues notwithstanding, there are some theoretical problems with the fixed 
effects model.  The first is the proliferation of parameters, just noted.  The second is the 
'incidental parameters problem.'   Suppose that ββββ and θθθθ were known.  Then, the solution for αi 
would be based on only the T(i) observations for group i.  This implies that the asymptotic 
variance for ai is O[1/T(i)].  Now, in fact, ββββ is not known; it is estimated, and the estimator is a 
function of the estimator of αi, ai,ML.  The asymptotic variance of bML must therefore be O[1/T(i)] 
as well; the MLE of ββββ is a function of a random variable which does not converge to a constant as 
N → ∞.  The problem is actually even worse than that; there is a small sample bias as well.  The 
example is unrealistic, but in a binary choice model with a single regressor that is a dummy 
variable and a panel in which T(i) = 2 for all groups, Hsiao (1993, 1996) shows that the small 
sample bias is 100%.  (Note, again, this is in the dimension of T(i), so the bias persists even as the 
sample becomes large, in terms of N.)  No general results exist for the small sample bias in more 
realistic settings.  The conventional wisdom is based on Heckman's (1981) Monte Carlo study of 
a probit model in which the bias of the slope estimator in a fixed effects model was toward zero 
(in contrast to Hsiao) on the order of 10% when T(i) = 8 and N = 100.  On this basis, it is often 
noted that in samples at least this large, the small sample bias is probably not too severe.  Indeed, 
for many microeconometric applications, T(i) is considerably larger than this, so for practical 
purposes, there is good cause for optimism.  On the other hand, in samples with very small T(i), 
the analyst is well advised of the finite sample properties of the MLE in this model. 
 In the linear model, using group mean deviations sweeps out the fixed effects.  The 
statistical result at work is that the group mean is a sufficient statistic for estimating the fixed 
effect.  The resulting slope estimator is not a function of the fixed effect, which implies that it 
(unlike the estimator of the fixed effect) is consistent.  There are a number of like cases of 
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nonlinear models that have been identified in the literature.  Among them are the binomial logit 
model, 
 
 g(yit, ββββ′′′′xit + αi)  =  Λ[(2yit-1)(ββββ′′′′xit + αi)] 
 
where Λ(.) is the cdf for the logistic distribution.  In this case, analyzed in detail by Chamberlain 
(1980), it is found that Σtyit is a sufficient statistic, and estimation in terms of the conditional 
density provides consistent estimator of ββββ.  [See Greene (2000) for discussion.]  Other models 
which have this property are the Poisson and negative binomial regressions [See Hausman, Hall, 
and Griliches (1984)] and the exponential regression model. 
 
 g(yit, ββββ′′′′xit + αi)  =  (1/λ it)exp(-yit/λ it), λ it  =  exp(ββββ′′′′xit + αi), yit ≥ 0. 
 
[See Munkin and Trivedi (2000) and Greene (2001).]  It is easy to manipulate the log likelihoods 
for these models to show that there is a solution to the likelihood equation for ββββ that is not a 
function of αi.  Consider the Poisson regression model with fixed effects, for which 
 
 log g(yit, , ββββ′′′′xit + αi)  =  -λ it  +  yit log λ it  -  log yit!  where λ it =  exp(ββββ′′′′xit + αi). 
 
Write λ it  =  exp(αi)exp(ββββ′′′′xit).  Then,  
 

 log L =  !log)'()'exp()exp()(
11 itiitititi
iT

t
N
i

yy −α++α−
==

xx ββββββββ  
 
The likelihood function for αi is 
 

 0)'exp()exp(log )(
1

)(
1

=+α−=
α

∂
== it

iT
tit

iT
ti

i
yL xββββ . 

The solution for αi is given by 
 

 exp(αi) =  .
)'exp()(

1

)(
1

=

=
iT

t it

iT
t ity

xββββ
 

 
This can be inserted back into the (now concentrated) log likelihood function where it can be seen 
that, in fact, the maximum likelihood estimator of ββββ is not a function of αi.  The same exercise 
provides a similar solution for the exponential model. 

There are other models, with linear exponential conditional mean functions, such as the 
gamma regression model.  However, these are too few and specialized to serve as the benchmark 
case for a modeling framework.  In the vast majority of the cases of interest to practitioners, 
including those based on transformations of normally distributed variables such as the probit and 
tobit models, this method of preceding will be unusable. 
 
3.2.  Computation of the Fixed Effects Estimator in Nonlinear Models 
 
 We consider, instead, brute force maximization of the log likelihood function, dummy 
variable coefficients and all.  There is some history of this in the literature; for example, it is the 
approach taken by Heckman and MaCurdy (1980) and it is suggested quite recently by Sepanski 
(2000).  It is useful to examine their method in some detail before proceeding.  Consider the 
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probit model.  For known set of fixed effect coefficients, αααα = (α1,...,αN)′′′′, estimation of ββββ is 
straightforward.  The log likelihood conditioned on these values (denoted ai), would be 
 

 log L|a  =  )'(log
1

)(
1 iaititygN

i
iT

t
+

= =
xββββ,,,,  

 
This can be treated as a cross section estimation problem since with known αααα, there is no 
connection between observations even within a group.  On the other hand, with given estimator of 
ββββ (denoted b) there is a conditional log likelihood function for each αi, which can be maximized 
in isolation; 
 

 log Li|b =  [ ]))(12(log)(
1 iitit
iT

t
zy α+−Φ

=
 

 
where zit  =  b′′′′xit is now a known function.  Maximizing this function (N times) is straightforward 
(if tedious, since it must be done for each i).  Heckman and MaCurdy suggested iterating back 
and forth between these two estimators until convergence is achieved as a method of maximizing 
the full log likelihood function.  We note three problems with this approach:  First, there is no 
guarantee that this procedure will converge to the true maximum of the log likelihood function.  
The Oberhofer and Kmenta (1974) result that might suggest it would does not apply here because 
the Hessian is not block diagonal for this problem.  Whether either estimator is even consistent in 
the dimension of N (that is, of ββββ) depends on the initial estimator being consistent, and there is no 
suggestion how one should obtain a consistent initial estimator.  Second, in the process of 
constructing the estimator, the authors happened upon an intriguing problem.  In any group in 
which the dependent variable is all 1s or all 0s, there is no maximum likelihood estimator for αi - 
the likelihood equation for logLi has no solution if there is no within group variation in yit.  This is 
an important feature of the model that carries over to the tobit model, as the authors noted.  [See 
Maddala (1987) for further discussion.]  A similar, though more benign effect appears in the 
loglinear models, Poisson and exponential and in the logit model.  In these cases, any group 
which has yit = 0 for all t contributes a 0 to the log likelihood function.  As such, in these models 
as well, the group specific effect is not identified.  Chamberlain (1980) notes this specifically; 
groups in which the dependent variable shows no variation cannot be used to estimate the group 
specific coefficient, and are omitted from the estimator.   As noted, this is an important result for 
practitioners that will carry over to many other models.  A third problem here is that even if the 
back and forth estimator does converge, even to the maximum, the estimated standard errors for 
the estimator of ββββ will be incorrect.  The Hessian is not block diagonal, so the estimator at the ββββ 
step does not obtain the correct submatrix of the information matrix.  It is easy to show, in fact, 
that the estimated matrix is too small.  Unfortunately, correcting this takes us back to the 
impractical computations that this procedure sought to avoid in the first place. 
 Before proceeding to our 'brute force' approach, we note, once again, that data 
transformations such as first differences or group mean deviations are useless here.3  The density 
is defined in terms of the raw data, not the transformation, and the transformation would mandate 
a transformed likelihood function that would still be a function of the nuisance parameters.  
'Orthogonalizing' the data might produce a block diagonal data moment matrix, but it does not 
produce a block diagonal Hessian.  We now consider direct maximization of the log likelihood 
function with all parameters.  We do add one convenience.  Many of the models we have studied 
                                                           
3 This is true only in the parametric settings we consider.  Precisely that approach is used to operationalize 
a version of the maximum score estimator in Manski (1987) and in the work of Honore (1992, 1996), 
Kyriazidou (1997) and Honore and Kyriazidou (2000) in the setting of censored data and sample selection 
models.  As noted, we have limited our attention to fully parametric estimators. 
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involve an ancillary parameter vector, θθθθ.  However, no generality is gained by treating θθθθ 
separately from ββββ, so at this point, we will simply group them in the single parameter vector γγγγ = 
[ββββ′′′′,θθθθ′′′′]′′′′.  It will be convenient to define some common notation:  denote the gradient of the log 
likelihood by 
 

 gγ =  
γγγγ∂

∂ Llog   =   
γγγγ
γγγγ

∂
α∂

==

),,,(log)(
11

iititiT
t

N
i

yg x
 (a Kγ×1 vector) 

 

 gαi =  
i

L
α∂

log   =  
i

iititiT
t

yg
α∂

α∂
=

),,,(log)(
1

xγγγγ  (a scalar) 

 
 gα =  [gα1, ... , gαN]′′′′ (an N×1 vector) 
 

g =  [gγ′′′′, gα′′′′]′′′′ (a (Kγ+N)×1 vector). 
 
The full (Kγ+N)× (Kγ+N) Hessian is 
 

 H =  

�

�
�
�
�
�
�

�

�

γ

γ

γ

γγγγγ

NNN

N

h

h
h

000'
0
00'
00'

222

111

21

h

h
h

hhhH

����

�

�

�

 

where 
 

 Hγγγγγγγγ =  
'

),,,(log2
)(

11 γγγγγγγγ
γγγγ

∂∂
α∂

==
iititiT

t
N
i

yg x
 (a Kγ× Kγ matrix) 

 

 hγγγγi =  
i

iititiT
t

yg
α∂∂

α∂
= γγγγ

γγγγ ),,,(log2
)(

1
x

 (an N×1 vector) 

 

 hii =  2

2
)(

1

),,,(log

i

iititiT
t

yg
α∂

α∂
=

xγγγγ
 (a scalar). 

 
Using Newton's method to maximize the log likelihood produces the iteration 
 

 

k

�

�
�
�

�

�

α

γ
∧

∧

 =  

1−

∧

∧ �

�
�
�

�

�

α

γ

k

-  Hk-1
-1gk-1  =  

1−

∧

∧

�
�
�
�

�
�
�

�

�

α

γ

k

  +  
�

��
�

�

αααα

γγγγ
∆∆∆∆
∆∆∆∆

 

 
where subscript 'k' indicates the updated value and 'k-1' indicates a computation at the current 
value.  We will now partition the inverse matrix.  Let Hγγγγγγγγ denote the upper left Kγ×Kγ submatrix 

of H-1 and define the N×N matrix Hαααααααα and Kγ×N Hγγγγαααα likewise.  Isolating 
∧
γ , then, we have the 

iteration 
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∧
γ k =  

∧
γ k-1  -  [Hγγγγγγγγ gγγγγ  +  Hγγγγαααα gαααα]k-1  =  

∧
γ k-1  +  ∆∆∆∆γγγγ 

 
Now, we obtain the specific components in the brackets.  Using the partitioned inverse formula 
[See, e.g., Greene (2000, equation 2-74)], we have 
 
 Hγγγγγγγγ =  [Hγγγγγγγγ  -  HγγγγααααHαααααααα

-1Hααααγγγγ]-1. 
 
The fact that Hαααααααα is diagonal makes this computation simple.  Collecting the terms, 
 

 Hγγγγγγγγ =  
1

1 '1
−

γγ=γγ
�

�
�
�

�
��
�

�
��
	



− ii

ii

N
i h

hhH  

 
Thus, the upper left part of the inverse of the Hessian can be computed by summation of vectors 
and matrices of order Kγ.  We also require Hγγγγαααα.  Once again using the partitioned inverse formula, 
this would be 
 
 Hγγγγαααα =  Hγγγγγγγγ Hγγγγαααα Hαααααααα

-1 

 
As before, the diagonality of Hαααααααα makes this straightforward.  Combining terms, we find that 
 
 ∆∆∆∆γγγγ =  - [Hγγγγγγγγ gγγγγ  +  Hγγγγαααα gαααα]k-1

 

 

  =  - Hγγγγγγγγ ( gγγγγ - HγγγγααααHαααααααα
-1gαααα) 

 

  =  - 
1

1
1 '1

−

−
γγ=γγ
�

�
�
�

�
��
�

�
��
	



−

k
ii

ii

N
i h

hhH
1

1
−

γ
α

=γ
�

��
�

�
−

k
i

ii

iN
i h

g hg  

 
Turning now to the update for αααα, we use the like results for partitioned matrices.  Thus, 
 
 ∆∆∆∆αααα =  - [Hαααααααα gαααα  +  Hααααγγγγ gγγγγ]k-1. 
 
Using Greene's (2-74) once again, we have 
 
 Hαααααααα =  Hαααααααα

-1(I + HααααγγγγHγγγγγγγγHγγγγααααHαααααααα
-1) 

 
 Hααααγγγγ =  -Hαααααααα HααααγγγγHγγγγγγγγ

-1  =  -Hαααααααα
-1HααααγγγγHγγγγγγγγ  (this is -Hγγγγαααα′′′′) 

 
Therefore,  
 
 ∆∆∆∆α =  - Hαααααααα

-1(I + HααααγγγγHγγγγγγγγHγγγγααααHαααααααα
-1)gαααα  +  Hαααααααα

-1(I + HααααγγγγHγγγγγγγγHγγγγααααHαααααααα
-1)HααααγγγγHγγγγγγγγ

-1gγγγγ. 
 
After a bit of algebra, this reduces to 
 
 ∆∆∆∆αααα =  -Hαααααααα

-1(gαααα  +  Hααααγγγγ∆∆∆∆γγγγ) 
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and, in particular, again owing to the diagonality of Hαααααααα 
 

 ∆∆∆∆ααααi =  - ( )γγγγ∆∆∆∆'1
ii

ii
g

h γα +h  

 
The important result here is that neither update vector requires storage or inversion of the 
(Kγ+N)×(Kγ+N) Hessian; each is computed as a function of sums of scalars and Kγ×1 vectors of 
first derivatives and mixed second derivatives.4  The practical implication is that calculation of 
fixed effects models is a computation only of order Kγ and storage of N elements of αααα.  Even for 
huge panels of hundreds of thousands of units, this is well within the capacity of even modest 
desktop computers of the current vintage.  (We note in passing, the amount of computation is not 
particularly large either, though with the current vintage of 2+ GFLOP processors, computation 
time for econometric estimation problems is usually a nonissue.)  One practical problem is that 
Newton's method is fairly crude, and in models with likelihood functions that are not globally 
concave, one might want to fine tune the algorithm suggested with a line search that prevents the 
parameter vector from straying off to proscribed regions in the early iterations. 
 This derivation concludes with the asymptotic variances and covariances of the 
estimators, which might be necessary later.  For c, the estimator of γγγγ, we already have the result 
we need.  We have used Newton's method for the computations, so (at least in principle) the 
actual Hessian is available for estimation of the asymptotic covariance matrix of the estimators.   
The estimator of the asymptotic covariance matrix for the MLE of γγγγ is -Hγγγγγγγγ, the upper left submatrix 
of -H-1.  Note once again that this is a sum of Kγ ×Kγ matrices which is of the form of a moment 
matrix and which is easily computed.  Thus, the asymptotic covariance matrix for the estimated 
coefficient vector is easily obtained in spite of the size of the problem. 
 It is (presumably) not possible to store the asymptotic covariance matrix for the fixed 
effects estimators (unless there are relatively few of them).  But, using the partitioned inverse 
formula once again, we can derive precisely the elements of Asy.Var[a] that are contained in 
 
 Asy.Var[a]  =  - [Hαααααααα  -  Hααααγγγγ(Hγγγγγγγγ)-1Hγγγγαααα]-1. 
 
The ijth element of the matrix to be inverted is 
 
 (Hαααααααα  -  Hααααγγγγ(Hγγγγγγγγ)-1Hγγγγαααα)ij  =  1(i = j)hii  -  hγγγγi′′′′(Hγγγγγγγγ)-1 hγγγγj 
 
This is a full N×N matrix, so the model size problem will apply - it is not feasible to manipulate this 
matrix as it stands.  On the other hand, one could extract particular parts of it if that were necessary.  
For the interested practitioner, the Hessian to be inverted for the asymptotic covariance matrix of a 
is 
 
 Hαααααααα  -  Hααααγγγγ(Hγγγγγγγγ)-1Hγγγγαααα 
 
We keep in mind that Hαααααααα is an N×N diagonal matrix.  Using result 2-66b in Greene (2000), we 
have that the inverse of this matrix is 
 

                                                           
4 This result appears in terse form in the context of a binary choice model in Chamberlain (1980, page 227).  
A formal derivation of the result was given to the author by George Jakubson of Cornell University in an 
undated memo, "Fixed Effects (Maximum Likelihood) in Nonlinear Models" with a suggestion that the 
result should prove useful for current software developers.   (We agree.)  Concurrent discussion with Scott 
Thompson at the Department of Justice contributed to this development.   
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 [Hαααααααα ]-1  +  [Hαααααααα ]-1 Hααααγγγγ {(Hγγγγγγγγ)-1 - Hγγγγαααα[Hαααααααα]-1 Hααααγγγγ}-1 Hγγγγαααα[Hαααααααα]-1. 
 
By expanding the summations where needed, we find 
 

 Asy. [ ] jii
ii

N
ii

jjiiii
ji hhhh

jiaaCov γ

−

γγ=
−
γγγ

�
�
�

�
−+== hhhHh1

1

1
1
' '1'111)(,  

 
Once again, the only matrix to be inverted is Kγ × Kγ, not N×N (and, it is already in hand) so this can 
be computed by summation.  It involves only Kγ×1 vectors and repeated use of the same K×K 
inverse matrix.  Likewise, the asymptotic covariance matrix of the slopes and the constant terms can 
be arranged in a computationally feasible format.  Using what we already have and result (2-74) in 
Greene (2000), we find that 
 
 Asy.Cov[c,a′′′′]  =  -Hγγγγγγγγ

-1 Hγγγγαααα ×××× Asy.Var[a]. 
 
Once again, this involves N×N matrices, but it simplifies.  Using our previous results, we can reduce 
this to 
 

 Asy.Cov[c,ai]  = -Hγγγγγγγγ
-1 ],[.

1 mii
N
m

aaCovAsyγ=
h . 

 
This asymptotic covariance matrix involves a large amount of computation, but essentially no 
computer memory - only the Kγ × Kγ  matrix.  The Kγ ×1 vectors would have to be computed 'in 
process,' which is why this involves a large amount of computation.  At no point is it necessary to 
maintain an N×N matrix, which has always been viewed as the obstacle. Finally, we note the 
motivation for the last two results.  One might be interested in the computation of an asymptotic 
variance for a function g(b,ai) such as a prediction or a marginal effect for a probit model which has 
conditional mean function Φ(b′′′′xit + ai).  The delta method would require a very large amount of 
computation, but it is feasible with the preceding results.   

A significant omission from the preceding is the nonlinear regression model.  But, 
extension of these results to nonlinear least squares estimation of the model 

 
yit   =  f(xit, ββββ, αi)  +  εit 

 
is trivial.  By defining the criterion function to be  
 

log L =   - 2)(
11 2

1
it

iT
t

N
i

ε
==

 

 
all of the preceding results apply essentially without modification.  Nonlinear least squares is often 
differentiated from other optimization problems.  Jakubson suggests an alternative interpretation 
based on the Gauss-Newton regression on first derivatives only.  In this iteration, the update vector 
is 

 
�

��
�

�

∆
∆

α

β  =  (G′′′′G)G′′′′e 

 
where G is the matrix with it'th row equal to the derivative of the conditional mean with respect to 
the parameters (i.e., the 'pseudo-regressors') and e is the current vector of residuals.  As Jakubson 
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notes, with a minor change in notation, this computation is identical to the optimization procedure 
described earlier.  (E.g., the counterpart to Hγγγγγγγγ in this context will be Gγγγγ′′′′Gγγγγ.) 
 With the exceptions noted earlier (binomial logit, Poisson and negative binomial - the 
exponential appears not to have been included in this group, perhaps because applications in 
econometrics have been lacking) the fixed effects estimator has seen relatively little use in nonlinear 
models.  The methodological issues noted above have been the major obstacle, but the practical 
difficulty seems as well to have been a major deterrent.  For example, after a lengthy discussion of 
a fixed effects logit model, Baltagi (1995) notes that "... the probit model does not lend itself to a 
fixed effects treatment."  In fact, the fixed effects probit model is one of the simplest applications 
listed in the Appendix.  (We note, citing Greene (1993), Baltagi (1995) also remarks that the 
fixed effects logit model as proposed by Chamberlain (1980) is computationally impractical with 
T > 10.  This (Greene) is also incorrect.  Using an extremely handy result from Krailo and Pike 
(1984), it turns out find that Chamberlain's binomial logit model is quite practical with T(i) up to 
as high as 100.  Consider, as well, Maddala (1987) who states  
 

"By contrast, the fixed effects probit model is difficult to implement computationally.  The 
conditional ML method does not produce computational simplifications as in the logit 
model because the fixed effects do not cancel out.  This implies that all N fixed effects must 
be estimated as part of the estimation procedure.  Further, this also implies that, since the 
estimates of the fixed effects are inconsistent for small T, the fixed effects probit model 
gives inconsistent estimates for ββββ as well.  Thus, in applying the fixed effects models to 
qualitative dependent variables based on panel data, the logit model and the log-linear 
models seem to be the only choices.  However, in the case of random effects models, it is 
the probit model that is computationally tractable rather than the logit model." (Page 285) 

 
While the observation about the inconsistency of the probit fixed effects estimator remains correct, 
as discussed earlier, none of the other assertions in this widely referenced source are correct.  The 
probit estimator is actually extremely easy to compute.  Moreover, the random effects logit model is 
no more complicated than the random effects probit model.  (One might surmise that Maddala had 
in mind the lack of a natural mixing distribution for the heterogeneity in the logit case, as the 
normal distribution is in the probit case.  The mixture of a normally distributed heterogeneity in a 
logit model might seem unnatural at first blush.  However, given the nature of 'heterogeneity' in the 
first place, the normal distribution as the product of the aggregation of numerous small effects 
seems less ad hoc.)  In fact, the computational aspects of fixed effects models for many models are 
not complicated at all.  We have implemented this model in over twenty different modeling 
frameworks including discrete choice models, sample selection models, stochastic frontier models, 
and a variety of others.  A partial list appears in Appendix B to this paper.   
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4.  Random Effects and Random Parameters Models 
 

The general form of a nonlinear random effects model would be 
 

f(yit|xit,ui)   =  g(yit, ββββ′′′′xit, ui, θθθθ) 
where 
 f(ui)  =  h(ui|θθθθ). 
 
Once again, we have focused on index function models, and subsumed the parameters of the 
heterogeneity distribution in θθθθ.  We do not assume immediately that the random effect is additive 
or that it has zero mean.  As stated, the model has a single common random effect, shared by all 
observations in group i.  By construction, the T(i) observations in group i are correlated and 
jointly distributed with a distribution that does not factor into the product of the marginals.  An 
important step in the derivation is the assumption at this point that conditioned on ui, the T(i) 
observations are independent.  (Once again, we have assumed away any dynamic effects.)  Thus, 
the joint distribution of the T(i)+1 random variables in the model is f(yi1,yi2,...,yiT(i),ui | xi1,...,ββββ,θθθθ) 
which can be written as the product of the density conditional on ui times f(ui); 
 
 f(yi1,yi2,...,yiT(i),ui | xi1,...,ββββ,θθθθ) =   f(yi1,yi2,...,yiT(i), | xi1, ..., ui, ββββ,θθθθ) f(ui) 
 

     =   ∏ =
)(

1
iT

t
g(yit, ββββ′′′′xit, ui, θθθθ) h(ui|θθθθ) 

 
In order to form the likelihood function for the observed data, ui must be integrated out of this.  
With this assumption, skipping a step in the algebra, we obtain the log likelihood function for the 
observed data, 
 

 log L =  �
��

� θ�
�
��
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Three broadly defined approaches have been used to maximize this kind of likelihood.   
 
4.1.  Exact Integration and Closed Forms 

 
In a (very) few cases, the integral contained in square brackets has a closed form which 

leaves a function of the data, ββββ and θθθθ, which is then maximized using conventional, familiar 
techniques.  Hausman, Hall and Griliches' (1984) analysis of the Poisson regression model is a 
widely cited example.  If 
 
 f(yit|xit, ui) =  exp(-λ it|ui)(λ it|ui)yit / yit!, λ it|ui  =  exp(ββββ′′′′xit + ui) 
 
where vi = exp(ui) has a gamma density with mean 1, 
 

 h(vi|θ)  =  0,0,
)(

1 >θ≥
θΓ

θ −θθ−
θ

vve i
vi  

 
then the unconditional joint density for (yi1,...,yiT(i)|xi1,...,xiT(i)) has a negative binomial form 
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The authors also obtained a closed form for the negative binomial model with log-gamma 
heterogeneity.    

Finally, the stochastic frontier model is widely used framework in which the random 
effects model has a closed form.  The structure of the most widely employed variant of the model 
is 
 yit =  ββββ′′′′xit  +  vit  -  |Ui| 
 
where 
 vit ~  N[0,σv

2] 
 
 Ui ~  N[0,σu

2]. 
 
(Note that the absolute value of the random effect appears in the index function model.)  In this 
model, the mixture of normal distributions produces a fairly straightforward functional form for 
the log likelihood.  The log likelihood function for this model was derived by Pitt and Lee (1981); 
the contribution of the ith group (observation) is 
 

 Log Li =  ( )
2

)(log
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2log 222
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where 
 εit =  yit  -  ββββ′′′′xit   
 

 µi* =  - 22
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Kumbhakar and Lovell (2000) describe use of this model and several variants. 
 
4.2.  Approximation by Hermite Quadrature 
 
 Butler and Moffitt's (1982) approach is based on models in which ui has a normal 
distribution (though, in principle, it could be extended to others).  If ui is normally distributed 
with zero mean - the assumption is innocent in index function models as long as there is a 
constant term - then, 
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By a suitable change of variable for ui, the integral can be written in the form 
 

F  =  
∞

∞−π

 1 ( ) iiiitit
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t
dvvvyg 2)(
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The function is in a form can be approximated very accurately with Gauss-Hermite quadrature, 
which eliminates the integration.  Thus, the log likelihood function can be approximated with 
 

 log Lh =  ��
�
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where wh and zh are the weights and nodes for the Hermite quadrature of degree H.  The log 
likelihood is fairly complicated, but can be maximized by conventional methods.  This approach 
has been applied by numerous authors in the probit random effects context [Butler and Moffitt 
(1982), Heckman and Willis (1975), Guilkey and Murphy (1993) and many others] and in the 
tobit model [Greene (2000)].  In principle, the method could be applied in any model in which a 
normally distributed variable ui appears, whether additive or not.5  For example, Greene (2000) 
applies this technique in the Poisson model as an alternative to the more familiar log-gamma 
heterogeneity.  The sample selection model is extended to the Poisson model in Greene (1994).  
One shortcoming of the approach is that it is difficult to apply to higher dimensional problems.  
Zabel (1992) and Tijman and Verbeek (1992) describe a bivariate application in the sample 
selection model, but extension of the quadrature approach beyond two dimensions appears to be 
impractical.  [See also Bhat (1999).] 
 
4.3.  Simulated Maximum Likelihood 
 
 A third approach to the integration which has been used with great success in a rapidly 
growing literature is simulation.  We observe, first, that the integral is an expectation; 
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x   = E[F(ui|θθθθ)] 

 
The expectation has been computed thus far by integration.  By the law of large numbers, if 
(ui1,ui2,...,uiR) is a sample of iid draws from h(ui|θθθθ) then 
 

                                                           
5 The Butler and Moffitt (1982) approach using Hermite quadrature is not particularly complicated, and has 
been built into most contemporary software, including, e.g., the Gauss library of routines.  Still, there 
remains some skepticism in some of the applied literature about using this kind of approximation.  
Consider, for example, in van Ophem's (2000, p. 504) discussion of an extension of the sample selection 
model into a Poisson regression framework where he states "A technical disadvantage of this method is the 
introduction of an additional integral that has to be evaluated numerically in most cases."  While true, the 
level of the disadvantage is extremely minor. 
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This operation can be done by simulation using a random number generator.  The simulated 
integral may then be inserted in the log likelihood, and maximization of the parameters can 
proceed from there.  The pertinent questions are whether the simulation approach provides a 
stable, smooth, accurate enough approximation to the integral to make it suitable for maximum 
likelihood estimation and whether the resulting estimator can claim the properties that would hold 
for the exactly integrated counterpart.  The approach was suggested early by Lerman and Manski 
(1983), and explored in depth in McFadden and Ruud (1994) [see, esp., Geweke, Keane, and 
Runkle (GKR) (1994, 1997)].  Keane (1994) and Elrod and Keane (1992) apply the method to 
discrete choice models.  [See, as well, Section 3.1 of McFadden and Train (2000).]  Hajivasilliou 
and Ruud (1994) is an influential survey of the method. 
 
4.3.1.  Simulation Estimation in Econometrics 
 
 Gourieroux and Monfort (1996) provide the essential statistical background for the 
simulated maximum likelihood estimator.  We assume that the original maximum likelihood 
estimator as posed with the intractable integral is otherwise regular - if computable, the MLE 
would have the familiar properties, consistency, asymptotic normality, asymptotic efficiency, and 
invariance to smooth transformation.   Let let ββββ denote the full vector of unknown parameters 
being estimated and let bML denote the maximum likelihood estimator of the full parameter vector 
shown above, and let bSML denote the simulated maximum likelihood (SML) estimator.  
Gourieroux and Monfort establish that if N /R → 0 and R and N → ∞, then N ( bSML - ββββ) has 
the same limiting normal distribution with zero mean as N ( bML - ββββ).  That is, under the 
assumptions, the simulated maximum likelihood estimator and the maximum likelihood estimator 
are equivalent.  The requirement that the number of draws, R, increase faster than the number of 
observations, N, is important to their result. The authors note that as a consequence, for "fixed R" 
the SML estimator is inconsistent.  Since R is a parameter set by the analyst, the precise meaning 
of "fixed R" in this context is a bit ambiguous.  On the other hand, the requirement is easily met 
by tying R to the sample size, as in, for example, R = N1+δ

  for some positive δ.  There does 
remain a finite R bias in the estimator, which the authors obtain as approximately equal to (1/R) 
times a vector which is a finite vector of constants (see p. 44).  Generalities are difficult, but the 
authors suggest that when the MLE is relatively "precise," the bias is likely to be small.  In 
Munkin and Trivedi's (2000) Monte Carlo study of the effect, in samples of 1000 and numbers of 
replications areound 200 or 300 - note that their R is insufficient to obtain the consistency result - 
the bias of the estimator appears to be trivial. 
 
4.3.2.  Quasi-Monte Carlo Methods:  The Halton Sequence 
 
 The results thus far are based on random sampling from the underlying distribution of u.  
But, it is widely understood that the simulation method, itself, contributes to the variation of SML 
estimator.  [See, e.g., Geweke (1995).]  Authors have also found that judicious choice of the 
random draws for the simulation can be helpful in speeding up the convergence of this very 
computation intensive estimator.  [See Bhat (1999).]   One technique commonly used is antithetic 
sampling.  [See Geweke (1995, 1998) and Ripley (1987).]  The technique used involves not 
sampling R independent draws, but R/2 independent pairs of draws where the members of the pair 
are negatively correlated.  One technique often used, for example is to pair each draw uir with  
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-uir.  (A loose end in the discussion at this point concerns what becomes of the finite simulation 
bias in the estimator.  The results in Gourieroux and Monfort hinge on random sampling.) 
 Quasi Monte Carlo (QMC) methods are based on an integration technique that replaces 
the pseudo random draws of the Monte Carlo integration with a grid of "cleverly" selected points 
which are nonrandom but provide more uniform coverage of the domain of the integral.  The 
logic of the technique is that randomness of the draws used in the integral is not the objective in 
the calculation.  Convergence of the average to the expectation (integral) is, and this can be 
achieved by other types of sequences.  A number of such strategies is surveyed in Bhat (1999), 
Sloan and Wozniakowski (1998) and Morokoff and Caflisch (1995).  The advantage of QMC as 
opposed to MC integration is that for some types of sequences, the accuracy is far greater, 
convergence is much faster and the simulation variance is smaller.  For the one we will advocate 
here, Halton sequences, Bhat (1995) found relative efficiencies of the QMC method to the MC 
method on the order of ten or twenty to one. 
 Monte Carlo simulation based estimation uses a random number to produce the draws 
from a specified distribution.  The central component of the approach is draws from the standard 
continuous uniform distribution, U[0,1].  Draws from other distributions are obtained from these 
by using the inverse probability transformation.  In particular, if ui is one draw from U[0,1], then 
vi  =  Φ-1(ui) produces a draw from the standard normal distribution; vi can then be unstandardized 
by the further transformation zi = σvi + µ.  Draws from other distributions used, e.g., in Train 
(1999) are the uniform [-1,1] distribution for which vi  = 2ui-1 and the tent distribution, for which  
vi  =  12 −iu  if ui ≤ 0.5, vi = 1 - 12 −iu  otherwise.  Geweke (1995), and Geweke, 
Hajivassiliou, and Keane (1994) discuss simulation from the multivariate truncated normal 
distribution with this method. 
 The Halton sequence is generated as follows:  Let r be a prime number larger than 2.  
Expand the sequence of integers g = 1,... in terms of the base r as 
 

 i
i

I
i

rbg
=

=
0

 where by construction, 0 ≤ bi ≤ r - 1 and rI ≤ g < rI+1. 
 
The Halton sequence of values that corresponds to this series is 
 
 1

0)( −−
== i

i
I
ir rbgH  

 
For example, using base 5, the integer 37 has b0 = 2, b1 = 2, and b3 = 1.  Then  
 

H5(37) = 2×5-1 + 2×5-2 + 1×5-3  =  0.448. 
 
The sequence of Halton values is efficiently spread over the unit interval.  The sequence is not 
random as the sequence of pseudo-random numbers is.  The figures below show two sequences of 
Halton draws and two sequences of psuedorandom draws.  The Halton draws are based on r = 7 
and r = 9.  The clumping evident in the figure on the left is the feature (among other others) that 
necessitates large samples for simulations. 
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 yi  =  1(ββββi′′′′xi  +  εi  >  0) 
 
 ββββi =  ββββ  +  vi 
 
where εi ~ N[0,1] and vi ~ Nk[0,ΣΣΣΣ].  The reduced form of the model is 
 
 yi  =  1(ββββ′′′′xi  +  vi′′′′xi  +  εi  >  0) 
 
  =  1(ββββ′′′′xi  +  wi > 0) 
 
where wi ~  N[0, 1 + xi′′′′ΣΣΣΣxi].  This is a heteroscedastic probit model [see, e.g, Greene (2000, 
Chapter 19)] which is directly estimable by conventional methods.  The log likelihood function is 
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The identified parameters in the model - the row and column in ΣΣΣΣ corresponding to the constant 
term must be set to zero - are estimable by familiar methods.  The authors extend this to the 
ordered probit model in the usual way [see McKelvey and Zavoina (1975)].  Sepanski (2000) 
revisited this model in a panel data setting, and added a considerable complication,  
 
 yit =  1(ββββi′′′′xit  +  γyi,t-1  +  εi  >  0). 
 
Even with the lagged dependent variable, the resulting estimator turns out to be similar to Guilkey 
et al's.  The important element in both is that model estimation does not require integration of the 
heterogeneity out of the function.  The heterogeneity merely lays on top of the already specified 
regression disturbance.  The fact that the distributions mesh the way they do is rather akin to the 
choice of a conjugate prior in Bayesian analysis.  [See Zellner (1971) for discussion.] 
 
 
4.5.  The Random Parameters Model 
 
 Most of the applications cited above save for those in the preceding section McFadden, 
and Train (2000) (and the studies they cite) and Train (1998) represent extensions of the simple 
additive random effects model to settings outside the linear model.  Consider, instead, a random 
parameters formulation 
 
 f(yit|xit,vi)   =  g(yit, ββββ1, ββββ2i, xit, zi, θθθθ) 

 ββββ1  =  K1 nonrandom parameters 

 ββββ2i  =  ββββ2  +  ∆∆∆∆zi  +  ΓΓΓΓvi    

=  K2 random parameters with mean ββββ2  +  ∆∆∆∆zi  and variance ΓΓΓΓΓΓΓΓ′′′′ 

 vi  =  a random vector with zero mean vector and covariance matrix I 

 ΓΓΓΓ  =  a constant, lower triangular matrix 

 ∆  =  a constant K2×Kz parameter matrix 

 zi  =  a set of Kz time invariant measurable effects. 
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The random parameters model embodies individual specific heterogeneity in the marginal 
responses (parameters) of the model.  Note that this does not necessarily assume an index 
function formulation (though in practice, it usually will).  The density is a function of the random 
parameters, the fixed parameters, and the data.  The simple random effects models considered 
thus far are a narrow special case in which only the constant term in the model is random and ∆∆∆∆ = 
0.  But, this is far more general.  One of the major shortcomings of the random effects model is 
that the effects might be correlated with the included variables.  (This is what has motivated the 
much less parsimonious fixed effects model in the first case.)  The exact nature of that correlation 
has been discussed in the literature, see, e.g., Zabel (1992) who suggests that since the effect is 
time invariant, if there is correlation, it makes sense to model it in terms of the group means.  The 
preceding allows that, as well as more general formulations in which zi is drawn from outside xit.  
Revelt and Train (1999), Bhat (1999, 2000), McFadden and Train (2000), and others  have found 
this model to be extremely flexible and useable in a wide range of applications in discrete choice 
modeling.  The extension to other models is straightforward, and natural.  (The statistical 
properties of the estimator are pursued in a lengthy literature that includes Train (1999, 2000), 
Bhat (1999), Lerman and Manski (1983) and McFadden et al. (1994).)  Gourieroux and 
Montfort's smoothness condition on the parameters in the model is met throughout. 
 Irrespective of the statistical issues, the random parameters model addresses an important 
consideration in the panel data model.  Among the earliest explorations of the issue of 'parameter 
heterogeneity' is Zellner (1962) where the possibly serious effects of inappropriate aggregation of 
regression models was analyzed.  The natural question arises, if there is heterogeneity in the 
statistical relationship (linear or otherwise) why should it be confined to the constant term in the 
model?  Certainly that is a convenient assumption, but one that should be difficult to justify on 
economic grounds.  As discussed at length in Pesaran, Smith, and Im (1996), when panels are 
short and estimation machinery sparse, the assumption might have a compelling appeal.  In more 
contemporary settings, neither is the case, so estimators that build on and extend the ones 
considered here seem more appropriate.  If nothing else, the shifting constant model ought to be 
considered a maintained hypothesis.6  The counterargument based on small T inconsistency 
makes the case an ambiguous one.  Certainly for panels of T(i)=2 (as commonly analyzed in the 
literature on semiparametric estimation) the whole question is a moot point.  But, in larger panels 
as often used in cross country, firm, or industry studies, the question is less clear cut.  Pesaran et 
al. (1996) and El-Gamal and Grether (1999) discuss this issue at some length. 
 The simulated log likelihood for this formulation is 
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and vir is a group specific, (repeated) set of draws from the specified distribution.  We have found 
this model to work remarkably well in a large range of situations.  (See Appendix B.)  An 
extension which allows vi to vary through time is an AR(1) model,  

                                                           
6 Weighed against this argument at least for linear models is Zellner's (1969) result that if primary interest 
is in an 'unbiased' effect of strictly exogenous regressors, then pooling in a random parameters model will 
allow estimation of that effect.  The argument loses its force, even in this narrow context, in the presence of 
lagged dependent variables or nonrandom heterogeneity. 
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vit,kr  =  ρkvi,t-1,kr  

 
(where i,t,k,r index group, period, parameter, and replication, respectively).  We note, once again, 
that this approach has appeared in the literature already (e.g., Berry, et al. (1995), Train et al. 
(1999) and the applications cited therein), but does not appear to have been extended beyond 
models for discrete choices.  The modeling template represents a general extension of the random 
parameters model to other models, including probit, tobit, ordered probability, count data models, 
the stochastic frontier model, and others.  A list of applications appears in Appendix B.  Indeed, 
this is a point at which the understanding based on the linear model is a bit misdirecting. 
Conventional use of the random parameters model is built around the Swamy (1971) formulation 
of the linear model, which necessitates not only a panel, but one which is deep enough to allow 
each group to provide its own set of estimates, to be mixed in a generalized least squares 
procedure.  [See also Swamy et al., (1988a,b and 1989).] But, nothing in the preceding mandates 
panel data; the random parameters approach is amenable to cross section modeling as well, and 
provides a general way to model individual specific heterogeneity.  (This may seem 
counterintuitive, but consider that the familiar literature already contains applications of this, in 
certain duration models with latent heterogeneity (Weibull/gamma) and in the derivation of the 
negative binomial model from the Poisson regression.)  We have applied this approach in a 
sample selection model for the Poison regression [Greene (1994)].  We note, as well, this 
modeling approach bears some similarity to the recently proposed GEE estimator.  We will return 
to this in detail below. 
 
4.6.  Refinements 
 
 The preceding includes formulation of the random effects estimator proposed by 
Chamberlain (1980, 1984), where it is suggested that a useful formulation (using our notation) 
would be 
 
 ui  =  ∆∆∆∆i′′′′zi  +  εi. 
 
In the model with only a random constant term, this is exactly the model suggested above, where 
the set of coefficients is the single row in ∆∆∆∆ and εi would be ΓΓΓΓ11vi.   

Second, this model would allow formulation of multiple equations of a SUR type.  
Through a nondiagonal ΓΓΓΓ, the model allows correlation across the parameters.  Consider a two 
period panel where, rather than representing different periods, "period 1" is the first equation and 
"period 2" is the second.  By allowing each equation to have its own random constant, and 
allowing these constants to be correlated, we obtain a two equation seemingly unrelated equations 
model - note that these are not linear regressions.  In principle, this can be extended to more than 
two equations.  (Full simultaneity and different types of equations would be useful extensions 
remaining to be derived.)  This method of extending models to multiple equations in a nonlinear 
framework would differ somewhat from other approaches often suggested.  Essentially, the 
correlation between two variates is induced by correlation of the two conditional means.  
Consider, for example, the Poisson regression model.  One approach to modeling a bivariate 
Poisson model is to specify three independent Poisson models, w1, w2, and z.  We then obtain a 
bivariate Poisson by specifying y1 = w1 + z and y2 = w2 + z.  The problem with this approach is 
that it forces the correlation between the two variables to be positive.  It is not hard to construct 
applications in which exactly the opposite would be expected.  [See, e.g., Gurmu and Elder 
(1998) who study demand for health care services, where frequency of illness is negatively 
correlated frequency of preventive measures.  With a simple random effects approach, the 
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preceding is equivalent to modeling E[yij|xij] = exp(ββββ′′′′xij + εij) where cov[εi1,εi2] = ρ12.  This is not 
a bivariate Poisson model as such.  Whether this is actually a reasonable way to model joint 
determination of two Poisson variates remains to be investigated.  (A related approach based on 
embedding bivariate heterogeneity in a model is investigated by Lee (1983) and van Ophem 
(1999, 2000).   

The conditional means approach is, in fact, the approach taken by Munkin and Trivedi 
(1999), though with a slightly different strategy.7  They begin with two Poisson distributed 
random variables, yj each with its own displaced mean, E[yj|vj]  =  exp(ββββj′′′′xj + vj), j = 1,2.  In their 
formulation, (v1,v2) have a bivariate normal distribution with zero means, standard deviations σ1, 
σ2, and correlation ρ.  Their approach is a direct attack on the full likelihood function, 
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where φ2(.) denotes the density of the bivariate normal distribution.  A major difficulty arises in 
evaluating this integral, so they turn to simulation, instead.  The authors ultimately use a fairly 
complicated simulation approach involving a sampling importance function [see Greene (2000), 
Chapter 5] and a transformation of the original problem, but for our purposes, is is more useful to 
examine the method they first considered, then dismissed.  Since the integral cannot be computed, 
but can be simulated, an alternative approach is to maximize the simulated log likelihood.  They 
begin by noting that the two correlated random variables are generated from two standard normal 
primitive draws, ε1 and ε2, by v1 = σ1ε1 and v2 = σ2 ( )2
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They then substitute the expressions for v1 and v2, and maximize with respect to β1, β2, σ1, σ2, and 
ρ.  The process becomes unstable as ρ approaches 1, which, apparently, characterizes their data.  
The random parameters approach suggested here would simplify the process.  The same 
likelihood could be written in terms of σ1ε1ir in the first density and σ2ε2ir + γ21ε1ir in the second 
equation.  The constraint on ρ becomes irrelevant, and γ21 becomes a free parameter.  The desired 
underlying correlation, γ21/[σ1(σ2

2 + γ21
2)1/2] is computed ex post.  This can be formulated in the 

model developed here by simply treating the two constant terms in the model as random  
correlated parameters. 
 
4.7.  Mechanics 
 
 The actual mechanics of estimation of the random parameters model are quite complex.  
Full details are provided in Greene (2001a, and 2001b).  Appendix A provides a sketch of the 
procedure. 
 
4.8.  GEE Estimation 
 
 The preceding bears some resemblance to a recent development in the statistics literature, 
GEE (generalized equation estimation) modeling.  [See Liang and Zeger (1986) and Diggle, Liang 

                                                           
7 They also present a concise, useful survey of approaches to modeling bivariate counts.  See, for example, 
Cameron and Johansson (1998). 
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and Zeger, (1994).]   In point of fact, most of the internally consistent forms of GEE models (there 
are quite a few that are not) are contained in the random parameters model. 
 The GEE method of modeling panel data is an extension of Nelder and Wedderburn's 
(1972) and McCullagh and Nelder's (1983) Generalized Linear Models (GLIM) approach to 
specification.  The generalized linear model is specified by a 'link' to the conditional mean function,  
 
 f(E[yit | xit])   = ββββ′′′′xit, 
 
and a 'family' of distributions, 
 
 yit | xit  ~  g(ββββ′′′′xit, θθθθ) 
 
where ββββ and xit are as already defined and θθθθ is zero or more ancillary parameters, such as the 
dispersion parameter in the negative binomial model (which is a GLIM).  Many of the models 
mentioned earlier fit into this framework. The probit model has link function f(.) = Φ-1(P) and 
Bernoulli distribution family; the classical normal linear regression has link function equal to the 
identity function and normal distribution family; and the Poisson regression model has a 
logarithmic link function and Poisson family.  More generally, for any single index binary choice 
model, if Prob[yit = 1]  =  F(ββββ′′′′xit), then this function is the conditional mean, and the link function is 
simply (by definition) 
 
 f(E[yit | xit])   =  F-1[F(ββββ′′′′xit)]  =  ββββ′′′′xit. 
 
This captures many binary choice models, including probit, logit, Gompertz, complementary log 
log and Burr (scobit).  A like result holds for the count models, Poisson and negative binomial, for 
which the link is simply the log function.   So far, nothing has been added to models that are already 
widely familiar.  The aforementioned authors demonstrate that the models which fit in this class can 
be fit by a kind of iterated weighted least squares, which is one of the reasons that GLIM modeling 
has gained such currency.  (See below.)  In the absence of a preprogrammed routine, it is easy to do. 
 One can create a vast array of models by crossing a menu of link functions with a second 
menu of distributional families.  Consider, for example, the following matrix (which does not nearly 
exhaust all the possibilities).  We choose four distributional families to provide models for the 
indicated commonly used kinds of random variables: 
 

Random Variables Link Functions 
Type of R.V. Family Identity Logit Probit Logarithmic Reciprocal 

Binary Bernoulli X •  •  X X 
Continuous Normal •  •  •  •  •  

Count Poisson X X X •  X 
Nonnegative Gamma X X X •  X 

 
There is no theoretical restriction on the mesh between link and family.  But, in fact, most of the 
combinations are internally inconsistent.  For example, for the binary dependent variable, only the 
probit and logit links make sense; the others imply a conditional mean that is not bounded by zero 
and one.  For the continuous random variable, any link could be chosen, but this just defines a linear 
or nonlinear regression model.  For the count variable, only the log transformation insures an 
appropriate nonnegative mean.  The logit and probit transformations imply a positive mean, but one 
would not want to formulate a model for counts that forces the conditional mean function to be a 
probability, so these make no sense either.  The same considerations rule out all but the log 
transformation for the gamma family.  The preceding lists most of the commonly used link 
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functions (some not listed are just alternative continuous distributions).  More than half of our table 
is null, and of the nine combinations that work, five are just nonlinear regressions, which is a much 
broader class than this, and one would unduly restrict themselves if they limited themselves to the 
GLIM framework for nonlinear regression analysis.  The upshot is that the GLIM framework adds 
little to what is already in place; in the end, GLIM is essentially an alternative (albeit, fairly 
efficient) method of estimating some models that are already routinely handled by most modern 
software with conventional maximum likelihood estimation. 
 GEE provides a variation of these already familiar models by extending them to panel data 
settings.  The GEE approach adds a random effect to the GLIM for the panel of observations.  The 
link function is redefined as 
 
 f(E[yit | xit])   = ββββ′′′′xit  +  εit, t = 1,...,T(i). 
 
Now, consider some different approaches to formulating the T(i)×T(i) covariance matrix for the 
heterogeneity:  Once again, we borrow some nomenclature from the GEE literature: 
 
 Independent:  Corr[εit, εis]  =  0, t ≠ s 
 Exchangeable:  Corr[εit, εis]  =  ρ, t ≠ s 
 AR(1):   Corr[εit, εis]  =  ρ|t-s| , t ≠ s 
 Nonstationary:  Corr[εit, εis]  =  ρts , t ≠ s, |t-s| < g 
 Unstructured:  Corr[εit, εis]  =  ρts , t ≠ s. 
 
The AR(1) model is precisely that used by Elrod and Keane (1992) and is the same as the random 
constants with AR(1) model discussed earlier.  The exchangeable case is the now familiar random 
effects model.  The GEE approach to estimation is a complex form of generalized method of 
moments in which the orthogonality conditions are induced by a series of approximations and 
assumptions about the form of the distribution (e.g. the method requires that the parametric family 
be of the linear exponential type).  On the other hand, most of these models are already available in 
other forms.  The first one is obvious - this is just the pooled estimator ignoring any group effects.  
The second is the random effects model.  The differences between the most general form of the 
random parameters model and the GEE model are (1) received GEE estimators (e.g., Stata) include 
the latter two covariance structures while (2) the random parameters model allows random variation 
in parameters other than the constant term in the model.  It is unclear which is more general.  Keane 
et al. (1992) found some evidence that the form of the correlation structure in the latent effects 
makes little difference in the final estimates.  If we restrict our attention to the AR(1) and 
exchangeable cases, then the random parameters model is far more flexible in that it does not 
require any assumptions about the form of the underlying density and it allows the heterogeneity to 
enter the model in more general forms.  Finally, given a wide range of families crossed with link 
functions, the GEE estimator might well be applicable to a broader range of functional forms.  
However, reducing this set of models to those that do not imply an improper conditional mean or 
some other inappropriate restriction greatly reduces the size of this set.  This dimension of the 
comparison appears to be uncertain.  GEE has been widely used in the applied statistics literature, 
but appears to have made little appearance in econometrics.  An exception is Brannas and 
Johansson (1995) which, as formulated, is a natural candidate.  The write the Poisson regression 
model for observations t=1,...,T(i) in terms of the structural regression function and a T(i) vector of 
multiplicative disturbances with unrestricted covariance matrix; E[yit|εit] = εitexp(ββββ′′′′xit). 
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4.9.  A Bayesian Approach 
 
 Though our focus here has been on classical estimation, this is a convenient point to note 
a contribution in the literature on Bayesian estimation.  As demonstrated above, the random 
effects probit model represents one of the simpler applications of all of the random parameters 
model.  It also provides a convenient vehicle for demonstration of the Gibbs sampler, Markov 
Chain Monte Carlo methods and data augmentation, as presented by Albert and Chib (1993) and 
Chib (1996) in their development of this particular model.  Albert and Chib's estimator involves 
augmenting the data set with observations zit = ββββ′′′′xit + vi′′′′xit + ui - this has the form of the random 
parameters model with a random effect.  The Gibbs sampler is based on cycling between 
sampling from the distributions of {zit|ββββ,data} and {ββββ|zit,data}.  The Gibbs sampler generates a 
sample from the marginal posterior distribution of ββββ|data.  The estimates of the posterior mean 
and variance are then estimated using sample estimates of their population counterparts.  There is 
a loose end in the model in the ultimate source of the prior for the underlying heterogeneity.  On 
the other hand, once past that, Albert and Chib's method should generalize to settings other than 
the binomial probit model.  As they note, the method obviates computation of the likelihood (and, 
by extension, its derivatives).  Once the Gibbs sampler has been executed, estimates of the 
parameters of  the posterior distribution are computed by simple sums of sample observations.  
Chib, Greenberg, and Winkelmann (1998) have applied the same technique to the Poisson 
regression model with random coefficients. 
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5.  Latent Class Models 
 
 To define the latent class model, it is useful to write the random parameters formulation 
as 
 f(yit|xit,ββββi,θθθθ)   =  g(yit, ββββi, xit, θθθθ) 

 f(ββββi|zi, ββββ, ∆∆∆∆, θθθθ) =  h(vi  -  ββββ  -  ∆∆∆∆zi). 

The unconditional density is 
 
 f(yit|xit, zi, ββββ,∆∆∆∆,θθθθ)=  Eβi[g(yit, ββββi, xit, zi, θθθθ)] 

   =  
iv 

g(yit, ββββi, xit, θθθθ) h(vi  -  ββββ  -  ∆∆∆∆zi) dvi 

which is what we have analyzed in the preceding section. 
The density of ββββi is the mixing distribution.  The preceding has assumed this is a 

continuous distribution.  Suppose the mixture distribution has finite, discrete support. The 
resulting formulation is, 
 

f(yit|xit, zi, ββββ, ∆∆∆∆ ,θθθθ)  =  =
M
j jp1 g(yit, ββββj(zi, ββββ, ∆∆∆∆), xit, θθθθ) 

 
where it remains to parameterize the regime probabilities, pj and the structural parameters in the 
regime, ββββj.  Note that we continue to carry a common set of parameters, θθθθ.  Estimation is over the 
regime probabilities themselves, the lower level parameters assumed to generate ββββj and the 
ancillary parameters, θθθθ. 
 
5.1.  Applications of Regime Switching Models 
 

Latent class models have appeared at many points in the econometrics literature and in 
many apparently different forms that can be construed as latent class models.  Most of the 
development has been outside the context of panel data modeling, so we begin the review with 
what are essentially cross section applications. 
 Among the earliest applications in econometrics is the mixture of normals problem 
explored by Quandt and Ramsey (1978),  
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 p1  =  λ, 0 < λ < 1 
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An extensive symposium on the subject produced, e.g., the method of moment generating 
functions estimator as an estimation strategy for the five unknown parameters.  
 In the switching regressions model [see Maddala and Nelson (1975)], the case in which 
there is no regime separation indicator can be cast as a direct extension of the model immediately 
above, in which 
 µij  =  ββββj′′′′xi, j = 1,2. 
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but all other aspects are the same.  Poirier and Ruud (1981) develop some of the underlying 
theory of the model, including the difficulty in estimation.  The fundamental identification issue 
is discussed at length in Maddala (1983) and Goldfeld and Quandt (1975).  Kiefer (1979, 1980a, 
1980b) provides detailed analysis of the difficulty of estimating this model - for some parameter 
values, the likelihood function is unbounded. 

Keane and Geweke (1999) have extended a latent class model to the probit setting; 
 
 yi =  1(ββββ′′′′xi  +  εi  >  0) 
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so the resulting probit model would be 
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This is not quite the same as the formulation above, and is actually considerably more complex to 
estimate.  The authors pursue a Bayesian approach to estimation, following results in Geweke 
(1993), Gelfand and Dey (1994) and Geweke (1997). 
  We note, finally, some related applications.  The idea of a latent regime switch has been 
carried into the density, rather than the parameters, in the zero inflated Poisson models [see 
Lambert (1992) and Greene (1993)] and, of course, in a vast literature on policy regime switching 
in macroeconomics.  In the latter, the time series nature of the applications makes them 
qualitatively different from those of interest here.  The usual approach in macroeconometrics has 
involved Markov chain switching models and Kalman filter mechanisms.  [See Hamilton (1995).] 
Finally, researchers in marketing have long used techniques such as conjoint analysis to identify 
latent patterns in consumption data.  More recently, a considerable amount of formal analysis has 
been done using latent class structures, as in Vermunt and Magodson (1999a, 1999b, 2000) and 
Hagenar and McCutcheon (2001, forthcoming).   (Note that these applications are typically not in 
the regression style that characterizes most of the econometric applications listed thus far.) 
 
5.2.  A Simple Latent Class Model 
 
 For present purposes, it is useful to view the structure as one of a discrete distribution of 
latent heterogeneity.  Heckman and Singer (1984) suggested this approach as a semiparametric 
model for heterogeneity in a duration model.8  In the formulation shown earlier, this would be 
 

f(yit|xit, ββββ, θθθθ)  =  =
M
j jp1 g(yit, ββββ′′′′xit + αj, θθθθ),  0 ≤ pj  ≤ 1, Σj pj = 1. 

 
(See also Laird (1978)  Estimation of this model by direct maximization of the log likelihood is 
not especially difficult.  The class probabilities must be constrained to sum to 1.  We have found 
that a simple approach is to reparameterize them as a set of logit probabilities, 
 
                                                           
8 They noted that the discrete approach might prove useful even if the heterogeneity were continuously 
distributed.  One of their arguments was that formal modeling of a continuous latent random variable might 
produce an overparameterized model and degrade the estimation of the parameters of interest. 
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The resulting log likelihood is a continuous function of the parameters, and maximization is 
straightforward.  We do find that the number of classes that can be identified is likely to be 
relatively small (on the order of five or less) and in general, (as might be expected), the less rich 
is the panel data set in terms of cross group variation, the more difficult it is to estimate this 
model.  Note, as well, that the model is only weakly identified at the very best by a cross section. 
 Estimation produces values for the structural parameters, β, αj and θ and the prior 
probabilities, pj.  For prediction purposes, one might be interested in the posterior class 
probabilities, 
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5.3.  Extensions of the Latent Class Model 
 

Two extensions of the latent class model seem natural.  First, there is no reason to restrict 
the cross class variation to the constant term in the model.  Thus, we rewrite the index function as 

 
zit =  ββββj′′′′xit 

 
The previous model is now the special case in which only the constant term differs across classes.  
Second, we can parameterize the class probabilities, as in 
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 ,  θij  =  γγγγj′′′′zi. 

 
In their analysis of criminal careers, Nagin and Land (1993) suggest both of these extensions, and 
go yet one step further in allowing zi to evolve through time - in their study, the class probabilities 
are made dependent on the age of the individual.9  Wang, Cockburn, and Puterman (1998) use a 
slightly less general form of the Nagin and Land model in a Monte Carlo study of the Patents and 
R&D relationship. 
 

                                                           
9 Nagin and Land (1993) also extend the model to a mixture of distributions by layering the zero inflation 
model (intermittency model in their terms) on top of the latent class model.  Thus, the structural form of 
their model involves a regime switch between active (R=1) and inactive (R=0) criminals and a regime for 
incidents that is modeled along the lines suggested above. See, also, Land, McCall, and Nagin (1994, 
1995). 
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5.4.  Applications of the Latent Class Model 
 
 As noted, the latent class formulation has provided an attractive platform for modeling 
latent heterogeneity.  A number of applications have employed it under a variety of rubrics.  The 
aforementioned applications, Wang et al. (1998) and Wedel et al. (1993) used the Poisson 
regression model to study counts of events.  Deb and Trivedi used the same approach as Wedel et 
al., but they extended the modeling framework to the negative binomial model.  Another 
counterpart to Wedel et al. is Brannas and Rosenqvist (1994), however their model was much less 
ambitious; they based the regression part on Heckman and Singer's argument for modeling latent 
heterogeneity, and shifted only the constant term.  Tsionas (2000) has extended the stochastic 
frontier model in which the heterogeneity appears in the distribution of the one sided, or 
"efficiency" term in the compound disturbance.  Phillips has applied the model to the linear 
regression model (1994) and to the variance components in a random effects linear model (2000).  
Wedel, DeSarbo, Bult and Ramaswamy (1993) have formally examined precisely the extended 
model suggested above, once again in the Poisson regression setting - they fit the class 
probabilities as simple scalars to be estimated.  Nagin and Land, in contrast, fit the full model 
with heterogeneity in the latent class probabilities.   
 
5.5.  ML and EM Estimation of the Latent Class Model 
 
 Even with the full specification of heterogeneity in the class probabilities, the log 
likelihood function is not particularly complicated.  A frontal assault on optimization will usually 
be successful.  On the other hand, there is good reason to pursue other approaches to 
optimization. 

Wedel et al. expend a fair amount of effort on imposing the adding up constraint on the 
prior probabilities.  They ultimately accomplish this through a Lagrangean approach.  As can be 
seen above, a simple reparameterization of the probabilities achieves the same end with much less 
effort.  It is noteworthy that Nagin and Land (1993) and Wang et al. (1998) used this same 
parameterization.  This does require a further constraint, that one of the parameters (or parameter 
vectors) be constrained to zero, but imposition of such a constraint is trivial.  Brannas and 
Rosenqvist came up against the same difficulty.  The probabilities in their model are forced to lie 
in the unit interval by using the parameterization pj = 1/[1+exp(-θj)] with θj unrestricted.  This 
does solve the problem, but they did not impose the adding up constraint, Σjpj = 1 in their model; 
they simply estimated the first θ1,...,θM-1 without restriction and compued pM residually, a 
procedure that is not guaranteed to succeed.  The logit form of the structural latent class 
probabilities suggested by Nagin and Land (1993) is a simple and convenient approach that 
appears to have been used in about half of received applications. 

A second issue concerns the estimation algorithm.  Heckman and Singer (1984) 
advocated the EM algorithm for this model, reasoning that if the assumed M were larger than the 
true value, then the maximum of the likelihood located by the analyst would be on a ridge in the 
parameter space.  [See Dempster, Laird, and Rubin (1977).]  Thus, gradient methods would be 
inherently unstable.  Since one would not know a priori the correct value of M, choice of the EM 
method of maximizing the likelihood function is not a solution to the problem.  The EM method 
is an algorithm with (observed) very desirable stability properties.  It also has the property that 
successive iterations always produces increases in the likelihood function.  But, in the end, it 
remains a method of maximizing the same log likelihood as the ordinary gradient methods.  The 
tradeoff is that the EM method is notoriously slow to converge in many cases.  (See El-Gamal 
and Grether (1999), for example).  Whether this really solves the problem is a strictly empirical 
question.  On the other hand, the EM method for this problem turns out to be surprisingly easy. 
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To implement the EM method, Wedel et al. used the following approach:  Let uij = 1 if 
individual i is a member of class j and zero otherwise.  We treat uij as missing data to be 
estimated.  The joint density of M uijs is multinomial with probabilities pj; 
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The complete data log likelihood is, therefore 
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The EM algorithm is used to maximize this log likelihood function.  The expectation (E) step of 
the process involves obtaining the expectation of this log likelihood conditioned over the 
unobserved data.  This ultimately involves replacing the uijs in log Lc with the posterior 
probabilities derived above (computed at the current estimates of the other parameters).  The 
maximization (M) step then involves maximizing the resulting conditional log likelihood with 
these estimated posterior probabilities treated as known.  Conditioned on the posteriors, E[logLc] 
factors into two parts that may be maximized separately.  Let wij denote the estimate posteriors.  
By construction, Σjwij = 1.  The first part of the log likelihood becomes a weighted log likelihood 
with known weights for which the likelihood equations are 
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This involves simply maximizing a weighted log likelihood for each class parameter vector.  The  
maximum likelihood estimators of the class probabilities are just the sample averages of the 
estimated weights; 
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If the logistic parameterization has been used, then the estimated θj is derived from θj = 
log(pj/pM).  Note also that if the Nagin and Land (1993) and Wang et al (1998) formulation of the 
prior probabilities as a function of sample data has been used, then the conditional log likelihood 
function at the M step for these parameters is a weighted multinomial logit log likelihood, which 
will require an iterative solution.  That is, if 
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then the transient solution for the structural parameters, γj is the solutions to the likelihood 
equations 
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This is precisely the first order conditions for the multinomial logit model with proportion rather 
than individual data for the dependent variable (the weights).  

The steps in the EM method are 
 
(1)  Obtain initial values of βj, θ and, if part of the model, γj.  The results of a single class model, 
replicated for all classes are one possibility. 
(2)  Compute prior probabilities.  Compute weights (posterior class probabilities) wij based on 
current estimates of parameters. 
(3)  Solve (*) and (**) for new estimates of the parameters and the class probabilities. 
(4)  Assess whether parameter estimates have converged.  If not, return to step (2) 
 
5.5.  EC Estimation  
 
 El-Gamal and Grether (1995, 1996) have proposed what they label the estimation-
classification (EC) estimator.  The model is essentially identical to the latent class estimator 
developed above with one crucial exception.  The underlying theory involves a rather different 
interpretation.  In their framework, the generation of observations from the latent classes is exact.  
That is, the data are generated by the process 
 

 ( ) ijM
j jiiMiiTiii ygyyyg

δ

=∏ β=βββ
1 121)(,21 ),|,...(),...,,,|,...,,( X    X  

 

where δij ε {0,1} and 1
1

=δ
=

M
j ij .  Thus, an observation (joint) is assumed to be a member of a 

specific class.10  They note the resemblance of this to a fixed effects model.  Citing Heckman and 
MaCurdy (1980) the authors consider the small T issue in this context, but argue that the 
consideration is misdirected.  Although the classification indicators, δij are estimated as 
parameters, the question of inconsistency is not an issue here.  The small sample problem in this 
application concerns whether T(i) is large enough to allow accurate classification.   
 Two major differences distinguish this estimation framework from the ones considered 
earlier.  First, in a sample of N groups, there are M N/M! possible classifications, and, in principle, 
the estimator must search all of them to find the optimal one.  For a large panel - recall, our 
interest in this survey has been in methods that could be applied when N = 50,000 -  that would 
seem to make it impractical in the extreme.  However, the authors present an algorithm that they 
argue makes this global search unnecessary.  Second, the 'penalized' likelihood that they propose 
which must be maximized over the M slope vectors includes estimation of M as well.  Thus, they 
simultaneously estimate the number of classes then the assignment of observations to these 
classes. 

                                                           
10 Note the resemblance to discriminant analysis, which is (as usually analyzed) a special case of this model 
with M=2 and g(.) the joint normal distribution. 
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6.  Conclusions 
 
 The applied econometrics literature has tended to view the selection of a random or fixed 
effects model as a Hobson's choice. The undesirable characteristics of the fixed effects model, 
notably the computational difficulties and, primarily, the inconsistency caused by the small T(i) 
problem have rendered it a virtual neglected stepchild.  As seen here, the practical issues may 
well be moot.  The methodological problems remain.  However, the pessimism suggested by 
examples which are doomed from the start - e.g., panel models with no regressors of substance 
and two periods, is surely overstated.  There are many applications in which the group sizes are in 
the dozens or more, particularly in finance and in the long series derived from the PSID.  In such 
cases, there might be room for more optimism.  The point is that there is a compelling virtue of 
the fixed effects model as compared to the alternative, the random effects model.  The assumption 
of zero correlation between latent heterogeneity and included, observed characteristics seems 
particularly severe.  However, the problem can be made moot through extension of the random 
effects model to the random parameters model with unit specific means for the parameters.   

Some analysts have suggested what might be viewed as a middle ground.  A variety of 
non- and semiparametric estimators have been suggested.  A notable exchange on the subject is 
Angrist et al. (2001) wherein it is argued that certain fairly ad hoc "approximations" provide the 
needed machinery.  The commentary on Angrist's suggestions are fairly technical.  Moffitt 
(2001), however, takes particular issue with the whole approach, arguing that substituting a 
demonstrably inconsistent model - in most cases the linear probability model for a well specified 
binary choice model - represents no solution at all.  Suffice to say, the issue remains open for 
discussion. 
 The recent literature has suggested perhaps jumping between the horns of this dilemma 
through non- and semiparametric approaches.  We would submit that this approach may be yet 
less informative than before.  Consider, for example, Honore and Kyriazidou (2000) and. 
Kyriazidou (1997) as examples.  In the context of "selection models" they show how one can 
tease out estimates of structural parameters of the model with minimal assumptions.  The 
problem here is that the so called structural parameters in these models are essentially 
uninformative.  They are not slopes of conditional means so they do not necessarily help in 
understanding behavior.  The conditional means are not specified in these models, so neither are 
the estimated "parameters" helpful for prediction.  At the risk of swimming against the incoming 
tide, it seems appropriate to ask whether the benefits to such weakly specified models are 
sufficient to outweigh the cost of rendering the estimates silent on questions that ultimately 
interest empirical researchers. 
 This paper has documented some extensions to a body of techniques that has existed in 
bits and pieces in the econometrics literature for some time.  The end result is a collection of 
estimators that should extend the set of tools available to applied researchers.  We acknowledge 
that the results apply to a narrow set, the minimal platform in fact, for specification of nonlinear 
panel data models.  But, these results can certainly be extended.  See, for example, Gourieroux 
and Monfort (1996) for some suggested applications.  The recent literature also contains a host of 
applications to dynamic models that have extended these results in many directions.  For static 
models, the contribution of Vella and Verbeek (1999) to nonlinear regression models with 
random effects also seems especially useful.  Likewise, Woolridge (1995) offers some useful 
commentary for more general assumptions than made here. 
    
 



 35

References 
 
Ahn, S. and P. Schmidt, "Efficient Estimation of Models for Dynamic Panel Data," Journal of 
Econometrics, 68, 1995, pp. 3-38. 
 
Akin, J., D. Guilkey and R. Sickles, A Random Coefficient Probit Model with an Application to a Study of 
Migration," Journal of Econometrics, 11, 1979, pp. 233-246. 
 
Albert, J. and S. Chib, "Bayesian Analysis of Binary and Polytomous data," Journal of The American 
Statistical Association, 88, 1993, pp. 669-679. 
 
Angrist, J., "Estimation of Limited Dependent Variable Models with Dummy Endogenous Regressors," 
Journal of Business and Economic Statistics, 19, 1, 2001, pp. 2-15. 
 
Arellano, M. and S. Bond, "Some Tests of Specification for Panel Data: Monte Carlo Evidence and an 
Application to Employment Equations," Review of Economic Studies, 58, 1991, pp. 277-297. 
 
Arellano, M. and O. Bover, "Another Look at the Instrumental Variable Estimation of Error-Components 
Models," Journal of Econometrics, 68, 1995, pp. 29-51. 
 
Baltagi, B., Econometric Analysis of Panel Data, John Wiley and Sons, New York, 1995. 
 
Berry, S., J. Levinsohn and A. Pakes, "Automobile Prices in market Equilibrium," Econometrica, 63, 4, 
1995, pp. 841-890. 
 
Bhat, C., "Quasi-Random Maximum Simulated Likelihood Estimation of the Mixed Multinomial Logit 
Model," Manuscript, Department of Civil Engineering, University of Texas, Austin, 1999. 
 
Bhat, C. and S. Castelar, "A Unified Mixed Logit Framework for Modeling Revealed and Stated 
Preferences: Formulation and Application to Congestion Pricing Analysis in the San Francisco Bay Area," 
Manuscript, Department of Civil Engineering, University of Texas, Austin, 2000. 
 
Bhat, C., "Quasi-Random Maximum Simulated Likelihood Estimation of the Mixed Multinomial Logit 
Model," Manuscript, Department of Civil Engineering, University of Texas, Austin, 1999. 
 
Brannas, K. and P. Johansson, "Panel Data Regressions for Counts," Manuscript, Department of 
Economics, University of Umea, Sweden, 1995. 
 
Brannas, K. and G. Rosenqvist, "Semiparametric Estimation of Heterogeneous Count Data Models," 
European Journal of Operational Research, 76, 1994, pp. 247-258. 
 
Brownstone, D. and K. Train, "Forecasting New Product Penetration with Flexible Substitution Patterns," 
Journal of Econometrics, 89, 1999, pp. 109-129. 
 
Butler, J. and R. Moffitt, "A Computationally Efficient Quadrature Procedure for the One Factor 
Multinomial Probit Model," Econometrica, 50, 1982, pp. 761-764. 
 
Cameron, A. and P. Johansson, "Bivariate Count Data Regression Using Series Expansions: With 
Applications," Discussion Paper, Department of Economics, University of California, Daavis, 1998. 
 
Chamberlain, G., "Analysis of Covariance with Qualitative Data," Review of Economic Studies, 47,1980, 
pp. 225-238. 
 
Chib, S., E. Greenberg and R. Winkelmann, "Posterior Simulation and Bayes factor in Panel Count Data 
Models," Journal of Econometrics, 86, 1998, pp. 33-54. 



 36

Coelli, T., "A Guide to FRONTIER Version 4.1: A COmputer Program for Stochastic Frontier Production 
and Cost Estimation," Centre for Efficiency and Productivity Analysis, University of New England, 
Armidale, Australia, 1996. 
  
Cornwell, C., P. Schmidt, and R. Sickles, "Production Frontiers with Cross Sectional and Time-Series 
Variation in Efficiency Levels," Journal of Econometrics, 46, 1990, pp. 185-200. 
 
Crepon, B. and E. Duguet, "Research and Development, Competition and Innovation: Pseudo Maximum 
Likelihood and Simulated Maximum Likelihood Method Applied to Count Data Models with 
Heterogeneity," Journal of Econometrics, 79, 1997, pp. 355-378. 
 
Deb, P. and P. Trivedi, "Demand for Medical Care by the Elderly: A Finite Mixture Approach," Journal of 
Applied Econometrics, 12, 3, 1997, pp. 313-336. 
 
Dempster, A., N. Laird and D. Rubin, "Maximum Likelihood From Incomplete Data via the E.M. 
Algorithm," Journal of the Royal Statistical Society, Series B, 39, 1, 1977, pp. 1-38. 
 
Diggle, P., K. Liang and S. Zeger, Analysis of Longitudinal Data, Clarendon Press, Oxford, 1994. 
 
El-Gamal, M. and D. Grether, "A Monte Carlo Study of EC Estimation in Panel Data Models with Limited 
Dependent Variables and Heterogeneity," in Hsiao, et al., eds., Analysis of Panels and Limited Dependent 
Variable Models, Cambridge University Press, Cambridge, 1999. 
 
El-Gamal and D. Grether, "Are People Bayesian? Uncovering Behavioral Strategies," Journal of the 
American Statistical Association, 90, 1995, pp. 1137-1145. 
 
El-Gamal and D. Grether, "Unknown Heterogeneity, The EC-EM Algorithm, and Large T Approximation," 
SSRI Working Paper Number 9622, University of Wisconsin, Madison, 1996. 
 
Elrod, T. and M. Keane, "A Factor Analytic Probit Model for Estimating Market Structure in Panel Data," 
Journal of Marketing Research, 1992. 
 
Frisch, R., and F. Waugh, "Partial Time Regressions as Compared with Individual Trends," Econometrica, 
1, 1933, pp. 387-401. 
 
Gelfand, A. and  D. Dey, "Bayesian Model Choice: Asymptotics and Exact Calculations," Journal of the 
Royal Statistical Society, Series B, 56, 1994, pp. 501-514. 
 
Geweke, J., "Antithetic Acceleration of Monte Carlo Integration in Bayesian Inference," Journal of 
Econometrics, 38, 1988, pp. 73-89. 
 
Geweke, J., "Monte Carlo Simulation and Numerical Integration," Staff Research Report 192, Federal 
Reserve Bank of Minneapolis, 1995. 
 
Geweke, J., "Posterior Simulators in Econometrics," in Kreps, D. and K. Wallis, eds., Advances in Statistics 
and Econometrics: Theory and Applications, Vol III, Cambridge University Press, Cambridge, 1997. 
 
Geweke, J., M. Keane and D. Runkle, "Alternative Computational Approaches to Inference in the 
Multinomial Probit Model," Review of Economics and Statistics, 76, 1994, pp. 609-632. 
 
Geweke, J., M. Keane and D. Runkle, "Statistical Inference in the Multinomial Multiperiod Probit Model," 
Journal of Econometrics, 81, 1, 1997, pp. 125-166. 
 
Goldfeld S. and R. Quandt, "Estimation in a Disequilibrium Model and the Value of Information," Journal 
of Econometrics, 3, 3, 1975, pp. 325-348. 
 



 37

Gourieroux, C. and A. Monfort, Simulation Based Econometrics, Oxford University Press, New York, 
1996. 
 
Greene, W., "Accounting for Excess Zeros and Sample Selection in the Poisson Regression Model," 
Working Paper Number 94-10, Department of Economics, Stern School of Business, NYU, 1994. 
 
Greene, W., Econometric Analysis, 2nd ed., Macmillan, New York, 1993. 
 
Greene, W., Econometric Analysis, 4th ed., Prentice Hall, Englewood Cliffs, 2000. 
 
Greene, W., "Estimating a Random Parameters Model," manuscript, Department of Economics, Stern 
School of Business, NYU, 2001. 
 
Greene, W., "Estimating Sample Selection Models with Panel Data," Manuscript, Department of 
Economics, Stern School of Business, NYU, 2001. 
 
Greene, W., LIMDEP, Version 7.0, Econometric Software, Plainview, New York, 2000. 
 
Guilkey, D., and J. Murphy, "Estimation and Testing in the Random Effects Probit Model," Journal of 
Econometrics, 59, 1993, pp. 301-317. 
 
Gurmu, S., and J. Elder, "Estimation of Multivariate Count Regression Models With Applications to Health 
Care Utilization," Manuscript, Department of Economics, Gerogia State University, 1998. 
 
Hagenars, J. and A. McCutcheon, Advances in Latent Class Analysis, Cambridge University Press, 
Cambridge, 2001 (forthcoming). 
 
Hajivassiliou, V. and P. Ruud, "Classical Estimation Methods for LDV Models Using Simulation," In 
Engle, R. and D. McFadden, eds., Handbook of Econometrics, Vol. IV, North Holland, Amsterdam, 1994. 
 
Hamilton, J., Time Series Analysis, Princeton University Press, Princeton, 1995. 
 
Hausman, J., B. Hall and Z. Griliches, "Econometric Models for Count Data with an Application to the 
Patents - R&D Relationship," Econometrica, 52, 1984, pp. 909-938. 
 
Hausman, J. and W. Taylor, "Panel Data and Unobservable Individual Effects," Econometrica, 49, 1981, 
pp. 1377-1398. 
 
Heckman, J. and B. Singer, "A Method for Minimizing the Impact of Distributional Assumptions in 
Econometric Models for Duration Data," Econometrica, 52, 1984, pp. 271-320. 
 
Heckman, J. and MaCurdy, T., "A Life Cycle Model of Female Labor Supply," Review of Economic 
Studies, 47, 1980, pp. 247-283. 
 
Heckman, J. and R. Willis, "Estimation of a Stochastic Model of Reproduction: An Econometric 
Approach," in Terlyckyi, N., ed., Household Production and Consumption, NBER, New York, 1975, pp. 
99-138. 
 
Heckman, J., "The Incidental Parameters Problem and the Problem of Initial Conditions in Estimating a 
Discrete Time-Discrete Data Stochastic Process," in Manski, C. and D. McFadden, eds., Structural 
Analysis of Discrete Data with Econometric Applications, MIT Press, Cambridge, 1981, pp. 114-178. 
 
Hildreth, C. and J. Houck, "Some Estimators for a Linear Model with Random Coefficients," Journal of the 
American Statistical Association, 63, 1968, pp. 584-595. 
 



 38

Holtz-Eakin, D., W. Newey and S. Rosen, "Estimating Vector Autoregressions with Panel Data," 
Econometrica, 56, 1988, pp. 1371-1395. 
 
Holtz-Eakin, D., "Testing for Individual Effects in Autoregressive Models," Journal of Econometrics, 39, 
1988, pp. 297-307. 
 
Holtz-Eakin, D., W. Newey and S. Rosen, "The Revenues-Expenditures Nexus: Evidence from Local 
Government Data," International Economic Review, 30, 1989, pp. 415-429. 
 
Honore, B., "IV Estimation of Panel Data Tobit Models with Normal Errors," manuscript, Department of 
Economics, Princeton University, 1996. 
 
Honore, B. and E. Kyriazidou, "Panel Data Discrete Choice Models with Lagged Dependent Variable 
Models," Econometrica, 68, 2000, pp. 839-874. 
 
Honore, B., "Trimmed LAD and Least Squares Estimation of Truncated and Censored Regression Models 
with Fixed Effects," Econometrica, 60, 1992, pp. 533-565. 
 
Hsiao: C., Analysis of Panel Data, Cambridge University Press, Cambridge, 1993,  pp. 159-164 
 
Hsiao, C, "Logit and Probit Models," in Matyas, L. and Sevestre, P., eds., The Econometrics of Panel Data: 
Handbook of Theory and Applications, Second Revised Edition, Kluwer Academic Publishers, Dordrecht, 
1996 pp. 410-447. 
 
Judson, R. and A. Owen, "Estimating Dynamic Panel Data Models: A Guide for Macroeconomists," 
Economics Letters, 65, 1999, pp. 9-15. 
 
Keane, M., "A Computationally Practical Simulation Estimator for Panel Data," Econometrica, 62, 1994, 
pp. 95-116. 
 
Kiefer, N., "A Note on Regime Classification in Disequilibrium Models," Review of Economic Studies, 47, 
1, 1980, pp. 637-639. 
 
Kiefer, N., "Discrete Parameter Variation: Efficient Estimation of a Switching Regression Model," 
Econometrica, 46, 1978, pp. 427-434. 
 
Kiefer, N., "On the Value of Sample Separation Information," Econometrica, 47, 1979, pp. 997-1003. 
 
Krailo, M. and M. Pike, "Conditional Multivariate Logistic Analysis of Stratified Case-Control Studies," 
Applied Statistics, 44, 1, 1984, pp. 95-103. 
 
Kyriazidou, E., "Estimation of a Panel Data Sample Selection Model," Econometrica, 65, 1997, pp. 1335-
1364. 
 
Land, K., P. McCall, and D. Nagin, "Poisson and Mixed Poisson Regression Models: A Review of 
Applications, Including Recent Developments in Semiparametric Maximum Likelihood Methods," 
Manuscript, Department of Sociology, Duke University, 1994. 
 
Land, K., P. McCall, and D. Nagin, "A Comparison of Poisson, Negative Binomial and Semiparametric 
Mixed Poisson Regression Modles with Empirical APplications to Criminal Careers Data," Manuscript, 
Department of Sociology, Duke University, 1995. 
 
Laird, N., "Nonparametric Maximum Likelihood Estimation of Mixing Distributions," Journal of the 
American Statistical Association, 73, 1978, pp. 805-811. 
 



 39

Lambert, D., "Zero Inflated Poisson Regression, with an Application to Defects in Manufacturing," 
Technometrics, 34, 1, 1992, pp. 1-14. 
 
Lechner, M. and M. Breitung, "Some GMM Estimation Methods and Specification Tests for Nonlinear 
Models," in Matyas, L. and Sevestre, P., The Econometrics of Panel Data: A Handbook of the Theory with 
Applications,  Kluwer, Boston, 1996. 
 
Lee, L., "Generalized Econometric Models with Selectivity," Econometrica, 51, 1983, pp. 507,512. 
 
Lerman, S. and C. Manski, "On the Use of Simulated Frequencies to Approximate Choice Probabilities," In 
Manski, C and McFadden, D., eds., Structural Analysis of Discrete Data with Econometric Applications, 
MIT Press, Cambridge, 1981 
 
Liang, K. and S. Zeger, "Longitudinal Data Analysis Using Generalized Linear Models," Biometrika, 73, 
1986, pp. 13-22. 
 
Maddala, G., "Limited Dependent Variable Models Using Panel Data," Journal of Human Resources, 22, 3, 
1987, pp. 307-338. 
 
Maddala, G. and F. Nelson, "Specification Errors in Limited Dependent Variable Models," Working Paper 
number 96, National Bureau of Economic Research, Cambridge, 1975. 
 
Manski, C., "Semiparametric Analysis of random Effects Linear Models from Binary Panel Data," 
Econometrica, 55, 1987, pp. 357-362. 
 
Matyas, L. and Sevestre, P., eds., The Econometrics of Panel Data: Handbook of Theory and Applications, 
Second Revised Edition, Kluwer Academic Publishers, Dordrecht, 1996, pp. 410-447. 
 
McCullagh, P. and J. Nelder, Generalized Linear Models, Chapman and Hall, New York, 1983. 
 
McFadden, D., "Am Method of Simulated Moments for Estimation of Discrete Choice Models without 
Numerical Integration," Econometrica, 57, 1989, pp. 995-1026. 
 
McFadden, D. and P. Ruud, "Estimation by Simulation," Review of Economics and Statistics, 76, 1994, pp. 
591-608. 
 
McFadden, D. and K. Train, "Mixed MNL Models for Discrete Response," Journal of Applied 
Econometrics, 15, 2000, pp. 447-470. 
 
Moffitt, R., "Estimation of Limited Dependent Variable Models with Dummy Endogenous Regressors: 
Comment" Journal of Business and Economic Statistics, 19, 1, 2001, p 20. 
 
Montalvo, J., "GMM Estimation of Count Panel Data Models with Fixed Effects and Predetermined 
Instruments," Journal of Business and Economic Statistics, 15, 1, 1997, pp. 82-89. 
 
Morokoff, W., and R. Calflisch, "Quasi-Monte Carlo Integration," Journal of Computational Physics, 122, 
1995, pp. 218-230. 
 
Munkin, M. and P. Trivedi, "Econometric Analysis of a Self Selection Model with Multiple Outcomes 
Using Simulation-Based Estimation: An Application to the Demand for Healthcars," Manuscript, 
Department of Economics, Indiana University, 2000. 
 
Nagin, D. and K. Land, "Age, Criminal Careers, and Population Heterogeneity: Specification and 
Estimation of a Nonparametric, Mixed Poisson Model," Criminology, 31, 3, 1993, pp. 327-362. 
 



 40

Nelder, J. and R. Wedderburn, "Generalized Linear Models," Journal of the Royal Statistical Society, 
Series A, 135, 1972, pp. 370-384. 
 
Nijman, T. and M. Verbeek, "Nonresponse in Panel Data: The Impact on Estimates of  Life Cycle 
Consumption Function," Journal of Applied Econometrics, 7, 1992, pp. 243-257. 
 
Nerlove, M., "An Essay on the History of Panel Data Econometrics," Manuscript, Department of 
Agricultural and Resource Economics, University of Maryland, 2000. 
 
Oberhofer, W. and J. Kmenta, "A General Procedure for Obtaining Maximum Likelihood Estimates in 
Generalized Regression Models," Econometrica, 42, 1974, pp. 579-590. 
 
Orme, C., "Two-Step Inference in Dynamic Non-Linear Panel Data Models," Manuscript, School of 
Economic Studies, University of Manchester, 1999. 
 
Pesaran, H., R. Smith and K. Im, "Dynamic Linear Models for Heterogeneous Panels," in Matyas, L. and P. 
Sevestre, eds., The Econometrics of Panel Data: A Handbook of the Theory with Applications, Kluwer, 
Boston, 1996. 
 
Philips, R., "Estimation of a Stratified Error Components Model," Manuscript, Department of Economics, 
George Washington University, 2000. 
 
Philips, R., "Partially Adaptive Estimation via a Normal Mixture," Journal of Econometrics, 64, 1994, pp. 
123-144. 
 
Pitt, M.  and L. Lee, "The Measurement and Sources of Technical Inefficiency in Indonesian Weaving 
Industry," Journal of Development Economics, 9, 1981, pp. 43-64. 
 
Poirier, D. and P. Ruud, "On the Appropriateness of Endogenous Switching," Journal of Econometrics, 16, 
2, 1981, pp. 249-256. 
 
Quandt, R. and J. Ramsey, "Estimating Mixtures of normal Distributions and Switching Regressions," 
Journal of the American Statistical Association, 73, 1978, pp. 730-738. 
 
Rao, C., Linear Statistical Inference and Its Applications, John Wiley and Sons, New York, 1973. 
 
Revelt, D. and K. Train, "Mixed Logit with Repeated Choices: Households' Choices of Appliance 
Efficiency Level," Review of Economics and Statistics, 80, 1998, pp. 1-11. 
 
Ripley, B., Stochastic Simulation, John Wiley and Sons, New York, 1987. 
 
Schmidt, P. and R. Sickles, "Production Frontiers and Panel Data," Journal of Business and Economic 
Statistics, 2, 1984, pp. 367-374. 
 
Sepanski, J., "On a Random Coefficient Probit Model," Communications in Statistics - Theory and 
methods, 29, 11, 2000, pp. 2493-2505. 
 
Sloan, J. and H. Wozniakowski, "When are Quasi-Monte Carlo Algorithms Efficient for High Dimensional 
Integrals," Journal of Complexity, 14, 1998, pp. 1-33. 
 
Swamy, P., Statistical Inference in Random Coefficient Regression Models, Springer-Verlag, New York, 
1971. 
 
Swamy, P. and S. Arora, "The Exact Finite Sample Properties of the Estimators of Coefficients in the Error 
Components Regression Models," Econometrica, 40, 1972, pp. 261-275. 
 



 41

Swamy, P., R. Conway, and M. LeBlanc, "The Stochastic Coefficients Approach to Econometric 
Modeling, Part I: A Critique of Fixed Coefficient Models," The Journal of Agricultural Economic 
Research, 40, 1988a, pp. 2-10. 
 
Swamy, P., R. Conway, and M. LeBlanc, "The Stochastic Coefficients Approach to Econometric 
Modeling, Part II: Description and Motivation," The Journal of Agricultural Economic Research, 40, 
1988b, pp. 21-30 
 
Swamy, P., R. Conway, and M. LeBlanc, "The Stochastic Coefficients Approach to Econometric 
Modeling, Part III: Estimation, Stability Testing and Prediction," The Journal of Agricultural Economic 
Research, 41, 1989 pp. 4-20. 
 
Train, K., "Recreation Demand Models with Taste Differences over People," Land Economics, 74, 1998, 
pp. 230-239. 
 
Train, K., "Halton Sequences for Mixed Logit," Manuscript, Department of Economics, University of 
California, Berkeley, 1999. 
 
Tsionas, E., "Non-normality in Stochastic Frontier Models: With an Application to U.S. Banking," Journal 
of Productivity Analysis, 2001, forthcoming. 
 
van Ophem, H., "Modeling Selectivity in Count-Data Models," Journal of Business and Economic 
Statistics, 18, 4, 2000, pp. 503-511. 
 
van Ophem, H., "A General Method to Estimated Correlated Discrete Random Variables," Econometric 
Theory, 15, 1999, pp. 228-237. 
 
Vella, F. and M. Verbeek, "Two Step Estimation of Panel Data Models with Censored Endogenous 
Variables and Selection Bias," Journal of Econometrics, 90, 1999, pp. 239-263. 
 
Verbeek, M., "On the Estimation of a Fixed Effects Model with Selectivity Bias," Economics Letters, 34, 
1990, pp. 267-270. 
 
Verbeek, M. and T. Nijman, "Testing for Selectivity Bias in Panel Data Models," International Economic 
Review, 33, 3, 1992, pp. 681-703. 
 
Vermunt, J. and J. Magidson, "Bi-Plots and Related Graphical Displays Based on Latent Class Factor and 
Cluster Models," Manuscript, Tilburg University, 1999b. 
 
Vermunt, J. and J. Magidson, "Latent Class Cluster Analysis," Manuscript, Tilburg University, 1999a. 
 
Vermunt, J. and J. Magidson, "Latent Class Models," Manuscript, Tilburg University, 2000. 
 
Wang, P., I. Cockburn, and M. Puterman, "Analysis of Patent Data - A Mixed Poisson Regression Model 
Approach," Journal of Business and Economic Statistics, 16, 1, 1998, pp. 27-41. 
 
Wedel, M., W. DeSarbo, J. Bult, and V. Ramaswamy, "A Latent Class Poisson Regression Model for 
Heterogeneous Count Data," Journal of Applied Econometrics, 8, 1993, pp. 397-411. 
 
Woolridge, J., "Selection Corrections for Panel Data Models Under Conditional Mean Independence 
Assumptions," Journal of Econometrics, 68, 1995, pp. 115-132. 
 
Zabel, J., "Estimating Fixed and Random Effects Models with Selectivity," Economics Letters, 40, 1992, 
pp. 269-272. 
 



 42

Zavoina, R. and W. McKelvey, "A Statistical Model for the Analysis of Ordinal Data," Journal of 
Mathematical Sociology, Summer, 1975, pp. 103-120. 
 
Zellner, A., An Efficient Method of Estimating Seemingly Unrelated Regressions and Tests of Aggregation 
Bias," Journal of the American Statistical Association, 57, 1962, pp. 500-509. 
 
Zellner, A., An Introduction to Bayesian Inference In Econometrics, John Wiley and Sons, New York, 
1971. 
 
Zellner, A., "On the Aggregation Problem: A New Approach to a Troublesome Problem," in Fox, K et al., 
eds., Economic Models, Estimation and Risk Programming: Essays in Honor of Gerhard Tintner, Springer 
Verlag, Heidelberg, 1969. 
 



 43

Appendix A.  Computation of the Random Parameters Model 
 

Two models are used for vit: 
 
 Random Effects:   vit  =  vi for all t.  This is the usual random effects form. 
 
 Autocorrelated [AR(1)]  vit  =  Rvi,t-1 +  uit  where R is a diagonal matrix of coefficient 

specific autocorrelation coefficients and uit satisfies the earlier specification for vit. 
 
The remainder of the specification is 
 
 ΓΓΓΓ  =  lower triangular or diagonal matrix which produces the covariance matrix of the 

         random parameters, ΩΩΩΩ  =  ΓΓΓΓ ΓΓΓΓ ′′′′ in the random effects form and ΩΩΩΩ  =  ΓΓΓΓ(I-R2)-1ΓΓΓΓ ′′′′ in 
                      the AR(1) model. 
 
 x2it =  variables multiplied by ββββ2it 

 ββββit = [ββββ1′′′′, ββββ2it′′′′]′′′′ 

 xit = [x1it′′′′, x2it′′′′]′′′′ 

 ait = ββββit′′′′xit  

(We confine attention to index function models, though others are possible.) 

 P(yi|xit, zi, vit) =  g(yit, ait, θθθθ)  =  the conditional density for the observed response. 
 
The model assumes that parameters are randomly distributed with possibly heterogeneous (across 
individuals) mean 
 
 E[ββββit| zi]  =  ββββ  +  ∆∆∆∆zi, 
and 
 Var[ββββit| zi]  =  ΩΩΩΩ. 
 
By construction, then,  
 
 ββββit  =  ββββ  +  ∆∆∆∆zi  +  ΓΓΓΓvit. 
 
Note that in the AR(1) form, ββββit varies across time as well as individuals.  It is convenient to 
analyze the model in this fully general form at this point.  One can easily accommodate 
nonrandom parameters just by placing rows of zeros in the appropriate places in ΓΓΓΓ.   A 
hierarchical parameter structure is accommodated with nonzero rows in ∆∆∆∆ with or without 
stochastic terms induced by nonzero terms in ΓΓΓΓ. 
 The true log likelihood function is 

 log L =  Σi  log Li 

where log Li is the contribution of the ith individual (group) to the total.  Conditioned on vi, the 
joint density for the ith group is 

 f[yi1,...,yiTi | xit,..., zi,vit, t = 1,..., T(i)]  =  )'(
1
∏
=

iT

t
ititityg xββββ,,,, . 
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Since vit is unobserved, it is necessary to obtain the unconditional log likelihood by taking the 
expectation of this over the distribution of vit.  Thus, 

 Li | vit, t=1,..., T(i)  =  ∏
=

iT

t
ititityg

1
)'( xββββ,,,, . 

and,  

 Li  =  Evit [Li | vit, t=1,...,T(i)] =  ∏
=

=
it

i

it

T

t
itititit dyPi,...,Ttg

v
v x  ),v

 of Range
1

)',()(1( ββββ  

(Note that this is a multivariate integral.)  Then, finally,  
 

 log L =  
=

N
i iL

1
log  

 
For convenience in what follows, let  ΘΘΘΘ  = the full vector of all parameters in the model.  The 
likelihood function is maximized by solving the likelihood equations: 
 

 
= ∂
∂

=
∂

∂ N
i

iLL
1

loglog
ΘΘΘΘΘΘΘΘ

        =  0. 

 
and note that these derivatives will likewise involve integration. 
 The integration is done by Monte Carlo simulation; 
 

 Evit [Li | vit, t=1,..., T(i)]   ≈  
=

=R
r itri iTtL

R 1
)(,...,1,|1 v . 

 
where vitr is a set of T(i) K2-variate random draws from the joint distribution of vit.  (I.e., it is a 
draw of a Ti×K2 random matrix.  In the case of no autocorrelation, there is only one K2-variate 
draw, which is then the same in all periods, in the fashion of a random effects model.)  See 
Brownstone and Train (1999), Train (1998), and Revelt and Train (1998) for discussion.  (Ken 
Train has numerous other papers on this subject which may be perused at his website.)  The 
approximation improves with increased R and with increases in N, though the simulation variance 
which decreases with increases in R does not decrease with N. 

The K2 elements of vitr are drawn as follows:  We begin with a K2 random vector witr which 
is either K2 independent draws from the standard uniform [0,1] distribution or K2 Halton draws 
from the mth Halton sequence, where m is the mth prime number in the sequence of K2 prime 
numbers beginning with 2.  [See Greene (2001a)].  The Halton values are also distributed in the 
unit interval.  This primitive draw is then transformed to one of the following distributions, 
depending on the appropriate model.  Train (1999, 2000) has suggested three possibilities: 
 
 Uniform[-1,1]: uk,itr =  2wk,itr  -  1 

 Tent [-1,1] uk,itr =  1(wk,itr  < .5)[ itrkw ,2  - 1] +  

    1(wk,itr  > .5)[1 - )1(2 ,itrkw−  ] 

 Normal[0,1] uk,itr =  Φ-1(wk,itr) 
 
This produces a K2 vector, uitr.  Finally, vitr is obtained as follows: 
 
 (1)  No autocorrelation: vitr  = uitr  for all t.   
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In this case, witr is drawn once for the entire set of T(i) periods, and reused.  This is the standard 
'random effect' arrangement, in which the effect is the same in every period.  In this case,  
 

witr = wir, uitr = uir, and vitr = vir, 
 
(2)  AR1 model (autocorrelation):   vk,i1r  =  [1/(1 - ρk

2)] uk,i1r 

vk,itr =   ρk vk,i,t-1,r  +  uk,itr 
 
This is the standard first order autocorrelation treatment, with the Prais-Winsten treatment for the 
first observation - this so as not to lose any observations due to differencing.   

In the preceding derivation, it is stated that ΩΩΩΩ = ΓΓΓΓΓΓΓΓ′′′′ is the covariance matrix of ΓΓΓΓvitr.  
This is true for the standard normal case.  For the other two cases, a further scaling is needed.  
The variance of the uniform [-1,1] is the squared width over 12, or 1/3, so its standard deviation is 
1/ 3  = .57735.  The variance of the standardized tent distribution is 1/6.  The standard deviation 
is therefore .40824.   

With vitr in hand, we form the rth draw on the random parameter, ββββitr  as follows: 
 

 ββββ1itr =   ββββ1  (K1  nonrandom parameters - does not change with i, r, or t). This 
parameter vector is being estimated. 
 

 ββββ2itr =   ββββ2  +  ∆∆∆∆zi  +  ΣΣΣΣvitr  +  ΠΠΠΠvitr  (K2
 random parameters) 

  = ββββ2  +  ∆∆∆∆zi  +  ΓΓΓΓvitr  where  ΓΓΓΓ  =  ΣΣΣΣ  +  ΠΠΠΠ, ΣΣΣΣ is diagonal and ΠΠΠΠ is the nonzero 

   elements below the diagonal in ΓΓΓΓ. 

The parameter vector, ββββitr  is now in hand.   
The probability density function is formed by beginning with 
 

 Pitr =  g(yit, ββββitr′′′′xit, θθθθ) 
 
(Note, if this is the random effects model, then ββββitr′′′′xit  =  ββββir′′′′xit.)  The joint conditional probability 
for the ith individual is 
 

 Pir | vitr, t = 1,..., T(i)  =  ∏ =
iT

t 1
Pitr| vitr. 

 
The unconditional density would now be obtained by integrating the random terms out of the 
conditional distribution.  We do this by simulation: 
 

 Pi =  
=

R
rR 1

1  Pir | (vitr, t = 1,...,Ti)  

 
Note that in the random effects case, we are averaging over R replications in which the T(i) 
observations are each a function of the same vir.  Thus, each replication in this case involves 
drawing a single random vector.  In the AR1 case, each replication involves drawing a sequence  
of T(i) vectors, vitr.  Finally, the simulated log likelihood function to be maximized is 
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 The derivatives must be approximated as well.  The theoretical maximum is based on 
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where ΘΘΘΘ is the vector of all parameters in the model.  Then, 
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Collecting terms once again, we obtain the approximation, 
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Mechanics of computing the derivatives with respect to the low level parameters are given in the 
aforementioned technical document.  They differ from model to model, so only the 
commonalities are shown here. 
 The Hessian is equally involved.  We will only sketch the full derivation here.  Return to 
the full gradient of the ith term in the log likelihood log likelihood - terms are summed over i to 
get the gradient and Hessian - the following is written in terms of the full parameter vector, 
including any ancillary parameters.  The gradient is 
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Let Hi denote the second derivatives matrix.   Then, 
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The only term which has not already appeared is the second derivatives matrix in the third part.  
Consider first the case of no autocorrelation and let µµµµk denote the vector of elements in ΘΘΘΘ that 
appear in βk,itr.  This derivative is obtained by differentiation of 
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In the absence of autocorrelation, the random parameters are linear in the underlying structural 
parameters, so the first of these two second derivatives is zero.  Using this and our previous 
results, we obtain 
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The remaining complication in the preceding arises when there is autocorrelation, as in this case, 
the reduced form parameters are not linear in ρk.  In this instance, the square of the first derivative 
is used as approximation to the second when the asymptotic covariance matrix is computed.  (The 
algorithm used for estimation requires only first derivatives.) 
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Appendix B.  Implementations of the Panel Data Estimators in Computer Software 
 
 The panel data estimators described in this article have all been implemented in LIMDEP, as listed in 
the table below.  Other commercial packages also contain some of them.  Stata contains a number of 
applications of the quadrature based procedures, the fixed effects count and logit models, and an extensive 
range of GEE formulations.  SAS contains the logit and RE binomial models, some GEE models, and 
numerous variants of the linear model.  Coelli's (1995) FRONTIER program contains all the panel estimators 
for the stochastic frontier model.  TSP and EViews contain all variants of the linear model and a few of the 
quadrature based procedures for random effects.  Gauss libraries in general circulation also provide some of 
the quadrature based random effects models and all variants of the linear regression model. 
 
Model Class Fixed Effects Random Effects Random Parameters Latent Class 
Linear Regression •  •  a •  c 

Binary Choice 
Probit •  •  a •  •  
Logit •  •  a •  •  
Complementary log log •  •  a •  •  
Gompertz •  •  a •  •  
Bivar. Probit/Selection  •  a •   

Multinomial Choice 
Multinomial Logit  •  a •   
Multinomial Probit  •  b   
Ordered Probit/Logit •  •  a •  •  

Count Data 
Poisson Regression •  •  a •  •  
Negative Binomial •  •  a •  •  

Loglinear Models 
Exponential •  •  b •  •  
Gamma •  •  b •  •  
Weibull •  •  b •  •  
Inverse Gaussian •  •  b •  •  

Limited Dependent Variable 
Tobit •  •  a •  •  
Grouped data (censored) •  •  a •  •  
Truncated Regression •  •  b •  •  
Sample Selection  •  •  b •   

Survival and Frontier Models 
Weibull •  •  b •  •  
Exponential •  •  b •  •  
Loglogistic •  •  b •  •  
Lognormal •  •  b •  •  
Stochastic Frontier •  •  a •  •  
 
Notes:  Any RP model produces an RE model by a random constant term.  In the table, "a" denotes a model 
that can be estimated by standard REM techniques (GLS, quadrature) or by the simulation method with a 
random parameters formulation; "b" denotes a random effects model that can only be obtained by the 
simulated random parameters approach.  The linear regression model can be fit with FEM by ML and LS, 
REM by GLS and simulated ML. The "c" indicates this model is not identified and therefore, not estimable.  
The binary choice models Complementary loglog and Gompertz can be fit with random effects by a random 
constant term in the RP model or by quadrature.  The multinomial logit model is fit with random effects by  
random constant terms in the random parameters logit model in NLOGIT. 
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