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THE GRANULAR ORIGINS OF AGGREGATE FLUCTUATIONS

BY XAVIER GABAIX1

This paper proposes that idiosyncratic firm-level shocks can explain an important
part of aggregate movements and provide a microfoundation for aggregate shocks. Ex-
isting research has focused on using aggregate shocks to explain business cycles, argu-
ing that individual firm shocks average out in the aggregate. I show that this argument
breaks down if the distribution of firm sizes is fat-tailed, as documented empirically.
The idiosyncratic movements of the largest 100 firms in the United States appear to
explain about one-third of variations in output growth. This “granular” hypothesis sug-
gests new directions for macroeconomic research, in particular that macroeconomic
questions can be clarified by looking at the behavior of large firms. This paper’s ideas
and analytical results may also be useful for thinking about the fluctuations of other
economic aggregates, such as exports or the trade balance.

KEYWORDS: Business cycle, idiosyncratic shocks, productivity, Solow residual, gran-
ular residual.

1. INTRODUCTION

THIS PAPER PROPOSES a simple origin of aggregate shocks. It develops the view
that a large part of aggregate fluctuations arises from idiosyncratic shocks to in-
dividual firms. This approach sheds light on a number of issues that are difficult
to address in models that postulate aggregate shocks. Although economy-wide
shocks (inflation, wars, policy shocks) are no doubt important, they have dif-
ficulty explaining most fluctuations (Cochrane (1994)). Often, the explanation
for year-to-year jumps of aggregate quantities is elusive. On the other hand,
there is a large amount of anecdotal evidence of the importance of idiosyn-
cratic shocks. For instance, the Organization for Economic Cooperation and
Development (OECD (2004)) analyzed that, in 2000, Nokia contributed 1.6
percentage points of Finland’s gross domestic product (GDP) growth.2 Like-
wise, shocks to GDP may stem from a variety of events, such as successful

1For excellent research assistance, I thank Francesco Franco, Jinsook Kim, Farzad Saidi, Hei-
wai Tang, Ding Wu, and, particularly, Alex Chinco and Fernando Duarte. For helpful comments,
I thank the co-editor, four referees, and seminar participants at Berkeley, Boston University,
Brown, Columbia, ECARES, the Federal Reserve Bank of Minneapolis, Harvard, Michigan,
MIT, New York University, NBER, Princeton, Toulouse, U.C. Santa Barbara, Yale, the Econo-
metric Society, the Stanford Institute for Theoretical Economics, and Kenneth Arrow, Robert
Barsky, Susanto Basu, Roland Bénabou, Olivier Blanchard, Ricardo Caballero, David Canning,
Andrew Caplin, Thomas Chaney, V. V. Chari, Larry Christiano, Diego Comin, Don Davis, Bill
Dupor, Steve Durlauf, Alex Edmans, Martin Eichenbaum, Eduardo Engel, John Fernald, Je-
sus Fernandez-Villaverde, Richard Frankel, Mark Gertler, Robert Hall, John Haltiwanger, Chad
Jones, Boyan Jovanovic, Finn Kydland, David Laibson, Arnaud Manas, Ellen McGrattan, Todd
Mitton, Thomas Philippon, Robert Solow, Peter Temin, Jose Tessada, and David Weinstein.
I thank for NSF (Grant DMS-0938185) for support.

2The example of Nokia is extreme but may be useful. In 2003, worldwide sales of Nokia were
$37 billion, representing 26% of Finland’s GDP of $142 billion. This is not sufficient for a proper
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FIGURE 1.—Sum of the sales of the top 50 and 100 non-oil firms in Compustat, as a fraction
of GDP. Hulten’s theorem (Appendix B) motivates the use of sales rather than value added.

innovations by Walmart, the difficulties of a Japanese bank, new exports by
Boeing, and a strike at General Motors.3

Since modern economies are dominated by large firms, idiosyncratic shocks
to these firms can lead to nontrivial aggregate shocks. For instance, in Korea,
the top two firms (Samsung and Hyundai) together account for 35% of ex-
ports, and the sales of those two firms account for 22% of Korean GDP (di
Giovanni and Levchenko (2009)). In Japan, the top 10 firms account for 35%
of exports (Canals, Gabaix, Vilarrubia, and Weinstein (2007)). For the United
States, Figure 1 reports the total sales of the top 50 and 100 firms as a fraction
of GDP. On average, the sales of the top 50 firms are 24% of GDP, while the
sales of the top 100 firms are 29% of GDP. The top 100 firms hence represent a
large part of the macroeconomic activity, so understanding their actions offers
good insight into the aggregate economy.

In this view, many economic fluctuations are not, primitively, due to small
diffuse shocks that directly affect every firm. Instead, many economic fluctua-
tions are attributable to the incompressible “grains” of economic activity, the

assessment of Nokia’s importance, but gives some order of magnitude, as the Finnish base of
Nokia is an important residual claimant of the fluctuations of Nokia International.

3Other aggregates are affected as well. For instance, in December 2004, a $24 billion one-time
Microsoft dividend boosted growth in personal income from 0.6% to 3.7% (Bureau of Economic
Analysis, January 31, 2005). A macroeconomist would find it difficult to explain this jump in
personal income without examining individual firm behavior.
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large firms. I call this view the “granular” hypothesis. In the granular view,
idiosyncratic shocks to large firms have the potential to generate nontrivial ag-
gregate shocks that affect GDP, and via general equilibrium, all firms.

The granular hypothesis offers a microfoundation for the aggregate shocks
of real business cycle models (Kydland and Prescott (1982)). Hence, real busi-
ness cycle shocks are not, at heart, mysterious “aggregate productivity shocks”
or “a measure of our ignorance” (Abramovitz (1956)). Instead, they are well
defined shocks to individual firms. The granular hypothesis sheds light on a
number of other issues, such as the dependence of the amplitude of GDP
fluctuations on GDP level, the microeconomic composition of GDP, and the
distribution of GDP and firm-level fluctuations.

In most of this paper, the standard deviation of the percentage growth rate
of a firm is assumed to be independent of its size.4 This explains why individual
firms can matter in the aggregate. If Walmart doubles its number of supermar-
kets and thus its size, its variance is not divided by 2—as would be the case if
Walmart were the amalgamation of many independent supermarkets. Instead,
the newly acquired supermarkets inherit the Walmart shocks, and the total per-
centage variance of Walmart does not change. This paper conceptualizes these
shocks as productivity growth, but the analysis holds for other shocks.5

The main argument is summarized as follows. First, it is critical to show that
1/

√
N diversification does not occur in an economy with a fat-tailed distrib-

ution of firms. A simple diversification argument shows that, in an economy
with N firms with independent shocks, aggregate fluctuations should have a
size proportional to 1/

√
N . Given that modern economies can have millions

of firms, this suggests that idiosyncratic fluctuations will have a negligible ag-
gregate effect. This paper points out that when firm size is power-law distrib-
uted, the conditions under which one derives the central limit theorem break
down and other mathematics apply (see Appendix A). In the central case of
Zipf’s law, aggregate volatility decays according to 1/ lnN , rather than 1/

√
N .

The strong 1/
√
N diversification is replaced by a much milder one that de-

cays according to 1/ lnN . In an economy with a fat-tailed distribution of firms,
diversification effects due to country size are quite small.

Having established that idiosyncratic shocks do not die out in the aggre-
gate, I show that they are of the correct order of magnitude to explain business
cycles. We will see that if firm i has a productivity shock dπi, these shocks

4The benchmark that the variance of the percentage growth rate is approximately independent
of size (“Gibrat’s law” for variances) appears to hold to a good first degree; see Section 2.5.

5The productivity shocks can come from a decision of the firm’s research department, of the
firm’s chief executive officer, of how to process shipments, inventories, or which new line of prod-
ucts to try. They can also stem from changes in capacity utilization, and, particularly, strikes.
Suppose a firm, which uses only capital and labor, is on strike for half the year. For many pur-
poses, its effective productivity that year is halved. This paper does not require the productivity
shocks to arise from any particular source.
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are independent and identically distributed (i.i.d.) and there is no amplifica-
tion mechanism, then the standard deviation of total factor productivity (TFP)
growth is σTFP = σπh, where σπ is the standard deviation of the i.i.d. pro-
ductivity shocks and h is the sales herfindahl of the economy. Using the es-
timate of annual productivity volatility of σπ = 12% and the sales herfindahl
of h = 5�3% for the United States in 2008, one predicts a TFP volatility equal
to σTFP = 12% · 5�3% = 0�63%. Standard amplification mechanisms generate
the order of magnitude of business cycle fluctuations, σGDP = 1�7%. Non-U.S.
data lead to even larger business cycle fluctuations. I conclude that idiosyn-
cratic granular volatility seems quantitatively large enough to matter at the
macroeconomic level.

Section 3 then investigates accordingly the proportion of aggregate shocks
that can be accounted for by idiosyncratic fluctuations. I construct the “granu-
lar residual” Γt , which is a parsimonious measure of the shocks to the top 100
firms:

Γt :=
K∑
i=1

salesi�t−1

GDPt−1
(git − gt)�

where git − gt is a simple measure of the idiosyncratic shock to firm i. Regress-
ing the growth rate of GDP on the granular residual yields an R2 of roughly
one-third. Prima facie, this means that idiosyncratic shocks to the top 100 firms
in the United States can explain one-third of the fluctuations of GDP. More so-
phisticated controls for common shocks confirm this finding. In addition, the
granular residual turns out to be a useful novel predictor of GDP growth which
complements existing predictors. This supports the view that thinking about
firm-level shocks can improve our understanding of GDP movements.

Previous economists have proposed mechanisms that generate macroeco-
nomic shocks from purely microeconomic causes. A pioneering paper is by
Jovanovic (1987), whose models generate nonvanishing aggregate fluctuations
owing to a multiplier proportional to

√
N , the square root of the number

of firms. However, Jovanovic’s theoretical multiplier of
√
N � 1000 is much

larger than is empirically plausible.6 Nonetheless, Jovanovic’s model spawned a
lively intellectual quest. Durlauf (1993) generated macroeconomic uncertainty
with idiosyncratic shocks and local interactions between firms. The drivers of
his results are the nonlinear interactions between firms, while in this paper
it is the skewed distribution of firms. Bak, Chen, Scheinkman, and Woodford
(1993) applied the physical theory of self-organizing criticality. While there is
much to learn from their approach, it generates fluctuations more fat-tailed
than in reality, with infinite means. Nirei (2006) proposed a model where ag-
gregate fluctuations arise from (s� S) rules at the firm level, in the spirit of Bak

6If the actual multiplier were so large, the impact of trade shocks, for instance, would be much
higher than we observe.
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et al. (1993). These models are conceptually innovative, but they are hard to
work with theoretically and empirically. The mechanism proposed in this paper
is tractable and relies on readily observable quantities.

Long and Plosser (1983) suggested that sectoral (rather than firm) shocks
might account for GDP fluctuations. As their model has a small number of
sectors, those shocks can be viewed as miniaggregate shocks. Horvath (2000),
as well as Conley and Dupor (2003), explored this hypothesis further. They
found that sector-specific shocks are an important source of aggregate volatil-
ity. Finally, Horvath (1998) and Dupor (1999) debated whether N sectors can
have a volatility that does not decay according to 1/

√
N . I found an alternative

solution to their debate, which is formalized in Proposition 2. My approach re-
lies on those earlier contributions and clarifies that the fat-tailed nature of the
sectoral shocks is important theoretically, as it determines whether the central
limit theorem applies.

Studies disagree somewhat on the relative importance of sector-specific
shocks, aggregate shocks, and complementarities. Caballero, Engel, and Halti-
wanger (1997) found that aggregate shocks are important, while Horvath
(1998) concluded that sector-specific shocks go a long way toward explaining
aggregate disturbances. Many of these effects in this paper could be expressed
in terms of sectors.

Granular effects are likely to be even stronger outside the United States, as
the United States is more diversified than most other countries. One number
reported in the literature is the value of the assets controlled by the richest
10 families, divided by GDP. Claessens, Djankov, and Lang (2000) found a
number equal to 38% in Asia, including 84% of GDP in Hong Kong, 76% in
Malaysia, and 39% in Thailand. Faccio and Lang (2002) also found that the
top 10 families control 21% of listed assets in their sample of European firms.
It would be interesting to transpose the present analysis to those countries and
to entities other than firms—for instance, business groups or sectors.

This paper is organized as follows. Section 2 develops a simple model. It also
provides a calibration that indicates that the effects are of the right order of
magnitude to account for macroeconomic fluctuations. Section 3 shows directly
that the idiosyncratic movements of firms appear to explain, year by year, about
one-third of actual fluctuations in GDP, and also contains a narrative of the
granular residual and GDP. Section 4 concludes.

2. THE CORE IDEA

2.1. A Simple “Islands” Economy

This section uses a concise model to illustrate the idea. I consider an islands
economy with N firms. Production is exogenous, like in an endowment econ-
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omy, and there are no linkages between firms (those will be added later). Firm
i produces a quantity Sit of the consumption good. It experiences a growth rate

�Si�t+1

Sit

= Si�t+1 − Sit

Sit

= σiεi�t+1�(1)

where σi is firm i’s volatility and εi�t+1 are uncorrelated random variables with
mean 0 and variance 1. Firm i produces a homogeneous good without any
factor input. Total GDP is

Yt =
N∑
i=1

Sit(2)

and GDP growth is

�Yt+1

Yt

= 1
Yt

N∑
i=1

�Si�t+1 =
N∑
i=1

σi

Sit

Yt

εi�t+1�

As the shocks εi�t+1 are uncorrelated, the standard deviation of GDP growth is
σGDP = (var �Yt+1

Yt
)1/2:

σGDP =
(

N∑
i=1

σ2
i ·

(
Sit

Yt

)2
)1/2

�(3)

Hence, the variance of GDP, σ2
GDP, is the weighted sum of the variance σ2

i of
idiosyncratic shocks with weights equal to ( Sit

Yt
)2, the squared share of output

that firm i accounts for. If the firms all have the same volatility σi = σ , we
obtain

σGDP = σh�(4)

where h is the square root of the sales herfindahl of the economy:

h =
[

N∑
i=1

(
Sit

Yt

)2
]1/2

�(5)

For simplicity, h will be referred to as the herfindahl of the economy.
This paper works first with the basic model (1)–(2). The arguments apply if

general equilibrium mechanisms are added.
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2.2. The 1/
√
N Argument for the Irrelevance of Idiosyncratic Shocks

Macroeconomists often appeal to aggregate (or at least sectorwide) shocks,
since idiosyncratic fluctuations disappear in the aggregate if there is a large
number of firms N . Consider firms of initially identical size equal to 1/N of
GDP and identical standard deviation σi = σ . Then (4)–(5) gives:

σGDP = σ√
N
�

To estimate the order of magnitude of the cumulative effect of idiosyncratic
shocks, take an estimate of firm volatility σ = 12% from Section 2.4 and con-
sider an economy with N = 106 firms.7 Then

σGDP = σ√
N

= 12%
103

= 0�012% per year.

Such a GDP volatility of 0�012% is much too small to account for the em-
pirically measured size of macroeconomic fluctuations of around 1%. This is
why economists typically appeal to aggregate shocks. More general modelling
assumptions predict a 1/

√
N scaling, as shown by the next proposition.

PROPOSITION 1: Consider an islands economy with N firms whose sizes are
drawn from a distribution with finite variance. Suppose that they all have the same
volatility σ . Then the economy’s GDP volatility follows, as N → ∞

σGDP ∼ E[S2]1/2

E[S]
σ√
N
�(6)

PROOF: Since σGDP = σh, I examine h: N1/2h = (N−1 ∑N
i=1 S

2
i )

1/2

N−1 ∑N
i=1 Si

. The law of

large numbers ensures that N−1
∑N

i=1 S
2
i

a�s�→ E[S2] and N−1
∑N

i=1 Si
a�s�→ E[S]. This

yields N1/2h
a�s�→ E[S2]1/2/E[S]. Q.E.D.

Proposition 1 will be contrasted with Proposition 2 below, which shows that
different models of the size distribution of firms lead to dramatically different
results.

2.3. The Failure of the 1/
√
N Argument When

the Firm Size Distribution Is Power Law

The firm size distribution, however, is not thin-tailed, as assumed in Propo-
sition 1. Indeed, Axtell (2001), using Census data, found a power law with ex-
ponent ζ = 1�059 ± 0�054. Hence, the size distribution of U.S. firms is well

7Axtell (2001) reported that in 1997 there were 5.5 million firms in the United States.



740 XAVIER GABAIX

approximated by the power law with exponent ζ = 1, the “Zipf” distribution
(Zipf (1949)). This finding holds internationally, and the origins of this distrib-
ution are becoming better understood (see Gabaix (2009)). The next proposi-
tion examines behavior under a “fat-tailed” distribution of firms.

PROPOSITION 2: Consider a series of island economies indexed by N ≥ 1.
Economy N has N firms whose growth rate volatility is σ and whose sizes
S1� � � � � SN are drawn from a power law distribution

P(S > x) = ax−ζ(7)

for x > a1/ζ , with exponent ζ ≥ 1. Then, as N → ∞, GDP volatility follows

σGDP ∼ vζ

lnN
σ for ζ = 1�(8)

σGDP ∼ vζ

N1−1/ζ
σ for 1 < ζ < 2�(9)

σGDP ∼ vζ

N1/2
σ for ζ ≥ 2�(10)

where vζ is a random variable. The distribution of vζ does not depend on N and σ .
When ζ ≤ 2, vζ is the square root of a stable Lévy distribution with exponent ζ/2.
When ζ > 2, vζ is simply a constant. In other terms, when ζ = 1 (Zipf ’s law),
GDP volatility decays like 1/ lnN rather than 1/

√
N .

In the above proposition, an expression like σGDP ∼ vζ

N1−1/ζ σ means σGDP ×
N1−1/ζ converges to vζσ in distribution. More formally, for a series of random
variables XN and of positive numbers aN , XN ∼ aNY means that XN/aN

d→ Y

as N → ∞, where
d→ is the convergence in distribution.

I comment on the economics of Proposition 2 before proving it. The firm size
distribution has thin tails, that is, finite variance, if and only if ζ > 2. Proposi-
tion 1 states that if the firm size distribution has thin tails, then σGDP decays
according to 1/

√
N . In contrast, Proposition 2 states that if the firm size distri-

bution has fat tails (ζ < 2), then σGDP decays much more slowly than 1/
√
N : it

decays as 1/N1−1/ζ .
To get the intuition for the scaling, take the case a = 1 and observe that (7)

implies that “typical” size S1 of the largest firm is such that S−ζ
1 = 1/N , hence

S1 = N1/ζ (see Sornette (2006) for that type of intuition). In contrast, GDP is
Y � NE[S] when ζ > 1 by the law of large numbers. Hence, the share of the
largest firm is S1/Y = N−(1−1/ζ)/E[S] ∝ N−(1−1/ζ):8 this is a small decay when

8Here f (Y) ∝ g(Y) for some functions f�g means that the ratio f (Y)/g(Y) tends, for large
Y , to be a positive real number. So f and g have the same scaling “up to a constant factor.”
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ζ is close to 1. Likewise, the size of the top k firms satisfies S−ζ
k = k/N , so

Sk = (N/k)1/ζ . Hence, the share of the largest K firms (for a fixed K) is pro-
portional to N−(1−1/ζ). Plugging this into (5), we see that the herfindahl, and
GDP volatility, is proportional to N−(1−1/ζ).

In the case ζ = 1, E[S] = ∞, so GDP cannot be Y � NE[S]. The following
heuristic reasoning gives the correct value. As firm size density is x−2 and we
saw that the largest firm has typical size N , the typical average firm size is SN =∫ N

1 x−2xdx = lnN , and then Y � NSN = N lnN . Hence, the share of the top
firm is S1/Y = 1/ lnN . By the above reasoning, GDP volatility is proportional
to 1/ lnN .

The perspective of Proposition 2 is that of an economist who knows the GDP
of various countries, but not the size of their respective firms, except that, for
instance, they follow Zipf’s law. Then he would conclude that the volatility
of a country of size N should be proportional to 1/ lnN . This explains the vζ
terms in the distribution of σGDP: when ζ < 2, GDP volatility (and the herfind-
ahl h) depends on the specific realization of the size distribution of top firms.
Because of the fat-tailedness of the distribution of firms, σGDP does not have
a degenerate distribution even as N → ∞. For the same reason, when ζ > 2,
the law of large numbers applies and the distribution of volatility does become
degenerate. Of course, if the economist knows the actual size of the firms, then
she could calculate the standard deviation of GDP directly by calculating the
herfindahl index. Note also that as GDP is made of some large firms, GDP
fluctuations are typically not Gaussian (mathematically, the Lindeberg–Feller
theorem does not apply, because there are some large firms). The ex ante dis-
tribution is developed further in Proposition 3.

Having made these remarks about the meaning of Proposition 2, let me
present its proof.

PROOF OF PROPOSITION 2: Since σGDP = σh, I examine

h =
N−1

(
N∑
i=1

S2
i

)1/2

N−1
N∑
i=1

Si

�(11)

I observe that when ζ > 1, the law of large numbers gives

N−1
N∑
i=1

Si → E[S](12)
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almost surely, so

h ∼
N−1

(
N∑
i=1

S2
i

)1/2

E[S] �

I will first complete the above heuristic proof for the scaling as a function N ,
which will be useful to ground the intuition, and then present a formal proof
which relies on the heavier machinery of Lévy’s theorem.

Heuristic Proof. For simplicity, I normalize a = 1. I observe that the size of
the ith largest firm is approximately

Si�N =
(

i

N

)−1/ζ

�(13)

The reason for (13) is the following. As the counter-cumulative distribution
function (CDF) of the distribution is x−ζ , the random variable S−ζ follows
a uniform distribution. Hence, the size of firm number i out of N follows
E[S−ζ

i�N] = i/(N + 1). So in a heuristic sense, we have S−ζ
i�N � i/(N + 1) or, more

simply, (13).
From representation (13), the herfindahl can be calculated as

hN ∼
N−1+1/ζ

(
N∑
i=1

i−2/ζ

)1/2

E[S] �

In the fat-tailed case, ζ < 2, the series
∑∞

i=1 i
−2/ζ converges, hence

hN ∼
N−1+1/ζ

( ∞∑
i=1

i−2/ζ

)1/2

E[S] = CN−1+1/ζ

for a constant C . Volatility scales as N−1+1/ζ , as in (9).
In contrast, in the finite-variance case, the series

∑∞
i=1 i

−2/ζ diverges and we
have

∑N

i=1 i
−2/ζ ∼ ∫ N

1 i−2/ζ di ∼ N1−2/ζ/(1 − 2/ζ), so that

hN ∼ N−1+1/ζ(N1−2/ζ/(1 − 2/ζ))1/2

E[S] = C ′N−1/2�

and as expected volatility scales as N−1/2.
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Rigorous Proof. When ζ > 2, the variance of firm sizes is finite and I use
Proposition 1. When ζ ≤ 2, I observe that S2

i has power-law exponent ζ/2 ≤ 1,
as shown by

P(S2 > x)= P
(
S > x1/2

) = a
(
x1/2

)−ζ = ax−ζ/2�

So to handle the numerator of (11), I use Lévy’s theorem from Appendix A.
This implies

N−2/ζ
N∑
i=1

S2
i

d→ u�

where u is a Lévy-distributed random variable with exponent ζ/2. So when
ζ ∈ (1�2], I can use the fact (12) to conclude

N1−1/ζh =

(
N−2/ζ

N∑
i=1

S2
i

)1/2

N−1
N∑
i=1

Si

d→ u1/2

E[S] �

When ζ = 1, additional care is required, because E[S] = ∞. Lévy’s theorem
applied to Xi = Si gives aN =N and bN =N lnN , hence

1
N

(
N∑
i=1

Si −N lnN

)
d→ g�

where g follows a Lévy distribution with exponent 1, which implies

Y =
N∑
i=1

Si ∼N lnN�(14)

I conclude h ∼ u1/2/ lnN . Q.E.D.

I conclude with a few remarks. Proposition 2 offers a resolution to the debate
between Horvath (1998, 2000) and Dupor (1999). Horvath submited evidence
that sectoral shocks may be enough to generate aggregate fluctuations. Du-
por (1999) debated this on theoretical grounds and claimed that Horvath was
able to generate large aggregate fluctuations only because he used a moderate
number of sectors (N = 36). If he had many more finely disaggregated sectors
(e.g., 100 times as many), then aggregate volatility would decrease in 1/

√
N

(e.g., 10 times smaller). Proposition 2 illustrates that both viewpoints are cor-
rect, but apply in different settings. Dupor’s reasoning holds only in a world
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of small firms, when the central limit theorem can apply. Horvath’s empirical
world is one where the size distribution of firms is sufficiently fat-tailed that the
central limit theorem does not apply. Instead, Proposition 2 applies and GDP
volatility remains substantial even if the number N of subunits is large.

Though the benchmark case of Zipf’s law is empirically relevant, and the-
oretically clean and appealing, many arguments in this paper do not depend
on it. The results only require that the herfindahl of actual economies is suffi-
ciently large. For instance, if the distribution of firm sizes were lognormal with
a sufficiently high variance, then quantitatively very little would change.

The herfindahls generated by a Zipf distribution are reasonably high. For
N = 106 firms, with an equal distribution of sizes, h = 1/

√
N = 0�1%� but in

a Zipf world with ζ = 1, Monte Carlo simulations show that the median h =
12%. With a firm volatility of σ = 12%, this corresponds to a GDP volatility
σh of 0.012% for identically sized firms and a more respectable 1.4% for a
Zipf distribution of firm sizes. This is the theory under the Zipf benchmark,
which has a claim to hold across countries and clarifies what we can expect
independently of the imperfections of data sets and data collection.

2.4. Can Granular Effects Be Large Enough in Practice? A Calibration

I now examine how large we can expect granular effects to be. For greater re-
alism, I incorporate two extra features compared to the island economy: input–
output linkages and the endogenous response in inputs to initial disturbances.
I start with the impact of linkages.

2.4.1. Economies With Linkages

Consider an economy with N competitive firms buying intermediary inputs
from one another. Let firm i have Hicks-neutral productivity growth dπi. Hul-
ten (1978) showed that the increase in aggregate TFP is9

dTFP
TFP

=
∑
i

sales of firm i

GDP
dπi�(15)

This formula shows that, somewhat surprisingly, we can calculate TFP
shocks without knowing the input–output matrix: the sufficient statistic for the
impact of firm i is its size, as measured by its sales (i.e., gross output rather than
net output). This helps simplify the analysis.10 In addition, the weights add up
to more than 1. This reflects the fact that productivity growth of 1% in a firm

9For completeness, Appendix B rederives and generalizes Hulten’s theorem.
10However, to study the propagation of shocks and the origin of size, the input–output matrix

can be very useful. See Carvalho (2009) and Acemoglu, Ozdaglar, and Tahbaz-Salehi (2010), who
studied granular effects in the economy viewed as a network.
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generates an increase in produced values equal to 1% times its sales, not times
its sales net of inputs (which would be the value added). The firm’s sales are
the proper statistic for that social value.

I now draw the implications for TFP volatility. Suppose productivity shocks
dπi are uncorrelated with variance σ2

π . Then the variance of productivity
growth is

var
dTFP
TFP

=
∑
i

(
sales of firm i

GDP

)2

var(dπi)(16)

and so the volatility of the growth of TFP is

σTFP = hσπ�(17)

where h is the sales herfindahl,

h =
(

N∑
i=1

(
salesit
GDPt

)2
)1/2

�(18)

I now examine the empirical magnitude of the key terms in (17), starting
with σπ .

2.4.2. Large Firms Are Very Volatile

Most estimates of plant-level volatility find very large volatilities of sales
and employment, with an order of magnitude σ = 30–50% per year (e.g.,
Caballero, Engel, and Haltiwanger (1997), Davis, Haltiwanger, and Schuh
(1996)). Also, the volatility of firm size in Compustat is a very large, 40% per
year (Comin and Mullani (2006)). Here I focus the analysis on the top 100
firms. Measuring firm volatility is difficult, because various frictions and identi-
fying assumptions provide conflicting predictions about links between changes
in total factor productivity and changes in observable quantities such as sales
and employment. I consider the volatility of three measures of growth rates:
� ln(salesit/employeesit), � ln salesit , and � ln employeesit . For each measure
and each year, I calculate the cross-sectional variance among the top 100 firms
of the previous year and take the average.11 I find standard deviations of 12%,
12%, and 14% for, respectively, growth rates of the sales per employee, of
sales, and of employees. Also, among the top 100 firms, the sample correla-
tions are 0.023, 0.073, and 0.033, respectively, for each of the three measures.12

11In other terms, for each year t, I calculate the cross-sectional variance of growth rates, σ2
t =

K−1 ∑K
i=1 g

2
it − (K−1 ∑K

i=1 git)
2, with K = 100. The corresponding average standard deviation is

[T−1 ∑T
t=1 σ

2
t ]1/2.

12For each year, we measure the sample correlation ρt = [ 1
K(K−1)

∑
i �=j gitgjt ]/[ 1

K

∑
i g

2
it], with

K = 100. The correlations are positive. Note that a view that would attribute the major firm-level
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Hence, the correlation between growth rates is small. At the firm level, most
variation is idiosyncratic.

In conclusion, the top 100 firms have a volatility of 12% based on sales per
employee. In what follows, I use σπ = 12% per year for firm-level volatility as
the baseline estimate.

2.4.3. Herfindahls and Induced Volatility

I next consider the impact of endogenous factor usage on GDP. Calling Λ
TFP, many models predict that when there are no other disturbances, GDP
growth dY/Y is proportional to TFP growth dΛ/Λ: dY/Y = μdΛ/Λ for some
μ≥ 1 that reflects factor usage; alternatively, via (15),

dY

Y
= μ

∑
i

sales of firm i

Y
dπi�(19)

This gives a volatility of GDP equal to σGDP = μσTFP, and via (17),

σGDP = μσπh�(20)

To examine the size of μ, I consider a few benchmarks. In a short-term model
where capital is fixed in the short run and the Frisch elasticity of labor supply
is φ, μ = 1/(1 − αφ/(1 + φ)), and if the supply of capital is flexible (e.g., via
variable utilization or the current account), then μ = (1 + φ)/α.13 With an
effective Frisch elasticity of 2 (as recommend by Hall (2009) for an inclusive
elasticity that includes movements in and out of the labor force), those values
are μ = 1�8 and μ = 4�5. If TFP is a geometrical random walk, in the neoclas-
sical growth model where only capital can be accumulated, in the long run, we
have μ = 1/α, where α is the labor share; with α = 2/3, this gives μ = 1�5.14

I use the average of the three above values, μ= 2�6.
Empirically, the sales herfindahl h is quite large: h = 5�3% for the United

States in 2008 and h = 22% in an average over all countries.15 This means,
parenthetically, that the United States is a country with relatively small firms
(compared to GDP), where the granular hypothesis might be the hardest to
establish.

movements to shocks to the relative demand for a firm’s product compared to its competitors
would counterfactually predict a negative correlation.

13This can be seen by solving maxL ΛK1−αLα −L1+1/φ or maxK�L ΛK1−αLα − rK −L1+1/φ, re-
spectively, which gives Y ∝ Λμ for the announced value of μ. For this derivation, I use the local
representation with a quasilinear utility function, but the result does not depend on that.

14If Yt = ΛtK
1−α
t Lα, Λt ∝ eγt , and capital is accumulated, then in a balanced growth path,

Yt ∝Kt ∝Λ
1/α
t . This holds also with stochastic growth.

15The U.S. data are from Compustat. The international herfindahls are from Acemoglu, John-
son, and Mitton (2009). They analyzed the Dun and Bradstreet data set, which has a good cover-
age of the major firms in many countries, though not a complete or homogeneous one.
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I can now incorporate all those numbers, using σπ = 12% seen above. Equa-
tion 20 yields a GDP volatility σGDP = 2�6×12%×5�3% = 1�7% for the United
States, and σGDP = 2�6 × 12% × 22% = 6�8% for a typical country. This is very
much on the order of magnitude of GDP fluctuations. As always, further am-
plification mechanisms can increase the estimate. I conclude that idiosyncratic
volatility seems quantitatively large enough to matter at the macroeconomic
level.

2.5. Extension: GDP Volatility When the Volatility of a Firm Depends on Its Size

I now study the case where the volatility of a firm’s percentage growth
rate decreases with firm size, which will confirm the robustness of the pre-
vious results and yield additional predictions. I examine the functional form
σfirm(S)= kS−α from (21). If α> 0, then large firms have a smaller standard de-
viation than small firms. Stanley, Amaral, Buldyrev, Havlin, Leschhorn, Maass,
Salinger, and Stanley (1996) quantified the relation more precisely and showed
that (21) holds for firms in Compustat, with α� 1/6.

It is unclear whether the conclusions from Compustat can generalize to the
whole economy. Compustat only comprises firms traded on the stock market
and these are probably more volatile than nontraded firms, as small volatile
firms are more prone to seek outside equity financing, while large firms are
in any case very likely to be listed in the stock market. This selection bias im-
plies that the value of α measured from Compustat firms alone is presumably
larger than in a sample composed of all firms. It is indeed possible α may be 0
when estimated on a sample that includes all firms, as random growth models
have long postulated. In any case, any deviations from Gibrat’s law for vari-
ances appear to be small, that is, 0 ≤ α ≤ 1/6. If there is no diversification as
size increases, then α = 0. If there is full diversification and a firm of size S is
composed of S units, then α = 1/2. Empirically, firms are much closer to the
Gibrat benchmark of no diversification, α= 0.

The next proposition extends Propositions 1 and 2 to the case where firm
volatility decreases with firm size.

PROPOSITION 3: Consider an islands economy, with N firms that have power-
law distribution P(S > x)= (Smin/x)

ζ for ζ ∈ [1�∞). Assume that the volatility of
a firm of size S is

σfirm(S)= σ

(
S

Smin

)−α

(21)

for some α ≥ 0 and the growth rate is �S/S = σfirm(S)u, where E[u] = 0. Define
ζ ′ = ζ/(1 − α) and α′ = min(1 − 1/ζ ′�1/2), so that α′ = 1/2 for ζ ′ ≥ 2. GDP
fluctuations have the following form. If ζ > 1,

�Y

Y
∼N−α′ ζ − 1

ζ
E[|u|ζ′ ]1/ζ′

σgζ′� if ζ ′ < 2�(22)
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�Y

Y
∼ N−α′ ζ − 1

ζ

E[S2σfirm(S)2]1/2
E[u2]1/2

Smin
g2� if ζ ′ ≥ 2�(23)

where gζ′ is a standard Lévy distribution with exponent ζ ′. Recall that g2 is simply
a standard Gaussian distribution. If ζ = 1,

�Y

Y
∼ N−α′

lnN
E[|ε|ζ′ ]1/ζ′

σgζ′� if ζ ′ < 2�(24)

�Y

Y
∼ N−α′

lnN

E[S2σfirm(S)2]1/2
E[u2]1/2

Smin
g2� if ζ ′ ≥ 2�(25)

In particular, the volatility σ(Y) of GDP growth decreases as a power-law func-
tion of GDP Y ,

σGDP(Y) ∝ Y−α′
�(26)

To see the intuition for Proposition 3, we apply the case of Zipf’s law (ζ = 1)
to an example with two large countries, 1 and 2, in which country 2 has twice as
many firms as country 1. Its largest K firms are twice as large as the largest firms
of country 1. However, scaling according to (21) implies that their volatility is
2−α times the volatility of firms in country 1. Hence, the volatility of country
2’s GDP is 2−α times the volatility of country 1’s GDP (i.e., (26)). Putting this
another way, under the case presented by Proposition 3 and ζ = 1, large firms
are less volatile than small firms (equation (21)). The top firms in big countries
are larger (in an absolute sense) than top firms in small countries. As the top
firms determine a country’s volatility, big countries have less volatile GDP than
small countries (equation (26)).

Also, one can reinterpret Proposition 3 by interpreting a large firm as a
“country” made up of smaller entities. If these entities follow a power-law dis-
tribution, then Proposition 3 applies and predicts that the fluctuations of the
growth rate � lnSit , once rescaled by S−α

it , follow a Lévy distribution with ex-
ponent min{ζ/(1 − α)�2}. Lee, Amaral, Meyer, Canning, and Stanley (1998)
plotted this empirical distribution, which looks roughly like a Lévy stable dis-
tribution. It could be that the fat-tailed distribution of firm growth comes from
the fat-tailed distribution of the subcomponents of a firm.16

A corollary of Proposition 3 may be worth highlighting.

COROLLARY 1—Similar Scaling of Firms and Countries: When Zipf ’s law
holds (ζ = 1) and α≤ 1/2, we have α′ = α, that is, firms and countries should see
their volatility scale with a similar exponent:

σfirms(S)∝ S−α� σGDP(Y) ∝ Y−α�(27)

16See Sutton (2002) for a related model, and Wyart and Bouchaud (2003) for a related analysis,
which acknowledges the contribution of the present article, which was first circulated in 2001.
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Interestingly, Lee et al. (1998) presented evidence that supports (27), with a
small exponent α� 1/6 (see also Koren and Tenreyro (2007)). A more system-
atic investigation of this issue would be interesting.

Finally, Proposition 3 adopts the point of view of an economist who would
not know the sizes of firms in the country. Then the best guess is a Lévy dis-
tribution of GDP fluctuations. However, given precise knowledge of the size
of firms, GDP fluctuations will depend on the details of the distribution of the
microeconomic shocks ui.

Before concluding this theoretical section, let me touch on another very
salient feature of business cycles: firms and sectors comove. As seen by Long
and Plosser (1983), models with production and demand linkages can gener-
ate comovement. Carvalho and Gabaix (2010) worked out such a model with
purely idiosyncratic shocks and demand linkages. In that economy, the equilib-
rium growth rates of sales, employees, and labor productivity can be expressed
as

git = aεit + bft� ft ≡
N∑
j=1

Sj�t−1

Yt−1
εjt�(28)

where εit is the firm idiosyncratic productivity shock. Hence, the economy is a
one-factor model, but, crucially, the common factor ft is nothing but a sum of
the idiosyncratic firm shocks. In their calibration, over 90% of output variance
will be attributed to comovement, as in the empirical findings of Shea (2002).
Hence, a calibrated granular model with linkages and only idiosyncratic shocks
may account for a realistic amount of comovement. This arguably good feature
of granular economies generates econometric challenges, as we shall now see.

3. TENTATIVE EMPIRICAL EVIDENCE FROM THE GRANULAR RESIDUAL

3.1. The Granular Residual: Motivation and Definition

This section presents tentative evidence that the idiosyncratic movements of
the top 100 firms explain an important fraction (one-third) of the movement
of total factor productivity (TFP). The key challenge is to identify idiosyncratic
shocks. Large firms could be volatile because of aggregate shocks, rather than
the other way around. There is no general solution for this “reflection prob-
lem” (Manski (1993)). I use a variety of ways to measure the share of idiosyn-
cratic shocks.

I start with a parsimonious proxy for the labor productivity of firm i, the log
of its sales per worker:

zit := ln
sales of firm i in year t

number of employees of firm i in year t
�(29)

This measure is selected because it requires only basic data that are more likely
to be available for non-U.S. countries, unlike more sophisticated measures
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such as a firm-level Solow residual. Most studies that construct productivity
measures from Compustat data use (29). I define the productivity growth rate
as git = zit − zit−1. Various models (including the one in the National Bureau
of Economic Research (NBER) working paper version of this article) predict
that, indeed, the productivity growth rate is closely related to git .

Suppose that productivity evolves as

git = β′Xit + εit�(30)

where Xit is a vector of factors that may depend on firm characteristics at time
t−1 and on factors at time t (e.g., as in equation (28)). My goal is to investigate
whether εit , the idiosyncratic component of the total factor productivity growth
rate of large firms, can explain aggregate TFP. More precisely, I would like
to empirically approximate the ideal granular residual Γ ∗

t , which is the direct
rewriting of (15):

Γ ∗
t :=

K∑
i=1

Si�t−1

Yt−1
εit �(31)

It is the sum of idiosyncratic firm shocks, weighted by size. I wish to see what
fraction of the total variance of GDP growth comes from the granular residual,
as the theory (19) predicts that GDP growth is gYt = μΓ ∗

t .
I need to extract εit . To do so, I estimate (30) for the top Q ≥ K firms of the

previous year, on a vector of observables that I will soon specify. I then form
the estimate of idiosyncratic firm-level productivity shock as ε̂it = git − β̂′Xit .
I define the “granular residual” Γt as

Γt :=
K∑
i=1

Si�t−1

Yt−1
ε̂it �(32)

Identification is achieved if the measured granular residual Γt is close to the
ideal granular residual Γ ∗

t .
Two particularizations are useful, because they do not demand much data

and are transparent. They turn out to do virtually as well as the more com-
plicated procedures I will also consider. The simplest specification is to con-
trol for the mean growth rate in the sample, that is, to have Xit = gt , where
gt =Q−1

∑Q

i=1 git . Here, I take the average over the top Q firms. We could have
Q = K or take the average over more firms. In practice, I will calculate the
granular residual over the top K = 100 firms, but take the averages for the
controls over the top Q = 100 or 1000 firms. Then the granular residual is the
weighted sum of the firm’s growth rate minus the average firm growth rate:

Γt =
K∑
i=1

Si�t−1

Yt−1
(git − gt)�(33)
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Another specification is to control for the mean growth gIit
, the equal-

weighted average productivity growth rate among firms that are in i’s industry
and among the top Q firms therein. Then Xit = gIit

. That gives

Γt =
K∑
i=1

Si�t−1

Yt−1

(
git − gIit

)
�(34)

It is the weighted sum of the firm growth rates minus the growth rates of other
firms in the same industry. The term git −gIit

may be closer to the ideal εit than
git − gt , as gIit

may control better than gt for industry-wide disturbances, for
examples, industry-wide real price movements.

Before that, I state a result that establishes sufficient conditions for identifi-
cation.

PROPOSITION 4: Suppose that (i) decomposition (30) holds with a vector of
observables Xit and that (ii)

∑∞
i=1(

Si�t−1
Yt−1

)2
E[|Xit |2] < ∞. Then, as the number of

firms becomes large (in K or in Q ≥ K), Γt(K�Q) − Γ ∗
t (K) → 0 almost surely,

that is, the empirical granular residual Γt is close to the ideal granular residual Γ ∗
t .

Assumption (i) is the substantial one. Given that in practice I will have Xit

made of gt and gIit
, and their interaction with firm size, I effectively assume

that the average growth rate of firms and their industries, perhaps interacted
with the firm size or such nonlinear transformation of it, span the vector of
factors. In other terms, firms within a given industry respond in the same way
to common shocks or respond in a way that is related to firm size as in (36)
below. This is the case under many models, but they are not fully general. In-
deed, without some sort of parametric restriction, there is no solution (Manski
(1993)). A typical problematic situation would be the case where the top firm
has a high loading on industry factors that is not captured by its size. Then,
instead of the large firms affecting the common factor, the factor would affect
the large firms. However, I do control for size and the interaction between size
and industry, and aggregate effects, so in that sense I can hope to be reasonably
safe.17

Assumption (ii) is simply technical and is easily verified. For instance, it is
verified if E[X2

it] is finite and the herfindahl is bounded. Formally, the herfind-
ahl (which, as we have seen, is small anyway) is bounded if the total sales to out-

17The above reflects my best attempt with Compustat data. Suppose one had continuous-time
firm-level data and could measure the beginning of a strike, the launch of a new product, or
the sales of a big export contract. These events would be firm-level shocks. It would presumably
take some time to reverberate in the rest of the economy. Hence, a more precise understanding
would be achieved. Perhaps future data (e.g., using newspapers to approximate continuous-time
information) will be able to systematically achieve this extra measure of identification via the time
series.
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put ratio is bounded by some amount B, as
∑∞

i=1(
Si�t−1
Yt−1

)2 ≤ (
∑∞

i=1
Si�t−1
Yt−1

)2 ≤ B2.
Note that here we do not need to assume a finite number of firms, and that in
practice B � 2 (Jorgensen, Gollop, and Fraumeni (1987)).

To complete the econometric discussion, let me also mention a small sample
bias: The R2 measured by a regression will be lower than the true R2, because
the control by gt effectively creates an error in variables problem. This effect,
which can be rather large (and biases the results against the granular hypothe-
sis), is detailed in the Supplemental Material (Gabaix (2011)).

I would like to conclude with a simple economic example that illustrates the
basic granular residual (equation (33)).18 Suppose that the economy is made
of one big firm which produces half of output, and a million other very small
firms, and that I have good data on 100 firms: the big firm and the top 99 largest
of the very small firms. The standard deviation of all growth rates is 10%, and
growth rates are given by git =Xt + εit , where Xt is a common shock. Suppose
that, in a given year, GDP increases by 3% and that the big firm has growth
of, say, 6%, while the average of the small ones is close to 0%. What can we
infer about the origins of shocks? If one thinks of all this being generated by an
aggregate shock of 3%, then the distribution of implied idiosyncratic shocks is
3% for the big firm and −3% on average for all small ones. The probability that
the average of the i.i.d. small firms is −3%, given the law of large numbers for
these firms, is very small. Hence, it is more likely that the average shock Xt is
around 0%, and the economy-wide growth of 3% comes from an idiosyncratic
shock to the large firm equal to 6%. The estimate of the aggregate shock is
captured by gt , which is close to 0%, and the estimate of the contribution of
idiosyncratic shocks is captured by the granular residual, Γ = 3%.

3.2. Empirical Implementation

3.2.1. Basic Specification

I use annual U.S. Compustat data from 1951 to 2008. For the granular resid-
ual, I take the K = 100 largest firms in Compustat according to the previous
year’s sales that have valid sales and employee data for both the current and
previous years and that are not in the oil, energy, or finance sectors.19 Indus-
tries are three-digit Standard Industrial Classification (SIC) codes. Compus-
tat contains some large outliers, which may result from extraordinary events,

18I thank Olivier Blanchard for this example.
19For firms in the oil/energy sector, the wild swings in worldwide energy prices make (29) too

poor a proxy of total factor productivity. Likewise, the “sales” of financial firms do not mesh
well with the meaning (“gross output”) used in the present paper; this exclusion has little impact,
though is theoretically cleaner.
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TABLE I

EXPLANATORY POWER OF THE GRANULAR RESIDUALa

GDP Growtht Solowt

(Intercept) 0.018** 0.017** 0.011** 0.01**
(0.0026) (0.0025) (0.002) (0.0021)

Γt 1.8* 2.5** 2.1** 2.3**
(0.69) (0.69) (0.54) (0.57)

Γt−1 2.6** 2.9** 1.2* 1.3*
(0.71) (0.67) (0.55) (0.56)

Γt−2 2.1** 0.65
(0.71) (0.59)

N 56 55 56 55
R2 0.266 0.382 0.261 0.281
Adj. R2 0.239 0.346 0.233 0.239

aFor the year t = 1952 to 2008, per capita GDP growth and the Solow residual are
regressed on the granular residual Γt of the top 100 firms (equation (33)). The firms are
the largest by sales of the previous year. Standard errors are given in parentheses.

such as a merger. To handle these outliers, I winsorize the extreme demeaned
growth rates at 20%.20

Table I presents regressions of GDP growth and the Solow residual on the
simplest granular residual (33). These regressions are supportive of the gran-
ular hypothesis. The R2’s are reasonably high, at 34�6% for the GDP growth
and around 23�9% for the Solow residual when using two lags. We will soon
see that the industry-demeaned granular residual does even better.

If only aggregate shocks were important, then the R2 of the regressions in Ta-
ble I would be zero. Hence, the good explanatory power of the granular resid-
ual is inconsistent with a representative firm framework. It is also inconsistent
with the hypothesis that most firm-level volatility might be due to a zero-sum
redistribution of market shares.

Let us now examine the results if we incorporate a more fine-grained control
for industry shocks.

3.2.2. Controlling for Industry Shocks

I next control for industry shocks, that is, use specification (34). Table II
presents the results, which are consistent with those in Table I. The adjusted

20For instance, I construct (32) by winsorizing ε̂it at M = 20%, that is by replacing it by T (̂εit),
where T(x) = x if |x| ≤ M , and T(x) = sign(x)M if |x| >M . I use M = 20%, but results are not
materially sensitive to the choice of that threshold.
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TABLE II

EXPLANATORY POWER OF THE GRANULAR RESIDUAL WITH
INDUSTRY DEMEANINGa

GDP Growtht Solowt

(Intercept) 0.019** 0.017** 0.011** 0.011**
(0.0024) (0.0022) (0.0019) (0.0019)

Γt 3.4** 4.5** 3.3** 3.7**
(0.86) (0.82) (0.68) (0.72)

Γt−1 3.4** 4.3** 1.5* 1.9**
(0.82) (0.78) (0.65) (0.68)

Γt−2 2.7** 0.77
(0.79) (0.69)

N 56 55 56 55
R2 0.356 0.506 0.334 0.372
Adj. R2 0.332 0.477 0.309 0.335

aFor the year t = 1952 to 2008, per capita GDP growth and the Solow residual are
regressed on the granular residual Γt of the top 100 firms (equation (34)), removing the
industry mean within this top 100. The firms are the largest by sales of the previous year.
Standard errors are given in parentheses.

R2’s are a bit higher: about 47�7% for GDP growth and 33�5% for the Solow
residual when using two lags.21

This table reinforces the conclusion that idiosyncratic movements of the top
100 firms seem to explain a large fraction (about one-third, depending on the
specification) of GDP fluctuations. In addition, industry controls, which may be
preferable to a single aggregate control on a priori grounds, slightly strengthen
the explanatory power of the granular residual.

In terms of economics, Tables I and II indicate that the lagged granular
residual helps explain GDP growth, and that the same-year “multiplier” μ is
around 3.

3.2.3. Predicting GDP Growth With the Granular Residual

The above regressions attempt to explain GDP with the granular residual,
that is, relating aggregate movement to contemporary firm-level idiosyncratic
movements that may be more easily understood (as we will see in the narrative
below). I now study forecasting GDP growth with past variables. In addition to
the granular residual, I consider the main traditional predictors. I control for
oil and monetary policy shocks by following the work of Hamilton (2003) and
Romer and Romer (2004), which are arguably the leading way to control for oil
and monetary policy shocks. I also include the 3-month nominal T-bill and the

21The similarity of the results is not surprising, as the correlation between the simple and
industry-demeaned granular residual is 0�82.
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TABLE III

PREDICTIVE POWER OF THE GRANULAR RESIDUAL FOR TERM SPREAD,
OIL SHOCKS, AND MONETARY SHOCKSa

1 2 3 4 5 6 7 8

(Intercept) 0.022** 0.02** 0.022** 0.026** 0.015 0.015 0.019** 0.021**
(0.0029) (0.0029) (0.0029) (0.0057) (0.0075) (0.0079) (0.0027) (0.0073)

Oilt−1 −0.00027* −0.00024* −8.7e−05 −0.00017
(0.00012) (0.00012) (0.00013) (0.00012)

Oilt−2 −0.00018 −0.00017 −6.9e−05 −0.00012
(0.00012) (0.00012) (0.00012) (0.00011)

Monetaryt−1 −0.083 −0.08 −0.042 −0.051
(0.057) (0.055) (0.055) (0.05)

Monetaryt−2 −0.059 −0.038 −0.024 0.043
(0.057) (0.056) (0.054) (0.053)

rt−1 −0.75** −0.6 −0.45 −0.41
(0.2) (0.32) (0.37) (0.34)

rt−2 0.65** 0.56 0.43 0.39
(0.19) (0.32) (0.37) (0.34)

Term spreadt−1 0.32 0.38 0.4
(0.6) (0.64) (0.58)

Term spreadt−2 0.45 0.27 −0.38
(0.47) (0.54) (0.53)

Γt−1 3.5** 3.3**
(0.96) (1)

Γt−2 1.2 2.3*
(0.92) (0.97)

N 55 55 55 55 55 55 55 55
R2 0.121 0.0764 0.175 0.22 0.288 0.312 0.215 0.463
Adj. R2 0.0871 0.0409 0.109 0.191 0.231 0.192 0.185 0.341

aFor the year t = 1952 to 2008, per capita GDP growth is regressed on the lagged values of the granular residual
Γt of the top 100 firms (equation (34)), of the Hamilton (for oil) and Romer–Romer (for money) shocks, and the
term spread (the government 5-year bond yield minus the 3-month yield). We see that the granular residual has good
incremental predictive power even beyond the term spread. Standard errors are given in parentheses.

term spread (which is defined as the 5-year bond rate minus the 3-month bond
rate), which is often found to be the a very good predictor of GDP (those two
endogenous variables are arguably more “diagnostic” than “causal,” though).
Table III presents the results.

The granular residual has an adjusted R2 (called R2) equal to 18�5% (col-
umn 7). The traditional economic factors—oil and money shocks—have an R2

of 10�9% (column 3). Past GDP growth has a very small R2 of −0�3%, a num-
ber not reported in Table III to avoid cluttering the table too much. The tradi-
tional diagnostic financial factors—the interest rate and the term spread—have
an R2 of 23�1% (column 5). Putting all predictors together, the R2 is 34�1%
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(column 8) and the granular residual brings an incremental R2 of 14�9% (com-
pared to column 6).

I conclude that the granular residual is a new and apparently useful predictor
of GDP. This result suggests that economists might use the granular residual
to improve not only the understanding of GDP, but also its forecasting.

3.3. Robustness Checks

An objection to the granular residual is that the control for the common fac-
tors may be imperfect. Table IV shows the explanatory power of the granular
residual, controlling for oil and monetary shocks. The adjusted R2 is 47�7%
for the granular residual (column 4), it is 8�2% and 2�3% for oil and monetary
shocks, respectively (columns 1 and 2), and 49�5% for financial variables (in-
terest rates and term spread, column 6). To investigate whether the granular
residual does add explanatory power, the last column puts all those variables
together (perhaps pushing the believable limit of ordinary least squares (OLS)
because of the large number of regressors) and shows that the explanatory
variables yield an R2 of 76�7%.

In conclusion, as a matter of “explaining” (in a statistical sense) GDP
growth, the granular residual does nearly as well as all traditional factors to-
gether, and complements their explanatory power.

I report a few robustness checks in the Supplemental Material. For instance,
among the explanatory variables of (30), I include not only gt or gIit

, but also
their interaction with log firm size and its square. The impact of the control
for size is very small. Using a number Q = 1000 of firms yields similar results,
too. Finally, I could not regress git on GDP growth at time t because then by
construction I would eliminate any explanatory power of εit .

I conclude that the granular residual has a good explanatory power for GDP,
even controlling for traditional factors. In addition, it has good forecasting
power, complementing other factors. Hence, the granular residual must cap-
ture interesting firm-level dynamics that are not well captured by traditional
aggregate factors.

I have done my best to obtain “idiosyncratic” shocks; given that I do not have
a clean instrument, the above results should still be considered provisional. The
situation is the analogue, with smaller stakes, to that of the Solow residual.
Solow understood at the outset that there are very strong assumptions in the
construction of his residual, in particular, full capacity utilization and no fixed
cost. But a “purified” Solow residual took decades to construct (e.g., Basu, Fer-
nald, and Kimball (2006)), requires much better data, is harder to replicate in
other countries, and relies on special assumptions as well. Because of that, the
Solow residual still endures, at least as a first pass. In the present paper too, it
is good to have a first step in the granular residual, together with caveats that
may help future research to construct a better residual. The conclusion of this
article contains some other measures of granular residuals that build on the
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TABLE IV

EXPLANATORY POWER OF THE GRANULAR RESIDUAL FOR
OIL AND MONETARY SHOCKS, AND INTEREST RATESa

1 2 3 4 5 6 7 8

(Intercept) 0.023** 0.02** 0.022** 0.017** 0.019** 0.016* 0.02** 0.023**
(0.003) (0.0029) (0.003) (0.0022) (0.0023) (0.0065) (0.005) (0.0048)

Oilt −9.8e−05 −8.3e−05 −4.6e−05 −7.9e−05
(0.00011) (0.00012) (8.6e−05) (7.5e−05)

Oilt−1 −0.00028* −0.00026* −0.00021* −0.00019*
(0.00012) (0.00012) (8.8e−05) (7.5e−05)

Oilt−2 −0.00019 −0.00019 −0.00012 −4.3e−05
(0.00012) (0.00012) (8.9e−05) (6.8e−05)

Monetaryt −0.0088 −0.03 −0.057 −0.044
(0.059) (0.058) (0.043) (0.032)

Monetaryt−1 −0.08 −0.065 0.012 −0.013
(0.061) (0.059) (0.047) (0.033)

Monetaryt−2 −0.061 −0.048 0.031 0.095**
(0.059) (0.058) (0.046) (0.033)

Γt 4.5** 4.2** 3.7** 4**
(0.82) (0.88) (0.69) (0.66)

Γt−1 4.3** 4.5** 2.8** 3.6**
(0.78) (0.85) (0.71) (0.68)

Γt−2 2.7** 2.7** 2.6** 2.8**
(0.79) (0.8) (0.69) (0.63)

rt 0.66* 0.69** 0.83**
(0.26) (0.2) (0.19)

rt−1 −1.6** −1.5** −1.5**
(0.35) (0.28) (0.27)

rt−2 1** 0.85** 0.7**
(0.29) (0.23) (0.22)

Term spreadt −0.49 −0.11 −0.13
(0.52) (0.41) (0.38)

Term spreadt−1 0.17 −0.34 −0.37
(0.52) (0.41) (0.42)

Term spreadt−2 0.31 −0.02 −0.18
(0.39) (0.32) (0.33)

N 55 55 55 55 55 55 55 55
R2 0.133 0.0768 0.189 0.506 0.582 0.551 0.755 0.832
Adj. R2 0.0824 0.0225 0.0878 0.477 0.498 0.495 0.706 0.767

aFor the year t = 1952 to 2008, per capita GDP growth is regressed on the granular residual Γt of the top 100 firms
(equation (34)), and the contemporaneous and lagged values of the Hamilton (for oil) shocks, and Romer–Romer
(for money) shocks. The firms are the largest by sales of the previous year. Standard errors are given in parentheses.
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present paper. It could be that the recent factor-analytic methods (Stock and
Watson (2002), Foerster, Stock, and Watson (2008)) will prove useful for ex-
tending the analysis. One difficulty is that the identities of the top firms change
over time, unlike in the typical factor-analytic setup. This said, another way
to understand granular shocks is to examine some of them directly, a task to
which I now turn.

3.4. A Narrative of GDP and the Granular Residual

Figure 2 presents a scatter plot with 3�4Γt + 3�4Γt−1, where the coefficients
are those from Table II. I present a narrative of the most salient events in
that graph.22 Some notations are useful. The firm-specific granular residual
(or granular contribution) is defined to be Γit = Si�t−1

Yt−1
g′
it with g′

it = git − gIit
.

The share of the industry-demeaned granular residual (GR) is defined as γit =
Γit/Γt , and the share of GDP growth is defined as Γit/gYt , where gYt is the
growth rate of GDP per capita minus its average value in the sample, for short
“demeaned GDP growth.” Given the regression coefficients in Tables I and II,
this share should arguably be multiplied by a productivity multiplier μ� 3.

FIGURE 2.—Growth of GDP per capita against 3�4Γt + 3�4Γt−1, the industry-demeaned gran-
ular residual and its lagged value. The display of 3�4Γt + 3�4Γt−1 is motivated by Table II, which
yields regression coefficients on Γt and Γt−1 of that magnitude.

22A good source for firm-level information besides Compustat is the web site
fundinguniverse.com, which compiles a well referenced history of the major companies.
Google News, the yearly reports of the Council of Economic Advisors, and Temin (1998) are also
useful.
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To obtain a manageable number of important episodes, I report the events
with |gYt | ≥ 0�7σY , and in those years, report the firms for which |Γit/gYt | ≥
0�14. I also consider all the most extreme fifth of the years for Γt . I avoid, how-
ever, most points that are artefacts of mergers and acquisitions (more on that
later). To avoid boring the reader with too many tales of car companies, I add a
few non-car events that I found interesting economically or methodologically.

A general caveat is that the direction of the causality is hard to assess de-
finitively, as the controls gIit

for industry-wide movements are imperfect. With
that caveat in mind, we can start reading Table V.

To interpret the table, let me take a salient and relatively easy year, 1970.
This year features a major strike at General Motors, which lasted 10 weeks
(September 15 to November 20). The 1970 row of Table V shows that GM’s
sales fell by 31% and employment fell by 13%. Its labor productivity growth
rate is thus −17�9% and, controlling for the industry mean productivity growth
of 2�6% that year, GM’s demeaned growth rate is −20�5%. Given that GM’s
sales the previous year were 2.47% of GDP, GM’s granular residual is Γit =
−0�20 × 2�47% = −0�49%. That means the direct impact of this GM event is a
change in GDP by −0�49% that year. Note also that with a productivity multi-
plier of μ� 3, the imputed impact of GM on GDP is −1�47%. As GDP growth
that year was 3% below trend (gYt = −3%), the direct share of the GM event
is 0�49%/3% = 0�16 and its full imputed share is 1�47%/3% = 0�49. In some
mechanical sense, the GM event appears to account for a fraction 0.17 of the
GDP movement directly and, indirectly, for about 0.5 of the GDP innovation
that year. It also accounts for a fraction 0.76 of the granular residual. Hence,
it is plausible to interpret 1970 as a granular year, whose salient event was the
GM strike and the turmoils around it.23 This example shows how the table is
organized. Let me now present the rest of the narrative.

1952–1953: U.S. Steel faces a strike from about April 1952 to August 1952.
U.S. Steel’s production falls by 13.1% in 1952 and rebounds by 19.5% in 1953.
The 1953 events explains a share of 3.99 of the granular residual and 0.06 of
excess GDP growth.

1955 experiences a high GDP growth, and a reasonably high granular resid-
ual. The likely microfoundation is a boom in car production. Two main specific
factors seem to explain the car boom: the introduction of new models of cars
and the fact that car companies engaged in a price war (Bresnahan (1987)).
The car sales of GM increase by 21.9%, while employment increases by 7.9%.
The demeaned growth rate is g′

it = 17�8%. GM accounts for 81% of the gran-

23Temin (1998) noted that the winding down of the Vietnam War (which ended in 1975) may
also be responsible for the slump of 1970. This is in part the case, as during 1968–1972 the ratios
of defense outlays to GDP were 9.5, 8.7, 8.1, 7.3, and 6.7%. On the other hand, the ratio of total
government outlays to GDP were, respectively, 20.6, 19.4, 19.3, 19.5, and 19.6% (source: Council
of Economic Advisors (2005, Table B-79)). Hence the aggregate government spending shock was
very small in 1970.
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ular residual, a direct fraction 0.14 of excess GDP growth, and an imputed
fraction of 0.43 of excess GDP growth.

1956–1957: In 1956, the price war in cars ends, and sales drop back to their
normal level (the sales of General Motors decline by 17.6%; those of Ford
decline by 22%). The granular residual is −0�66%, of which 60% is due to
General Motors. Hence, one may provisionally conclude the 1955–1956 boom–
bust episode was in large part a granular event driven by new models and a
price war in the car industry.24 In Figure 2, the 56 point is actually the sum of
1955 (granular boom) and 1956 (granular bust), and is unremarkable, but the
bust is reflected in the 1957 point, which is the most extreme negative point in
the granular residual.

1961: In previous years, Ford cancelled the Edsel brand and introduces to
great success the Falcon, the leading compact car of its time. Ford’s demeaned
growth rate is g′

it = 27% and its firm granular residual explains a fraction −0�15
of excess GDP growth. That is, without Ford’s success, the recession would
have been worse.

1965 is an excellent year for GM, with the great popularity of its Chevrolet
brand.

1967: Ford experiences a 64-day strike and a terrible year. Its demeaned
growth rate is −14�9% and its granular residual is −0�23%. It explains a frac-
tion 2.5 of the granular residual and 0.38 of GDP growth.

1970 is the GM year described above.
1971, which appears in Figure 2 as label “72,” representing the sum of the

granular residuals in 1971 and 1972, is largely characterized by the rebound
from the negative granular 1970 shock. Hence, the General Motors strike
may explain the very negative 70 (1969 + 1970) point and the very positive
72 (1971 + 1972) point. Sales increase by 36.2% and employment increases
by 10.6%. The firm granular residual is Γit = 0�36% for a fraction of granular
residual of 0.52. Another interesting granular event takes place in 1971. The
Council of Economic Advisors (1972, p. 33) reports that “prospects of a possi-
ble steel strike after July 31st [1971], the expiration day of the labor contracts,
caused steel consumers to build up stock in the first seven months of 71, after
which these inventories were liquidated.” Here, a granular shock—the possi-
bility of a steel strike—creates a large swing in inventories. Without exploring
inventories here, one notes that such a plausibly orthogonal inventory shock
could be used in future macroeconomic studies.

1972 is a very good year for Ford and Chrysler. Ford has an enormous success
with its Pinto. At Chrysler, there is a rush of sales for the compact Dodge Dart
and Plymouth Valiant (low-priced subcompacts). For those two firms, Γit =
0�22% and Γit = 0�13%, respectively.

1974 is probably not a granular year, because the oil shock was common
to many industries. Still, the low value of the granular residual reflects the

24To completely resolve the matter, one would like to control for the effect of the Korean war.
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fact that the top three car companies, and particularly General Motors, were
disproportionately affected by the shock. It is likely that if large companies
were producing more fuel efficient cars, the granular residual would have been
closer to 0, and the slump of 1974 could have been much more moderate. For
instance, GM’s granular contribution is −0�39%, and its multiplier-adjusted
contribution −1�18%.

1983 is an excellent year for IBM, with the launch of the IBM PC. Its git =
10�5%, so that its granular residual is 0�11%.

1987–1988 is an instructive year, in part for methodological reasons. Af-
ter various investments and mergers and acquisitions in 1986–1987 (acquisi-
tion of financial services providers, e.g., KidderPeabody, and high-tech compa-
nies such as medical diagnostics business), the clear majority of GE’s earnings
(roughly 80%, compared to 50% 6 years earlier) were generated in services
and high technology. Its git is 26% and 21% in 1987 and 1988, respectively.
Its fraction of the granular residual is 1.11 and 0.44, and its imputed growth
fraction is 1.07 and 0.35. This episode can be viewed either as a purely formal
reallocation of titles in economic activity (in which case it arguably should be
discarded) or as a movement of “structural change” where this premier firm’s
efforts (human and physical) are reallocated toward higher value-added activ-
ities, thereby potentially increasing economic activity.25 The same can be said
about the next event.

1996: There is an intense restructuring at AT&T, with a spin-off of NCR and
Lucent. AT&T recenters to higher productivity activities, and as a result its
measured g′

it is 32.5%. This movement explains a fraction 0.47 of the granular
residual and 0.45 of GDP growth.

2000 is a year of great productivity growth for GE, in particular via the ex-
pansion of GE Medical Systems. Its git is 20.6% and its firm granular residual
is Γit = 0�24%.

2002 sees a surge in sales for Walmart, a vindication of its lean distribu-
tion model. The company’s share of the U.S. GDP in 2001 was 2.2%. This ap-
proached the levels reached by GM (3% in 1956) and U.S. Steel Corp. (2.8%
in 1917) when these firms were at their respective peaks. Its g′

it is 6�4% and its
fraction of the granular residual is 3.22, while its fraction of demeaned GDP
growth is −0�10.

We arrive at the limen of the financial crisis. 2007 sees three interesting gran-
ular events (not reported in the table) if one is willing to accept the “sales” of
financial firms as face value (it is unclear they should be). The labor productiv-
ity growth of AIG, Citigroup, and Merrill Lynch is −15%, −9%, and −25%,
respectively, which gives them granular contributions of −0�09%, −0�18%,

25Under the first interpretation, it would be interesting to build a more “purified” granular
residual that filters out corporate finance events. Of course, to what extent those events should
be filtered out is debatable.
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and −0�10%. It would be interesting to exploit the hypothesis that the finan-
cial crisis was largely caused by the (ex post) mistakes of a few large firms,
e.g., Lehman and AIG. Their large leverage and interconnectedness amplified
into a full-fledged crisis instead of what could have been a run-of-the-mill that
would have affected in a diffuse way the financial sector. But doing justice to
this issue would require another paper.

Figure 2 reveals that, in the 1990’s, granular shocks are smaller. Likewise,
GDP volatility is smaller—reflecting the “great moderation” explored in the
literature (e.g., McConnell and Perez-Quiros (2000)). Carvalho and Gabaix
(2010) explored this link in more depth, and proposed that indeed the decrease
in granular volatility explains the great moderation of GDP and its demise.

Finally, the bottom of Figure 2 contains three outliers that are not granular
years. They have conventional “macro” interpretations. 1954 is often attributed
to the end of the Korean War, and 1958 and 1982 (the “Volcker recession”) are
attributed to tight monetary policy aimed at fighting inflation.

This narrative shows the importance of two types of events: some (e.g., a
strike) inherently have a negative autocorrelation, while some others (e.g., new
models of cars) do not. It is conceivable that forecasting could be improved by
taking into account that distinction.

4. CONCLUSION

This paper shows that the forces of randomness at the microlevel create an
inexorable amount of volatility at the macro level. Because of random growth
at the microlevel, the distribution of firm sizes is very fat-tailed (Simon (1955),
Gabaix (1999), Luttmer (2007)). That fat-tailedness makes the central limit
theorem break down, and idiosyncratic shocks to large firms (or, more gener-
ally, to large subunits in the economy such as family business groups or sectors)
affect aggregate outcomes.

This paper illustrates this effect by taking the example of GDP fluctuations.
It argues that idiosyncratic shocks to the top 100 firms explain a large frac-
tion (one-third) of aggregate volatility. While aggregate fluctuations such as
changes to monetary, fiscal, and exchange rate policy, and aggregate produc-
tivity shocks are clearly important drivers of macroeconomic activity, they are
not the only contributors to GDP fluctuations. Using theory, calibration, and
direct empirical evidence, this paper makes the case that idiosyncratic shocks
are an important, and possibly the major, part of the origin of business-cycle
fluctuations.

The importance of idiosyncratic shocks in aggregate volatility leads to a num-
ber of implications and directions for future research. First, and most evidently,
to understand the origins of fluctuations better, one should not focus exclu-
sively on aggregate shocks, but concrete shocks to large players, such as Gen-
eral Motors, IBM, or Nokia.

Second, shocks to large firms (such as a strike, a new innovation, or a CEO
change), initially independent of the rest of the economy, offer a rich source of
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shocks for vector autoregressions (VARs) and impulse response studies—the
real-side equivalent of the Romer and Romer shocks for monetary economics.
As a preliminary step in this direction, the granular residual, with a variety of
specifications, is available in the Supplemental Material.

Third, this paper gives a new theoretical angle for the propagation of fluc-
tuations. If Apple or Walmart innovates, its competitors may suffer in the
short term and thus race to catch up. This creates rich industry-level dynamics
(that are already actively studied in the industrial organization literature) that
should be useful for studying macroeconomic fluctuations, since they allow one
to trace the dynamics of productivity shocks.

Fourth, this argument could explain the reason why people, in practice, do
not know the state of the economy. This is because “the state of the econ-
omy” depends on the behavior (productivity and investment behavior, among
others) of many large and interdependent firms. Thus, the integration is not
easy and no readily accessible single number can summarize this state. This
contrasts with aggregate measures, such as GDP, which are easily observable.
Conversely, agents who focus on aggregate measures may make potentially
problematic inferences (see Angeletos and La’O (2010) and Veldkamp and
Wolfers (2007) for research along those lines). This paper could therefore of-
fer a new mechanism for the dynamics of “animal spirits.”

Finally this mechanism might explain a large part of the volatility of many ag-
gregate quantities other than output, for instance, inventories, inflation, short-
or long-run movements in productivity, and the current account. Fluctuations
of exports due to granular effects are explored in Canals et al. (2007) and di
Giovanni and Levchenko (2009). The latter paper in particular finds that low-
ering trade barriers increases the granularity of the economy (as the most pro-
ductive firms are selected) and implies an increase in the volatility of exports.
Blank, Buch, and Neugebauer (2009) constructed a “banking granular resid-
ual” and found that negative shocks to large banks negatively impact small
banks. Malevergne, Santa-Clara, and Sornette (2009) showed that the granu-
lar residual of stock returns (the return of a large firm minus a return of the
average firm) is an important priced factor in the stock market and explained
the performance of Fama–French factor models. Carvalho and Gabaix (2010)
found that the time-series changes in granular volatility predict well the volatil-
ity of GDP, including the “great moderation” and its demise.

In sum, this paper suggests that the study of very large firms can offer a useful
angle of attack on some open issues in macroeconomics.

APPENDIX A: LÉVY’S THEOREM

Lévy’s theorem (Durrett (1996, p. 153)) is the counterpart of the central limit
theorem for infinite-variance variables.

THEOREM 1—Lévy’s Theorem: Suppose that X1�X2� � � � are i.i.d. with a
distribution that satisfies (i) limx→∞ P(X1 > x)/P(|X1| > x) = θ ∈ [0�1] and
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(ii) P(|X1| > x) = x−ζL(x), with ζ ∈ (0�2) and L(x) slowly varying.26 Let sn =∑n

i=1 Xi, an = inf{x : P(|X1| > x) ≤ 1/n}, and bn = nE[X11|X1|≤an]. As n → ∞,
(sn − bn)/an converges in distribution to a nondegenerate random variable Y ,
which follows a Lévy distribution with exponent ζ.

The most typical use of Lévy’s theorem is the case of a symmetrical distrib-
ution with zero mean and power-law distributed tails, P(|X1| > x) ∼ (x/x0)

−ζ .
Then an ∼ x0n

1/ζ , bn = 0, and (x0N
1/ζ)−1

∑N

i=1 Xi
d→ Y , where Y follows a Lévy

distribution. The sum
∑N

i=1 Xi does not scale as N1/2, as it does in the central
limit theorem, but it scales as N1/ζ . This is because the size of the largest units
Xi scales as N1/ζ .

A symmetrical Lévy distribution with exponent ζ ∈ (0�2] has the distribution
λ(x�ζ) = 1

π

∫ ∞
0 e−kζ cos(kx)dk. For ζ = 2, a Lévy distribution is Gaussian. For

ζ < 2, the distribution has a power-law tail with exponent ζ.

APPENDIX B: LONGER DERIVATIONS

PROOF OF PROPOSITION 3: To simplify notations, using homogeneity, I con-
sider the case σ = Smin = 1. As �Si/Si = S−α

i ui,

�Y

Y
=

N∑
i=1

�Si

Y
=

N∑
i=1

S1−α
i ui

N∑
i=1

Si

�(35)

When ζ > 1, by the law of large numbers, N−1Y = N−1
∑N

i=1 Si → S. To
tackle the numerator, I observe that S1−α

i has power-law tails with exponent
ζ ′ = ζ/(1 − α). I consider two cases. First, if ζ ′ < 2, define xi = S1−α

i ui, which
has power-law tails with exponent ζ ′, and prefactor given by, for x → ∞,

P(|S1−α
i ui| > x) = P

(
Si >

(
x

|ui|
)1/(1−α))

∼ E
[|ui|ζ/(1−α)

]
x−ζ/(1−α) = E

[|ui|ζ′]
x−ζ′

�

Hence in Lévy’s theorem, the aN factor is aN ∼N1/ζ′
E[|ui|ζ′ ]1/ζ′ and

�Y =
N∑
i=1

S1−α
i ui ∼N1/ζ′

E
[|ui|ζ′]1/ζ′

gζ′�

26L(x) is said to be slowly varying if ∀t > 0� limx→∞ L(tx)/L(x) = 1. Prototypical examples are
L(x)= c and L(x) = c lnx for a nonzero constant c.
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where gζ′ is a Lévy with exponent ζ ′. Hence, given S = E[S] = Sminζ/(ζ − 1),

�Y

Y
∼ E[|ui|ζ′ ]1/ζ′

N1/ζ′

SN
gζ′ = ζ − 1

ζ
E
[|ui|ζ′]1/ζ′

N1/ζ′−1gζ′ �

If ζ ′ = 2, Siσ(Si)ui has finite variance equal to E[S2σ(S)2]E[u2
i ]. By the

central limit theorem, �Y ∼ √
NE[S2σ(S)2]1/2

E[u2
i ]g2, where g2 is a standard

Gaussian distribution and

�Y

Y
∼ �Y

NS
∼ 1√

N

E[S2σ(S)2]1/2
E[u2

i ]1/2

S
g2

as announced. When ζ = 1, a lnN correction appears because of (14), but the
reasoning is otherwise the same. Q.E.D.

Hulten’s Theorem With and Without Instantaneous Reallocation of Factors

For clarity, I rederive and extend Hulten’s (1978) result, which says that a
Hicks-neutral productivity shock dπi to firm i causes an increase in TFP given
by equation (15) (see also Jones (2011) for consequences of this result). There
are N firms. Firm i produces good i and uses a quantity Xij of intermediary in-
puts from firm j. It also uses Li units of labor and Ki units of capital. It has pro-
ductivity πi. If production is: Qi = eπiFi(Xi1� � � � �XiN�Li�Ki), the representa-
tive agent consumes Ci of good i and has a utility function of U(C1� � � � �CN).
Production of firm i serves as consumption and intermediary inputs, so Qi =
Ci + ∑

k Xki. The optimum in this economy reads maxCi�Xik�Li�Ki
U(C1� � � � �CN)

subject to

Ci +
∑
k

Xki = eπiFi(Xi1� � � � �XiN�Li�Ki);
∑
i

Li =L;
∑
i

Ki =K�

The Lagrangian is

W = U(C1� � � � �CN)

+
∑
i

pi

[
eπiFi(Xi1� � � � �XiN�Li�Ki)−Ci −

∑
k

Xki

]

+w

[
L−

∑
i

Li

]
+ r

[
K −

∑
i

Ki

]
�

Assume marginal cost pricing. GDP in this economy is Y = wL + rK =∑
i piCi. The value added of firm i is wLi + rKi and its sales are piQi.
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If each firm i has a shock dπi to productivity, welfare changes as

dW =
∑
i

pi[eπiFi(Xi1� � � � �XiN�Li�Ki)dπi]

=
∑
i

(sales of firm i) dπi�

As dW can be rewritten dW = ∑
i
∂U
∂Ci

dCi = ∑
i pi dCi = dY , we obtain equa-

tion (15).
The above analysis shows that Hulten’s theorem holds even if, after the

shock, the capital, labor and material inputs are not reallocated. This is a sim-
ple consequence of the envelope theorem. Hence Hulten’s result also holds if
there are frictions in the adjustment of labor, capital, or intermediate inputs.

PROOF OF PROPOSITION 4: We have

Γt(K�Q)− Γ ∗
t (K) =

K∑
i=1

Si�t−1

Yt−1
(̂εit − εit)

=
K∑
i=1

Si�t−1

Yt

((git − β̂′Xit)− (git −β′Xit))

= (β− β̂)′
K∑
i=1

Si�t−1

Yt

Xit�

We have β− β̂ → 0 almost surely (a.s.) when K or Q → ∞ (by standard results
on OLS), and

∑K

i=1
Si�t−1
Yt

Xit → ∑∞
i=1

Si�t−1
Yt

Xit in the L2 sense by assumption (ii).
Hence Γt(K�Q)− Γ ∗

t (K�Q)→ 0 a.s. Q.E.D.

APPENDIX C: DATA APPENDIX

Firm-Level Data

The firm-level data come from the Fundamentals Annual section of the
Compustat North America database on WRDS. The data consist of year by
firm observations from 1950 to 2008 of the following variables: SIC code (SIC),
net sales in $MM (DATA 12), and employees in M (DATA 29). I exclude for-
eign firms based in the United States, restricting the data set to firms whose fic
and loc codes are equal to USA. I filter out oil and oil-related companies (SIC
codes 2911, 5172, 1311, 4922, 4923, 4924, and 1389), and energy companies
(SIC code between 4900 and 4940), as fluctuations of their sales come mostly
from worldwide commodity prices, rather than real productivity shocks, and
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financial firms (SIC code between 6000 and 6999), because their sales do not
mesh well with the meaning used in the present paper.27

An important caveat is in order for U.S. firms. With Compustat, the sales
of Ford, say, represent the worldwide sales of Ford, not directly the output
produced by Ford in the United States. There is no simple solution to this
problem, especially if one wants a long time series. An important task of future
research is to provide a version of Compustat that corrects for multinationals.

Macroeconomic Data

The real GDP, GDP per capita, and inflation index data series all come from
the Bureau of Economic Analysis. The Solow residual is the multifactor pro-
ductivity of the private business sector reported by the Bureau of Labor Stud-
ies. The term spread and real interest rate data are from the Fama–Bliss Center
for Research in Security Prices (CRSP) Monthly Treasury data base on WRDS.

The data for the Romer and Romer (2004) monetary policy shocks come
from David Romer’s web page. Their original series (RESID) is monthly from
1969 to 1996. Here the yearly Romer–Romer shock is the sum of the 12
monthly shocks in that year. For the years not covered by Romer and Romer,
the value of the shock is assigned to be 0, the mean of the original data. This as-
signment does not bias the regression coefficient under simple conditions, for
instance if the data are i.i.d. It does lower the R2 by the fraction of missed vari-
ance; fortunately, most large monetary shocks (e.g., of the 1970’s and 1980’s)
are in the data set.

The data for the Hamilton (2003) oil shocks primarily come from James
Hamilton’s web page. This series is quarterly and runs until 2001. It is defined
as the amount by which the current oil price exceeds the maximum value over
the past year. This paper’s yearly shock is the sum of the quarterly Hamilton
shocks. The spot price for oil reported by the St. Louis Federal Reserve is used
to extend the series to the present.
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