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Abstract


Received analyses based on stochastic frontier modeling with panel data have relied primarily on results from traditional linear fixed and random effects models.  This paper examines several extensions of these models that employ nonlinear techniques.  The fixed effects model is extended to the stochastic frontier model using results that specifically employ the nonlinear specification.  Based on Monte Carlo results, we find that in spite of the well documented incidental parameters problem, the fixed effects estimator appears to be no less effective than traditional approaches in a correctly specified model.  We then consider two additional approaches, the random parameters (or ‘multilevel’ or ‘hierarchical’) model and the latent class model.  Both of these forms allow generalizations of the model beyond the familiar normal distribution framework.
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1.  Introduction


Aigner, Lovell and Schmidt proposed the normal-half normal stochastic frontier in their pioneering work in 1977.  A stream of research over the succeeding 25 years has produced a number of innovations in specification and estimation of their model.  Panel data treatments have kept pace with other types of developments in the literature.  However, with few exceptions, these estimators have been patterned on familiar fixed and random effects formulations of the linear regression model.  This paper will suggest three alternative approaches to modeling heterogeneity in panel data in the stochastic frontier model.  The motivation is to produce specifications which can appropriately isolate firm heterogeneity while preserving the mechanism in the stochastic frontier that produces estimates of technical or cost inefficiency.  The received applications have effectively blended these two characteristics in a single feature in the model.

This study will build to some extent on analyses that have already appeared in other literatures.  Section 2 will review some of the terminology of the stochastic frontier model.  Section 3 considers fixed effects estimation.  The form of this model that has appeared previously has some shortcomings that can be easily remedied by treating the fixed effects and the inefficiency separately, which has not been done previously. This section considers two issues, the practical problem of computing the fixed effects estimator, and the bias and inconsistency of the fixed effects estimator due to the incidental parameters problem.  A Monte Carlo study based on a large panel from the U.S. banking industry is used to study the incidental parameters problem and its influence on inefficiency estimation. Section 4 presents results for random effects and random parameters models.  The development here will follow along similar lines as in Section 3.  We first reconsider the random effects model, observing once again that familiar approaches have forced one effect to carry both heterogeneity and inefficiency.  We then propose a modification of the random effects model which disentangles these terms.  This section will include development of the simulation based estimator that is then used to extend the random effects model to a full random parameters specification.  The random parameters model is a far more flexible, general specification than the simple random effects specification.  We will continue the analysis of the banking industry application in the random parameters model.  Section 5 then turns to the latent class specification.  The latent class model can be interpreted as a discrete mixture model that approximates the continuous random parameters model.  It can also be viewed as a modeling framework in its own right, capturing latent segmentation in the data set.  Section 5 will develop the model, then apply it to the data on the banking industry considered in the preceding two sections.  Some conclusions are drawn in Section 6.

2.  The Stochastic Frontier Model

The stochastic frontier model may be written
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where the sign of the last term depends on whether the frontier describes costs (positive) or production (negative).  This has the appearance of a (possibly nonlinear) regression equation, though the error term in the model has two parts.  The function f(() denotes the theoretical production function.  The firm and time specific idiosyncratic and stochastic part of the frontier is vit which could be either positive or negative.   The second component, uit represents technical or cost inefficiency, and must be positive.  The base case stochastic frontier model as originally proposed by Aigner, Lovell and Schmidt (1977) adds the distributional assumptions to create an empirical model; the “composed error” is the sum of a symmetric, normally distributed variable (the idiosyncrasy) and the absolute of a normally distributed variable (the inefficiency):

vit  ~  N[0, (v2]

uit  =  |Uit|   where Uit ~  N[0, (u2].

The model is usually specified in (natural) logs, so the inefficiency term, uit can be interpreted as the percentage deviation of observed performance, yit from the firm’s own frontier performance, 

yit* = ((xit  +  ((zi  +  vit.

It will be convenient in what follows to have a shorthand for this function, so we will generally use

yit  =  ((xit  +  vit  (  uit
to denote the full model as well, subsuming the time invariant effects in xit.


The analysis of inefficiency in this modeling framework consists of two (or three steps).  At the first, we will obtain estimates of the technology parameters, (.  This estimation step also produces estimates of the parameters of the distributions of the error terms in the model, (u and (v.  In the analysis of inefficiency, these structural parameters may or may not hold any intrinsic interest for the analyst.  With the parameter estimates in hand, it is possible to estimate the composed deviation,

(it  =  vit  (  uit  =  yit  -  ((xit
by “plugging in” the observed data for a given firm in year t and the estimated parameters.  But, the objective is usually estimation of uit, not (it, which contains the firm specific heterogeneity.  Jondrow, Lovell, Materov, and Schmidt (1982) (JLMS) have devised a method of disentangling these effects.  Their estimator of uit is

E[uit | (it]  =  
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where

(  =  [(v2 + (u2]1/2
(  =  (u / (v
ait  =  ((it(/(
((ait)  =  the standard normal density evaluated at ait
((ait)  =  the standard normal CDF (integral from -( to ait) evaluated at ait.

Note that the estimator is the expected value of the inefficiency term given an observation on the sum of inefficiency and the firm specific heterogeneity.  


The literature contains a number of studies that proceed to a third step in the analysis.  The estimation of uit might seem to lend itself to further regression analysis of 
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(the estimates) on other interesting covariates in order to “explain” the inefficiency.  Arguably, there should be no explanatory power in such regressions – the original model specifies uit as the absolute value of a draw from a normal distribution with zero mean and constant variance.  There are two motivations for proceeding in this fashion nonetheless.  First, one might not have used the ALS form of the frontier model in the first instance to estimate uit.  Thus, some fixed effects treatments based on least squares at the first step leave this third step for analysis of the firm specific “effects” which are identified with inefficiency.  (We will take issue with this procedure below.)  Second, the received models provide relatively little in the way of effective ways to incorporate these important effects in the first step estimation.  We hope that our proposed models will partly remedy this shortcoming.


The normal – half-normal distribution assumed in the ALS model is a crucial part of the model specification   ALS also proposed a model based on the exponential distribution for the inefficiency term.  Since the half normal and exponential are both single parameter specifications with modes at zero, this alternative is a relatively minor change in the model.  There are some differences in the shape of the distribution, but empirically, this appears not to matter much in the estimates of the structural parameters or the estimates of uit based on them.  There are a number of comparisons in the literature, including Greene (1997).  The fact that these are both single parameter specifications has produced some skepticism about their generality.  Greene (1990, 2003) has proposed the two parameter gamma density as a more general alternative.  The gamma model brings with it a large increase in the difficulty of computation and estimation.  Whether it produces a worthwhile extension of the generality of the model remains to be determined.  This estimator is largely experimental. There have also been a number of analyses of the model (partly under the heading of random parameters) by Bayesian methods.  [See, e.g., Tsionas (2002).]


Stevenson (1980) suggested that the model could be enhanced by allowing the mean of the underlying normal distribution of the inefficiency to be nonzero.  This has the effect of allowing the efficiency distribution to shift to the left (if the mean is negative), in which case it will more nearly resemble the exponential with observations packed near zero, or to the right (if the mean is positive), which will allow the mode to move to the right of zero and allow more observations to be farther from zero.  The specification modifies the earlier formulation to

uit  =  |Uit|  where Uit  ~  N[(, (u2].

Stevenson’s is an important extension of the model that allows us to overcome a major shortcoming of the ALS formulation.  The mean of the distribution can be allowed to vary with the inputs and/or other covariates. Thus, the truncation model allows the analyst formally to begin modeling the inefficiency in the model. We suppose, for example, that

(i  =  ((zi.
The counterpart to E[uit|(it] with this model extension is obtained by replacing ait with

ait  =  
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Thus we now have, within the “first stage” of the model, that E[uit | (it] depends on the covariates.  Thus, there is no need for a third stage analysis to assess the impact of the covariates on the inefficiencies.


Other authors have proposed a similar modification to the model. Singly and doubly heteroscedastic variants of the frontier may also be found.  [See Kumbhakar and Lovell (2000) and Econometric Software, Inc. (2002) for discussion.]  This likewise represents an important enhancement of the model, once again to allow the analyst to build into the model prior designs of the distribution of the inefficiency which is of primary interest.  


The following sections will describe some treatments of the stochastic frontier model that are made feasible with panel data.  We will not be treating the truncation or heteroscedasticity models explicitly.  However, in some cases, one or both of these can be readily treated in our proposed models.

3.  Fixed Effects Modeling


Received applications of the fixed effects model in the frontier modeling framework have been based on Schmidt and Sickles’s (1984) treatment of the linear regression model.  The basic framework is a linear model,

yit  =  (i + ((xit + (it
which can be estimated consistently and efficiently by ordinary least squares.  The model is reinterpreted by treating (i as the firm specific inefficiency term.  To retain the flavor of the frontier model, the authors suggest that firms be compared on the basis of 

(i*  =  maxi (i  -  (i.

This approach has formed the basis of recently received applications of the fixed effects model in this literature.
  The issue of statistical inference in this setting has been approached in various forms.  Among the recent treatments are Horrace and Schmidt’s (2000) analysis of ‘multiple comparisons with the best.’  Some extensions that have been suggested include Cornwell, Schmidt and Sickles proposed time varying effect, (it  =  (i0  +  (i1t  +  (i2t2, and Lee and Schmidt’s (1993) formulation (it  =  (t(i.  Notwithstanding the practical complication of the possibly huge number of parameters - in one of our applications, the full sample involves over 5,000 observational units - all these models have a common shortcoming.  By interpreting the firm specific term as ‘inefficiency,’ any other cross firm heterogeneity must be assumed away.  The use of deviations from the maximum does not remedy this problem - indeed, if the sample does contain such heterogeneity, the comparison approach compounds it.  Since these approaches all preclude covariates that do not vary through time, time invariant effects, such as income distribution or industry, cannot appear in this model.  This often motivates the third step analysis of the estimated effects. [See, e.g., Hollingsworth and Wildman (2002).] The problem with this formulation is not in the use of the dummy variables as such; it is how they are incorporated in the model, and the use of the linear regression model as the framework.  We will propose some alternative procedures below that more explicitly build on the stochastic frontier model instead of reinterpreting the linear regression model.  


Surprisingly, a true fixed effects formulation,

yit  =  (i + ((xit + (it + uit
has made only scant appearance in this literature, in spite of the fact that many applications involve only a modest number of firms, and the model could be produced from the stochastic frontier model simply by creating the dummy variables - a ‘brute force’ approach as it were.
  The application considered here involves 500 firms, sampled from 5,000, so the practical limits of this approach may well be relevant.
  The fixed effects model has the virtue that the effects need not be uncorrelated with the included variables. Indeed, from a methodological viewpoint, that correlation can be viewed as the signature feature of this model. [See Greene (2003, p. 285).]  But, there are two problems that must be confronted.  The first is the practical one just mentioned.  This model may involve many, perhaps thousands of parameters that must be estimated.  Unlike, e.g., the Poisson or binary logit models, the effects cannot be conditioned out of the likelihood function.  Nonetheless, we will propose just that in the next section.  The second, more difficult problem is the incidental parameters problem.  With small T (group size - in our applications, T is 5), many fixed effects estimators of model parameters are inconsistent and are subject to a small sample bias as well.  The inconsistency results from the fact that the asymptotic variance of the maximum likelihood estimator does not converge to zero as N increases.  Beyond the theoretical and methodological results [see Neyman and Scott (1948) and Lancaster (2000)] there is almost no empirical econometric evidence on the severity of this problem.  Only three studies have explored the issue.  Hsiao (1996) and others have verified the 100% bias of the binary logit estimator when T = 2.  Heckman and MaCurdy (1981) found evidence to suggest that for moderate values of T (e.g., 8) the performance of the probit estimator was reasonably good, with biases that appeared to fall to near 10%.  Greene (2002) finds that Heckman and MaCurdy may have been too optimistic in their assessment - with some notable exceptions, the bad reputation of the fixed effects estimator in nonlinear models appears to be well deserved, at least for small to moderate group sizes.  But, to date, there has been no systematic analysis of the estimator for the stochastic frontier model.   The analysis has an additional layer of complication here because unlike any other familiar setting, it is not parameter estimation that is of central interest in fitting stochastic frontiers.  No results have yet been obtained for how any systematic biases (if they exist) in the parameter estimates are transmitted to estimates of the inefficiency scores.  We will consider this issue in the study below.

3.1.  Computing the Fixed Effects Estimator


In the linear case, regression using group mean deviations sweeps out the fixed effects.  The slope estimator is not a function of the fixed effects which implies that it (unlike the estimator of the fixed effect) is consistent.  The literature contains a few analogous cases of nonlinear models in which there are minimal sufficient statistics for the individual effects, including the binomial logit model, [see Chamberlain (1980) for the result and Greene (2003, Chapter 21) for discussion], the Poisson model and Hausman, Hall and Griliches’ (1984) variant of the negative binomial regressions for count data and the exponential regression model for a continuous nonnegative variable, [see Munkin and Trivedi (2000).]  In all these cases, the log likelihood conditioned on the sufficient statistics is a function of ( that is free of the fixed effects.  In other cases of interest to practitioners, including those based on transformations of normally distributed variables such as the probit and tobit models, and, in particular, the stochastic frontier model, this method will be unusable.

3.1.1.  Two Step Optimization

Heckman and MaCurdy (1980) suggested a 'zig-zag' sort of approach to maximization of the log likelihood function, dummy variable coefficients and all.  Consider the probit model.  For known set of fixed effect coefficients, ( = ((1,...,(N)(, estimation of ( is straightforward.  The log likelihood conditioned on these values (denoted ai), would be

log L|a1,...,aN  =  
[image: image5.wmf]11

log[(21')

i

iti

it

NT

it

ya

==

F-)(+

åå

x

b


This can be treated as a cross section estimation problem since with known (, there is no connection between observations even within a group.  With given estimate of ( (denoted b) the conditional log likelihood function for each (i,

log Li|b
=  
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where zit  =  b(xit is now a known function.  Maximizing this function is straightforward (if tedious, since it must be done for each i).  Heckman and MaCurdy suggested iterating back and forth between these two estimators until convergence is achieved.  In principle, this approach could be adopted with any model. 
 There is no guarantee that this back and forth procedure will converge to the true maximum of the log likelihood function because the Hessian is not block diagonal. [See Oberhofer and Kmenta (1974) for theoretical background.]  Whether either estimator is even consistent in the dimension of N even if T is large, depends on the initial estimator being consistent, and it is unclear how one should obtain that consistent initial estimator.  In addition, irrespective of its probability limit, the estimated standard errors for the estimator of ( will be too small, again because the Hessian is not block diagonal.  The estimator at the ( step does not obtain the correct submatrix of the information matrix.

Polachek and Yoon (1994, 1996) employed essentially the same approach as Heckman and MaCurdy to a fixed effects stochastic frontier model, for N = 834 individuals and T = 17 periods.  They specified a ‘two tier’ frontier and constructed the likelihood function based on the exponential distribution rather than the half normal.  Their model differs from Heckman and MaCurdy’s in an important respect.  As described in various surveys, e.g., Greene (1997), the stochastic frontier model with constant mean of the one sided error term can, save for the constant term, be consistently estimated by ordinary least squares.  [Again, see Wang and Schmidt (2002).  Constancy of the mean is crucial for this claim.]  They proposed, for the panel data structure, a first step estimation by the within group (mean deviation) least squares regression, then computation of estimates of the fixed effects by the within groups residuals.  The next step is to replace the true fixed effects, ai in the log likelihood function with these estimates, 
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, and maximize the resulting function with respect to the small number of remaining model parameters.  (The claim of consistency of the estimator at this step is incorrect, as T is fixed, albeit fairly large.  That aspect is immaterial at this point.)  They then suggest recomputing the fixed effects by the same method and returning them to the log likelhood function to reestimate the other parameters.  Repetition of these steps to convergence of the variance and ancillary mean parameters constitutes the estimator.  In fact, the initial estimator of ( is consistent, for the reasons noted earlier, which is not true for the Heckman and MaCurdy approach for the probit model.  The subsequent estimators, which are functions of the estimated fixed effects, are not consistent, because of the incidental parameters problem discussed below.
  The initial OLS estimator obeys the familiar results for the linear regression model, but the second step MLE does not, since the likelihood function is not the sum of squares.  Moreover, the second step estimator does not actually maximize the full likelihood function because the Hessian is not block diagonal with respect to the fixed effects and the vector of other parameters.  As a consequence, the asymptotic standard errors of the estimator are underestimated in any event.  As the authors note (in their footnote 9), the off diagonal block may be small when N is large and T is small.   All this notwithstanding, this study represents a full implementation of the fixed effects estimator to a stochastic frontier setting.  It is worth noting that the differences between the OLS and   likelihood based estimators are extremely minor.  The coefficients on experience differ trivially.  Those on tenure and its square differ by an order of magnitude, but in offsetting ways so that, for example, the earnings function peaks at nearly the same tenure for both estimates (251 periods for OLS, 214 for ‘ML’).  The authors stopped short of analyzing technical inefficiency – their results focused on the structural parameters, particularly the variances of the underlying inefficiency terms.

3.1.2.  Direct Maximization


Maximization of the unconditional log likelihood function can, in fact, be done by ‘brute force,’ even in the presence of possibly thousands of nuisance parameters.  The strategy, which uses some well known results from matrix algebra is described below.  Using these results, it is possible to compute directly both the maximizers of the log likelihood and the appropriate submatrix of the inverse of the analytic second derivatives for estimating asymptotic standard errors.  The statistical behavior of the estimator is a separate issue, but it turns out that the practical complications are actually surmountable in many cases of interest to researchers including the stochastic frontier model.  The results given here apply generally, so the stochastic frontier model is viewed merely as a special case.


The stochastic frontier model involves an ancillary parameter vector, ( = [(,(](.  No generality is gained by treating ( separately from (, so at this point, we will simply group them in the single parameter vector ( = [((,(,(](.   Denote the gradient of the log likelihood by

g(  =  
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g(  =  [g(1, ... , g(N](
g  =  [g((, g((](
The full (K(+N)((K(+N) Hessian is
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where

H((  =  
[image: image13.wmf]2

11

log(,,,)

'

i

NT

ititi

it

gy

a

==

¶

¶¶

åå

x

g

gg


h(i  =  
[image: image14.wmf]2

1

log(,,,)

i

T

ititi

t

i

gy

a

a

=

¶

¶¶

å

x

g

g


hii  =  
[image: image15.wmf]2

2

1

log(,,,)

i

T

ititi

t

i

gy

a

a

=

¶

¶

å

x

g


Newton's method produces the iteration
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where subscript 'k' indicates the updated value and 'k-1' indicates a computation at the current value.  Let H(( denote the upper left K((K( submatrix of H-1 and define the N(N matrix H(( and K((N H(( likewise.  Isolating 
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Using the partitioned inverse formula [e.g., Greene (2003, equation A-74)], we have

H((  =  [H((  -  H((
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Since H(( is diagonal,

H((  =  
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Thus, the upper left part of the inverse of the Hessian can be computed by summation of vectors and matrices of order K(.  Using the partitioned inverse formula once again, 

H((  =  -H(( H(( 
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Combining terms, we find that

((  =    - H(( ( g( - H((
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Turning now to the update for (, we use the same results for the partitioned matrices.  Thus,

((  =  - [H(( g(  +  H(( g(]k-1.

Using Greene's (A-74) once again, we have

H((  =  
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Since H(( is diagonal,

((i  =  -
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The estimator of the asymptotic covariance matrix for the MLE of ( is -H((, the upper left submatrix of -H-1.  Since this is a sum of K( (K( matrices, the asymptotic covariance matrix for the estimated coefficient vector is easily obtained in spite of the size of the problem.  The asymptotic covariance matrix of a is

-(H((  -  H((
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while

Asy.Cov[c,a(]  =  Asy.Var[c] H((
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Asy.Cov[c,ai]  =  Asy.Var[c](
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Neither update vector nor any of the asymptotic variances or covariances requires storage or inversion of a (K(+N)((K(+N) matrix; each is  a function of sums of scalars and K((1 vectors of first derivatives and mixed second derivatives.
  The practical implication is that calculation of fixed effects models is a computation only of order K(.  Storage requirements for ( and (( are linear in N, not quadratic.  Even for huge panels of tens of thousands of units, this is well within the capacity of the current vintage of even modest desktop computers.  We have applied this method to fixed effects limited dependent variables and stochastic frontier models with over 10,000 coefficients.  The computations of the stochastic frontier with 500 fixed effects detailed in the next section are routine.

3.2.  Statistical Behavior of the Fixed Effects Estimator


The preceding section showed how the fixed effects estimator may be used in many models, including the stochastic frontier. The practical complications are, in fact, relatively minor.  [See Econometric Software, Inc. (2002).
]  The statistical issues remain.  The Monte Carlo results for the fixed effects estimator in Table 1 are reported (as Table 2) in Greene (2002).  The true values of the parameters being estimated, ( and (, are both 1.0. The table details fairly large biases in the logit, probit, and ordered probit models even for T = 10.  In our application, T is 5, so the relevant column is the third, which suggests some pessimism.  However, there are no comparable results for the stochastic frontier.  Moreover, as noted earlier, in this context, it is not the parameters, themselves, that are of primary interest; it is the inefficiency estimates, E[uit|vit+uit].  How any biases in the coefficient estimates are transmitted to these secondary results remains to be examined.

Table 1. Means of Empirical Sampling Distributions, N = 1000 Individuals Based on 200 Replications.  Table entry is (,(.

	
	T=2
	T=3
	T=5
	T=8
	T=10
	T=20

	
	   (         (
	   (         (
	   (         (
	   (         (
	   (         (
	   (         (

	Logit
	2.020,  2.027
	1.698,  1.668
	1.379,  1.323
	1.217,  1.156
	1.161,  1.135
	1.069,  1.062

	Logit-Ca
	0.994, 1.048
	1.003,  0.999
	0.996,  1.017
	1.005,  0.988
	1.002,  0.999
	1.000,  1.004

	Probit
	2.083,  1.938
	1.821,  1.777
	1.589,  1.407
	1.328,  1.243
	1.247,  1.169
	1.108,  1.068

	Poisson
	0.975,  1.006
	0.978,  0.960
	0.998,  0.995
	0.991,  1.014
	0.997,  1.006
	1.003,  0.998

	Poisson-Cb
	0.987,  1.018
	0.995,  0.997
	0.993,  1.015
	1.002,  0.996
	0.995,  1.015
	1.000,  0.998

	Tobit

 ( =1
	0.991,  1.083

0.6444
	0.985,  0.991

0.7675
	0.997,  1.010

0.8642
	1.000,  1.008

0.9136
	1.001,  1.004

0.9282
	1.008,  1.001

0.9637

	Exponential
	0.999,  0.962
	0.998,  0.998
	0.991,  0.993
	0.998,  1.008
	0.994,  1.012
	0.997,  1.001

	Ord. Probit
	2.328,  2.605
	1.592,  1.806
	1.305,  1.415
	1.166,  1.220
	1.131,  1.158
	1.058,  1.068


aEstimates obtained using the conditional likelihood function – fixed effects not estimated.

bEstimates obtained using Hausman et al’s conditional estimator – fixed effects not estimated.  The full ML and conditional ML are numerically identical in a given sample. Differences in the table result entirely from different samples of random draws.   The conditional and unconditional logit estimators are not numerically identical in a given sample.

We will analyze the behavior of the estimator through the following Monte Carlo analysis:  Data for the study are taken from the Commercial Bank Holding Company Database maintained by the Chicago Federal Reserve Bank.  Data are based on the Report of Condition and Income (Call Report) for all U.S. commercial banks that report to the Federal Reserve banks and the FDIC.  A random sample of 500 banks from a total of over 5,000 was used.
  Observations consist of total costs, Cit, five outputs, Ymit, and the unit prices of five inputs, Xjit.  The unit prices are denoted Wjit.  The measured variables are as follows:

Cit 
= total cost of transformation of financial and physical resources into loans and 


   investments = the sum of the five cost items described below;

Y1it
= installment loans to individuals for personal and household expenses;

Y2it
= real estate loans;

Y3it
= business loans;

Y4it
= federal funds sold and securities purchased under agreements to resell;

Y5it
= other assets;

W1it
= price of labor, average wage per employee;

W2it
= price of capital = expenses on premises and fixed assets divided by the dollar value of 


   of premises and fixed assets;

W3it
= price of purchased funds = interest expense on money market deposits plus expense of 


   federal funds purchased and securities sold under agreements to repurchase plus interest


   expense on demand notes issued the U.S. Treasure divided by the dollar value of


   purchased funds;

W4it
= price of interest-bearing deposits in total transaction accounts = interest expense on 


   interest-bearing categories of total transaction accounts;

W5it
= price of interest-bearing deposits in total nontransaction accounts = interest expense on


   total deposits minus interest expense on money market deposit accounts divided by the


   dollar value of interest-bearing deposits in total nontransaction accounts;

t
= trend variable, t = 1,2,3,4,5 for years 1996, 1997, 1998, 1999, 2000.


For purposes of the study, we will fit a Cobb-Douglas cost function.  To impose linear homogeneity in the input prices, the variables employed are

cit
= log(Cit/W5it),

wjit
= log(Wjit/W5it), j = 1, 2, 3, 4,

ymit
= log(Ymit).

Actual data are employed, as described below, to obtain a realistic configuration of the right hand side of the estimated equation, rather than simply simulating some small number of artificial regressors.  The first step in the analysis is to fit a Cobb-Douglas fixed effects stochastic frontier cost function

cit  =  (i  +  
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(As will be clear shortly, the issue of bias or inconsistency in this estimator is immaterial.)  The initial estimation results are shown in Table 2 below.  Figure 1 shows a kernel density estimate for the estimated inefficiencies for the sample using the Jondrow et al. method described earlier. In order to generate the replications for the Monte Carlo study, we now use the estimated right hand side of this equation as follows:  The estimated parameters ai, bj, cm and d that are given in the last column of Table 2 are taken as the true values for the structural parameters in the model.  A set of ‘true’ values for uit is generated for each firm, and reused in every replication.  These ‘inefficiencies’ are maintained as part of the data for each firm for the replications.  The firm specific values are produced using uit* = |Uit*| where Uit* is a random draw from the normal distribution with mean zero and standard deviation su = 0.43931.
  Figure 2 below shows a kernel density estimate which describes the sample distribution of the values of uit*.  Thus, for each firm, the fixed data consist of the raw data wjit, ymit and t, the firm specific constant term, ai, the inefficiencies, uit*, and the structural cost data, cit*, produced using

cit*  =  ai  +  
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By this device, the underlying data to which we will fit the Cobb-Douglas fixed effects model actually are generated by an underlying mechanism that exactly satisfies the assumptions of the fixed effects stochastic frontier model and, in addition, is based on a realistic configuration of the right hand side variables.
  Each replication, r, is produced by generating a set of disturbances, vit(r), t = 1,...,5, i = 1,...,500.  The estimation  was replicated 100 times to produce the sampling distributions reported below.
  (The LIMDEP program used is given in the appendix. It is structured so that it can be adapted to a different data set with different dimensions relatively easily.)


Results of this part of the study are summarized in the kernel density estimates shown in Figures 3.1 to 3.14 and in the summary statistics given in Table 2.  The summary statistics and kernel density estimates for the model parameters are computed for the 100 values of the percentage error of the estimated parameter from the assumed true value.  That specific value is given in the rightmost column of Table 2.  For reference, results are also given for one of the 500 estimated firm specific constants.  For the structural coefficients in the models, the biases in the slope estimators are actually quite moderate in comparison to the probit, logit and ordered probit estimates in Table 1.  Moreover, there is no systematic pattern in the signs.  The only noticeable regularity is that the output (scale) parameters appear to be estimated with slightly greater precision than the input (price) parameters, but these results are mixed as well.  Note, though, the economies of scale parameter is estimated with a bias of only 0.48% that is far smaller than the estimated sampling variation of the estimator itself (roughly ( 7%).  In contrast, the estimator of the constant term appears to be wildly underestimated, with biases on the order of -300% or more. Overall, with this (important) exception, the deviations of the regression parameters are surprisingly small given the small T.   Moreover, in several cases, the bias appears be toward zero, not away from it, as in the more familiar cases.  

In view of the well established theoretical results, it may seem contradictory that in this setting, the fixed effects estimator should perform so well.  However, note the behavior of the tobit estimator in Table 1, where the same effect can be observed.  The force of the incidental parameters problem actually shows up in the variance estimators, not in the slope estimators.
  The KDE for ( in our model suggests a very large bias; the estimate of ( appears to have absorbed the force of the inconsistency.  As seen in the KDE, it is considerably overestimated.  A similar result appears for (, but toward rather than away from zero.  Since ( and ( are crucial parameters in the computation of the inefficiency estimates, this leads us to expect some large biases in these as well.  In order to construct the descriptor in Figure 4, we computed the sampling error in the computation of the inefficiency for each of the 2500 observations in each replication, duit(r) = estimated uit(r)- true uit(r).  The value was not scaled, as these are already measured as percentages (changes in log cost).  The mean of these deviations is computed for each of the 100 replications, then Figure 4 shows the sample distribution of the 100 means.  On average, the estimated model underestimates the ‘true’ values by about 0.09.  Since the overall mean is about 0.60, this is an underestimation error of about 15%.  Figure 5 shows the effect for one of the 100 samples.  The diagonal in the figure highlights the systematic underestimation in the model estimates.  We also computed the sample correlations of the estimated residuals and the rank correlations of the ranks of the 2,500 firms based on the respective values of their inefficiency values.  In both cases, the average of the 100 correlations was about 0.60, suggesting a reasonable degree of agreement.

  Table 2.  Summary Statistics for Replications and Estimated Modela
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  a Table values are computed for the percentage error of the estimates from the assumed true value.
 b Estimated standard errors in parentheses
  c Economies of scale estimated by 1/((1+(2+(3+(4+(5)-1.  The estimated standard error is computed by the

   delta method.

 d Standard error not computed

As a final assessment, we considered whether the estimator in the cross section variant of this same model performs appreciably better than the fixed effects estimator.  To examine this possibility, we repeated the entire analysis, but this time with a correctly specified cross section model.  That is, the ‘true’ data on cit were computed with the single overall constant estimated with a cross section variant of the model, and estimation was likewise based on the familiar normal-half normal model with no regard to the panel nature of the data set.  (Since the data are artificially generated, this model is correctly estimated in this fashion.)  The consistency of the parameter estimators is established by standard results for maximum likelihood estimators, so there is no need to examine them.
  The results for E[u|(] are more complex, however.  Figures 6 and 7 are the counterparts to 4 and 5 for the fixed effects model. As expected, the cross section estimator shows little or no bias - it is correctly computed based on a consistent estimator in a large sample, so any bias would be due to the nonlinearity of the estimating function.  Figure 7 does suggest that small values of uit tend to be overestimated and large values tend to be underestimated.  The regression of 
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on uit (shown in the figure) has a slope of only .455 and R2 of 0.500.  Though the overall average (bias) appears to be zero, this attenuation effect - we expected this slope to be one - is fairly pronounced.  The results suggests that the overall consistency of the JLMS estimator may be masking some noteworthy systematic underlying effects.  We leave examination of this result for further research.
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 Figure 1   Estimated Cost Inefficiencies from Fixed Effects Model
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  Figure 2  ‘True’ Inefficiencies Used in Monte Carlo Replications
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     Figure 3.1  Percentage Bias in b1            
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      Figure 3.2  Percentage Bias in b2
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     Figure 3.3  Percentage Bias in b3
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     Figure 3.4  Percentage Bias in b4
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     Figure 3.5  Percentage Bias in c1
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     Figure 3.6  Percentage Bias in c2
Figure 3.  Kernel Density Estimates for Estimated Parameters in the Fixed Effects Model
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          Figure 3.7  Percentage Bias in c3                              Figure 3.8  Percentage Bias in c4
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          Figure 3.9  Percentage Bias in c5                              Figure 3.10  Percentage Bias in d
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        Figure 3.11  Percentage Bias in a251                         Figure 3.12 Bias in Scale Parameter
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        Figure 3.13  Percentage Bias in 
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Figure 3 cont.  Kernel Density Estimates for Estimated Parameters in the Fixed Effects Model
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             Figure 4  Average Estimation Errors for Cost Inefficiencies from 



Fixed Effects Stochastic Frontier Function.

[image: image106.wmf]Kernel density estimate for     DB5

DB5 

.0092

.0183

.0275

.0367

.0459

.0000

-20

-15

-10

-5

0

5

10

15

-25

Density 


[image: image107.wmf]Kernel density estimate for     DB7

DB7 

.010

.020

.030

.040

.051

.000

-5

0

5

10

15

20

25

30

35

-10

Density 


Figure 5  Estimated and True Inefficiencies, Fixed Effects Setting
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      Figure 6  Average Estimation Errors for Cost Inefficiencies from 


      Cross Section Stochastic Frontier Model
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Figure 7  Estimated and True Inefficiencies, Cross Section Setting

4.  Random Effects and Random Parameters Models


The familiar random effects model is likewise motivated by the linear model.  It is assumed that the firm specific inefficiency (in proportional terms) is the same every year.  Thus, the model becomes

yit  =  ((xit  +  vit  (  ui
This model, proposed by Pitt and Lee (1981) can be fit by maximum likelihood.  It maintains the spirit of the stochastic frontier model and satisfies the original specification that the inefficiency measure be meaningful – positive.  In addition, it is straightforward to layer in the important extensions noted earlier, nonzero mean in the distribution of ui and heteroscedasticity in either or both of the underlying normal distributions.

The estimator of the firm specific inefficiency in this model is

E[ui | (i1,(i2,…,(iTi ]  =  
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(The sign on (i* is positive for a cost frontier.) [See Kumbhakar and Lovell (2000) and Econometric Software (2002) for extensions to the truncation and heteroscedasticity models.]


The random effects model with the proposed extensions is an attractive specification.  But, it has three noteworthy shortcomings. The first is its implicit assumption that the effects are not correlated with the included variables.  This problem could be reduced through the inclusion of those effects in the mean and/or variance of the distribution of ui however.  The second problem with the random effects model as proposed here is its implicit assumption that the inefficiency is the same in every period.  For a long time series of data, this is likely to be a particularly strong assumption.  The received literature contains a few attempts to remedy this shortcoming, namely that of Battese and Coelli (1992, 1995)

uit  =  (tui
where

(t  =  exp[-((t – Ti)]

or

(t  =  1  +  (1(t – Ti) + (2(t – Ti)2
and that of Kumbhakar (1990),

(t  =  1 / [1 + exp(bt + ct2)].

Both of these specifications move the model in the right direction in that the inefficiency need not be time invariant. On the other hand, the common, systematic movement of uit is only somewhat less palatable than the assumption that uit is time invariant.  For purposes here, the third shortcoming of this model is the same as characterized the fixed effects regression model.  Regardless of how it is formulated, in this model, ui carries both the inefficiency and, in addition, any time invariant firm specific heterogeneity.


As a first pass at extending the model, we consider the following true random effects specification:

yit  =  ((xit  +  wi  +  vit  (  uit
where wi is the random firm specific effect and vit and uit are the symmetric and one sided components specified earlier.  In essence, this would appear to be a regression model with a three part disturbance, which immediately raises questions of identification.  However, that interpretation would be misleading, as the model actually has a two part composed error;

yit  =  ((xit  +  wi  +  (it 
which is an ordinary random effects model, albeit one in which the time varying component has an asymmetric distribution.  The conditional (on wi) density is that of the compound disturbance in the stochastic frontier model,

f((it)  =  
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Thus, this is actually a random effects model in which the time varying component does not have a normal distribution, though wi may.  In order to estimate this random effects model by maximum likelihood, as usual, it is necessary to integrate the common term out of the likelihood function.  There is no closed form for the density of the compound disturbance in this model.  However, the integration can be done by either by quadrature or by simulation. [See Greene and Misra (2002) for discussion and some extensions.]  To set the stage for the treatment to be proposed later, we write this model equivalently as a stochastic frontier with a firm specific random constant term,

yit  =  ((i  +  wi)  +  ((xit  +  vit  (  ui
Estimation of the random parameters model will be discussed further below.  [See, as well, Greene (2001) and Tsionas (2002).]  We note, as before, that this model can be extended to the normal-truncated normal model and/or to a singly or doubly heteroscedastic model with only minor modifications.


Estimates of the Pitt and Lee random effects model and the random constant term model are presented in Table 3.  The descriptive statistics and KDEs for the estimated inefficiency distributions are presented in Table 4 and Figure 8.  Based on the results for the other specifications already considered, it appears that the restriction of the random effects model considerably distorts the results.    The random effects formulation essentially shifts the variation away from the inefficiency term into the symmetric, idiosyncratic term.  The random parameters model, in contrast, only slightly modifies the base case, cross section form of the model.  By either the chi-squared or Wald test, the cross section variant is rejected (thought not overwhelmingly) in favor of the random parameters form.  (Since the random effects model is not nested in either, some other form of test would be required.) 


The received literature contains several applications of Bayesian techniques to the random parameters model.  We turn to a discussion of these and a comparison to the classical method considered here in Section 4.3.

Table 3.  Estimated Stochastic Frontiers, Random Effects and Random Parameters

               (Estimated standard errors in parentheses)

	
	Cross Section
	Random Effects
	Random Parameters

	(
	 0.1784   (0.09869)
	  0.5346   (0.1062)
	 0.1779   (0.05954)

	(1
	 0.4199   (0.01442)
	  0.4229   (0.01626)
	 0.4194   (0.008871)

	(2
	 0.02234  (0.006336)
	  0.03317  (0.007385)
	 0.02266  (0.003868)

	(3
	 0.1732   (0.01173)
	  0.1809   (0.01391)
	 0.1738   (0.006928)

	(4
	 0.09409  (0.009834)
	  0.08790  (0.01190)
	 0.09398  (0.006003)

	(1
	 0.1023   (0.006647)
	  0.1027   (0.006144)
	 0.1025   (0.003771)

	(2
	 0.4034   (0.006363)
	  0.3762   (0.005581)
	 0.4033   (0.003622)

	(3
	 0.1359   (0.007891)
	  0.09949  (0.006656)
	 0.1371   (0.004502)

	(4
	 0.05127  (0.003538)
	  0.05452  (0.003245)
	 0.05077  (0.002135)

	(5
	 0.2352   (0.009113)
	  0.2881   (0.008507)
	 0.2347   (0.004987)

	(
	-0.02881  (0.003459)
	 -0.02863  (0.003633)
	-0.02888  (0.001967)

	(
	 2.1280   (0.09279)
	  0.3962   (0.04714)
	 2.2075   (0.05803)

	(
	 0.3551   (0.006821)
	  0.8166
	 0.3531   (0.003053)

	(u
	 0.3514
	  0.09517  (0.01081)
	 0.3216

	(v
	 0.1510
	  0.8110
	 0.1457

	(w
	
	
	 0.03937  (0.003025)

	log L
	20.49569
	-44.91972
	22.39386


Table 4.  Estimated Inefficiencies for Random Effects Stochastic Frontier Models

	
	Mean
	Standard Deviation
	Minimum
	Maximum

	Cross Section
	0.2524
	0.1629
	0.03980
	1.0710

	Random Effects
	0.07532
	0.002910
	0.06930
	0.09087

	Random Parameters
	0.2531
	0.1665
	0.0374
	1.7335
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Figure 8.1  Random Effects Model
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Figure 8.2  Random Parameters Model
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Figure 8.3  Cross Section Model

  
Figure 8.  Estimated Inefficiency Distributions for Random Effects Models

4.1  Specifying and Estimating a Random Parameters Stochastic Frontier

       Model


A general form of the random parameters stochastic frontier model may be written as

(1)  Stochastic Frontier

yit  =  (i(xit  +  vit  (  ui
vit  ~  N[0,(v2]

(2)  Inefficiency Distribution
uit  =  |Uit|,  Uit  ~  N[(i,(ui2]

(i   =  (i(zi
(ui  =  (u ( exp((i(hi)

(3) Parameter heterogeneity
(i  =  (  +  ((qi  +  ((w(i
(i  =  (  +  ((qi  +  ((w(i
(i  =  (  +  ((qi  +  ((w(i
Each subvector (j of the full parameter vector is allowed to vary randomly with mean vector        ( + (jqi where (j is a matrix of parameters to be estimated and qi is a set of related variables which enters the distribution of the random parameters.  Random variation is parameterized in the random vector wji, j = (,(,(, which is assumed to have mean vector zero and known diagonal covariance matrix (j. An unrestricted covariance matrix is produced by allowing (j to be a free, lower triangular matrix.  The Cholesky factorization is used for convenience in formulating and manipulating the likelihood function.)  The random vectors wji will usually be assumed to be normally distributed, in which case, (j = I.  Other distributions can be assumed in this framework, such as logistic in which case (j = ((2/3)I or uniform [-1.1] in which case (j = (1/3)I and so on.  (If appropriate, the methodology to be described can allow the components of wji to have different distributions.)


A few restrictions have been built into the model.  We have assumed that vit is homoscedastic.  This is not required, but we have found that the doubly heteroscedastic random parameters model appears not to be identified.  Likewise, the possibility of correlation across the parameter vectors has been omitted by segmenting the three parameter vectors.  We have also found that even with rich, carefully constructed artificial panel data sets, a model with all three subvectors being random is inestimable. Again, it appears to be an identification issue.  Note, finally, that one can place different variables in qi in the different subvectors simply by placing appropriately located rows of zeros in the ( matrices.  Likewise, parameters may be specified to be nonrandom by placing appropriate rows of zeros in the ( matrices.  Even with nonstochastic parameters, nonzero elements in ( provide a method of constructing a ‘hierarchical,’ or ‘mixed’ model.  This formulation of the random parameters model greatly expands the random coefficients model generally associated with the linear regression model.  [Swamy and Tavlas (2000) label this a ‘second generation’ random parameters model in contrast to the familiar ‘first generation’ linear model.’ (See Hildreth and Houck (1968) and Swamy (1970).)]


The parameters of the model are estimated by the technique of maximum simulated likelihood.  (Quadrature is another possibility for small models, but with more than two random parameters, it becomes impractical.)  The log density for the stochastic frontier model is written in generic terms as

logLit  =   log f((i | xit, zi, hi, qi, wi)

where (i contains all the parameters of the model, (i((, ((, (() and likewise for (i and (i.  The remaining ancillary parameters, (u and (v are also included in (i.  We have assumed that conditioned on the firm specific wi = [w(i, w(i, w(i] the observations are independent.  Thus, the conditional log likelihood for the sample is

logL | w1,...wN  =   
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In order to estimate the model parameters, it is necessary to integrate the heterogeneity out of the log likelihood.  The unconditional log likelihood is
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where g(wi) is the multivariate density of the random vector wi.  (Recall, there are no unknown parameters in this lowest level component - the mean is zero and the covariance is the known (.) This unconditional log likelihood function is then maximized with respect to the unknown elements in [(, ((, ((, ..., (u, (v].  

The maximization problem just stated is not solvable as it stands because except for the very simplest case (random constant term only in (i), there will be no closed form for the integral.  Under certain conditions (certainly met for the simple density for the stochastic frontier model) the integral may be satisfactorily approximated by simulation.  So long as it is possible to simulate primitive draws from the distribution of wi, the problem may be solved by maximizing the simulated log likelihood
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Note that the MSL approach has an advantage over the quadrature approach in that wi may now be specified as a draw from any desired distribution so long as it is possible to sample observations from that distribution.  That provides a benefit, for example, if it is desired to constrain the sign or range of certain parameters in the model.  [See Hensher and Greene (2002).] For the stochastic frontier model, the resulting simulated log likelihood function is
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where the expressions for (ir, (ir and (uir appear above, with the simulated random draw, wir appearing where appropriate in place of the true random vector, wi.  (Considerable convenience in programming this is obtained by reparameterizing this model in terms of ( = 1/(v, ( = (/(v (Olsen’s (1978) transformation) and (i = (ui/(v.).  This function is smooth and twice continuously differentiable in the underlying parameters and can be maximized with conventional techniques.  [See Gourieroux and Monfort (1996) and Greene (2001, 2003).]  The gradient and Hessian of the simulated likelihood are computed by using the chain rule to differentiate with respect to the elements of the reduced form parameters, (i  then in turn, the structural parameters, (, (( and ((.  [See Greene (2001), Econometric Software, Inc.(2002).]


In order to estimate technical inefficiency, we require firm specific estimates of the parameters, (i and so on.  One expedient is simply to use the estimated structural parameters and insert the unconditional zero mean of wi.  A preferable approach is to estimate the posterior, conditional mean, for which we compute the weighted average
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This can also be computed by simulation during computation of the likelihood function.  The firm specific inefficiencies are then based on firm specific expected values of the random parameters.


Estimation of the random parameters model is extremely time consuming.  In order to achieve a reasonable approximation to the true likelihood function, a reasonably large number of random draws is required.  The process can be greatly accelerated by using “intelligent” draws, such as Halton sequences [see Bhat (1999) or Train (2002) for discussion.]  Use of Halton sequences can reduce the number of draws required by a factor of five or ten, with a corresponding reduction in the amount of time needed to fit the models.  We have fit the models below using 50 Halton draws, which is roughly equivalent to random simulations of several hundred draws.  This is likely still to be on the low side, but seems adequate for a demonstration.


An alternative approach to this entire procedure is a Bayesian, Markov-Chain Monte Carlo (Gibbs sampling) approach.  With a reasonably large sample such as this one, noninformative prior and sufficient iterations, the MCMC approach provides the same results as the SML approach.  The difference between the two turns essentially on computational efficiency.  The MCMC approach requires far more function evaluations (tens to hundreds of thousands) than the MSL method (hundreds) but less computation for each evaluation, as it does not require the likelihood function or its derivatives, only the draws from the distribution of the parameters.  For reasonably large problems, there is some evidence [Train (2001)] that the MSL method is somewhat faster.  

Note, finally, the preceding set of results does not require panel data for estimation - we have fit elaborate random parameters models with cross sections, including the first one reported below.  [See, for example, Tsionas (2002) for an application in a Bayesian context which is very similar.)  However, panel data can allow a richer specification of the model.  For example, dynamic effects can be incorporated in the model by allowing the parameters to evolve according to

wit  =  mit  +  Rwi,t-1
where mit is the random innovation in period t and R is a diagonal matrix of autocorrelation coefficients.  Other more elaborate structures are feasible as well.  [In this connection, see, e.g., Stata Corp. (2001) on the subject of GEE modeling.]

4.2.  Application to the Banking industry


We have applied the random parameters model to the stochastic frontier model for the banking data used earlier.  The model specification is

cit  =  (i  +  
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 +  (t  +  vit  +  uit.

We have considered two specifications.  In the first, the 11 structural parameters are specified as random and uncorrelated with fixed means.  In the general formulation, this corresponds to (i = 0, (i = 0, (( = 0 and ((  =  diag(((1, ((2,...,((11).  Throughout, we have assumed that random parameters are normally distributed.  In the second formulation we specified the five output coefficients, (m to be randomly distributed with means E[(mi]  =  (m + (mlogscalei where logscalei = log(Y1i+Y2i+Y3i+Y4i+Y5i), and unrestricted covariance 5(5 matrix Var[(1,...,(5] = ( ( (.  Estimates of the parameters of these two specifications are shown in Table 5.  Figure 9 describes the estimated distributions of firm inefficiency.  Comparing the second to the first, we conclude that assuming parameters are uncorrelated may be a substantive restriction.  The two models are not nested, so their likelihood functions cannot be compared directly (even abstracting from the differences due to the simulation).  However, with only eight more coefficients, the likelihood for the second model rises from 34.28 to 121.83.  This is strongly suggestive in any event.  Comparing the two kernel estimators, it would appear that the second formulation also serves the purpose of moving some of the firm specific heterogeneity out of the inefficiency estimates and into the parameter estimates themselves. 

Table 5  Estimated Random Parameters Stochastic Frontier Models

	
	Uncorrelated, Homogeneous Mean
	Restricted, Correlated, Heterogeneous

	
	Mean
	Std.Dev.
	Variance
	Std.Dev.
	Mean
	Std.Dev.
	Implied       Mean

Variance    Het. (

	(
	0.2161
	0.05938
	0.01066
	0.00317
	0.1467
	0.0550
	
	

	(1
	0.4110
	0.008857
	0.00065
	0.00047
	0.4240
	0.00817
	
	

	(2
	0.02876
	0.003986
	0.02750
	0.00143
	0.0237
	0.00352
	
	

	(3
	0.1719
	0.007083
	0.01409
	0.00543
	0.1636
	0.00645
	
	

	(4
	0.09337
	0.006193
	0.01140
	0.00357
	0.1038
	0.00564
	
	

	(1
	0.1023
	0.003703
	0.00041
	0.00038
	-0.003
	0.0358
	0.0599
	0.0097

	(2
	0.4059
	0.003565
	0.00196
	0.00031
	0.3578
	0.0342
	0.1035
	0.0033

	(3
	0.1360
	0.004431
	0.00018
	0.00033
	0.2319
	0.0405
	0.0943
	-0.008

	(4
	0.05052
	0.002095
	0.00132
	0.00039
	0.1669
	0.0208
	0.0306
	-0.011

	(5
	0.2345
	0.004900
	0.00121
	0.00042
	0.1689
	0.0465
	0.1008
	0.0066

	(
	-0.0029
	0.001907
	0.00053
	0.00095
	-0.027
	0.00182
	
	

	(
	2.2680
	0.06127
	
	
	1.8829
	0.0511
	
	

	(
	0.3471
	0.003043
	
	
	0.2920
	0.0511
	
	

	(u
	0.3176
	
	
	
	0.2579
	
	
	

	(v
	0.1400
	
	
	
	0.1370
	
	
	


The estimated Cholesky matrix for the variance of the estimated parameters, with estimated standard errors shown in parentheses is:
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The implied estimate of the covariance matrix of the distribution of the random parameters is as follows:  The implied correlations are shown in parentheses above the diagonal of the matrix.
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The resulting correlation matrix for the random parameters is

Finally, the estimated parameters of the heterogeneity in the heterogeneity in the mean, (klogscalei, with estimated standard errors in parentheses is
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4.3.  A Comparison to a Bayesian Estimator


Several authors, including Koop, et al. (1994, 1995, 1997, 2001a, 2001b), van den Broeck, Koop, Osiewalski and Steel (1994), Tsionas (2002) and have employed a Bayesian estimator for a model that resembles the one proposed here.  A common (encompassing) structure is a stochastic frontier model with exponential distributed inefficiency The model structure suggested in Tsionas is

yit  =  (  +  xit((i  +  vit  +  uit
where vit is N[0,(v2] as before and uit has an exponential density,

uit  ~  
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In this specification, E[ui] = 1/( and Var[ui] = 1/(2.  The gamma density,           f(u)=[(P/((P)]exp(-(u)uP-1 as an extension to the exponential model (P = 1) suggested by Aigner, Lovell and Schmidt (1977) greatly increases the complexity of an otherwise straightforward estimation problem. [See Huang (2002), Greene (1990, 2003) and Ritter and Simar (1997).]   All the authors cited above used either the Erlang form (integer P) or the exponential form (P=1).  The typical approach is that suggested by Tsionas

(i  ~  N[
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Figure 9.1  Model with Homogeneous Means





Figure 9.2  Model with Heterogeneous Means

Figure 9  Estimated Inefficiency Distribution

Gibbs sampling is used to estimate the posterior means and variances of the various quantities of interest in the model, (, 
[image: image75.wmf]b

, (v, (, (, and u [the last by the method of data augmentation - see Chib and Greenberg (1995)].  The reader is referred to the cited papers for development of the Bayesian estimator.  


Several of these applications including Tsionas apply the technique to Christensen and Greene’s (1976) cross section data set from the electric utility industry.  The data set consists of 123 observations on 1970 firm level costs of production:

Ci = total generation cost, capital, labor and fuel;

Qi = total generation in megawatt hours;

Pj = unit input prices, j = F (fuel), K (capital) and L (labor).

[Details appear in Christensen and Greene(1976).]  The frontier equation employed is

log(Ci/PFi)  =  (  +  (1ilogQi  +  (2ilog2Qi  +  (3ilog(PKi/PFi)  +  (4ilog(PLi/PFi)  +  vt  +  ui.

Note that estimation of the model in these applications is based on a cross section. 

Specification of the ‘nonrandom’ constant term, ( is necessary for identification. The variance of a random constant term would not be identified in a cross section, though it would be with panel data - the logic is analogous to what would apply in the simple linear regression model with random effects if all groups had only one observation.  The exponential and gamma densities specified above are chosen to blend with a conjugate prior for the model parameters, though nearly all of the received applications in this literature are based on the normal-half normal or normal-truncated normal models. (Tsionas (2002) shows how the model could be modified to use the half-nomal form instead.) The exponential distribution does materially affect the inefficiency distribution, in ways that remain to be systematically examined.  In the Bayesian applications discussed here, however, the influence of the distributional assumption is effectively lost in the end results. 

Table 6 reports the nonrandom parameters estimates of the exponential and half normal models, Tsionas’s posterior mean and standard deviations from the estimated posterior distributions of these parameters, and our estimates of the parameter means with estimated standard errors.  Tables 7, reports the estimated variances of the parameter distributions for the random distributions of the parameters.  There are some differences in the estimated model parameters.  This is to be expected, since we have used a half-normal distribution for the conditional distribution of ui rather than an exponential and a different estimation approach - the various estimates are presented only to provide a rough comparison. 

Table 6. Estimated Cross Section Stochastic Frontier Models

	
	Fixed Parameters

Exponential
	Fixed Parameters

Half Normal
	Bayesian, Exponential (Tsionas)
	Random Parameters, 

Half Normal

	
	
	
	
	

	
	Mean
	Std.Error.
	Mean
	Std.Error.
	Mean
	Std.Dev.
	Mean
	Std.Error.

	(
	-7.525
	0.311
	-7.410
	0.292
	-7.416
	0.381
	-7.38
	0.775

	(1
	0.4347
	0.0393
	0.4081
	0.0294
	0.445
	0.034
	0.3712
	0.0107

	(2
	0.02915
	0.0026
	0.0306
	0.0022
	0.023
	0.002
	0.0327
	0.0073

	(3
	0.2515
	0.0624
	0.2439
	0.0646
	0.247
	0.068
	0.2768
	0.1483

	(4
	0.03956
	0.0639
	0.0592
	0.0687
	0.043
	0.049
	0.0369
	0.1450

	(v
	0.1046
	0.0139
	0.1069
	0.0157
	0.078
	0.0211
	0.0204
	0.0515

	(u
	0.0990
	0.0262
	0.1588
	0.0312
	0.0133
	0.0034
	0.1127
	0.0358

	(
	10.10
	2.678
	
	
	75.12
	19.11
	
	

	P
	1.0000
	0.000
	
	
	1.000
	0.000
	
	

	(
	
	
	1.457
	0.3421
	
	
	5.511
	1.008

	(
	
	
	0.1889
	0.0281
	
	
	0.1145
	0.0049


Table 7  Estimated Variances of Parameter Distributions

	
	(1
	(2
	(3
	(4

	Tsionas
	0.00949
	0.0000337
	0.107
	0.071

	Random Parameters
	0.01766
	0.00009586
	0.0120
	0.0205



Figure 10, KDE for RP Inefficiencies in simple Cobb Douglas

Our primary interest at this juncture is the inefficiency estimates.  The differences in the various estimates of the variance parameters, (u, (v, etc. are large enough to suggest more than marginal differences in the implications of the choice of techniques. Tsionas argues (p. 132) that it is not possible to fit his model with a noninformative prior for (.  Thus, he assumes an informative prior with mean r* equal to the prior median of the inefficiency distribution. Since the exponential family is a one parameter distribution, this is the crucial parameter in the model.  Van den Broeck et al. used a prior of 0.875, and obtained values of exp(-u) (‘efficiency’) ranging from 0.830 to 0.910 based on an estimated posterior mean estimate of ( of 11.27.   In contrast Tsionas obtains a posterior mean for the exponential parameter of 75.12.  Thus, the estimated posterior distribution of ut in Tsionas’s results has almost no economically meaningful variation, from which he concludes that nearly all firms are ‘fully efficient.’  [He notes, with his estimates, the minimum value was close to 0.99. (p. 141)].   Huang (2002) fit the same model as Tsionas, but extended it to the two parameter gamma density.  In his results, the posterior means of P and ( were 0.9063 and 77.4337.  These are qualitatively the same as Tsionas’s, and led to the same conclusion – Huang’s posterior estimates of ui differ only slightly from 0.99 for all firms in the sample. Figure 10 shows the kernel density estimator for the basic (classical) random parameters model.  (To facilitate the comparison, we have computed the ‘efficiency’ measure, CEi = exp(-ui).  The estimated values are more consistent with other familiar received results.  

Tsionas concludes that cost differences in their model are due to measured technological differences between firms and that there appears to be essentially no inefficiency to be found in the results.  While this cannot be ruled out, it does seem implausible.  The sample includes several miniscule New England utilities who operated very far from the technological frontier. Moreover, one of the largest firms in the sample, New York’s Consolidated Edison Co. produced in a hostile regulatory environment that, among other constraints, forced it to operate more than one antiquated plant inside the New York City limits and prohibited it from importing power on an ongoing basis from outside its service territory.  We do note, the Bayesian estimate of the crucial model parameter, (, has migrated to a value that leaves behind what is essentially a classical linear regression model.  Whether estimation of the other model parameters can be expected to be well behaved under these circumstances remains to be verified.  

The random parameters model behaves rather differently.  Comparing the RP estimates of (u and (v to those from the basic half normal model, we see that unlike the Bayesian estimators, the RP estimator is shifting the variation from both ui and vi into the parameter heterogeneity, though not at the same rate.  The implied standard deviations of vi are 0.1069 in the nonrandom parameter estimates and 0.0209 in the RP case.  The counterparts for ui are 0.1588 and 0.1127.  The upshot would seem to be that in spite of appearances, both Bayesian and RP estimators are shifting the variation out of the error terms and into the parameters.  The difference seems to be that RP estimator preserves far more of the inefficiency than the Bayesian estimator.  But, recall that the Bayesian estimator requires an informative prior for the distribution of ui, so this conclusion must be tempered. In the end, as others have noted, none of these estimators behaves very well in a cross section.  The Bayesian estimators are clearly crucially sensitive to the assumed priors, and for this model and cross section data, those priors must be relatively tight (informative).


Among its other features, the Bayesian estimator is fairly cumbersome to estimate.  The Gibbs sampling technique, in itself, is straightforward, and is being employed with increasing frequency in a variety of settings. In this application, though, it is necessary to tightly control the crucial parameters of the distribution of uit, which adds a layer of complexity.  The random parameters model is an alternative which is considerably simpler to apply.
 There are several attractive characteristics to the RP model in addition to this one.  First, as noted, it allows a richer formulation of the model.  In the foregoing we have not exploited the possibility of heteroscedasticity or the truncated normal model, both of which would be feasible but extremely cumbersome in the Bayesian framework.  Finally, the need to assume informative priors for some of the important model parameters is a troublesome problem.  Assuming very loose priors does mitigate this, but it remains unclear what constitutes a sufficiently loose prior.


One last note seems appropriate. None of these estimators is well behaved in a cross section.  The only anchor that brings convergence to the Bayesian estimators described here is the priors.  With noninformative priors, it is not computable.  Even in a panel, an informative prior is needed for the distribution of ui.  But, the RP estimator is not immune to this.  Convergence was difficult to impossible to attain with almost all specifications, and in general, the asymmetry parameter always drifted toward an implausible value as (v fell toward zero..  The overall result seems to be that in a cross section, the Bayesian estimators move all the variation in ui into the random variation in the parameters, whereas the RP estimator does likewise with the variation in vi.  Ultimately, neither seems an attractive outcome.  In the final analysis, this class of estimators seems to stretch what one can reasonably ask of a cross section, even a ‘clean’ well traveled one such as the one used here.  [In this connection, see Fernandez, Oziewalski and Steel (1997).]


Of those Bayesian analyses of the stochastic frontier model that are not entirely theoretical, nearly all employ the Christensen and Greene (1976) data discussed here, so there is an opportunity to make a fairly detailed comparison.  [See van den Broeck et al. (1994), Koop et al. (1994), Fernandez et al. (1997), Ritter and Simar (1997), Tsionas (2002), Huang (2002) and above.  In general, the focus is on model specification, and the distribution of the inefficiency estimates is more or less on equal footing with estimation of the prior means of the parameter distributions. Where the inefficiencies themselves are computed, the differences in the studies are radical.  Van den Broeck et al.’s estimated distribution rather resembles the one we estimated in Figure 10, though ours lies somewhat left of theirs.  Koop et al. (1994) in contrast, estimate a posterior inefficiency distribution that more nearly resembles an exponential distribution (reversed), with median efficiency on the order of .92.  (P. 344.)  Tsionas and Huang obtain results which essentially eliminate the inefficiency altogether – their estimated distributions have means on the order of .99+ and standard deviations near zero.  It is difficult to draw a conclusion here, save for that the end result depends crucially on the prior assumed for the parameters of the distribution of ui.  As all the authors note, an informative prior is essential for estimation here, as an improper prior for the simple parameter of the exponential distribution leads to an improper posterior.


Bayesian estimation in the panel data context has focused on rebuilding the random and fixed effects model.  [See Kim and Schmidt (2000).] Generally, the distinction drawn between these two turns on how the prior for the ‘effects’ is structured.  The fixed effects model relies on an essentially distribution free approach while the random effects model relies on the Pitt and Lee (1981) reconstruction of the linear regression model. We submit that equally important (or more) in the formulation is the implicit assumption in the latter that the effects are uncorrelated with the included variables.  This assumption is implicitly built into the Bayesian estimators.  Our results above suggest that, at least in the banking data, it leads to a large distortion of the results.

5. Latent Class Models


The latent class model has appeared at various points in the literature, in some places under the guise of ‘finite mixture models.’  The numerous applications that we have located are almost exclusively focused on the Poisson regression model, though, as we show below, nothing in the construction either restricts it to this modeling class or, in fact, is particularly favorable to it.  We will develop the estimator in general terms, then, as in the preceding sections, turn attention to the stochastic frontier and the application to the banking industry.

5.1.  Specification and Estimation of the Latent Class Model


We assume that there is a latent sorting of the observations in the data set into J latent classes, unobserved by the econometrician.  For an observation from class j, the model is characterized by the conditional density

g(yit | xit, class j)  =  f((j,yit,xit).

Thus, the density is characterized by the class specific parameter vector.  The higher level, functional relationship, f(.), is assumed to be the same for all classes, so that class differences are captured by the class specific parameter vector.  [Early applications of this concept in economics include the switching regression model.  See, e.g., Goldfeld and Quandt (1975).  Other applications are discussed in Greene (2001).  A very recent application of the finite mixture concept to the random effects linear regression model is Phillips (2003).]  Different treatments of the model define the class partitioning in terms of the full parameter (as most of the aforementioned discrete choice models do) or in terms of specific components of the parameter vector, as in Phillips (2003) who considers the variance of the common element in the random effects model and Tsionas (2002) who models finite mixing in (v (under the heading of ‘nonnormality’) in the stochastic frontier model.  

For the half normal stochastic frontier model we consider here,

P(i,t|j)   = 
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The contribution of individual i to the conditional (on class j) likelihood is
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The unconditional likelihood for individual i would be averaged over the classes;
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where ((i,j) is the prior probability attached (by the analyst) to membership in class j. The individual resides permanently in a specific class, but this is unknown to the analyst, so ((i,j) reflects the analyst’s uncertainty, not the state of nature.  This probability is specified to be individual specific if there are characteristics of the individual that sharpen the prior, but in many applications, ((i,j) is simply a constant, ((j).  There are many ways to parameterize ((i,j).  One convenient is the multinomial logit form,
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The log likelihood is then

logL = 
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The log likelihood can be maximized with respect to [((1,(1),((2,(2),...,((J,(J)] using conventional methods such as BFGS, DFP or other gradient methods.  Another approach is the EM algorithm.  Define the individual (firm) specific posterior probabilities
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The EM algorithm is employed simply by iterating back and forth between the two optimization problems
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and
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The first optimization is simply a weighted log likelihood function for the jth class, where the weights vary by class and individual.  The second optimization problem is a multinomial logit problem with proportions data.  Both are generally simple to employ, so the EM method for this problem represents a useful way to frame the optimization.


After estimation is complete, estimates of w(j|i) provide the best estimates of the class probabilities for an individual.  The class membership can then be estimated by j*, the one with the largest posterior probability.  The individual specific parameter can be estimated either by (j* or by
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We have used this result for the stochastic frontier model to compute estimates of the firm specific inefficiencies using the estimated firm specific technology, 
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.  (One might do the averaging over estimates of E[uit |(it] | j.  We have not investigated this, but it seems unlikely to make much difference in the outcome.)


There remains a loose end in the derivation.  The number of classes, J, has been assumed known.  Since J is not an estimable parameter, one cannot maximize the likelihood function over J.  However, a model with J-1 classes is nested within a model with J classes by imposing (J-1 = (J, which does suggest a strategy.  Testing ‘up’ from J-1 to J is not a valid approach because if there are J classes, then estimates based only on J-1 are inconsistent.  Testing ‘down’ should be valid, however. Thus, beginning from a J* known (or believed) to be at least as large as the true J, one can test down from J* to J based on likelihood ratio tests.  [See Heckman and Singer (1984) on this point.]

5.2.  Application - Banking Industry

           Table 8 lists the estimates of the stochastic frontier model for the various model frameworks considered here. The latent class model is specified with class probabilities 

	
	Cross Section
	Fixed Effects
	Random Effects
	Random Parameter
	Latent Class 1
	Latent Class 2
	Latent Class 3

	
	Est.
	Std.Er.
	Est.
	Std.Er
	Est.
	Std.Er
	Est.
	Std.Er
	Est.
	Std.Er
	Est.
	Std.Er
	Est.
	Std.Er

	(
	 0.178   
	 0.099
	
	
	  0.535   
	 0.106
	 0.178   
	 0.059
	 1.313
	 0.781
	-0.294
	 0.488
	 4.34
	 7.780

	(1
	 0.420   
	 0.014
	 0.410  
	 0.017
	  0.423   
	 0.016
	 0.419   
	 0.009
	 0.402
	 0.124
	 0.443
	 0.106
	-0.121
	 0.636

	(2
	 0.022  
	 0.006
	 0.021 
	 0.006
	  0.033  
	 0.007
	 0.023  
	 0.004
	 0.020
	 0.058
	 0.021
	 0.035
	 0.005
	 0.183

	(3
	 0.173   
	 0.012
	 0.174  
	 0.011
	  0.181   
	 0.014
	 0.174   
	 0.007
	 0.193
	 0.109
	 0.161
	 0.061
	 0.288
	 0.624

	(4
	 0.094  
	 0.010
	 0.097 
	 0.009
	  0.088  
	 0.012
	 0.094  
	 0.006
	 0.116
	 0.102
	 0.085
	 0.042
	 0.144
	 0.464

	(1
	 0.102   
	 0.007
	 0.010 
	 0.007
	  0.103   
	 0.006
	 0.103   
	 0.004
	 0.099
	 0.051
	 0.099
	 0.033
	 0.308
	 0.611

	(2
	 0.403   
	 0.006
	 0.405  
	 0.015
	  0.376   
	 0.006
	 0.403   
	 0.004
	 0.309
	 0.050
	 0.443
	 0.079
	 0.149
	 0.464

	(3
	 0.136   
	 0.008
	 0.133  
	 0.009
	  0.099  
	 0.007
	 0.137   
	 0.005
	 0.012
	 0.053
	 0.192
	 0.050
	 0.045
	 0.404

	(4
	 0.051  
	 0.004
	 0.053 
	 0.004
	  0.055  
	 0.003
	 0.051  
	 0.002
	 0.059
	 0.023
	 0.046
	 0.020
	 0.119
	 0.246

	(5
	 0.235   
	 0.009
	 0.236  
	 0.003
	  0.288   
	 0.009
	 0.235   
	 0.005
	 0.413
	 0.093
	 0.163
	 0.052
	 0.325
	 0.488

	(
	-0.029  
	 0.004
	-0.029 
	 0.003
	 -0.029  
	 0.004
	-0.029  
	 0.002
	-0.047
	 0.031
	-0.029
	 0.016
	-0.013
	 0.131

	(
	 2.128   
	 0.093
	 0.498
	 0.016
	  0.396   
	 0.047
	 2.208   
	 0.058
	 0.379
	 0.022
	 0.252
	 0.014
	 0.232
	 0.056

	(
	 0.355   
	 0.007
	 2.278  
	 0.102
	  0.817
	
	 0.353   
	 0.003
	 1.688
	 0.378
	 1.267
	 0.217
	16.993
	66.631

	(u
	 0.351
	
	 0.439
	
	  0.095  
	 0.011
	 0.322
	
	 0.326
	
	 0.123
	
	 0.231
	

	(v
	 0.151
	
	 0.193
	
	  0.811
	
	 0.146
	
	 0.193
	
	 0.097
	
	 0.013
	

	(0
	
	
	
	
	
	
	
	
	-3.809
	 9.564
	-4.531
	 9.711
	 0.000
	

	(1
	
	
	
	
	
	
	
	
	 0.617
	 0.941
	 0.767
	 0.956
	 0.000
	


Table 8  Estimated Stochastic Frontier Models

         Table 9  Mean Estimated Class Probabilities 

	
	Mean Posterior Class Probability

	Number of Classes
	1
	2
	3
	4

	4
	0.1711
	0.2962
	0.5319
	0.0008

	3
	0.2822
	0.7032
	0.0146
	0.0000

	2
	0.2963
	0.7307
	0.0000
	0.0000

	1
	1.0000
	0.0000
	0.0000
	0.0000


dependent on the log scale variable, log((mYm).  The components of the latent class model are shown in the last three columns of estimates.  We began the specification search with J* = 4.  For a four class model, the log likelihood is 154.8947.  The results strongly suggested that J < 4.  The standard errors for the estimates in the fourth class were all at least 10,000 times the size of the parameter estimates.



  Figure 12  Estimated Inefficiency Distribution, Latent Class Model

    Figure 13  Estimated Inefficiency Distribution, Random Parameters Model 


Figures 12 and 13 display the estimates of the distribution of uit for the latent class and random parameters model. The distribution for the latent class model is considerably tighter than that for the random parameters model.  Other studies of this industry, e.g., Berger and Mester (1997) and Fernandez, Koop and Steel (2000) have found inefficiency levels consistent with these, but more nearly in the range of figure 12.  The latent class specification is a somewhat richer specification than the random parameters, although it is a discrete approximation to the continuous distribution of parameters.  It is unclear which is a preferable model based on these results alone.

6  Conclusions


The developments reported in this study were motivated by a study undertaken by the  author with the World Health Organization based on their year 2000 World Health Report.  [See also Hollingsworth and Wildman (2002).]  The WHR data consists of an unbalanced panel of data on 191 countries, states, and other internal political units, for the years 1993 - 1997.  One measured outcome is a composite index of the delivery of health care services.  Measured ‘inputs’ to the process were health care expenditures and average education.  A number of covariates included in the study included population density, per capita GDP and measures of the type and effectiveness of the government organization, all measured in 1997 and thus time invariant in the data set.  A fixed effects ‘frontier’ model was fit, and countries were ranked on the basis of the Sickles and Schmidt (1984) suggested corrected effects.  Readers of the study argued that with a sample as disparate as this one surely is, the fixed effects must be picking up a great deal of cross country heterogeneity as well as the ‘inefficiency’ in the provision of health care services.  A random effects model [Pitt and Lee (1981)] does nothing to alleviate this problem.  Random parameters moves in the right direction.  But, as Tsionas (2002) argues, the random parameters model is fundamentally the same as a fixed parameters model with heteroscedasticity, which is not really the issue. Rather, it is appropriate to model the inefficiency as well as the heterogeneity in the same model, if possible to segregate the two effects.  This paper has proposed three alternative treatments of the stochastic frontier model.  


We have examined the fixed effects model applied to the stochastic frontier, as opposed to simply reinterpreting the linear regression.  Thus, as formulated, the inefficiency term remains in the model and the fixed effect is intended only to capture the country (firm) specific heterogeneity.  The fixed effects estimator is not, in itself, new.  However, its direct application to efficiency estimation in the stochastic frontier model has not appeared previously.  [Polacheck and Yoon (1996) only briefly examined the coefficient estimates.]   The paper details a method of computing the unconditional fixed effects estimator in nonlinear models by maximum likelihood even in the presence of large numbers (possibly thousands) of coefficients.  The difficulty with this approach not in implementation. It is the incidental parameters problem.  However, our evidence suggests that the bias in the parameter estimates may be somewhat less severe than accepted results might lead one to expect.  The bias does appear to remain in the transformation to the inefficiency estimates.  This is an outcome that seems to merit further study, as the fixed effects model has other attractive features.  In other research (not reported here), we have begun to analyze the behavior in the truncated normal and the heteroscedastic models with fixed effects.  The advantage in these cases is, once again, that they represent direct modeling of the inefficiency while retaining the stochastic frontier formulation.   Overall, the fixed effects estimator presents the researcher with a Hobson’s choice.  Superficially, it is an attractive specification.  However, both Bayesian and classical applications of the Schmidt and Sickles (1984) formulation of this model combine any firm heterogeneity that is correlated with included variables but is not in itself inefficiency, in the effect.  Moreover, the approach is able only to rank firms relative to the one deemed ‘most efficient,’ itself an estimate that is subject to statistical error.  The true fixed effects estimator suggested here overcomes these two shortcomings, but has problems of its own.  In a sample with small (T=5), but typical group size, there appear to be significant biases both in coefficient estimates and, more importantly, in estimates of firm inefficiency.

The second model proposed is the random parameters specification.  The RP model has been analyzed elsewhere [Tsionas (2002) among others] in a Bayesian context.  The advantage of the ‘classical’ approach developed here is that it provides a means of building a model for the distribution of inefficiency, uit, as well as the production frontier.  The focus of the received studies has been the technology coefficients, but it does seem that since the ultimate objective of the empirical work is the estimation of uit, so this would be a significant advantage.  One other comparative advantage of the random parameters model is that the stochastic frontier model is unusual in that Bayesian estimation requires an informative prior, here for the inefficiency distribution.  Our results in this context are somewhat contradictory.  Compared to a Bayesian estimator for the model, we find that the classical estimator appears to be shifting variation out of the random component of the frontier while the Bayesian estimator appears to be shifting it out of the inefficiency distribution.  We leave further exploration of that issue for subsequent research.  

The third formulation is the latent class model.  The latent class, or finite mixture model can be viewed either as a discrete, semiparametric approximation to the random parameters model, or as a formal specification of a model for a population characterized by a latent sorting of members into discrete groups.  The World Health Report data seem likely to fit this latter description.  The different orientations of the European and North American health systems (cancer care, quality of life) compared to Africa (AIDS) suggests that a two class model might be a useful way to model the WHR data.  The latent class model was applied to the banking data used in the earlier applications.  Results are similar to the random parameters model, but for the same data, the latent class estimator appears to produce a much tighter distribution for uit than the random parameters model.  The only counterpart in the received literature to this application is ongoing work by Tsionas and Greene (2002), where a ‘finite mixture’ model for the variance of the symmetric disturbance has produced results that are somewhat similar to those reported here.

Appendix. Program Code for Fixed Effects Simulations

?==============================================================================

?data setup - bank number and groups of variables

?==============================================================================

  crea;bank=trn(5,0)$

  namelist;linearw=w1,w2,w3,w4 $

  namelist;linearq=q1,q2,q3,q4,q5 $

  namelist;quadw =w11,w12,w13,w14,w22,w23,w24,w33,w34 $

  namelist;quadq =q11,q12,q13,q14,q15,q22,q23,q24,q25,q33,q34,q35,q44,q45,q55 $

  namelist;cross =w1q1,w1q2,w1q3,w1q4,w1q5,

                  w2q1,w2q2,w2q3,w2q4,w2q5,

                  w3q1,w3q2,w3q3,w3q4,w3q5,

                  w4q1,w4q2,w4q3,w4q4,w4q5 $

  namelist;trend =t $

  namelist;quadt =t2,tw1,tw2,tw3,tw4,tq1,tq2,tq3,tq4,tq5 $

  namelist;cobbdgls=linearw,linearq,trend$

  namelist;translog=one,cobbdgls,quadw,quadq,cross,quadt$

?==============================================================================

?Monte Carlo Study of the fixed effects stochastic frontier model

?==============================================================================

? 1.  Fit Cobb-Douglas fixed effects model using original data (2 steps)

?     Computes economies of scale measure

?------------------------------------------------------------------------------

  sample  ;1 - 2500 $

  frontier;lhs=c;rhs=one,cobbdgls;cost$

  frontier;lhs=c;rhs=one,cobbdgls;cost ;fem;pds=5;par ; eff = uitfit $

  wald    ;start=b;var=varb;labels=12_c;fn1=1/(c5+c6+c7+c8+c9)-1$

kernel;rhs=uitfit$

kernel;rhs=trueuit$

plot;lhs=uitfit;rhs=trueuit$

?------------------------------------------------------------------------------

? 2. Retrieve 'true' slope coefficients. Constants are in ALPHAFE

?    Also need to retrieve true sigma(u) and sigma(v) from S=SIGMA

?    and LMDA = Lambda

?------------------------------------------------------------------------------

  matr  ;beta=b(1:10)$

  matr  ;truebeta=[beta/s/lmda]$

  calc  ;trueescl=1/(b(5)+b(6)+b(7)+b(8)+b(9)) - 1$

  calc  ;truesu=s*lmda/Sqr(1+lmda^2) $

  calc  ;truesv = su/lmda $

  calc  ;truelmda=lmda $

  calc  ;truesgma=s$

  calc  ;truea251=alphafe(251) $

?------------------------------------------------------------------------------

? 3. Using the estimated sigmau, compute the 'true' inefficiencies

?    these are held fixed during the simulations

?------------------------------------------------------------------------------

  crea  ;trueuit=abs(rnn(0,truesu))$

  kernel;rhs=trueuit$

  create;truerank=rnk(trueuit)$

?------------------------------------------------------------------------------

? 4. Create C(i,t)* = cost, without symmetric disturbance, true FE DGP

?------------------------------------------------------------------------------

  create ; citstar=alphafe(bank) + cobbdgls'beta $

?------------------------------------------------------------------------------

? 5. Clear buffers for storing replications

?------------------------------------------------------------------------------

  matrix ; beta_r=init(100,12,0.0)$

  matrix ; corr_r=init(100,1,0.0)$

  matrix ; rnkc_r=init(100,1,0.0)$

  matrix ; escl_r=init(100,1,0.0)$

  matrix ; tebias=init(100,1,0.0)$

  matrix ; alfa_r=init(100,1,0) $

  calc   ; i=0$

  calc   ; ran(123457)$

?------------------------------------------------------------------------------

? 6. Procedure carries out the replications

?------------------------------------------------------------------------------

? a. Create data set by generating disturbances

?------------------------------------------------------------------------------

?  create;trueuit=abs(rnn(0,1.truesu)) ; truerank=rnk(trueuit)$ (Not used)

  procedure$

  create;truevit=    rnn(0,truesv) $

  create;trueeit=truevit + trueuit $

  create;truezit=trueeit*truelmda/truesgma$

  create;cit = citstar + truevit + trueuit $

?------------------------------------------------------------------------------? b. Fit fixed effects model, keeping efficiency estimates.

?------------------------------------------------------------------------------

  frontier;lhs=cit ; rhs=one,cobbdgls ; cost $

  frontier;lhs=cit ; rhs=one,cobbdgls ; cost ;fem ;pds=5 ; par ; eff=uithat $

?------------------------------------------------------------------------------

? c. Ranks, rank correlation, Pearson correlation, economies of scale,

?    slopes, efficiency estimates

?------------------------------------------------------------------------------

  matr;bt=b(1:10)$

  calc;st=b(11)$

  calc;lt=b(12)$

  crea;eithat = cit - alphafe(bank)-cobbdgls'bt 

      ;zithat=eithat*lt/st 

      ;uithat=st*lt/(1+lt*lt)*(zithat+n01(zithat)/phi(zithat))$

  calc;at=alphafe(251)$

  crea;rank=rnk(uithat)$

  calc;rankcor=rkc(truerank,rank)$

  calc;datacor=cor(trueuit,uithat)$

  calc;escl=1/(b(5)+b(6)+b(7)+b(8)+b(9)) - 1 $

?------------------------------------------------------------------------------

? d. Save replication.

?------------------------------------------------------------------------------

  calc ; i = i + 1 $         

  matr;beta_r(i,*)=b $       coefficients

  matr;alfa_r(i)=at $

  matr;corr_r(i)=datacor $   simple correlation of inefficiencies

  matr;rnkc_r(i)=rankcor $   rank correlations

  matr;escl_r(i)=escl $      economies of scale

?------------------------------------------------------------------------------

? e. compute errors of inefficiency estimates, then save average

?------------------------------------------------------------------------------

  create;du = uithat - trueuit$

  calc;ubiasbar=xbr(du)$

  matr;tebias(i)=ubiasbar$

  endproc $

?------------------------------------------------------------------------------

? Execute procedure 100 times. It will stall occasionally during the run.

? Just restart.

?------------------------------------------------------------------------------

  execute;silent;n=21$

?------------------------------------------------------------------------------

? Study results of replications. First pick up 100 sets of parameter estimates

? and store in variables that can be examined with KERNEL

?------------------------------------------------------------------------------

  samp;1-100$

  crea;b1=0;b2=0;b3=0;b4=0;b5=0;b6=0;b7=0;b8=0;b9=0;b10=0

      ;smc=0;lmc=0;alpha251=0$

  namelist;mcb=b1,b2,b3,b4,b5,b6,b7,b8,b9,b10,smc,lmc$

  crea;mcb=beta_r$

  crea;alpha251=alfa_r$

  crea;econscl=escl_r$

?------------------------------------------------------------------------------

? Pick up biases in parameter estimation

?------------------------------------------------------------------------------

  crea;db1=b1-truebeta(1);db1=100*db1/truebeta(1)$

  crea;db2=b2-truebeta(2);db2=100*db2/truebeta(2)$

  crea;db3=b3-truebeta(3);db3=100*db3/truebeta(3)$

  crea;db4=b4-truebeta(4);db4=100*db4/truebeta(4)$

  crea;db5=b5-truebeta(5);db5=100*db5/truebeta(5)$

  crea;db6=b6-truebeta(6);db6=100*db6/truebeta(6)$

  crea;db7=b7-truebeta(7);db7=100*db7/truebeta(7)$

  crea;db8=b8-truebeta(8);db8=100*db8/truebeta(8)$

  crea;db9=b9-truebeta(9);db9=100*db9/truebeta(9)$

  crea;db10=b10-truebeta(10);db10=100*db10/truebeta(10)$

  crea;da251=100*(alpha251-truea251)/truea251$

  crea;ds=100*(smc-truesgma)/truesgma$

  crea;dl=100*(lmc-truelmda)/truelmda$

  crea;esclbias=100*(econscl-trueescl)/trueescl$

  kernel;rhs=db1$

  kernel;rhs=db2$

  kernel;rhs=db3$

  kernel;rhs=db4$

  kernel;rhs=db5$

  kernel;rhs=db6$

  kernel;rhs=db7$

  kernel;rhs=db8$

  kernel;rhs=db9$

  kernel;rhs=db10$

  kernel;rhs=da251$

  kernel;rhs=dl$

  kernel;rhs=ds$

  kernel;rhs=esclbias$

?------------------------------------------------------------------------------

? Efficiencies, average deviation of estimated from true in percent

?------------------------------------------------------------------------------  

  samp;1-2500$

  plot;lhs=trueuit;rhs=uithat;limits=0,1.5;endpoints=0,1.5

  ;title=Estimated Inefficiencies vs. True Values of u(i,t)$$

  create;efbias=tebias$

  kernel;rhs=efbias$

?------------------------------------------------------------------------------

? Correlation of estimated and actual inefficiencies

?------------------------------------------------------------------------------

  crea;avgcorr=corr_r$

  kernel;rhs=avgcorr $

?------------------------------------------------------------------------------

? Rank correlation of estimated and actual ranks

?------------------------------------------------------------------------------

  crea;avgrank=rnkc_r$

  kernel;rhs=avgrank $
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� Wang and Schmidt (2002) argue, as well, that if there are any ‘interesting’ effects to be observed at the third step, then it follow from considerations of ‘omitted variables’ that the first step estimators of the model’s components are biased and inconsistent.


� The approach bears passing resemblance to ‘data envelopment analysis,’ (DEA) in which a convex hull is wrapped around the data points using linear programming techniques.  Deviations from the hull are likewise treated as inefficiency and, similarly, are by construction, in comparison to the ‘best’ firms in the sample.


� Polachek and Yoon (1996) specified and estimated a fixed effects stochastic frontier model that is essentially to the one considered here.  However, their ‘N’ was 838 individuals observed in 16 periods, which they assessed as ‘impractical’ (p. 173).   We will examine their approach at the end of the next section.


� The increased capacity of contemporary hardware and software continue to raise these limits. Nonetheless, as a practical matter, even the most powerful software balks at some point.  Within our experience, probably the best known and widely used (unnamed) econometrics package will allow the user to specify a dummy variable model with as many units as desired, but will ‘crash’ without warning well inside the dimensions of our application.,


� Essentially the same procedure is suggested for discrete choice models by Berry, Levinsohn and Pakes (1995) and Petrin and Train (2002).


� They would be if the Hessian were block diagonal, but in general, it is not.  This example underscores the point that the inconsistency arises not because the estimator converges to the wrong parameters, but because it does not converge at all.  It’s large sample expectation is equal to the true parameters, but the asymptotic variance is o(1/T) which is fixed.


� The iteration for the slope estimator is suggested in the context of a binary choice model in Chamberlain (1980, page 227).  A formal derivation of (( and (( was given to the author by George Jakubson of Cornell University in an undated memo, "Fixed Effects (Maximum Likelihood) in Nonlinear Models."  A similar result appears in Prentice and Gloeckler (1978).   Some related results appear in Greene (2003, pp. 695-697).


� The preceding results are cast in general terms, and can be applied to a large variety of models including, as shown below, the normal-half normal stochastic frontier model.  Though we have not verified this, it seems likely that extension to the normal-exponential model would be a straightforward, albeit minor modification.  Given the motivation for the estimator in the first instance, greater payoff would seem to follow from incorporating this extension in the normal-truncated normal model.  (See Stevenson (1980) and Kumbhakar and Lovell (2000) for details.) Our work is ongoing, but to date, we have had almost no success with this model.  It appears that the likelihood is too volatile for Newton’s method, even from a good set of starting values, and the iterations routinely jump off to a point in the parameter space where neither function nor derivatives can be computed.  The cross section and random effects versions of this model are, however, straightforward to estimate.  As such, as noted earlier, for a sufficiently moderate number of groups, it would seem that using the dummy variables directly in the specification would have some benefit, but this seems not to have been used in the received applications.  Again, only Polachek and Yoon (1996) appear to have taken this approach.


� The approach will not work in all cases.  Newton’s method is often fairly crude.  For some models, the algorithm will often badly overshoot in the early iterations, even from a good starting value, at which point, it may become impossible to compute the function or the derivatives.  The normal-truncated normal stochastic frontier appears to be one of these cases.


� The data were gathered and assembled by Mike Tsionas, whose assistance is gratefully acknowledged.  A full description of the data and the methodology underlying their construction appears in Kumbhakar and Tsionas (2002).


� Doing the replications with a fresh set of values of uit* generated in each iteration produced virtually the same results.  Retaining the fixed set as done here facilitates the analysis of the results in terms of estimation of a set of invariant quantities.


� Monte Carlo studies are justifiably criticized for their specificity to the underlying data assumed.  It is hoped that by the construction used here which is based on a ‘live’ data set, we can, at least to some degree, overcome that objection.


� During the replications, the frontier function must be fit twice, once as if it were a cross section, to obtain good starting values, then the second time to compute the fixed effects estimator.  The first round estimator occasionally breaks down for a particular sample.  It was necessary only to restart the replications with a new sample in order to continue.  This occurred three times during the 100 replications.


� This result was suggested to the author in correspondence from Manual Arellano, who has also examined some limited dependent variable estimators in the context of panel data estimators.  [See Arellano (2000).]


� Analysis of the samples of results for the parameter estimates showed typical mean discrepancies on the order of 2 to 10%, which is well within the range of expected sampling variation.  There was a larger than expected downward bias in the estimates of (, which will be apparent in the analysis of the estimated inefficiencies to follow.


� Estimation of the random parameters model with five freely correlated random parameters and six nonrandom parameters with 2,500 observations (N=500, T=5) and 50 Halton draws required roughly 11 minutes on a 400 Mhz Pentium computer.


� To some extent, this is a nonissue. Both Gibbs sampling (with the Metropolis - Hastings method) and the random parameters model are finding their way into widely used software.  However, for the stochastic frontier model, both implementations are at an early stage.


� Further details on this model including references and additional aspects of the derivation may be found in Greene (2001).
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