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Abstract



	This paper presents an estimator for a model of sample selection for count data.  The model is an extension of the standard sample selectivity treatment for the linear regression model.  To develop the model, we first review some received results on unobserved heterogeneity in the Poisson regression model for count data.  The model is then extended to encompass an endogenous sample selection mechanism.  Previous papers have developed sequential, single equation, limited information estimation techniques.  This paper presents a full information maximum likelihood (FIML) estimator for the model.  Two techniques for computation of the sort of log-likelihood we analyze are described, simulation and numerical quadrature.  An application to a problem in credit scoring is presented to illustrate the techniques.
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1.  Introduction



	The econometric issue of sample selection concerns the possible biases that arise when a nonrandomly sampled set of observations from a population is used as if the sample were random to make inferences about that population,.  Current literature, with a few exceptions noted below, has focused on, and finely tuned, the known results relating to this issue in the framework of the linear regression model and analysis of a continuous dependent variable, such as hours worked or wages.  This paper will examine an extension of the sample selection model to the Poisson regression model for discrete, count data, such as numbers of patents, of children, of visits to facilities such as shops or recreation sites, of convictions for crimes committed, and so on.

Most of the received applications of the sample selection model are based on Heckman’s (1979) analysis of the linear regression model.  But, there are extensions to binary choice models (Boyes, Hoffman, and Low (1990) and Greene (1992)).  The literature also contains a number of extensions of the model to, e.g., a tobit setting (Greene (1997b) and to a host of different kinds of selection equations and variants of the linear equation (see, e.g., Maddala (1983)).  This paper will examine an extension of the model to the analysis of count data. (See Cameron and Trivedi (1986), Cameron and Trivedi (1997), and Winkelmann (1997) for surveys of the econometrics literature on this subject.)  Since the study of Hausman, Hall, and Griliches (1984), the development of models and specification tests for counts has constituted a burgeoning literature in econometrics.  The issue of sample selectivity has appeared intermittently.  Smith (1988) in a study of use of recreational sites, notes that his estimation results were likely to be affected by the fact that he had used only those observations on individuals who had made at least one visit to the sites of interest.  Though he had come upon an effect of truncation, as opposed to sample selection, his concern was well placed.  Bockstael, et al. (1990) analyzed a similar situation.  An early formal treatment of a sample selection model for counts is Greene (1994), in which a model formulation strongly analogous to Heckman’s is developed using a Poisson regression framework.  Terza (1995) noted an internal inconsistency in Greene’s model and presented an alternative, with estimation based on nonlinear least squares, rather than maximum likelihood.  Subsequently, Greene (1995) reconciled the two formulations and presented an alternative estimator, also based on nonlinear least squares.  Thus far, the received estimators are two step, limited information estimators. This paper will formally derive a full information maximum likelihood estimator for the Poisson model with sample selection, and compare it to the single equation techniques.  The model bears some resemblance to others that have appeared in the recent literature, so the connection to them will be drawn formally in passing. �

The outline of the paper is as follows:  Section 2 will briefly review the features of the Poisson model that are pertinent to the model development here.  Since this model is surveyed in several articles and in two recent compendia (Cameron and Trivedi (1997) and Winkelmann (1997)), we will present only the minimal essential results.  This section will then develop the estimation theory for a full information maximum likelihood estimator for a model of sample selection.  Some results for computation are given here as well.  Section 3 will present an application of the technique to a set of data on credit behavior.  The number of negative reports in an individual’s credit history is an important datum in loan application decisions.  We will examine a sample of individual reports gathered by a major credit card vendor.    Some extensions and conclusions are suggested in Section 4.



�2. Models for Selection and The Poisson Regression Model



2.1.  Sample Selection in the Linear Regression Model



Models for sample selection have become a standard body of technique in  econometrics.�  The linear regression framework which forms the core of the technique is formulated as follows:�  A classical normal linear regression model is specified as 



   			            yi = ((xi + (i, (i ~ N[0,(2].



The variables in the model are observed only when a threshold variable, zi, equals 1;



(1)   				zi* = ((wi + ui, ui ~ N[0,1],

   				zi   = sgn(zi*).



When ui, the unobserved effect in the observation mechanism, is correlated with (i, the unobserved individual heterogeneity in the regression model, then E[yi|xi, zi=1] is not equal to ((xi, and the widely cited problems of “selection bias” in linear least squares regression arise.  Linear regression of yi on xi in the selected subpopulation with zi = 1 estimates not (, but a hash of ( and a nonlinear function of ( and the moments of the variables in wi. Interest then centers on more detailed formulations of the inconsistency and on alternative, consistent estimation techniques.

Heckman’s (1979) estimator for the linear model is a two step procedure based on the result that 



 (2)  			E[yi | xi, zi=1] =  ((xi + E[(i|zi = 1] = ((xi + (Mi,



where Mi =  ((((wi)/((((wi), ((() and ((() are the pdf and cdf of the standard normal distribution, ( = ((, and ( = Corr((,u).�  The two steps are (1) probit estimation of ( in the model in (1) followed by computation of Mi for all observations for which zi equals 1, then (2) linear regression of yi on xi and Mi to estimate ((,() in (2) followed by an adjustment of the estimated asymptotic covariance matrix for the estimates which accounts for the use of the estimated regressor.

Although used somewhat less frequently, the technique of full information maximum likelihood of ((,(,(,() can also be employed based on the joint distribution of observations (zi = 0,wi) and (zi=1,wi,yi,xi).  (See Greene (1997b).)  One noteworthy feature is that the two step estimator is based on the conditional (on zi = 1) distribution, whereas the FIML approach is based on the unconditional distribution of the observations on (zi,yi).  Thus, computation of the “inverse Mills ratio,” Mi is strictly a feature of the two step approach; it does not appear in the FIML approach.

	In what follows, we present counterparts to this model and the two estimation techniques for a setting in which the linear regression in (2) is replaced with a Poisson (nonlinear) regression model.



2.2.  The Poisson Regression Model



In the Poisson model for counts, the mean rate of occurrence of events per unit of time is (i.  Under some standard conditions (see Winkelmann (1997)), the probability distribution of the number of events observed per unit of time will be



   			P(yi)  =   Prob[yi = j]  =  exp(-(i) (i j / j!, j = 0,1,...



The Poisson distribution has conditional mean function E[yi]  =  (i.  The regression model is produced by specificying (i to depend upon a set of covariates.  The standard approach which guarantees a positive mean uses (i = exp(((xi).  Maximum likelihood estimation of the Poisson regression is straightforward.  The log-likelihood, its gradient, and Hessian are



				log-L  =  (i (-(i + yi(((xi) - logyi!),

   				(log-L/(( = (i (yi - (i)xi,

				(2log-L/(((((  =  (i -(ixixi(.



Newton’s method is a simple and effective approach for the optimization problem.  The Hessian is always negative definite, so the log-likelihood function is globally concave.  After estimation, the negative inverse of the estimated Hessian can be used for estimation of the asymptotic covariance matrix of the parameter estimates.  Marginal effects in the Poisson model are likewise simple;



   				(E[yi|xi]/(xi  =  (i(  = E[yi|xi](.



2.3.  Heterogeneity and Overdispersion in the Poisson Model  



The main interest in this paper is the implications of sample selection for estimation in this model. “Selectivity” arises when unobserved heterogeneity in a regression model is correlated with the unobserved (or, at least, unaccounted for) effects in the sample selection mechanism.  (That is, between ( and u in the model in Section 2.1.)  But, with no disturbance as such, all of the heterogeneity in the Poisson model is observed and accounted for in the regressor vector, xi.  In the Poisson model, a common approach to modelling unobserved heterogeneity is to respecify the distribution as conditionally Poisson with  mean (i((i) = exp(((xi+(i), where (i is the log of a gamma variate with mean 1 and variance (.�  When P(yi|(i) is Poisson with mean (i((i), we can find the unconditional distribution by integrating (i out of the conditional distribution.  The now standard result is P(yi) = E(P(yi|(i) = a negative binomial variate.  (The full derivation appears in several references, including Cameron and Trivedi (1986) and Greene (1997a, pp. 939-940).)  The resulting negative binomial has provided a mainstay in this literature.  

A shortcoming for our purposes is that the negative binomial model does not lend itself to the sorts of extensions that will allow for a model of sample selection.  In the same fashion as other similar applications (e.g., Winkelmann (1997), Crepon and Duguet (1997)), we respecify the model with lognormal instead of log-gamma heterogeity.  That is, (i ~ N[0,(2]; f((i)  = (1/()(((i/().�  The exact distribution of yi after integrating out the heterogeneity will now be unknown, but that, in itself, is not an obstacle.

The conditional probability distribution is



P(yi|(i)  =  exp[-(i((i)](i((i)yi / yi.



The unconditional probability distribution is 



			  P(yi)  = (( P(yi|(i) (2((2)-½ exp[-½ ((i/()2] d(i.



Let vi = (i/((� EMBED Equation.2  ���), ( = (� EMBED Equation.2  ���, and (i(vi)  =  exp(((xi + (vi).  With the change of variable,



		       P(yi) = � EMBED Equation.2  ���,



The integral has no closed form but can be closely approximated by using Hermite quadrature for the integration



		P*(yi)  =  � EMBED Equation.2  ���  ( P(yi).



For our applications, we have found that a 20 point integration provides a sufficiently accurate approximation.�  The approximation to the log-likelihood is, then,



				log-L*  =  (i logP*(yi)  (  log-L.



Optimization and computation of the BHHH estimator of the asymptotic covariance matrix for the estimates will use the approximation to the first derivatives vector,



(log-L*/(� EMBED Equation.2  ���  =  (i � EMBED Equation.2  ���  (  (log-L/(� EMBED Equation.2  ���



After estimation, the transformation back from ( to (  =  (/� EMBED Equation.2  ��� may be preferred.

A second approach to computation of the unconditional log-likelihood is simulation.�  Recast the model in slightly different form, using (i((i) = exp(((xi + ((i) where (i ~ N[0,1].  Then,  by standard results in statistics, if the observations (r are i.i.d.,



		plim(1/R)(r P(yi|(r)  =  E( P(yi|(i)  =  P(yi).



Recent results (e.g., McFadden and Ruud (1994)) have shown that this result can be exploited in maximum likelihood estimation.   We can simulate the random sampling result above using pseudorandom draws from a random number generator.  Thus, we approximate the true probability with

			P**(yi)  =  (1/R)(r P(yi|� EMBED Equation.2  ���r)



where � EMBED Equation.2  ���r is the rth draw from a standard normal random number generator.�  The log-likelihood and gradient are simulated with



				log-L**  =  (i logP**(yi)

and

(log-L**/(� EMBED Equation.2  ���  =  (i � EMBED Equation.2  ���



There is no theoretical preference for one method or the other.  The simulation method has the virtue of consistency in R while the Hermite quadrature with a finite number of nodes will always contain the approximation error.  This advantage is purely theoretical, however, since for implementation, R must be finite.  Computationally, the quadrature method will be more efficient, since with an effective value of R, normally in the hundreds, the simulation method will require far more calculation. We leave the comparison of the two methods as an issue to be explored in subsequent work.

A major specification issue in the Poisson model is overdispersion.  The Poisson regression model has the undesirable feature that the conditional (on xi) mean of yi equals the conditional variance.  The negative binomial model relaxes this assumption; in the log-gamma heterogeneity model, where ( is the scale parameter for the gamma distribution, for the observed random variable



			Var[yi|xi]  =  E[yi|xi] {1 + (E[yi|xi]}.



The lognormal model has a similar characteristic.  Conditioned on (i, yi|xi,(i is Poisson.  Let (i((i) = exp(((xi+(i) = E[yi| xi,(i].  Then, using properties of the lognormal distribution,

 E[yi|xi]  =  E([E[yi| xi,(i]]  =  (i*  =  exp(((xi+ (2/2).



Since Var[yi|xi,(i]  =  E[yi| xi,(i], it follows from a bit of algebra that



  Var[yi|xi] = Var[E[yi| xi,(i]] + E[Var[yi| xi,(i]] = (i*{1 + [exp((2)-1](i*} = (i*(1 + ((i*)



Likewise, if the dispersion of the heterogeneity distribution (() goes to zero, we revert to the Poisson model.

	The conditional mean functions in the heterogeneity models are E[yi|xi] = exp(((xi) for the negative binomial model and exp(((xi+ ½(2) for the lognormal model.  In both cases, the marginal effects are



	   		    (i =  (E[yi|xi]/(xi  = E[yi|xi] ( (.



Estimation of the effects can be done at the sample means.  Standard errors for the effects can easily be obtained with the delta method.  We do note, because of the particular form of the conditional mean function, rather different estimates for the marginal effects are likely to be obtained in a small sample if they are computed, instead, by evaluating the effects, themselves, at each observations, then averaging the sample values.



2.4.  Sample Selectivity in the Poisson Model: 2 Step Approaches 

 

We now build a selection model upon the heterogeneity model. Consistent with standard applications, suppose that the primary model and observation mechanism are



		P(yi|(i)  =  Poisson[(i((i)]  =  exp[-(i((i)](i((i)yi / yi!



				zi* = ((wi + ui, ui ~ N[0,1]

   			zi   = sgn(zi*)

				[(i,ui] ~ N2[(0,0),((2, ((, 1)]

				(yi,xi)  observed iff zi = 1.



Thus, the modelling framework is the same as Heckman’s as specified in Section 2.1.  What remains is to construct an appropriate estimation technique.

Greene (1994,1997b) suggests a direct analog to Heckman’s, two step procedure:�

�(1)  Estimate the parameters of the probit observation equation by maximum likelihood,

      and compute 

� EMBED Equation.2  ���  =   � EMBED Equation.2  ���/� EMBED Equation.2  ���

for all observations for which zi equals 1 (i.e., for observations with observed data).



Estimate the parameters ((,() of a Poisson regression model of the form



E0[yi]  =  (i0  =  exp(((xi + (Mi)

by maximum likelihood, after substituting � EMBED Equation.2  ��� for the unobserved Mi.  After estimation the results of Murphy and Topel (1985) are used to adjust the asymptotic covariance matrix of the estimates.



	Terza (1995) pointed out two problems with this approach.   First, under the model specification, the distribution of the observed data is not Poisson, though it remains uncertain exactly what it is.  Second, regardless of the actual distribution, the conditional mean is also incorrect.�  The exact result for the model above, based on the general result for the truncated lognormal distribution in Johsnon, Kotz, and Balakrishnan (1994, p. 241) is

        E[yi|zi=1]  =  exp(((xi+(2/2) � EMBED Equation.2  ���  = exp((t(xi)� EMBED Equation.2  ���.



Note that (t is just the original ( with an offset to the constant term, and ( = (( as before. As noted, the exact conditional distribution is unknown.�  However, this is only of minor consequence, since with the known form of the conditional mean function, one can apply nonlinear least squares, instead.  The two step procedure would involve maximum likelihood estimation of the probit model, as before, followed by nonlinear least squares regression of yi on the conditional mean above, to estimate ((t,().�  Since � EMBED Equation.2  ���i  =  � EMBED Equation.2  ���(wi has been used in place of the unobserved ((wi, the estimated asymptotic covariance matrix must be adjusted after estimation.  A heteroscedasticity consistent estimator based on White (1980) and Murphy and Topel (1985) is



				V(,(  =  S-1[H  + GV(G(]S-1



where S is the second moment matrix of the pseudo-regressors,



	xi0  =  (E[yi|xi]/(� EMBED Equation.2  ���  =  E[yi|xi]� EMBED Equation.2  ���, where ci  = � EMBED Equation.2  ���,



H  =  (i ei2 xi0 xi0(,

V( is the estimated asymptotic covariance matrix of the probit estimates, � EMBED Equation.2  ���, and G is the sum of cross products of xi0 and 



		          wi0  =  (E[yi|xi]/((  =  E[yi|xi]� EMBED Equation.2  ���wi.



	Let Qi(() = log� EMBED Equation.2  ���.  In Terza’s formulation, E[yi|xi]  =  exp[(t(xi + Qi(()]. 

Expand the function Qi(() in a linear Taylor series around the point ( = (( = 0 (or, ( = 0, since ( is positive by construction).  The result is Qi(() ( (Mi where Mi = ((ai)/((ai) as defined earlier.  Thus, Greene’s (1994) formulation could be viewed as this approximation to Terza’s model.�  This suggests another two step approach:  First, as usual, estimate the probit model by maximum likelihood, then compute � EMBED Equation.2  ���as before.  The second step consists of nonlinear least squares, where now the conditional mean function is E0(yi|xi) = exp((t(xi + (Mi).  As before, it is necessary to adjust the estimated asymptotic covariance matrix of the estimator of ((,().  The end result is a minor modification of Terza’s results:



   xi0  =  (E0[yi|xi]/(� EMBED Equation.2  ���  =  E0[yi|xi]� EMBED Equation.2  ���,

and			wi0  =  (E0[yi|xi]/((  =  E0[yi|xi]{(Mi(-ai - Mi)}



with other calculations the same as before.�

	Marginal effects in the selection model can be obtained from the conditional mean given earlier.  By simple differentiation, we obtain



(E[yi|xi,wi zi=1]/(xi  =  E[yi|xi,wi zi=1] ( (,



(E[yi|xi,wi zi=1]/(wi  =  E[yi|xi,wi zi=1] ( ( ( (ci - ai).



When xi and wi have variables in common, the effects are added in the marginal effect, with the first part constituting the direct effect on the conditional mean and the second part constituting the indirect effect on the probability of selection into the sample.

�2.5.  FIML Estimation



	The log-likelihood function for the full model is the joint density for the observed data.  When zi =1, (yi,xi,zi,wi) are observed. We seek P[yi,zi=1|xi,wi].  To obtain it, proceed as follows:



    P[yi,zi=1|xi,wi] = � EMBED Equation.2  ���P[yi,zi=1|xi,wi,(i] f((i)d(i  =  E({P[yi,zi=1|xi,wi,(i]}.



Conditioned on (i, zi and yi are independent.  Therefore,



P[yi,zi=1|xi,wi,(i]  =  P[yi|xi,(i]Prob[zi=1|wi,(i].



The first part, P[yi |xi,(i] is the conditional Poisson distribution with heterogeneity defined earlier.  By joint normality, f(ui|(i)  =  N[((/()(i , (1-(2)].   Therefore, Prob[zi=1|wi,(i]  is 



     Prob[ui > -((wi|wi,(i]   =  � EMBED Equation.2  ���

This is the cumulative probability from the conditional normal distribution;



Prob[zi=1|wi,(i]  = � EMBED Equation.2  ���.



Combining terms and using the earlier approach, then, the unconditional probability is



P[yi,zi=1|xi,wi]  =  

� EMBED Equation.2  ���� EMBED Equation.2  ���� EMBED Equation.2  ���� EMBED Equation.2  ���.



Let v  =  (/((� EMBED Equation.2  ���), (= (� EMBED Equation.2  ���, ( = � EMBED Equation.2  ���[(/� EMBED Equation.2  ���], and ( = [1/� EMBED Equation.2  ���](.  After making the change of variable and reparameterizing the probability as before, we obtain



              P[yi,zi=1|xi,wi]  = � EMBED Equation.2  ���� EMBED Equation.2  ���exp(-v2) � EMBED Equation.2  ���((((w + (v) dv



where  (i(v)  =  exp(((xi + (v).  As before, this can be evaluated with Hermite quadrature or approximated by simulation, since no closed form exists.  The derivatives are straightforward as well.  Note that only ((,() are in P(y) and ((,() in P(z=1), which makes computation relatively straightforward.  The two parameter vectors can vary independently.

When zi = 0, only (zi,wi) are observed.  The contribution to the likelihood function is

Prob[zi = 0|wi ]  = E([1  - Prob[ui > -((wi|wi,(i]]  = E([Prob[ui ( -((wi|wi,(i]].



This provides the probability needed to construct the likelihood function.



   		     Prob[zi = 0|wi,(i]  =  1 - ([((wi  + ((i/(� EMBED Equation.2  ���()]



so        	Prob[zi=0|wi]  =  � EMBED Equation.2  ��� � EMBED Equation.2  ���exp(-v2) ([-(((w + (v)]dv.



As before, quadrature or simulation is used to evaluate the integral.

Maximum likelihood estimates of [(, (, (, (] are obtained by maximizing



log-L  =  (z=0 logProb[zi=0|w] + (z=1 logP[yi,zi=1|x,w].



The log-likelihood and its derivatives are obtained as follows:  For observation i, if zi = 0, 



		log-Li|zi=0  =   log� EMBED Equation.2  ��� � EMBED Equation.2  ���exp(-v2)([-(((wi + (v)]dv  =  logTi,

       (log-Li|zi=0/(� EMBED Equation.2  ��� =  -(1/Ti) � EMBED Equation.2  ��� � EMBED Equation.2  ���exp(-v2) ([-(((w + (v)] � EMBED Equation.2  ���dv,

and

               (log-Li|zi=0/(� EMBED Equation.2  ��� =  � EMBED Equation.2  ���.

If zi = 1,

log-Li|zi=1  =  log[� EMBED Equation.2  ���� EMBED Equation.2  ���exp(-v2) � EMBED Equation.2  ��� ((((wi+(v)dv]

                   = log[� EMBED Equation.2  ���� EMBED Equation.2  ���exp(-v2)H(((xi + (v)((((wi + (v) dv]



                   = log Pi,

and

(logPi/(� EMBED Equation.2  ���  = (1/Pi)[� EMBED Equation.2  ��� � EMBED Equation.2  ���exp(-v2)[(H(bi)/(� EMBED Equation.2  ���]((((wi+(v) dv], bi =((xi + (v. 



But,               (H(bi)/(� EMBED Equation.2  ��� = H(bi)(logH(bi)/(� EMBED Equation.2  ���  = H(bi)(yi - (i(v))� EMBED Equation.2  ���.



The same logic and construction gives



(logPi/(� EMBED Equation.2  ��� = (1/Pi)[� EMBED Equation.2  ��� � EMBED Equation.2  ���exp(-v2)H(bi)[(((((wi+(v)/( � EMBED Equation.2  ���]dv]

                     = (1/Pi)[� EMBED Equation.2  ��� � EMBED Equation.2  ���exp(-v2)H(bi)((((wi+(v) � EMBED Equation.2  ���dv]



The BHHH estimator of the asymptotic covariance matrix for the parameter estimates is a natural choice.  Estimates of the structural parameters, ((,(,() are computed using the delta method.  Note, (2 = [2(2/(1 + 2(2)], sgn(()=sgn((), and ( = (/� EMBED Equation.2  ���.

	Terza (1996) discusses this estimator in some detail, but discards it because of its apparent computational complexity.  (Cameron and Trivedi (1996) are likewise unenthusiastic.)  In fact, as shown in several recent applications, the computations are fairly routine.



2.6.  Related Models with Selectivity



Several extensions of the heterogeneity model in Section 2.3 have been proposed in the recent literature.  Crepon and Duguet (1997) used the model to extend Lambert’s (1992) zero inflated Poisson (ZIP) model.  Their specification couples the binary choice model with a model for excess zeros:



		Prob[yi = 0|(]  =  Prob[zi* = 0|(i]  +  Prob[zi* = 1|(i]P(0|(i)



		Prob[yi = j|(]   =                               Prob[zi* = 1|(i]P(j|(i), j > 0.



(See, as well, Greene (1994).)  The binary choice is a regime switching mechanism, rather than an observation mechanism.   In the regime defined by zi = 0, yi always equals zero.  When zi = 1, yi is generated by a heterogeneous Poisson process which may produce any nonnegative value, including zero.  This model bears some similarity to the selection model, but is based on a full cross section, and is directed at the “nonPoissonness” of the observed data, rather than the observation mechanism.  The techniques used for estimation would be identical to those shown above.  Crepon and Duguet used simulation, rather than quadrature to approximate the log-likelihood and its derivatives.

Winkelmann’s (1996) model of  underreporting is also similar to ours.   He suggests the same probit and heterogeneous Poisson frameworks.  But, his observation mechanism is constructed as yi  =  (izi.  It is a model in which the selection occurs through a reporting mechanism.  The observed response is the number of events recorded, which is less than or equal to the number of events which occur.  The subtle difference between this model and ours is that one cannot observe the recording mechanism at work, only the sum of recorded events.  Thus, whereas in our model, the number of included and excluded observations is known, in Winkelmann’s, the number of nonrecorded events can only be estimated.    In essence, the selection modifies the conditional mean function, rather than the conditional distribution.  Winkelmann shows that for his model (using our notation), 

        P(yi|xi,wi(i)  =  Poisson with (i  =  exp(((xi + (i) � EMBED Equation.2  ���



Estimation of ((,(,(,() is based on the likelihood function for the observed data, which is



		log-L  =  (i log P(yi|xi,wi)  =  (i log E( P(yi|xi,wi(i)



Once again, the techniques are the same.



3.  An Application



	Greene (1992) examines a model of sample selection in the setting of a credit application model.  The variable of primary interest in that study is the probability of default on a credit card loan in the first year of activity.�  The conditioning variable for the sample selection is acceptance of the individual’s application for the credit card. (The model is largely similar to that in Boyes, Hoffman, and Low (1989).  Thus, the default model is constructed to describe the probability that an individual would default on a loan if they were given a credit card (if they were given a loan), but is based on data for individuals to whom credit cards (loans) were already granted.  Thus, there is a reasonable question as to the possibility of sample selectivity of the sort discussed earlier.

	In passing, it is noted that an important predictor of whether a credit card application will be accepted is the number of “major derogatory reports,” (MDRs) in an individual’s credit reporting files at agencies such as TRW.  An MDR is a sixty day delinquency in payment to a major credit account, such as one of the major bank cards or a major department store.  At any point in time, most people have zero MDRs in their files.  Observed values usually range from zero to three or four, but are sometimes much higher; the largest value in our sample was 14.  In this study, we view MDRs, which is clearly a candidate for a count data model, as the behavioral variable of interest.  The data analyzed in Greene (1992) are a sample of 13,777 observations on applications and account activity for a major credit card vendor.  Of the 13,777 applications represented in the sample, approximately 76% (a choice based sample) were accepted.  The default behavior and expenditure patterns in the first twelve months of holding were observed for the cardholders in the sample.  Thus, whether or not the individual has the credit card in question is the sample selection rule.  To illustrate the techniques described above, we used a random subsample of 1,319 observations from the full sample, including 1,023 cardholders.   The variables used in the study are described in Tables 1-3.� A histogram of the outcome variable for the subgroups is listed in Table 3.  The relationship between MDRs and application acceptance is strongly suggested by the data in Table 3.  In fact, we do have observations on all variables for both cardholders and noncardholders.  The sociodemographic data were obtained from the credit card applications, themselves.  The MDR data were drawn independently of the other variables in the study, and were merged to create the final data set. The latter are used to illlustrate the selectivity models.  Tables 2-3 provide descriptions for the full data set and the subsample.

	Tables 4 and 5 present results for the Poisson model and the two models with heterogeneity, the negative binomial and Poisson/lognormal mixture.  The evidence of overdispersion in the data is quite strong, as evidenced by the very large differences in the log-likelihood functions between the base model (-1367.483) and the extended models 

(-1028.254 for the negative binomial and -1034.112 for the lognormal model).  The log-likelihoods are suggestive, but because in both cases the parameter of the extended model is on the boundary of the parameter space, the usual likelihood ratio test is not valid.  An alternative test statistic is Vuong’s (1989) statistic, V = � EMBED Equation.2  ���, where mi is the log of the ratio of the predicted probabilities from the extended model and the Poisson model,.log(� EMBED Equation.2  ���.  The limiting distribution of V is standard normal, with large positive values favoring the extended model and large negative values favoring the Poisson model.  The values for our two extended models are 6.71 and 6.57.  These are consistent with the more familiar test statistics for the overdispersion parameters, ( and (.  (The result for the Vuong statistic might be expected given the deeper parameterization of the extended models, but the outcome is not assured.)  The parameter estimates for the three models are quite different, with the differences persisting in the marginal effects.  The relatively large differences suggest, first, that accounting for the heterogeneity does, indeed, produce some noticeable swings in the estimates, but, second, that different mixture models produce somewhat different estimates as well.

Tables 7-8 present the two step estimators of the sample selection model.  The differences between the selectivity corrected estimates in Tables 7 and 8 and the uncorrected results in Table 6 are not so pronounced as one might expect, given the fairly large estimate of ( and small standard error in Table 9.  However, the value of ( is close to one, which suggests another explanation that might be peculiar to this data set and others like it.  In fact, MDRs is by far the single most reliable single predictor of whether or not an application will be accepted, and it is quite reliable.  In fact, then, by accounting for cardholder status in the equation, nearly all of the selectivity is accounted for - there is little left in the unexplained part of the probit equation.  Table 9 suggests this effect.  The indirect effects of the age and income variables are the larger parts of the total effects in the conditional mean of the MDR variable.  The effect of MAJOR is divided more evenly.

	Finally, contrary to expectations, the Terza and Greene nonlinear least squares results do not differ greatly from their FIML counterparts.  Since the sample of 1023 observations is moderately large, the similarity of the three sets of coefficients is to be expected.   The standard errors for the two step estimators are not markedly larger, however.  But, one exception is the ancillary parameter, (, in Terza’s formulation, which appears to be estimated extremely imprecisely.  

�4.  Conclusions



This paper has presented an estimator of a model for count data which extends the lognormal heterogeneity model which has appeared elsewhere in the literature.  The lognormal model has proved useful in several settings, such as those in Section 2.6.   Winkelmann (1996) suggests some others, and, given recent developments, further extensions such as to the random effects model for panel data (Greene (1997b)) are equally straightforward.  The pessimism expressed in Cameron and Trivedi’s recent survey (1996, pp. 305-306) is clearly unwarranted.

It is difficult to draw general conclusions from the single application.  The different formulations of the model discussed here do present three consistent estimators of the parameters of the model, so large differences would be surprising.   The fact that the selection itself is producing relatively little movement in the estimates may be an artifact of this data set, since our dependent variable is a crucial determinant of the selection variable.  A more appropriate specification might depart from a probit model such as



				zi* = ((wi + (yi,  ui, ui ~ N[0,1]

   			zi   = sgn(zi*)

				[(i,ui] ~ N2[(0,0),((2, ((, 1)]



But, is it is not possible to proceed from here to an internally consistent selection model in which zi is the mechanism that determines whether yi is observed.  On the other hand, with a full set of observations on all variables, such as we do have here, estimating the heterogeneity model 



		P(yi|(i)  =  Poisson[(i((i)]  =  exp[-(i((i)](i((i)yi / yi!



and this binary choice model jointly would be straightforward.  The likelihood function would be built up from the joint probabilities



P(zi,yi|xi,wi)  =  E( P(zi=j|yi,wi,(i)P(yi|xi,(i), j = 0,1



using exactly the methods we considered earlier.

FIML estimation of the selection model is quite simple.  Its advantages over the two step procedures would stem from the asymptotic efficiency of a joint estimator, which is inherent, and from the approximation in Greene’s estimator.  It it could be argued that the nonlinear least squares estimators are more robust to misspecification, as they require only the sepcification of the conditional mean function.  But, the extent of this advantage seems speculative.

�Table 1.  Variables Used in the Application.  N = 1319 Observations.

MAJORDRG		Count of major derogatory reports

CARDHLDR		Binary indicator whether credit card application accepted

AGE			Age in years as of November, 1989

INCOME		Self reported income, in $10,000s

AVGEXP		Average monthly credit card expense

EXP_INC		Average monthly credit card expense/Average monthly income

MAJOR		Binary indicator of whether applicant has a major credit card

OWNRENT		Binary indicator of whether applicant owns their home

DEPNDT		Number of dependents

INC_PER		Monthly income divided by 1 + DEPNDT

SELFEMPL		Binary indicator of whether the applicant is self-employed

OPEN			Number of reported credit card accounts

ACTIVE		Number of active credit card accounts

CUR_ADD		Number of months living at current address



Table 2.  Descriptive Statistics 

            Full Sample (n=1319)    Cardholders (n=1023)   Min.    Max.

Variable 	Mean		Std.Dev.	 Mean       Std.Dev.   (Full Sample)

MAJORDRG	0.456406	1.34527	 0.129032	0.416123    0	  14	 

CARDHLDR	0.775588	0.417353	 1.000000	0.000000    0	   1 

AGE		33.2131	10.1428	 33.216	10.2108     0.17a	  83.5

INCOME	3.36538	1.6939	 3.45127	1.70712     0.21	  13.5 

EXP_INC	0.0687322	0.0946556	 0.0884815	0.0990702   0.0001  0.91

AVGEXP	185.057	272.219	 238.602	287.71	0       3100 

MAJOR		0.817286	0.386579	 0.839687	0.367075	0	   1	 

OWNRENT	0.440485	0.496634	 0.479961	0.499843	0 	   1	 

DEPNDT	0.993935	1.24775	 0.969697	1.24261	0	   6	 

INC_PER	2.1556	1.36351	 2.21874	1.35119  	0.07	  11	 

SELFEMPL	0.0689917	0.253536	 0.0615836	0.240515 	0	   1	 

ACTIVE	6.99697	6.30581	 7.26979	6.0824	0	  46	 

OPEN		6.36012	6.05325	 7.04888	6.02616	0 	  37	 

CUR_ADD	55.2676	66.2717	 55.2581	64.7099	0	 540	 

aSix observations in the sample which appear to be miscoded were used as is.



�



      Table 3.  Counts of MDRs for All 

      Observations and Cardholders

 MDRs�All�Card

Holders��0�1060�915��1�137�90��2�50�13��3�24�4��4�17�1��5�11�0��6�5�0��7�6�0��8�0�0��9�2�0��10�1�0��11�4�0��12�1�0��13�0�0��14�1�0���Table 4.  Estimated Models with Heterogeneity Based on Full Sample



Models for MDRs

���

Poisson

�

Negative Binomial�

Poisson-Normal��

Variable�

Parameter  t-ratio�

Parameter   t-ratio�

Parameter   t-ratio

��Constant�-0.3695�-2.12�-0.8781�-2.29�-2.3397�-6.08��AGE�0.0053�1.32�0.0110�1.20�0.0116�1.32��INCOME�-0.0246�-0.86�-0.0061�-0.11�0.0416�0.86��EXP_INC�-17.9757�-8.16�-9.2936�-5.36�-8.9677�-5.06��AVGEXP�0.0014�2.40�0.0006�0.90�0.0004�0.63��MAJOR�0.0460�0.44�0.0552�0.27�-0.0857�-0.44����������(���4.8133�9.33����(�����1.7562�17.24��Vuong���6.7069��6.5718���Log-L�-1367.483��-1028.254��-1034.112���Log-L (0)�-1498.484�������Log-LPsn�-1367.483��-1367.483��-1367.483���

Table 5.  Estimated Marginal Effects for Count Data Models: Full Sample

Marginal Effects for Models for MDRs���Poisson�Negative Binomial�Poisson-Normal

��Variable�Parameter   t-ratio�Parameter   t-ratio�Parameter   t-ratio

��AGE�0.0024�1.12�0.0048�1.03�0.0058�1.26��INCOME�-0.0112�-0.74�-0.0026�-0.10�0.0208�0.85��EXP_INC�-8.2042�-8.16�-4.0073�-3.42�-4.4835�-3.31��AVGEXP�0.0064�1.99�0.0003�0.82�0.0002�0.62��MAJOR�0.0210�0.38�0.0238�0.24�-0.0429�-0.44����������Mean�0.4564��0.4312��0.4999���

�                          

Table 6.  Estimated Poisson Model Ignoring Selectivity: Cardholders Only.

Log likelihood function       -407.9441

          Coefficient Estimates        Marginal Effects

Variable  Coefficient      t-ratio     Coefficient      t-ratio

Constant   -3.615542        -8.574     

AGE         .1880018E-01     2.154     .2425830E-02     1.592

INCOME      .1341672         2.470     .1731189E-01     1.741

EXP_INC     1.985568         1.570     .2562023         1.262

AVGEXP      .4826625E-04      .122     .6227904E-05      .108

MAJOR       .2416640          .900     .3118245E-01      .768





Table 7.  Estimated Probit Model for Sample Inclusion (Cardholder Status)

                        Single Equation ML           FIML Estimated with Poisson Model

Variable  Coefficient    t-ratio       Coefficient    t-ratio

Constant    0.542        2.95             0.305        2.191 

AGE        -0.0086      -1.72            -0.0039      -1.26

INCOME      0.092        1.73             0.0523       1.62

MAJOR       0.212        2.06             0.114        1.65

OWNRENT     0.349        3.46             0.199        2.33

DEPNDNT    -0.131        1.90            -0.0726      -1.62

INC_PER    -0.015       -0.21            -0.144       -0.39

SELFEMPL   -0.201       -1.23            -0.121       -1.24

OPEN       -0.286      -11.67             0.165        3.08

CURADD     -0.0004      -0.58            -0.0004      -1.03

ACTIVE     -0.230      -10.75            -0.136       -3.06

 

Table 8.  Estimates of Selection Models

                         Greene, NLSQ                 Terza NLSQ                      FIML

Variable  Coefficient  t-ratio Coefficient t-ratio  Coefficient t-ratio

Constant	-5.345	-7.22     -4.068	  -6.83	-4.700	-8.16

Age		 0.0128	 1.16	     0.0142	   1.34	 0.0170      1.45

Income	 0.191	 3.20	     0.136	   2.32	 0.161	 2.02

Exp._Inc.	 1.775	 1.88	     1.734	   1.61	 1.718       0.75

Avg._Exp.   -0.0000268	-0.09	    -0.0000362 -.09	 0.0000179	-0.09

Major		 1.376	 2.33	     0.811	   1.65	 0.333	 1.03

Mi		 1.969       6.72

(					     3.365     0.11

(									0.966 	 7.29

(									1.268        6.09

e(e  		     165.319		    168.262	  		177.183

�Table 9.  Estimated Marginal Effects Based on Selection Models

  FIML           Two Step Estimators

                            Terza         Greene

 Estimated Conditional Mean at Data Means  

      	0.1096         0.1116		 0.0871

 Direct Effect From Poisson Probability

 AGE        0.001864       0.001656	 	 0.001115

 INCOME     0.01770        0.015861		 0.01663

 EXP_INC    0.1885         0.20223	 	 0.1546

 AVGEXP     0.1967E-04    -4.2233e-6	-2.334e-6

 MAJOR      0.03653        0.094584		 0.1194

 Indirect Effects from Selection Equation

 AGE        0.0001674      0.0002607	 0.0005187

 INCOME    -0.002246      -0.002798		-0.005490

 MAJOR     -0.004891      -0.006443		-0.01265

 OWNRENT   -0.008547      -0.1061  		-0.02084

 DEPNDT     0.003116       0.000397	 	 0.007802

 INC_PER    0.0006186      0.0004558	 0.0008949

 SELFEMPL   0.005184       0.006124	 	 0.01203

 ACCOUNTS  -0.007078      -0.008718		-0.01712

 CUR_ADD    0.1846E-04     1.2441e-5	 2.4425e-5

 ACTIVE     0.005848       0.006992	 	 0.013728

 Total Effect

 AGE        0.002032       0.001917	 	 0.001634

 INCOME     0.01545        0.01306		 0.01114

 MAJOR      0.03164        0.08824		 0.1067













�Appendix.  LIMDEP Computations for the Sample Selection Estimators



/*  Computation of estimators and appropriate asymptotic covariance

    matrices for Terza and Greene nonlinear least squares estimators.

    The routine is general - different applications change only the

    namelist definitions and the variable names given to Y and Z.

*/

? Define lists of variables used in the computations.

Namelist ; W=one,age,income,major,ownrent,depndt,inc_per,selfempl,

             accounts,cur_add,active

         ; X=one,age,income,exp_inc,avgexp,major$

? LHS variables in regression and probit model.

Create   ; Y = Majordrg

         ; Z = Cardhldr $

? Probit estimates.  Mills ratio is kept for Greene estimator.

Probit   ; Lhs = Z ; Rhs=W ; Hold(IMR=Mi)$

? Retain estimators for later.

Matrix   ; Alpha = b ; Valpha = VARB $



? Uncorrected estimates, for starting values


Poisson  ; Lhs = Y ; Rhs = X $


Matri
x
   ; BPois = b $



? Heckman form of mean corrected Poisson


Poisson  ; Lhs = Y ; Rhs = X ; Selection $


? FIML estimator is internal:

Poisson  ; Lhs = Y ; Rhs = X ; Selection ; MLE $

? 2 Step estimators - covariance matrices must be constructed.

? Use selected subsample

Reject   ; Z = 0$

? AI appears in conditional mean function, uses first step estimates

Create   ; Ai=Alpha'W$

? Nonlinear Least Squares

Calc     ; K = Col(X) $   ? Number of variables in X.

NLSQ     ; Lhs = Y

         ; Fcn = exp(b1'x) * Phi(ai+t) / Phi(ai)

         ; Labels = K_b,t 
 


         ; Start  = 
BPois
,0 $

? (For Greene's estimator, change Fcn to exp(b1'x+t*mi)

Matrix   ; Beta = Part(b,1,K) $

Calc     ; Theta= b(kreg) $ (Kreg=#parameters, left by NLSQ)

Create   ; bi=beta'x

         ; ey=exp(bi)*phi(ai+theta)/phi(ai)  ? conditional mean function

         ; gi=n01(ai+theta)/phi(ai+theta)
 
   ? ey*gi=dey/dtheta

         ; ui=y-ey                           ? residual

         ; pj=gi-mi                          ? dey/dalpha'z

         ; wb=ey*ey                          ? invS = <D'[wb]D>

         ; wh=ey*ey*ui*ui                    ? H    = D'[wh]D

         ; wp=ey*ey*pj$                      ? G    = D'[wp]Z

? (For Greene's estimator, the only changes needed are

?      ey to exp(bi + theta*mi)

?      gi to gi=mi and pj to

?      pj to -theta * mi * (ai+mi).

? Asymptotic covariance matrix, in two parts.

Namelist ; D=x,gi$

Matrix   ; V = <D'[wb]D> * D'[wh]D * <D'[wb]D>

             + <D'[wb]D> * D'[wp]Z * Valpha * Z'[wp]D * <D'[wb]D>

         ; Stat (B,V) $ 
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� Terza (1995) presents several of the formal results used in this paper.  But, he focuses his discussion on the single equation, nonlinear least squares estimators.  Winkelmann (1996,1997) suggests the model developed here, but does not pursue the issue.  Likewise, Crepon and Duguet (1997) give results which are suggestive of ours, but pursue a different, albeit related specifiation.  These precursors will be noted in more detail below.

� Most of the current literature is based on Heckman’s pioneering work (1979).  Although a spate of recent literature, e.g. Manski (1990) and Newey et al. (1990) has questioned the implications of the fully parametrized nature of the model, the applied literature remains dominated by Heckman’s and “Heckman-like” (e.g., Lee (1983) formulations.  Nonparametric and semiparametric approaches are outside the scope of this paper.

� We will only sketch the model formulation.  There are more detailed treatments in many standard references, such as Heckman (1979) and Greene (1997a, Chapter 20).

� The use of the symbol (i rather than Mi is more familiar in the literature, but this would conflict with another standard notation that will appear in the discussion to follow.

� For an innovative alternative approach for panel data modelling, see Nagin and Land (1993).

� Yet another approach is suggested by Gourieroux and Visser (1997).

� Tables of the weights, wh and nodes, vh for the Hermite quadrature can be found in Abramovitz and Stegun (1971).

�  See, e.g., the symposium in the Review of Economics and Statistics, November, 1994, and  Crepon and Duguet (1997).

� The pool of draws must be fixed, or the optimization is unstable.  This is most easily done by fixing R at the outset, and assigning each observation its own unique seed for the random number generator, which is restarted each time observation i is used.  This insures that the same set of draws is used every time the probability or gradient is computed.

� The technique was applied in Freund, et al. (1997).



� Cameron and Trivedi (1996, p. 306) make the same observation, suggesting that “ad hoc adjustment based on adding the Mill’s ratio to the conditional mean by analogy with the linear case is flawed.”

� If it were known, the result on page 266 of Maddala (1983) could be used directly.

� Terza also derived a method of moments estimator for (, which then identifies ( = (/(.  The result is tangential for our purposes.

� Since the conditional mean is an approximation, it remains to be shown that the nonlinear least squares estimator based on the approximation is consistent for the same parameters as is that based on the true function.  Kmenta’s (1967) approximation to the CES production function is an early application that has the same characteristics.

� The computations will be straightforward with most current econometrics computer packages.  A short LIMDEP program to do them is given in the appendix.  Gauss code for this model would be likewise brief.

� The identity of the vendor is, at their request, not revealed.  Since the behavioral variable in this study pertains to the general finances of the individual, the credit card, itself, is immaterial.

� The data set can be downloaded from http://www.stern.nyu.edu/~wgreene/poisson.selection.dat.
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