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1 Introduction

A society’s ability to provide for its members is determined in large part by the productivity

of its plants. A presumption shared by many economists is that plant-level efficiency is

governed by common inputs such as technology and the availability of capital or educated

workers. Yet there can be considerable differences in plants’ productivities for an identical

product within the same market. For instance, in the ready-mix concrete industry, a plant

in the 90th percentile of productivity has more than 4 times the value added as one in the

10th percentile if both plants use the same inputs.1

Why do we observe such a large dispersion in productivity? Moreover, why do these

differences persist over time? Indeed, productivity differences are puzzling, since selection

by exit should drive out inefficient plants from the market. For instance, suppose there is

an incumbent plant with low productivity, ρ, then it should be replaced by an entrant with

high productivity, ρ̄. Thus, in the long run, selection eliminates low-productivity plants.

I find some support in the data for the selection mechanism. In the ready-mix concrete

industry, the exit rate of a plant in the top quintile of productivity is 3%, while the exit rate

of a plant in the bottom quintile of productivity is 7%. Yet it is difficult to reconcile large

differences in productivity with such a small gap in exit rates.

Two forces blunt the selection effect. First, sunk costs insulate inefficient incumbents.

These sunk costs create a gap between the minimum level of productivity that allows a plant

to enter the market (say, ρE) and the lower level at which an incumbent exits (say, ρI). An

inefficient producer will remain active at a productivity level for which it would never have

considered entering, if productivity is ρ ∈ (ρI , ρE).

Second, productivity differences do not persist over time. At the extreme, if productivity

is independent across time, then a plant’s efficiency has no bearing on its decision to remain

in the market, since current productivity provides no information about future productivity.

In general, the lower the persistence of productivity, the less information is provided by

current productivity about future profits.

Thus, the question I address in this paper is: To what extent do sunk entry costs and

productivity volatility rationalize large differences in plants’ productivity mapping into a

1Productivity is defined as the residual in the regression of log value added on log salaries and log total
assets with year dummies. Thus, it is a measure of the profitability of input use.
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small selection effect? To answer this question for the ready-mix concrete industry, I build

and estimate a dynamic model of entry and exit that incorporates competitive considerations

and the evolution of plant-level productivity.

The first part of the empirical model is concerned with the measurement of productivity.

In particular, this part of the model determines the extent to which productivity dispersion

is real and not simply an artifact of measurement error. I use a control function technique

introduced by Ackerberg, Frazer, and Caves (2006) to separate true productivity dispersion

from measurement error. I find that productivity dispersion is substantially lower once I

filter out measurement error: a plant in the 90th percentile of productivity only produces

twice the value added as a plant in the 10th percentile, in contrast to the 4-to-1 ratio when

I simply run OLS.

Second, the model uses entry, exit and investment decisions to estimate the effect of low

productivity on plant profitability. Here I use a dynamic oligopoly model to account for

entry decisions and the localized market structure of the ready-mix concrete industry. I find

that to rationalize observed investment, entry and exit decisions, the profits of a plant in

the bottom quintile of productivity must be $ 220, 000 lower than those of a plant in the top

quintile (where the median plant has approximately $ 550, 000 of value added each year).

This is a substantial effect of productivity, as it implies that a plant in the 90th percentile

produces 1.5 times more value added than a plant in the 10th percentile (if both plants use

the same inputs)—only somewhat less than the 2-for-1 difference observed in the data.

Third, I conduct counterfactuals simulation to evaluate the role of sunk entry costs

and productivity volatility on equilibrium exit decisions. I find that if productivity were

perfectly persistent, then plants’ decisions to exit would be seven times more responsive to

productivity. In contrast, a reduction in sunk costs of 20% raises entry and exit rates, but

does not increase plants’ responsiveness to productivity differences.

In Section 2, I review the literature on plant selection and oligopoly dynamics. Section 3

presents the model of competition used for this paper. In Section 4, I describe the data on

ready-mix concrete plants, and Section 5 discusses the measurement of productivity. Section

6 provides basic empirical evidence for plant selection. Section 7 presents the estimation

of the model of entry and exit, while Section 8 discuses results. Section 9 presents the

counterfactuals experiments.
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2 Literature

In this paper I draw on three literatures. The first concerns the evolution of productivity

at the plant level, the second focuses on structural estimation of productivity, and the third

addresses the estimation of models of dynamic oligopoly models.

2.1 Productivity and Plant Selection

Theoretical models of industry dynamics are explored by Jovanovic (1982) and Hopenhayn

(1992), who study the effect of firms learning about their productivities on the entry and

exit process and an industry’s steady-state.

Syverson (2004) documents productivity dispersion in the ready-mix concrete industry

using data from the U.S. Census Bureau. Productivity is defined as the residual of the

regression of log output on log salaries, log assets and log materials, where the coefficients

on inputs are simply the input’s cost shares. The magnitude of productivity dispersion is

robust to several different measures of productivity, including defining output as total cubic

yards of ready-mix concrete produced. Syverson conjectures that competition plays a key

role in eliminating unproductive plants, which limits the dispersion of productivity. The

empirical evidence to support this conjecture is the distribution of productivity in large

and small markets, where market size is determined by the density of construction activity.

Productivity is both more dispersed and lower in in small markets. Moreover, there is

a smaller share of low-productivity plants in large markets than small ones. Competition

appears to truncate the distribution of productivity by driving out inefficient plants. Instead

of focusing on the cross-sectional implications of plant selection considered by Syverson

(2004), this paper explores the mechanism for plant selection in detail.

Foster, Haltiwanger, and Syverson (2008) investigate the role a plant’s profitability and

productivity play in its decision to exit. Profitability differs from productivity since a plant

in a concentrated market experiencing high demand can make large profits without being

particularly good at producing ready-mix concrete. Foster, Haltiwanger, and Syverson (2008)

find that as plants age, their technical efficiency falls, but their prices rise.

Dunne, Klimek, and Roberts (2005) also look at the entry and exit decisions of several

geographically differentiated producers (including ready-mix concrete) and find that plants

built by firms with previous industry experience have lower exit rates than those of newer
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entrants. It is difficult, however, to gauge if these other characteristics of firms can explain

the dispersion of productivity present in the data examined in this paper.

2.2 Structural Estimates of Productivity

To estimate production functions, it is necessary to account for two biases. First, firms

may observe their productivity shock before choosing inputs, and this leads to a correlation

between flexible inputs chosen by firms and productivity. This is known as the simultaneity

problem. Simultaneity will lead us to overstate the importance of flexible inputs, such as

labor, which will be correlated with the productivity shock. As a result, the importance of

more permanent inputs, such as capital, may be understated. Second, the distribution of pro-

ductivity is truncated since low-productivity firms are more likely than higher-productivity

firms to shut down. Thus, firms that have a higher likelihood of exiting the industry (e.g.,

small firms) also could have a more selected productivity distribution. To correct for both

the simultaneity and selection problems, Olley and Pakes (1996) propose a control function

correction. This procedure assumes that unobserved productivity shock is a function of the

firm’s investment decision, conditional on the state it is in. For instance, more productive

firms will invest more. If investment is put into a production function regression, it is possi-

ble to control for factors that are correlated with higher productivity but which should not

lead directly to higher production. Levinsohn and Petrin (2003) extend the Olley and Pakes

(1996) approach, using material inputs, rather than investment, as a proxy. These material

input controls have the advantage of allowing more continuous variation in the data. In

contrast, investment data are quite lumpy. Ackerberg, Frazer, and Caves (2006) propose an

integrated framework for thinking about control function estimates of production functions

using either material or investment controls or the literature on dynamic panel models. I

use this approach in my estimates for production functions since it offers more flexibility in

specifying the moments conditions that I use. Moreover, I take the control function approach

very literally, in that I back out and analyze the firm’s “true productivity”.

2.3 Estimation of Dynamic Multi-Agent Models

Models of dynamic oligopoly pose daunting econometric challenges that require specialized

solution techniques. The framework for empirical models of dynamic oligopoly was developed

4



by Ericson and Pakes (1995), who incorporate the solution concept of the Markov-Perfect

Equilibrium (Maskin and Tirole (1988)). To bring this framework to data, the econometrics

of dynamic discrete choice (e.g., Rust (1987)) can be used to estimate model parameters,

given the choices of firms. However, Rust’s Nested Fixed Point algorithm is intractable

for estimating all but the simplest dynamic game. Finding an equilibria of a dynamic

game is computationally intensive, since an equilibria is a fixed point in both the agent’s

value function and its best-response policy, given that other players are also playing a best-

response. Benkard, Bajari, and Levin (2007), Pesendorfer and Schmidt-Dengler (2008),

Pakes, Berry, and Ostrovsky (2007) and Aguiregabiria and Mira (2007) develop techniques for

estimating the parameters of a dynamic game without the computational burden associated

with computing the solution to the game for each parameter vector.

3 Model

In this section, I describe the model of industry dynamics used both to measure productivity

and gauge the effect of plant selection. This model closely follows Ericson and Pakes (1995).

There are N firms in each market, and these firms can be either potential entrants, denoted

sEi = {εEi }, or incumbent firms, whose state, si, is composed of:

si = {ki, ωi, εi} (1)

where ki is capital stock, ωi is the firm’s productivity, and εEi and εi are full support i.i.d.

private information shocks to the profitability of either entering or exiting the market.

The market level state, s = {s1, · · · , sN ,M}, is the composition of all firm-level states

for both incumbents and potential entrants, where M denotes total demand in the market.

In particular, M will be generated by demand for ready-mix concrete by the construction

sector. The important feature of this model is that firms need to keep track of the states

of their competitors, since other firms’ productivity and capital assets will affect their own

profits, π(s).
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3.1 Actions

Firms make two choices: entry/exit and investment. In each period, potential entrants

choose to enter a market or not. I denote the entry decision as χEi ∈ {0, 1} and the entry

cost as φE + εEi . Likewise, incumbent firms can choose to exit or stay in the market. I

denote the exit choice as χi ∈ {0, 1} and the fee paid by firms that choose to exit as φ+ εi.

Firms also choose how much capital to purchase or sell, denoted as ii, with investment costs

denoted as c(i). Subsequently, capital evolves to k′i = δki + ii, where δ is the depreciation

rate of capital.

Figure 1 illustrates the timing assumptions of the model within each period. First, the

unobserved states εi and εEi are privately observed by each firm. Second, firms simultaneously

choose whether or not to operate a ready-mix concrete plant in the next period and, if so,

how much to invest in the plant.

εi drawn and
privately ob-
served

Firms choose en-
try/exit χi,χ

E
i and

investment i

Firms pay φ,φE

and c(i), capital
evolves to k′

ωi evolves to ω′i

M evolves to
M ′

π(s) received

Figure 1: Timing of the Game within Each Period

Subsequently, productivity and demand evolve to their new levels. Productivity, ωi,

follows a first-order Markov process, i.e., ω′i ∼ fω(·|ωi), or ω′i ∼ fEω(·) for potential entrants.

I make two important assumptions regarding the evolution of productivity. First, I assume

that firms cannot control their productivity. In my model, productivity refers to total factor

productivity, not to output per worker. Thus, the purchase of better machines increases

the firm’s capital stock, not its productivity residual. Second, in contrast to the model

used by Jovanovic (1982), I assume that firms do not learn about their productivity as

they age.2 Overall market demand, M , evolves following a first-order Markov Process, i.e.,

M ′ ∼ fM(·|M), due to changes in the demand for ready-mix concrete from the construction

2For the ready-mix concrete industry, the limited effect of age on exit rates discussed in more detail in
Appendix D indicates a limited role of learning.
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sector. Finally, firms receive period profits, π(s). The value function for incumbent firms is

thus:

V (s) = max
χ∈{0,1}

χ(ψ + εi) + (1− χ)

(
max
i
π(s)− c(i) + β

∫
s′
V (s′)f(s′|s, i)ds′

)
(2)

where f(s′|s, i) is the transition density of the state, as determined by the evolution of

capital and productivity for all firms, the entry and exit decisions of firms, and the evolution

of construction activity, M :

f(s′|s, i) = fM(M ′|M)
N∏
i=1

fω(ω′i|ωi)f(k′i|ki, ii, χi)f ε(ε′i) (3)

Firms choose investment, i, to solve:

i∗(s) = argmaxiπ(s)− c(i) + β

∫
s′
V (s′)f(s′|s, i)ds′ (4)

Thus, the exit rule for firms is:

χ(s) = 1

(
π(s)− c(i∗) + β

∫
s′
V (s′)f(s′|s, i∗)ds′ > φ+ εi

)
(5)

Likewise, the value function for potential entrants is:

V E(s) = max
χE∈{0,1}

χE
(
φE + εEi +

∫
s′
V (s′)f(s′|s, i)ds′

)
(6)

Thus, the entry rule for firms is:

χE(s) = 1

(∫
s′
V (s′)f(s′|s, i∗)ds′ > φE + εEi

)
(7)

Note that the policy functions χE(s), χ(s) and i∗(s) define a Markov Perfect Equilibrium

in that these policy functions are optimal, given the transition density, f(s′|s). But of course

the transition density of s′ is determined by the entry, exit and investment rules of all other

firms in the market. Thus, the equilibrium is defined by two conditions: (1) the set of policies

that are optimal, given f(s′|s, i) and (2) the transition density, f(s′|s, i), that occurs, given
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the policies χE(s), χ(s) and i∗(s).3

3.2 Period Profits

Firms compete in quantities as in Cournot, given capital stock, ki, and productivity, ωi.

There is no simple closed form for the solution to this game. Furthermore, estimating a

Cournot or Bertrand model requires that I take a stance on what generates the considerable

dispersion in prices for ready-mix concrete within a given market and year. For these reasons,

I will use a reduced-form profit function to approximate the equilibrium profit of the period

game.

4 Data

4.1 Entry and Exit

Data on Ready-Mix Concrete plants is drawn from three different data sets provided by

the Center for Economics Studies at the United States Census Bureau.4 Table 1 illustrates

the datasets used. The first is the Census of Manufacturing (henceforth CMF), a complete

census of manufacturing plants, every five years from 1963 through 1997. The second is the

Annual Survey of Manufacturers (henceforth ASM) sent to a sample of manufacturing plants

(about a third for ready-mix) every non-Census year since 1973. Both the ASM and the CMF

involve questionnaires that collect detailed information on a plant’s inputs and outputs. The

third data set is the Longitudinal Business Database (henceforth LBD) compiled from data

used by the Internal Revenue Service to maintain business tax records. The LBD covers all

private employers on a yearly basis since 1976. The LBD only contains employment and

salary data, along with sectoral coding and certain types of business organization data such

as firm identification. Construction data is obtained by selecting all establishments from the

LBD in the construction sector (SIC 15-16-17) and aggregating them to the county level.

Production of ready-mix concrete for delivery predominantly takes place at establish-

ments in the ready-mix sector corresponding to either NAICS (North American Industrial

3Doraszelski and Satterthwaite (2010) show conditions under which an equilibrium exists for this model
of industry dynamics.

4In Collard-Wexler (2008) I discuss the construction of entry and exit data in further detail.
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CMF ASM LBD
Collection Questionnaire Questionnaire IRS Tax Data
Years Every 5 years 1972-2000 1976-1999
Entry/Exit/Payroll 70% 30% X
Input and Output Data 70% 30% X

Table 1: Description of Census Data Sources

Classification) code 327300 or SIC (Standard Industrial Classification) code 3273.

4.2 Longitudinal Linkages

To construct longitudinal linkages, I use the Longitudinal Business Database Number devel-

oped by Jarmin and Miranda (2002). To identify plant entry and exit, I use plant birth and

death measures, also developed by Jarmin and Miranda (2002), which identify entry and

exit based on the presence of a plant in the I.R.S.’s tax records.

Over the sample period from 1963 to 2000, there are about 350 plant births and 350

plant deaths each year. In comparison, during the same period, 5000 incumbent plants

(“continuers”) continued their operations. Turnover rates and the total number of plants

in the industry remained fairly stable over the last 30 years. As shown in Table A4 in

Appendix C, the average ready-mix concrete plant employed 26 workers and sold about 3.2

million dollars of concrete in 1997. Revenue was split evenly between material costs and

value added. However, these averages mask substantial differences between plants. Most

notably, the distribution of plant size is heavily skewed, with few large plants and many

small ones. This is indicated by the fact that more than 5% of plants have 1 employee,

while less than 5% of plants have more than 82 employees. Moreover, as Table A3 (also

in Appendix C) shows, continuing firms are twice as large as either entrants (“births”) or

exitors (“deaths”), as measured by capitalization, salaries or shipments.

4.3 Measuring Productivity

To measure productivity, I use information about a plant’s inputs and outputs from the

Annual Survey of Manufacturing (ASM) and the Census of Manufacturing (CMF). However,

these do not provide annual data for all ready-mix concrete plants. The ASM questionnaire
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samples only about 1
3

of ready-mix concrete producers each year.5

In contrast, the CMF questionnaire, which is sent to all manufacturing plants every 5

years, provides data on all plants in each market. These data can be used to look at the

relationship between competition and productivity. However, since the CMF samples plants

every 5 years, I can only look at a firm’s entry/exit decision in the year following a Census

year.

A large fraction of input and output data in the ASM and the CMF is imputed by the

Census Bureau. (I discuss the full details of the imputed data in Appendix A). There are

two important points to note about the imputed data. First, the data primarily are missing

due to the sampling design of the Economic Census and the ASM; i.e. the probability a

plant is sampled depends on it’s size. Thus, unlike many settings in economics, I know that

the selection into the sample is a function of employment alone and is not correlated with

other characteristics of the plant.6 Second, the goal of the imputation techniques used by the

Census Bureau is to produce correct statistics for the aggregate economy. Thus, while we

expect these imputes to yield the correct cross-sectional average for firm productivity, these

imputes were never meant to study either plant-level productivity and exit, or plant-level

productivity dynamics.

Plant efficiency plays a large role in the decision to continue operating, but plants do

not report productivity directly. Instead, productivity has to be inferred based on a plant’s

reported outputs and inputs. I estimate total factor productivity (TFP) as the residual from

5My model of productivity and competition requires the productivities of all plants in a market, since the
productivities of a plant’s competitors are an important component of the model. Since the ASM samples
one-third of plants in the ready-mix concrete industry, the probability that I have data on all plants in a
market is decreasing in the number of plants in a market. Thus, the sample of markets is severely truncated
in ASM years. For these reasons, I do not use ASM data in the estimation of the dynamic model; instead I
rely on data from the CMF.

6To correct for the selection bias inherent to the imputation of smaller firms, I have run regressions where
I adjust the estimates using propensity score weights. Since I observe all plants in the LBD, I compute
the weights via a Naradaya-Watson kernel regression of the probability an observation has missing data on
employment for each year:

wit = ŵt(Missing, lit) (8)

There is very little difference in the estimates calculated using propensity score weighting, with the exception
that exit rates are somewhat higher due to the fact that small plants, which are more likely to exit, are under-
sampled.
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the log-linear production function OLS regression:

yit(value added) = βllit(salaries) + βkkit(capital) + δt + ρit (9)

where a lower-case variable that denotes the logarithm of the actual variable, δt, is the

intercept of the production function for each year (so that year to year changes in technology

do not affect the dispersion of productivity), and ρit is a plant’s TFP. I deflate all items

measured in dollars by the producer price index (PPI).7

In Appendix E, I use different measures of output (e.g., value added, cubic yards of

concrete or total shipments) to estimate the total dispersion of productivity. I use a revenue

measure of output, since I want to explain why unprofitable firms do not exit the ready-mix

concrete industry, rather than why firms that produce little concrete per unit of input stay

in the industry. Firms that can charge a higher markup, due to either better quality or

market power, are more likely to stay in the industry.8

5 Control Function Estimates of Productivity

Productivity is typically estimated using the log-linear or Cobb-Douglas production function

in value added terms:9

yit(value added) = β0 + βllit + βkkit + ρit (10)

7It is important to deflate data measured in dollars since the log-linear production function is not linearly
homogeneous if the sum of the capital and labor coefficients differs from 1.0, and, thus, is sensitive to rescaling
variables.

8 De Loecker (2007) and Foster, Haltiwanger, and Syverson (2008) argue about the importance of sep-
arating technical efficiency from markups in the measurement of productivity. I am conflating these two
sources of profitability into a single index ω. Note that this assumption is incorrect to the extent that
the sum of efficiency and markups does not itself follow a Markov Process, which can be the case even if
both efficiency and markups each follow a Markov process. For instance, Das, Roberts, and Tybout (2007)
estimate a dynamic model with multiple components of profitability.

9Researchers typically measure output in terms of the value added by total shipments. In a previous
version of this paper, I used shipments as my measure of output. However, the assumption that materials,
such as sand, cement and gravel are Leontieff in the production function (i.e., perfect complements) makes
more sense than assuming that these inputs have a constant elasticity of substitution with labor and capital,
which, for example, is the case when one uses a Cobb-Douglas production function in shipments. In any case,
I expect to find more dispersion when I use production functions in shipments than when I use production
functions in value added. As well, I have estimated equation (10) using a translog production function and
find similar results to what is presented in this paper.
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where estimated firm productivity is ρit, the “unexplained” component of total sales. Es-

timated productivity, ρit, conflates true differences in productivity with errors in the mea-

surement of either inputs or outputs. In particular, since by definition measurement error is

uncorrelated with “true productivity” differences, then TFP will overestimate the degree of

productivity dispersion in an industry.

However, it is also incorrect to assert that measurement error is responsible for all mea-

sured productivity dispersion. Since productivity and exit decision are correlated with mea-

sured TFP, this rejects the assertion that TFP is pure measurement error.

The production function that both Olley and Pakes (1996) and Ackerberg, Frazer, and

Caves (2006) consider is the following:

yit = f(lit, kit) + ωit + εit (11)

The goal is to separate “true” productivity differences between firms, denoted as ωit,

from measurement error denoted, as εit.

5.1 First Stage

To identify the extent of measurement error, I impose structure on the way firms make their

investment choices. Suppose that the firm’s state, sit, is composed of both the firm’s capital

stock, kit, the firm’s “true” productivity level, ωit, and other states, such as the level of

demand in the market or the number of competitors in a market, which I refer to as xit.
10

sit = {kit, ωit, xit} (12)

Suppose that either investment (iit) or labor input demand functions are strictly increas-

ing in ωit, conditional on the rest of the state ({kit, xit}). I can rewrite the investment

function as:

iit = i(sit) = i(kit, ωit, xit) (13)

10Note that I cannot accommodate the productivity of other plants, ω−i, into the state xit.
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Under the assumption that i(·) is strictly increasing in ω, then this function can be inverted:11

ωit = i−1(iit|kit, xit) = h(iit, kit, xit) (14)

It is then possible to replace ωit in equation (11) with h(iit, kit, xit). This yields:

yit = f(lit, kit) + h(iit, kit, xit) + εit

= φ(lit, kit, iit, xit) + εit

I can identify the extent of measurement error in the first stage by performing a non-

parametric regression of the log of sales on labor, materials and capital. Table 2 presents the

first-stage, non-parameteric regression. I find that that the capital coefficient is far higher

when I only use Census years, rather than both Census and ASM years. Since I find far more

volatility in the capital stock in ASM years than Census years, I will only use Census years

to estimate the production function, as the CMF suffers from fewer data quality issues.

I denote the estimated φ(·) function as φ̂(·), which can be though of as the component of

output that can be accounted for by the production function and “true productivity”. The

gap between the output and the production function is the measurement error component

of TFP, which can be computed as:

εit = yit − φ̂(lit, kit, iit, xit) (15)

Notice that the essential difference between the φ(·) function and the production function

f(·) is that φ includes not only inputs into the production function but also other variables

that should be correlated with higher productivity but not with unmeasured inputs into the

production process.

5.2 Second Stage

In the second stage, I recover a plant’s “true productivity.” Suppose that a plant’s true

productivity follows a first-order Markov process. Then next year’s productivity is generated

11 Olley and Pakes (1996) provide conditions under which the investment policy will be strictly increasing
in productivity. If the market is imperfectly competitive, then it is no longer true that the investment
function must be strictly increasing.
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Dependant Var: Log Value Added Production Function First Stage ACF Regressions

Census Years All Years Census Years All Years
I II III IV V

Constant 1.148 1.342 1.039 1.021 1.143
(0.05) (0.05) (0.05) (0.07) (0.05)

Log Salaries 0.675 0.747 0.660 0.659 0.733
(0.01) (0.01) (0.01) (0.03) (0.01)

Log Assets 0.258 0.162 0.229 0.243 0.127
(0.01) (0.01) (0.01) (0.03) (0.01)

Log Investment 0.042 0.039 0.055
(0.01) (0.01) (0.01)

Zero Investment 0.162 0.179 0.201
(0.03) (0.04) (0.02)

1 Competitor -0.104 -0.139 -0.072
(0.04) (0.06) (0.03)

2 Competitors -0.124 -0.169 -0.087
(0.04) (0.06) (0.03)

3 Competitors -0.074 -0.127 -0.076
(0.04) (0.06) (0.04)

4 Competitors -0.081 -0.117 -0.047
(0.04) (0.06) (0.04)

5 Competitors -0.043 -0.06 -0.041
(0.03) (0.04) (0.03)

More than 5 competitors -0.007 -0.022 0.015
(0.01) (0.02) (0.01)

Multi-Unit Firm 0.178 0.162 0.177
(0.01) (0.02) (0.01)

Construction Employment -0.003 -0.001 -0.003
(0.00) (0.00) (0.00)

Squared and Cube Interactions X
of all above variables
Year Effects X X X X X

Observations 11097 15637 8499 8499 11814
R2 Adjusted 0.83 0.81 0.85 0.89 0.83

Standard Errors clustered by plant.

Table 2: Ackerberg, Frazer, and Caves (2006) -First Stage and Production Function Esti-
mates
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by:

ωit = g(ωit−1, χ̂it) + ξit (16)

where ξit is the innovation to today’s productivity and χ̂it is the exit propensity score com-

puted by running a probit of the exit choice on xit and kit (shown in column I of Table 6 on

page 23). To compute ξit, I perform a second-order series regression of ωit on ωit−1 and χ̂it,

i.e. ωit = ĝ(ωit−1, χit) + ξit (shown in column VII of Table 5 on page 20).

Since ξit is unobserved by the firm at the time at which it decides how much to invest,

then ξit and kit should be uncorrelated. Likewise, since a firm chooses labor based on today’s

ωit, rather than next period’s productivity draw, then ξit should be uncorrelated with today’s

labor input. When I combine these moment conditions together, I obtain:

E ξit

(
lit

kit+1

)
= 0 (17)

This, in turn, allows us to form an analogue estimator for this moment condition using a

GMM criterion. First, stack the data as:

X(β) =

 ~ξ1t(β)

...
~ξNt(β)



Z =

(
~lt
~kt+1

)
The GMM criterion using the weighting matrix (Z′Z)−1 is:

Q(β) = (X(β)′Z)(Z′Z)−1(X(β)′Z)′ (18)

I find that βl and βk minimize the GMM criterion, Q(β). These parameters are presented

in Table 3.12

12I find little difference in the estimated capital coefficient between the OLS and the ACF estimates, which
indicates that the simultaneity problem is not a large problem in the ready-mix concrete data used here.
However, I still find that “true productivity,” or ω dispersion, is much lower once I eliminate measurement
error.
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Dependent Variable: Log Value Added All Years Census Year
I II

Log Salaries (β̂l) 0.938 0.682
(0.270) (0.059)

Log Assets (β̂k) 0.015 0.260
(0.09) (0.038)

Observations 11862 8521

Standard Errors for the ACF estimator are computed via 1000 bootstrap replications. Notice that to compute

the bootstrap replications, I need to (1) compute the probit on exit and the associated exit propensity score,

χ̂it, (2) perform the first-stage regression and (3) minimize the GMM-Criterion, Q(θ). I also do block-

bootstrap by resampling a plant’s entire history to cluster the standard errors against serial correlation.

Table 3: Ackerberg, Frazer, and Caves (2006) Estimates of Productivity

Then “true productivity” can be computed as:

ωit = φ̂it − β̂llit − β̂kkit

5.3 Measures of Dispersion

My main goal is to explain the dispersion of plant-level efficiency, i.e., the fact that plants

that use the same bundle of inputs have different levels of output. Dispersion can be gauged

by the values for R2 in the production function regressions in Table 2. To express the relative

dispersion of productivity, I look at the dispersion that would occur if all plants used the

same bundle of inputs but brought their own productivity residual. This technique allows

me to look at the sources of TFP dispersion, while eliminating differences in output that are

due solely to differences in the use of inputs.13

The predicted output of a plant that uses the median levels of capital, and labor (denoted

as k50 and l50 respectively), but its qth quantile of the productivity residual can be computed

as:

ŷρq = βll50 + βkk50 + ρq

13I implicitly am foreclosing the discussion on productivity differences that are due to the use of inefficient
bundles of inputs.
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Likewise, I can obtain the predicted output of a plant that brings its qth quantile of “true

productivity” but has the median level of measurement error:

ŷωq = βll50 + βkk50 + ωq + ε50

Finally, I obtain the contribution of measurement error to productivity dispersion by

looking at the quantiles of output when I change measurement error:

ŷεq = βll50 + βkk50 + ω50 + εq

Table 4 presents the dispersion of value added due to TFP dispersion, true productivity

and measurement error. The top panel shows only the dispersion of TFP (ρ), measurement

error (ε) and true productivity (ω). Notice that the standard deviation of TFP (ρ) is 1.5

times higher than the dispersion of productivity (ω). The bottom panel shows that the

interquartile range for TFP is about $ 350 000, or 63 % of median value added. However,

when we look at the dispersion due to true productivity, the interquartile range is only $

140 000, or 25% of median value added. Thus, the interquartile dispersion of measurement

error is $ 270 000, or 50 % of median value added. This indicates that the dispersion of

TFP is due to an equal mixture of true productivity differentials and measurement error.

(Note that the sum of productivity and measurement error dispersion will be higher than

TFP dispersion if these two are negatively correlated.)

5.4 Persistence of Productivity

Current productivity provides two pieces of information to a ready-mix concrete plant. Low

productivity reduces current profits, since the plant produces less concrete for a given level

of inputs. Moreover, if productivity is persistent, low productivity also implies lower profits

in the future. Thus, greater persistence of productivity makes current productivity a better

indicator of future profits. Table 5 shows the 1 and 5 year autocorrelation of productivity,

along with the one and five year autocorrelations of TFP and measurement error.

First, note that both productivity and TFP have fairly low autocorrelations, with coeffi-

cients on last year’s variables of 0.58 and 0.55, respectively, which correspond to autocorre-

lations of approximately 70%. Measurement error also is serially correlated, but less so than
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Variable Observations Mean Std.

Log Value Added 11814 6.36 1.39

Predicted Output φ̂ 11862 6.33 1.28
TFP (ρ) 11814 0.13 0.71
Productivity (ω) 11862 1.06 0.46
Measurement Error (ε) 11814 0.03 0.60

Note: Productivity, Measurment Error and Predicted Output computed using the Ackerberg,
Frazer, and Caves (2006) technique. TFP is the residual from a Cobb-Douglas production
function estimated with OLS.

Value Added in thousands of dollars due to
Percentile Productivity (ωq) Measurement (εq) TFP (ρq)

10% 440 310 330
25% 490 440 440
50% 550 550 550
75% 630 710 790
90% 930 950 1400

Note: Computed using the distribution of residuals, median labor and capital.

Table 4: Dispersion of Predicted Output due to TFP Dispersion, True Productivity and
Measurement Error
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true productivity. These low correlations of TFP are not unique to the ready-mix concrete

industry; Abraham and White (2006) have documented autocorrelations across manufac-

turing of around 80%, where plant size (and hence serial correlation) is much larger than

in the ready-mix concrete sector. Second, the exit propensity score shows that, conditional

on survival, ready-mix concrete plants that are more likely to exit have higher productivity

growth. Third, the 5-year autocorrelation of TFP is much lower than the 5-year autocorre-

lation of productivity, with coefficients of 0.13 versus 0.38, respectively. This indicates that

true productivity is more persistent than TFP. If we ignore the problem of measurement

error, we would obtain far lower estimates of the persistence of productivity, and this would

bias estimates of the forward looking decision to exit the market conditional on the expected

net present value of productivity.14

Dispersion of plant productivity may be due to different vintages of ready-mix plants.

Older plants, though built with less efficient technology, compete with newer plants. Com-

peting vintages can result in the wide dispersion of productivity observed in the data. How-

ever, the ready-mix concrete industry is unusual, in that it has not experienced substantial

technological change during the past 50 years. For instance, the machines and trucks used

to produce ready-mix concrete 50 years ago are remarkably similar to those in use today.

Moreover, as Table A5 in Appendix C shows, the volume of concrete produced per worker

hour increased by less than 10% between 1967 and 1997. Because aggregate productivity has

increased very slowly, the assumption that the ready-mix concrete industry is near its steady-

state is plausible. Thus productivity dispersion is an outcome of an industry’s equilibrium

rather than a product of a transitory change.

6 Evidence for Plant Selection

Before presenting the structural model of entry/exit and investment, I provide evidence of

the mechanisms of plant selection. These results inform which features of the data can

identify parameters of the structural model. The process for plant selection can be seen to

operate via three channels: exit, growth, and competition. In this section, I provide some

14 In Appendix ??, I discuss decomposing the components of productivity volatility. Even if I use a much
less volatile version of capital, based on constructing capital stock using investment flows and depreciation,
I still obtain comparable autocorrelations of productivity.
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Dependent Variable: TFP ρ Measurement Error ε True Productivity ω

1 Year 5 Year 1 Year 5 Year 1 Year 1 Year 1 Year 5 Year
Lag Lag Lag Lag Lag Lag Lag Lag

I II III IV V VI VII VIII

TFP ρ 0.547 0.129
(0.012) (0.013)

Measurement Error 0.459 0.097
ε (0.016) (0.014)
True Productivity 0.581 0.554 0.612 0.383
ω (0.014) (0.018) (0.065) (0.015)
Exit 0.663 -0.080
Propensity Score χ̂ (0.291) (0.832)
ω2 -0.020

(0.020)
χ̂2 1.560

(7.384)
χ̂× ω 0.240

(0.656)
Constant 0.046 -0.026 0.059 -0.019 0.463 0.465 0.442 0.598

(0.011) (0.007) (0.011) (0.008) (0.020) (0.020) (0.050) (0.014)

Observations 4090 6369 2816 4824 2843 2843 2843 4838
R2 Adjusted 0.330 0.016 0.230 0.010 0.390 0.390 0.390 0.110

Table 5: Autocorrelation of Productivity, TFP and Measurement Error
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descriptive evidence.

For the remainder of the paper, I confine my attention to plants located in counties that

never have had more than 6 plants. The reason for this restriction is purely technical—to

compute counterfactuals simulations I need to store the state of the market in computer

memory. The model I use has 5 productivity and 4 capital states (including staying out of

the market), along with ten states for market demand. This yields 2.5 million possible states

for each market, which pushes the limit of computer memory.15

6.1 Inefficiency Encourages Exit

The first mechanism of plant selection is the exit of inefficient producers. Plant exit provides

the cleanest evidence of selection, since an incumbent’s productivity can be measured in

the year before exiting. A plant’s exit is determined both by productivity within the plant

and competition in the market, but plant-level factors typically provide greater explanatory

power.

Table 6 reports the marginal effects on plant size, productivity, competition and market

demand from probit regressions of the decision to exit. Column I shows only the effect of

plant size, the number of competitors and demand, and, thus, I can use the entire sample

from the LBD. Columns II and III use data from the CMF, which are not imputed, and, thus,

have a far fewer observations. Column III also includes “market category effects,” denoted

µ, which are a rough proxy for market fixed effects. Indeed, Table A7 in Appendix C shows

that the coefficients from the regression with these market category effects are similar to the

market fixed-effect conditional logit. These market category effects will be important since

they substantially raise the estimated effect of competition. This is because the number of

plants in a market is positively correlated with unobserved demand shifters (as in Collard-

Wexler (2010) for instance). Thus these market category proxies will show up in many of

the entry, exit and investment regressions that follow.

The effect of plant size is substantial. The mean exit rate for all plants in the sample is

6%, but having a plant with more than 7 employees lowers the exit rate by between 4.4% and

5.3%. Higher construction employment in the county in which a plant is located is associated

with a far lower probability of exit in Columns I and II. However, the presence of at least

15Specifically I need to store 2.5 million states, and for each state I need to store about 100 numbers to
characterize the action specific payoff as a function of the parameter vector.
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1 other plant in the county raises exit rates by between 2% and 3.4%, indicating a strong

competitive effect. The presence of additional competitors above 1 has a much smaller effect

on exit rates.

In Columns II and III of Table 6, a plant with mean productivity in the bottom quintile

has an exit rate of 7%, while a plant in the top quintile has an exit rate of 3.3%. This

effect of productivity is fairly large—comparable to the effect of going from a monopoly to

a duopoly market, or the effect of going from a small to a medium-sized plant.

At first glance, the relationship between productivity and exit is somewhat disappointing.

As a benchmark, consider a model in which plants compete in a perfectly competitive market.

A plant below a certain threshold of productivity certainly will exit. However, the weakness

of the relationship between exit and productivity in our data explains the wide dispersion of

productivity between plants: inefficient producers are slowly selected out. Another reason for

the modest effect of productivity in these data is the role of reallocation, which means that

low-productivity plants are more likely to shrink. Table 7 illustrates this effect: plants which

have productivity below the median are 2% less likely to end the next period as large plants

(more than 15 employees) rather than as small plants (less than 15 employees). Moreover,

over two periods, smaller plants have exit rates that are twice as high as large plants. Thus,

the increased risk of exit in two periods is attributed to small plant size, despite the fact

that it is the plant’s low efficiency that causes it to shrink in the first place.

6.2 Competitive Markets Are More Productive

Competition lowers profitability for all firms in a market. In a market with many competitors,

less productive producers should be more likely to exit. This link between productivity

and market size is thoroughly investigated by Syverson (2004), and I confirm his results in

Table A8, which shows that there is a higher fraction of productive plants in large markets.

7 Dynamic Choice: Empirical Model

In this section, I describe the econometrics used to estimate the dynamic entry, exit and

investment model. Estimation follows Collard-Wexler (2008) quite closely, and, thus, I will

give only a brief overview of the details of the estimation algorithm. The main adaptation
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Dependent Variable: I II III

Jarmin-Miranda Exit

Size
Medium†† -0.044 -0.053 -0.052

(0.002) (0.008) (0.008)
Large† † † -0.051 -0.054 -0.053

(0.002) (0.008) (0.008)
Productivity

2nd Quintile 0.002 0.004
(0.012) (0.011)

3rd Quintile -0.022 -0.020
(0.011) (0.011)

4th Quintile -0.033 -0.032
(0.010) (0.010)

5th Quintile -0.037 -0.037
(0.010) (0.010)

Log County Construction -0.078 -0.006 0.000
Employment (0.015) (0.003) (0.003)
1st Competitor 0.032 0.020 0.034

(0.002) (0.007) (0.007)
Log of more than one competitor 0.009 0.005 0.018

(0.001) (0.003) (0.004)
Average Plants in County Rounded

2 -0.060
(0.015)

3 -0.082
(0.017)

4 -0.094
(0.018)

Observations 64482 4627 4627
χ2 1089 109 133
Log Likelihood (L) -12656 -826 -807

†: Small is 0 to 6 employees (omitted category), ††: Medium is 7 to 17 employees, † † †: Big is more
than 17 employees. Standard Errors clustered by plant.

Table 6: Marginal Effect from a Probit: More Productive Plants Are Less Likely to Exit
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To
From

Out Small Big
Out 99.1%� 0.9% 0.0%
Small+ Low Productivity* 8.5% 86.2% 5.3%

High Productivity** 3.8% 89.9% 6.3%
Big++ Low Productivity 2.3% 15.2% 82.4%

High Productivity 1.8% 13.2% 84.9%

+ Small: Plant with fewer than 15 employees
++ Big: Plant with at least 15 employees

*Low Productivity: Productivity below the median for the year

**High Productivity: Productivity above the median for the year

�Number of Entrants: 6 minus the number of active firms in the county

Table 7: Low-Productivity Plants Are Less Likely to Grow than High-Productivity Plants

in this paper is the addition of a firm-specific state which characterizes it’s productivity.

First, I need to discretize the state space, since the solution techniques for solving dy-

namic oligopoly games with more than 2 firms all use discrete state spaces.16 Thus, I place

productivity (ωi) into 5 bins corresponding to the quintiles of the productivity distribution.

I use employment as my capital state, ki, and place employment into 4 bins. I use employ-

ment, rather than assets, as a capital state variable primarily because employment data are

available for all plants in the data from the LBD, while total assets are frequently missing in

the CMF and ASM data. However, given the coarseness of the discretization of ki, classifying

16There are essentially three reasons why it is difficult to solve dynamic oligopoly games with continuous
state spaces. The first is that in this game with six players, the state will be twelve-dimensional. To my
knowledge, there are few techniques that work well for solving dynamic decision problems in continuous
state spaces with more than three or four dimensions. The second problem is that, if we try to use aggregate
states, such as total demand or the number of firms, we can find value functions that are very nonlinear
and, therefore, are difficult to approximate using common basis functions. For instance, when Abbring and
Campbell (2010) graph the value function against demand, they find a saw-shaped pattern. As demand
increases, the firm’s value goes up until demand reaches a high enough level that an extra firm will want to
enter the market, pushing the value function down to zero. The third problem is that common approaches
for solving continuous-state space problems via basis function approximations—for instance, least-squares
policy iteration—suffer from serious convergence issues: Approximating the value function introduces a
source of error in the bellman iteration, making it difficult to find a solution. The work of Farias, Saure, and
Weintraub (2008) makes progress toward solving dynamic oligopoly games with large state spaces.
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firms by capital stock or employment does not a make a large difference. The demand state,

M , is taken as the number of construction employees in the county, which is placed into 10

bins.17

I will denote the observed part of the state as xi—i.e., the state vector does not include

shocks εi or εEi and is just capital and productivity, xi = {ki, ωi}. Moreover, the observed

state vector for the market, denoted x, is the collection of each firm’s observed state, xi, and

market demand, M .

A firm’s action, ai, is the choice of its capital in the next period: ai = k′i, which includes a

capital stock, ki = ∅, that indicates the decision to exit the market. This action, ai, replaces

i, χE and χ in this section of the paper, as the exit decision, χ, is just the decision to choose

ki = ∅ in the next period, and the entry decision is a firm’s choice of positive capital in the

next period, if its ki = ∅. Likewise, a firm’s investment or disinvestment choice is just the

decision to choose a larger or a smaller ki in the next period.

Finally, the shocks εi and εEi are implemented as i.i.d. logit shocks to the payoffs of each

action, ai. Having a full support shock for each action insures that we will see each action,

ai, played with positive probability and helps ensure to the existence of a Nash Equilibrium

to the game. Notice that I implicitly have assumed that each investment level also will be

played with positive probability.

7.1 Period Profits

I parametrize the firm’s reward function as:

r(ait+1, xt+1|θ) =
∑

j∈A θ1j1(ait+1 = j) (Fixed Cost)

+
∑

j∈A θ2j1(ait+1 = j)ωit+1 (Productivity Effect)

+
∑

j∈A θ3j1(ait+1 = j)Mt+1 (Demand)

+
∑

j∈A θ4j1(ait+1 = j) ln(
∑
−i 1(k−it+1 > 0)) (Competition)

(19)

which is a simple, first-order approximation of the firm’s profits, given the state vector, xt+1,

and the action chosen, ait+1, which is ki in the next period as well. Note that, in this model,

higher productivity does not have a direct effect on competitors. Instead, productivity has

17 The following employment and productivity bins are used:
ωi Bin 1 2 3 4 5
Mean Productivity 0.67 0.79 0.89 0.98 1.57

ki Bin 1 2 3
Mean Employment 3.3 11.3 33.6
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an indirect effect on the profits of competitors because more productive firms are more likely

to stay in the industry.

The are also adjustment costs for entering the market and for changing the size of a plant.

These transition costs, denoted τ(ai, ki), will be estimated flexibly—i.e., I will estimate a

parameter for the cost of moving from each capital state ki bin to another capital state, k̃i.

7.2 CCP Estimation

To estimate the parameters of the profit function using data on entry and investment choices,

I need to compute the expected net present value of profits from taking an action, ai, in

state x, which I denote as W (ai, x). This choice-specific value function, W (ai, x), is given

by:

W (ai, x) = Ea0i,x0

∞∑
t=0

βt [r(ait, a−it, xt)− τ(ait+1, kit) + εait ] (20)

where εait is the value of the choice-specific unobservable, conditional on having taken action,

ait.

I can approximate equation (20) using forward simulation given by:

W (a, x) ≈ 1

K

K∑
k=1

T∑
t=0

βt
(
r(akit, a

k
−it, x

k
t )− τ(akit+1, k

k
it) + E(ε|P [·|xkt ])

)
+ βT ξ (21)

where it is assumed that the private information unobservable, εti, is distributed as an i.i.d.

logit. Thus the expected value of εti, given that firms have conditional choice probabilities—

i.e., probability P[ai|x] of taking action ai in state x, can be computed as:

E[ε|P (·|xkt )] = γ −
∑
j∈A

ln(P [j|xkt ])P [j|xkt ] (22)

The term ξ is the error from truncating the simulation value at T , where T will be chosen

to be large enough so that this βT is small.18

However, to compute this forward simulation, I need to be able to simulate the evolution

18I use K = 10 000 and T = 1000 to compute W (ai, x) via forward simulation.
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of the state, x, as well as the actions taken by firms in the future. The state evolves according

to the transition density:

x′ ∼ D[M ′|M ]
N∏
i=1

(P[a′i|x]P ω[ω′i|ki]) (23)

Actions then evolve according to ai ∼ P[ai|x], where P are the conditional choice probabilities—

i.e., the probability that a firm takes action ai in state x, D is the process for demand, and

P ω is the transition density for productivity. The key insight from the modern literature

on estimating dynamic oligopoly games is that if we can estimate these three objects (D̂,

P̂ ω, P̂) directly from the data and, in particular, if we can estimate P, then it is not nec-

essary to solve for an equilibrium of the game, since the equilibrium strategies are directly

observable.19

The transition density for demand D̂ is estimated using a bin estimator and is described

in more detail in Collard-Wexler (2008).20 Likewise, the productivity transition process,

P ω[ω′i|ki], is given by:

P ω[ω′i|ki] =

{
P̂ ω[ω′i|ωi] if ki 6= ∅
P̂ ωE[ω′i] if ki = ∅

This process is estimated using a non-parametric bin estimator without reference to the

structural model and is described in Table 5 on page 20. Finally, I estimate the conditional

choice probabilities, P, using a multinomial logit on kit+1 (i.e., size in the next year), as

shown in Table A6 in Appendix C.

A final rewriting of the W function is now in order to aid with the estimation of the

model. The rewards and transition costs are linear in parameters θ, so the profit function

can be rewritten as r(ai, x|θ) − τ(ai, xi|θ) = θ · ~ρ(ai, x) where ~ρ is a function that returns

a vector. This implies that the W function will be separable in dynamic parameters, as in

19Notice that, for this CCP approach to work, it is necessary to be able to estimate P in a first stage.
20Demand is placed into 10 discrete bins, Bi = [bi, bi+1), where the bi’s are chosen so that each bin contains

the same number of demand observations. Making the model more realistic by increasing the number of
bins above 10 has little effect on estimated coefficients, but lengthens computation time significantly. The
level of demand within each bin is set to the mean demand for observations in this bin, i.e. Meanb(i) =∑L

l=1Ml1(Ml∈Bi)∑L
l=1 1(Ml∈Bi)

, where L indexes observations in the data and the D matrix is estimated using a bin

estimator, D̂[i|j] =
∑

(l,t) 1(M
t+1
l ∈Bi,M

t
l ∈Bj)∑

(l,t) 1(M
t
l ∈Bj)

.
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Bajari, Benkard, and Levin (2007), since

W (ai, x|θ) = E
∞∑
t=1

βt (r(ait, xt|θ)− τ(ait, kit|θ))

= θ · E
∞∑
t=1

βt~ρ(ait, xt) ≡ θ · Γ(ai, x)

(24)

so W (ai, x) = θ · ~Γ.21

Given the logit shocks to the value of taking each action, ai, I can compute the probability

of taking an action as:

Ψ(ai|x, θ) =
exp (W (ai, x))∑
j∈Ai

exp (W (j, x))

=
exp

(
θ · ~Γ(ai, x)

)
∑

j∈Ai
exp

(
θ · ~ΓP (j, x)

) (25)

7.3 Second Stage: Indirect-Inference Estimation

The model is estimated via Indirect Inference. A maximum likelihood estimation strategy,

using the choice probabilities, ΨP , is quite practical since the log-likelihood function, L, will

be globally concave:22

L(θ) =
∑
t,i

ln (Ψ(ait|xit, θ,Γ)) (26)

However, since there is simulation error embedded into the Γ function, a maximum-likelihood

estimator will be biased (see, e.g., McFadden (1989); and Pakes, Berry, and Ostrovsky

(2007)). Γ has simulation error both because the choice probabilities, P, have sampling

error and because the forward simulation procedure is an approximation of the true value

function.

21Note that the choice probabilities for different values of θ in equation 25 can be evaluated using multi-
plication.

22To see this, note that the assumption of linearity in dynamic parameters gives a utility function of the
form ua = θ · Γ(a, x), which is linear. Along with the assumption that the εa’s are logit, this implies a
globally concave likelihood function. I use Maximum Likelihood estimates as starting values for the Indirect
Inference procedure.
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The Indirect Inference (II) procedure, like many GMM estimators, will be consistent in

the presence of simulation error in Γ. Essentially, the reason for this is that the II procedure

matches conditional means in the data and in the simulated data, and the simulation error

in Γ washes out in expectation of this. As an auxiliary model, I choose a multinomial linear

probability model because it is simple to estimate and it is a close analogue to the dynamic

multinomial logit model used here. Note that the auxiliary model does not need to have

an interpretation of any sort. Its sole responsibility is to provide a rich description of the

patterns of a data set and to be simple to estimate.

It is necessary to define the choice to be a small plant as ysit = 1(ait = small). I run

a linear probability regression of ysit on covariates zit and get the OLS coefficients β̂s. The

covariates of the auxiliary model, zit, are indicators for the firm’s current state (including the

firm’s productivity and size), the number of competitors in a market, the log of construction

employees in the county, and dummies for the market category µ.

I also run the same linear probability regression using covariates zit and the dependent

variable ỹsit(θ) = Ψ(small|xit,Γ, θ) to obtain the predicted probability given by the dynamic

model for the decision to have a small plant. This regression yields OLS coefficient β̃s(θ). The

idea behind Indirect Inference is to minimize the discrepancy between these two regression

coefficients.23

I repeat this procedure for the decision to have a medium-sized plant, ymit = 1(ait =

medium), and for the decision to have a large plant, ylit = 1(ait = large).

The criterion function evaluates the distance between the regression coefficient in the

data and in the model’s predictions:

Q(θ) =
(
β̂s − β̃s(θ))

)′
Ws

(
β̂s − β̃s(θ)

)
+
(
β̂m − β̃m(θ))

)′
Wm

(
β̂m − β̃m(θ)

)
+
(
β̂l − β̃l(θ))

)′
Wl

(
β̂l − β̃l(θ)

) (27)

where Ws is a positive definite weighting matrix, where I use Ws = V [β̂s]−1, the inverse of

23 In Collard-Wexler (2008), I show that using the choice probabilities Ψ as predicted actions gives the
same θ’s as drawing action ait ∼ Ψ(·|xit,Γ, θ) from the predicted choice probabilities using an infinite number
of simulation draws. However, using the probabilities, rather than a simulator, yields a smooth criterion as
a function of θ.
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the covariance matrix from the OLS regression, and likewise for Wm and Wl.

8 Dynamic Results

I estimate the dynamic model of entry and exit with exogenous productivity using the CCP

style estimator presented in the previous section. I use a discount rate of 0.95.

There is one final problem that needs to be settled in order to estimate the model. In

the estimation of productivity and of entry, exit and size choices, I have deleted plants for

which the data was imputed. However, for the estimation of the dynamic oligopoly model,

eliminating all imputed data is, to say the least, problematic. If there are 5 plants in a market

and a single firm has imputed data, then the entire market would need to be dropped from

the sample. Since even in census years, 30% of plants have missing data, almost all large

markets would be eliminated. To get around this problem, I will use multiple imputation

software to impute the data for missing plants. Specifically, if plant i has missing productivity

ωi, this plant will be dropped. However, if plant i has a competitor plant that is missing

productivity data (i.e., if ω−i is missing), then I use multiple imputation software to fill in

the missing value. Section A.1 in Appendix A describes the exact procedure I use to impute

the data.24

Table 8 presents estimates of the dynamic entry-exit and investment model. As reported

in Collard-Wexler (2008), interview data indicate that the sunk costs of starting a ready-mix

concrete plant are on the order of 2 million dollars. Thus, I can convert the coefficients

expressed in variance units into dollars by normalizing the cost of entering as a large plant

at 2 million dollars. This, in turn, indicates that the unobserved state, ε, has a variance of

about $200,000 per year. Columns I and II present estimates using maximum likelihood,

while columns III and IV show results estimated via indirect inference. The results in

column I, estimated using maximum likelihood, and the results in column III, estimated

using indirect inference, are very similar with only a moderate economic difference between

them. This suggests that the inconsistency of maximum likelihood due to simulation error

does not seriously bias the estimates.25 I find the fixed costs of either small (less than seven

24Unfortunately, using multiple imputation software to fill in ωi does not accurately replicate the exit
probits shown in Table 6.

25In a previous paper, Collard-Wexler (2008), I find substantial differences between indirect inference and
maximum likelihood estimates. I do not know why the Maximum Likelihood and Indirect Inference estimates
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employees) medium (7 to 17 employees) or large (more than 17 employees) plants are fairly

similar, at around $400,000 per year. Market size, as measured by the log of construction

employment in the county, has a positive effect on firm profits, and, as is documented in

Collard-Wexler (2008), larger firms benefit disproportionately from higher demand—i.e., in

bigger markets, we find not only more firms, but also larger firms. Competition, as measured

by the log of the number of ready-mix concrete plants in the county, has a negative effect

on profits. Column II shows estimates that include market category effects. On average,

markets that have more firms have higher profitability. Notably, when market category

effects are included, the estimated effect of competition rises considerably, which is to be

expected if an unobservably more profitable market attracts more entrants, leading to a

positive bias on the effect of competition.

Adjustment costs are also important. The cost of entry for a small plant is estimated to

be $1.4 million, which is smaller than the cost of entry for either a medium or large plant,

calibrated to $2 million. As well, there are significant costs involved in raising the size of a

plant from small to medium and from small to large—estimated at approximately $600,000

and $950,000, respectively. Finally, I also find that there are significant, if smaller, costs

involved in reducing plant size. On average, it costs around $250,000 to shrink a plant’s size.

Productivity increases enhance a plant’s profits—be it a small, medium, or large plant.

The mean productivity of a plant in the lowest quintile is 0.67, while the mean productivity

of a plant in the top quintile is 1.57. Thus, a medium-size plant in the top quintile of produc-

tivity has profits that are $220,000 higher than the profits of a plant in the bottom quintile

of productivity. Using Indirect Inference estimates, I find that the effect of productivity on

a medium-size plant is $283,000. I find similar, if somewhat smaller, effects of productivity

on profits for both small and large plants.

8.1 Net Present Values

To understand why productivity has such a large impact on profits, recall that the reduced-

form multinomial logits on plant size described in Table A6, as well as the probit regressions

on exit in Table 6 show a fairly important positive effect of productivity. However, this

productivity effect is substantially smaller than the effect of competition and is roughly the

are similar in this application, but different in the previous paper.
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Maximum Likelihood Indirect Inference
Criterion Criterion

I II III IV

Fixed Costs Small† -338 (51�) -322 (49�) -458 (66) -456 (65)
Medium†† -476 (60) -468 (59) -530 (80) -534 (80)
Large††† -398 (69) -382 (69) -388 (87) -384 (87)

Market Type 2 40 (4) -67 (78)
Market Type 3 75 (7) -138 (134)
Market Type 4 92 (9) -168 (209)

Log Construction Small 4 (4) -9 (4) -11 (7) -8 (6)
Employment (M) Medium 48 (9) 39 (9) 46 (16) 44 (15)

Large 75 (11) 66 (12) 62 (18) 58 (18)

Productivity (ω) Small 180 (47) 200 (46) 326 (64) 317 (63)
Medium 225 (54) 246 (54) 276 (75) 283 (77)
Large 100 (62) 113 (63) 125 (78) 129 (79)

Log Competitors Small 10 (4) -54 (7) 2 (10) 7 (8)
(log(N)) Medium -57 (9) -123 (11) -41 (17) -53 (13)

Large -49 (13) -113 (14) -10 (19) -18 (17)

Adjustment Costs Out → Small -1392 (40) -1338 (40) -1334 (59) -1341 (59)
τ(ai, x) Out → Medium -2000 (67) -2000 (68) - 2000 (240) -2000 (254)

Out → Large -2023 (78) -2040 (80) -2345 (999) -2342 (982)
Small → Medium -594 (46) -635 (47) -677 (58) -673 (57)
Small → Large -919 (59) -981 (61) -1064 (80) -1063 (78)
Medium → Small -57 (46) -36 (46) 19 (54) 15 (53)
Medium → Large -312 (58) -334 (59) -290 (80) -293 (79)
Large → Small -281 (48) -252 (50) -342 (70) -343 (69)
Large → Medium -416 (59) -415 (60) -448 (80) -447 (79)

Variance of ε 195 201 199 199

Observations 14278 14278 14278 14278
χ2 73968 76543
Log-Likelihood L -4137 -4077

Note: All estimates are in thousands of dollars. Calibration to dollars, by assuming the entry cost of a

medium-size plant, are 2 million dollars. †: Small is 0 to 6 employees. ††: Medium is 7 to 17 employees. †††:
Big is more than 17 employees. �: Standard Errors are computed by bootstrapping the first-stage estimates

of P̂ , P̂ ρ and ω, and then reestimating the model. I use 100 bootstraps to compute the Standard Error.

Table 8: Dynamic Entry Model with Exogenous Productivity
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same magnitude as the effect of log construction employment. In the dynamic discrete choice

model, I do not estimate the effect of current productivity on the net present value of profits

in the future, but instead measure the effect of current productivity on current profits.

Next, I unpack the mapping between the current state and the expected net present

value of profits in the future. To do this, Table 9 runs regressions of the net present value

of competition on the current competion, the NPV of productivity on current productivity,

and the NPV of market size on current market size. To facilitate the interpretation of Table

9, I present summary statistics of these variables in Table A9 in Appendix C. Column I

in Table 9 regresses the net present value of years of activity on plant size. On average, a

plant can expect almost 11 years of activity in net present value (equivalent to 16 years),

which is about right given that I have chosen a discount rate of 5% per year and that there

is approximately a 5% chance that a plant will exit in any given year. Medium and large

plants expect to live about one more year in net present value (equivalent to living 19 years),

which makes sense, given that larger plants have much lower exit rates.

Column III in Table 9 regresses the net present value of productivity on current produc-

tivity. If productivity were perfectly persistent, then the coefficients in this regression should

equal 10, since this is calculated by multiplying today’s productivity by the expected net

present value of the years that the firm will remain in activity. This calculation yields a co-

efficient of 1.8, which indicates that the current year’s productivity is a fairly poor predictor

of the net present value of productivity in the future. The fact that current productivity has

a big impact on both the decision to exit the market and the determination of plant size is

even more striking than it may seem, since firms are responding to fairly short-lived changes

in productivity.

In contrast, column IV in Table 9 regresses the net present value of log construction

employment on this year’s log construction employment and finds a coefficient of 6.3. Thus,

current demand is a much better predictor of future demand than it is of future productivity.

This explains why, in the reduced form, I find a large effect of demand on either size or exit

decisions—an effect that is mitigated by the fact that demand is very persistent, as compared

with productivity.
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Dependent Variable: NPV† NPV NPV NPV Log

Activity Years Log Competitors Productivity Construction Employment
I II III IV

Medium 0.82
(0.06)

Large 1.09
(0.07)

Log Competitors 1.70
(0.01)

Productivity (ω) 1.77
(0.10)

Log Construction 6.35
Employment (0.06)

Constant 10.77 1.64 10.5 16.25
(0.04) (0.02) (0.10) (0.60)

Note: There are 3896 observations for all regressions. †NPV’s refer to the net present value of the

variable (with a 5% discount rate) using the forward simulation procedure.

Table 9: Demand and Competition Show Far More Predictability than Productivity

9 Counterfactuals

In the previous section, I explained how a large effect of current productivity on profits

translates into a small effect on a firm’s exit decisions. Two forces were conjectured for this

effect. First, sunk costs have an insulating effect on firms—i.e., a low-productivity incum-

bent may remain in the market because it is protected from potentially higher-productivity

entrants by sunk entry costs. Second, the large volatility of productivity makes it optimal

for a firm’s response to current producivity to be fairly mild.

To separate the quantitative importance of these two forces, I compute counterfactuals

where I change either a) the sunk costs of entry, or b) the time-series volatility of productivity.

I then will look at the equilibrium strategies in the equilibrium of the resulting game. I do

this in order to determine to what extent selection based on productivity is strengthened by

lower sunk costs of entry or, alternatively, by greater persistence of productivity.

It is important to look at these effects on equilibrium policies because changing the

parameters in the game may have effects on selection that are difficult to intuit. For instance,
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lower entry costs induce entry, and, if the market is competitive, productivity may influence

their exit decisions. Thus, it is difficult to evaluate which features of the industry are

responsible for the very small effect of productivity on exit without recomputing equilibria

to the game.

The three equilibrium computations I perform are:

a) Baseline (No Changes)

b) Increasing the Persistence of Productivity.

A key finding in this paper is that productivity is very volatile from year to year. To

see how this volatility slows the selection process, I compute the entry and exit policies

that would exist if productivity were fully persistent.26

c) Reducing Entry Barriers

To see how entry barriers slow the replacement of less productive incumbents by poten-

tially more productive entrants, I alter the cost of building a new ready-mix concrete

plant. Specifically, I reduce all transition costs, τ(a′i|ki), by 20% and recompute the

model.

I compute an equilibrium policy functions for the game, denoted Ψ = {Ψ[ai|x]}ai∈Ai,x∈X ,

by adapting the Stochastic Algorithm given in Pakes and McGuire (2001) to the discrete

action setup used in this paper. Then, I use the parameter estimates from the indirect

inference procedure with market category effects, denoted θ̂II,M , that were presented in

column IV of Table 8. The main variations on the Stochastic Algorithm are the discrete

action setup, where firms choose their size in the next period and decide to enter or exit the

market, and the randomness of the change in productivity. The details of this algorithm are

similar to those used in Collard-Wexler (2008). I discuss the exact algorithm in Appendix

B on page 44.27

26This is the assumption used in many models of industry dynamics such as the canonical Jovanovic (1982)
model.

27There are more than 2.5 million states in this application, along with 7 firms, 16 possible states per firm
and 10 demand states. I reduce the size of the state from 1.6 billon to 2.5 million by using the assumption
of exchangeability described by Gowrisankaran (1999). In addition, there are 10 million policies to evaluate.
I use a Stochastic Algorithm coded in C to compute the equilibrium to this game.
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To illustrate the characteristics of the computed equilibrium policies for all three coun-

terfactuals, I look at the role of productivity in a probit regression on the decision to exit,

which is an analogue to the probit on exit in Table 6. Specifically, I first simulate actions

akit from the computed equilibrium policies; i.e. akit ∼ Ψ[·|xit]. I then run a probit regression

on the decision to exit using the simulated dataset, Dk = {akit, xit}i,t. Since I have a large

amount of data, I will only use one simulation per observation, which implies k = 1.

Table 10 shows probits on the decision to exit estimated on the data simulated from

the 3 different counterfactuals: base (column A), no productivity volatility (column B), and

lowered entry barriers (column C). 28 The constant term in column C is far larger than

in columns A and B. This is to be expected since lowered entry barriers will lead to higher

turnover rates in the industry, for both entry and exit. Likewise the effect of size, as measured

by the number of employees, is also lower in column C versus columns A and B because I

have lowered the transition costs across all states in this counterfactual.

The most important results concern the effect of productivity on the decision to exit.

Notice that productivity has an effect of -0.087 in column A versus -0.672 in column B. In

other words, shutting off the volatility of productivity would increase the effect productivity

on exit by a factor of 8. Thus, the intuition that there should be a very strong selection

effect is correct only if productivity itself does not change much over time. However, given

the large volatility of productivity, these selection effects are not strongly represented in the

data. Other coefficients are fairly similar among the 3 counterfactuals, with the exception

of log construction employment, which is smaller in column B than in either column A or C.

In contrast, reducing entry barriers in column C leads to a coefficient on productivity that

is actually higher than in the baseline model in column A. Surprisingly, higher productivity

increases the probability of exit, but not significantly. Thus, lowering entry barriers would

not increase the selection effect by itself. Indeed, given the estimated importance of the i.i.d.

shocks εi in Table 8, lowering entry barriers makes firms more sensitive to these εi shocks,

rather than increasing their sensitivity to productivity.

28While it is a bit odd to show Standard Errors on simulations, they indicate how difficult it would be to
identify these effects in real data.
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Dependent Var: A B C
Simulated Exit Base No Volatility Lowered

of Productivity Entry Barriers

Productivity -0.087 -0.672*** 0.077
(0.111) (0.121) (0.108)

7-17 employees -0.464*** -0.671*** -0.479***
(0.084) (0.090) (0.088)

More 17 Employees -0.674*** -0.635*** -0.372***
(0.110) (0.097) (0.095)

Log Construction -0.235** -0.035 -0.266***
Employment (0.075) (0.073) (0.073)
Log Competitors 0.261*** 0.319*** 0.151***

(0.047) (0.045) (0.046)
Market Effects
Average 2 plants -0.983*** -0.817*** -0.573***

(0.094) (0.092) (0.089)
Average 3 plants -1.323*** -1.176*** -0.773***

(0.143) (0.137) (0.130)
Average 4 plants -1.322*** -1.130*** -0.953***

(0.183) (0.166) (0.177)
Constant -0.391* -0.351 -0.668***

(0.179) (0.181) (0.177)

χ2 271.78 263.43 143.10
Log-Likelihood -805.0 -838.9 -802.5
Observations 4089 4089 4089

Table 10: Exit and Productivity in 3 Different Counterfactuals

10 Conclusion

In the ready-mix concrete industry, plants using the same bundles of inputs produce substan-

tially different amounts of concrete. A plant in the 90th percentile of productivity produces

four times the value added as a plant in the in the 10th percentile. However, the exit rate of

plants in the bottom quintile of productivity is 6.8% on average. In comparison, plants in

the top quintile of productivity had an average exit rate of 3.3%. Why do these enormous

differences in productivity translate into such small differences in exit rates?

First, there is measurement error, which overstates the true dispersion of productivity.
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After correcting for this using a control function technique developed by Ackerberg, Frazer,

and Caves (2006), I find that the average plant in the 90th percentile of productivity only

produces twice as much value added as an average plant in the in the 10th percentile.

Second, I build and estimate a dynamic oligopoly model of the industry. Plants with low

productivity are more likely to exit and less prone to invest. In order to rationalize these

observed entry, exit and investment decisions, plants in the bottom quintile of productivity

must have per-period profits that are $ 220,000 lower than plants in the top quintile. This

corresponds to a difference of 1.5 in value added between plants in the bottom and top

quintiles—which is quite large, though somewhat smaller than the 2 for 1 difference found in

the data. To understand why this large difference in profits translates into small differences

in exit rates, there are two critical factors to consider. First, in this industry, productivity

has little persistence. Thus, current productivity does not provide much information on the

net present value of productivity over the plant’s expected lifetime. Second, the industry’s

high sunk costs slow the exit of unproductive producers.

I simulate the counterfactuals of either making productivity fully persistent or lowering

adjustment costs (e.g., sunk costs of entry) by 20%, I find that lowered adjustment costs have

little effect on the relationship between exit and productivity. In contrast, fully persistent

productivity yields exit rates that are 7 to 8 times more responsive to productivity than

those with the current volatility of productivity.

This paper concludes that large dispersion in productivity is quantitatively consistent

with the standard model of oligopoly entry and exit once the correct volatility of productivity

is accounted for. A question for future research is, thus, not what causes cross-sectional

differences in productivity, but, rather, how we account for the large time-series volatility of

productivity itself.
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A Imputed Data

The U.S. Census Bureau imputes data in three ways:29

1. Administrative Records:

Plants with fewer than 5 employees are deemed to be administrative records (henceforth
AR)—i.e., they do not have to respond to Census questionnaires. The Census of Manufac-
turing (CMF) imputes data for AR plants, which constitute about 30% of ready-mix concrete
plants. However, there is lower fraction of missing data in Census years, when the CMF is
used, than in non-Census years, where Annual Survey of Manufacturers (ASM) only samples
1
3 of plants.

AR data is imputed based on the number of employees at the plant, with larger plants being
sampled with a higher likelihood than smaller plants. Moreover, producers with fewer than 5
employees are rarely sampled by the CMF. Thus, it is difficult to know if very small producers
are productive or not since we rarely see information on these producers. To estimate the
dynamic model presented in this paper, I use imputed values of productivity for AR plants.

2. Cold Deck Imputes:

If a plant does not respond to a particular question on the ASM or CMF, its response can
be imputed by taking the response for the average plant and scaling that response to the
number of employees at the non-responding plant. This imputation technique is known as
cold deck imputation.

3. Hot Deck Imputes:

Another way to impute data is to assign a plant the same level of capital, labor and output
as another plant with similar characteristics, such as the same number of employees. This
imputation technique is known as hot deck imputation.

Administrative Records are flagged in Census data sets, but hot and cold deck imputes are not.
Therefore, I need to identify plants whose data contains hot and cold deck imputes. To eliminate
hot deck imputes, I flag all plants in a given year that have identical capital, salaries and value
added. For each plant that I classify as potentially a hot deck impute, I cannot identify the original
plant whose data was used for imputation; i.e., I cannot distinguish the true plant from it’s imputed
counterpart. Likewise, to pinpoint cold deck imputes, I flag all plants with the same capital-labor
ratio as the mode for that year.30 Falsely classifying an plant as a cold deck impute is unlikely,
since a plant with real data would have to have exactly the same capital-labor ratio as the mode
for the year.

Table A1 shows the number of observations in CMF and ASM data that are Administrative
Records, hot deck imputes and data collected in non-Census years by the ASM. About 40 % of the
data used in the analysis for this paper is imputed.

29The discussion of stripping imputes from Census data draws heavily on Syverson (2004).
30An observation is classified as a cold deck impute if |Kt

i/L
t
i −mode(K/L)t| < 0.001 where Kt

i and Lti
denote plant i’s capital and salaries in year t.
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Impute Flag Number of Observations

Administrative Records 7231
Hot Imputes 6277
Non-Census years 8217

Total Observations with capital,
salary and shipments data 37559

Note: An observation can be both an Administrative Record, a hot impute and an non-Census

year; thus, the total number of observations is smaller than the sum of the imputed and

non-Census year data.

Table A1: A Large Fraction of Census of Manufacturing and Annual Survey of Manufac-
turers Data Are Imputed

Table A2 shows production function estimates using value added as a plant’s output. For these
estimates, I dropped Administrative Records, cold and hot deck imputes and non-Census years.
Dropping imputed data from the sample has little effect on estimated coefficients but increases
the variance of the productivity residual. However, if I include data from non-Census years, the
coefficient on labor rises from 0.6 to over 0.8 and the capital coefficient falls from 0.3 to 0.04. The
large decline in the capital coefficient, due a very low capital coefficient in non-Census year, is the
reason for which I will mainly focus on non-Census years.

In addition, plant fixed-effects regressions are similar to estimates that OLS. Thus, selection
does not seem to be a problem in the measurement of productivity—i.e., more productive plants are
more likely to survive and increase their capital stock, since OLS and plant fixed-effect regressions
are similar. This indicates that the persistent component of plant-level productivity is uncorrelated
with capital stock.

A.1 Imputes for the Dynamic Oligopoly Model

The data used in the dynamic model is imputed using the following procedure:

1. I use the STATA missing observation (mi) code to impute productivity. Note that the de-
mand state, M , the action, ai, and the plant’s own size state are never imputed since these
are always observed in the Longitudinal Business Database (LBD), which is derived from
administrative data gathered as part of the Internal Revenue Service’s payroll tax collection
activities. So only the ωi variable must be imputed.

2. For incumbent firms, I only use the data from firms that do not have imputed data. However,
the firm’s state vector, s = {si, s−i}, also contains information on other firms’ productivities,
and I allow these data to be imputed. In sum, ωi is never imputed, but ω−i may be.

3. For potential entrants, the data on these firms will be selected with the probability corre-
sponding to the frequency of non-imputed data among incumbents. This can be thought of as
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Dependant Var: I II III IV IV (Fixed Effects)
Log Value Added

Log Salaries 0.896 0.866 0.862 0.642 0.671
(0.002) (0.003) (0.003) (0.005) (0.007)

Log Assets 0.041 0.033 0.040 0.323 0.265
(0.002) (0.002) (0.002) (0.005) (0.006)

Constant 1.172 1.408 1.390 0.751 0.947
(0.012) (0.018) (0.017) (0.013) (0.028)

No Administrative Record X
No Hot Imputes X
No ASM Years X
Observations 37559 30328 31282 29342 29342
R2 (within) 83% 74% 76% 86% 65%

Note: The number of observations differs due to changes in the sample included in each regression.

Table A2: Production Function Regressions with Different Sample Selection Criteria and
Output Measured as Value Added

a rough version of propensity score weighting, since it avoids having over 95% of observations
come from the pool of potential entrants.
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B Discrete Action Stochastic Algorithm

Algorithm Discrete Action Stochastic Algorithm (DASA)

1. Start in a location l0 = {a0, x0}.

2. Draw an action profile a|ai ∼ 1(ai = a0)
∏
−i P [a−i|x] and a state in the next period x′ given

action profile a:

x′|a ∼ D̂[M ′|M ]
∏
i

ι(x′i|ai, xi) (28)

where ι(x′i|ai, xi) is the updating function, which corresponds to the size state tomorrow
(which is just the action I choose) and a draw from the productivity transition:

ω′i ∼

{
P̂ωI [ω′i] if xi = 0 (initial productivity distribution)

P̂ω[ω′i|ωi] if xi > 0 (continuers productivity distribution)
(29)

And finally x′i = {ω′i, ai} is just the composition of the productivity and size state.

3. Increment the hit counter (how often you have visited the state-action pair): h(l) = h(l) + 1.

4. Compute the payoffs R of the action as:

R =r(ai, x)− τ(ai, xi)

+ β
∑
j∈A

W (j, x′)P [j|x′] + βE(ε|x′, P ) (30)

where E(ε|x′, P ) =
(
γ −

∑
j∈A ln(P [j|x′])P [j|x′]

)
(where γ is Euler’s Constant).

5. Update the W-function:
W ′(l) = αR+ (1− α)Q(l) (31)

where α = 1
h(l) .

6. Update the policy function:

The optimal policy function given choice specific value functions W (ai|x) is just given by the
logit formula:

Ψ(ai|x,W, θ) =
exp (W (ai, x))∑
j∈A exp (W (j, x))

(32)

The policy function is updated for state x, P [ai|x] = Ψ(ai|x,W, θ) for all action ai ∈ A.

7. Draw a new action a′i ∼ P [·|x′].

8. Update current location to l′ = {a′i, x′}.
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9. The stopping rule for this algorithm is based on Fershtman and Pakes (2009) which compares
the W-function to a simulated average based on rewards from steps 2 and 4 for states that
are recurrent. If the Q-function is exact, then the difference between between these two
objects can be accounted for by simulation error. The stopping rule is presented in below in
subsection B.1.

B.1 Discrete Action Stochastic Algorithm: Termination Criteria

The stopping rule is based on the fact that if I have the “correct” W function, then it will satisfy the
Bellman equation. However, it is computationally expensive to calculate the W-function exactly.
Instead we can approximate the value function using forward simulation. Consider the locations
R ⊂ S × A defined as the state-action pairs visited in the last 10 million iterations (keep a hit
counter that tracks the last 10 million iterations denoted rh(l)).

Algorithm Fershtman-Pakes Stopping Rule (FPStop)

For all locations l ∈ L which have been visited in the last 1 million iterations:

1. Compute the W-function using a one step forward simulation. For k = 1, ...,K (I use K =
10 000):

(a) Draw an action profile ak and a state tomorrow xk′ given location tommorow xk′ given
location l.

(b) Get rewards:

Rk =r(ak|xk′, θ) + τ(aki |xi, θ)

+ β
∑
j∈A

W (j, xk′)P [j|xk′]

+ β

∑
j∈A
−ln(P [j|xk′])P [j|xk′] + γ


(33)

(c) Compute the approximation to the W-function (denote W):

W(l) =
1

K

K∑
k=1

Rk (34)

2. Compute the difference in value functions weighted by the recent hit counter rh:

γ =
1∑

l rh(l)

∑
l

rh(l) ∗ (W(l)−W (l))2 (35)
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If the test statistic γ is small enough, then we can argue that we have a good approximation.
In practice I have used the fact that the recent hit counter weighted R2 between W(l) and W (l)
is greater than 0.999. This usually happens after as little as 50 million iterations, and it is usually
more efficient to run the DASA for 150 million iterations (i.e. 15 minutes) which will lead to a W
function which satisfy the FPStop criteria. Furthermore, in this application there are only about
3 000 state-action pairs (where the action is not 0) that are visited in the last 1 million iterations.
Thus the ergodic class R is quite small compared to the size of the entire state space.
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C Additional Tables and Figures

Average Shipments (in thousands) Birth Continuer Death

1977 461 1,164 402

1982 1,045 1,503 520

1987 1,241 2,307 601

1992 1,509 2,218 1,417

1997 1,559 3,293 1,358

Average Capital (in thousands) Birth Continuer Death

1977 217 491 185

1982 403 598 187

1987 549 1,050 270

1992 565 1,131 632

1997 728 1,992 770

Average Salaries (in thousands) Birth Continuer Death

1977 83 211 83

1982 185 269 83

1987 205 413 101

1992 257 428 267

1997 243 567 241

Table A3: Characteristics of Plants that are Births, Deaths and Continuers
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Observations Mean Standard 5th 95th
Deviation Percentile Percentile

Total Employment 70566 26 147 1 82
Administrative Record Flag 70622 0.13 0.34 0 1
Jarmin-Miranda Entry 120055 6.2% 0 1
Jarmin-Miranda Exit 119790 6.0% 0 1
Total Value of Shipments (in 000’s) 70566 3380 25643 41 11000
Total Value of Inventory (in 000’s) 11598 116 3702 0 140
Building Assets Ending (in 000’s) 51246 153 1885 0 420
Machinery Assets Ending (in 000’s) 51246 754 4463 0 2700
Machinery Depreciation (in 000’s) 51246 55 478 0 220
Multi-Unit Flag 70622 0.51 0.50 0 1
Total New Expenditures (in 000’s) 70566 148 1625 0 510

Table A4: Summary Statistics for Plant Data

Survey Year Median Median Cubic Yards of Concrete
Employees Per Plant Per Worker Per Worker Hour

1963 8 15000 1900 1.4
1967 14 26000 2100 1.6
1972 15 35000 2200 1.6
1977 13 33000 2300 1.7
1982 13 25000 2000 1.4
1987 15 36000 2700 1.7
1992 13 32000 2600 1.7
1997 13 40000 3000 1.7

Table A5: The ready-mix concrete sector has experienced little productivity growth.
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Action Chosen I II
Small
Size
Small 4.99 (0.30) 4.71 (0.30)
Medium 4.87 (0.35) 4.53 (0.35)
Large 3.85 (0.36) 3.47 (0.36)

Productivity 1.36 (0.31) 1.35 (0.30)
Log Construction Employment -0.12 (0.10) -0.01 (0.11)
Log Competitors -0.25 (0.13) -1.62 (0.17)
Constant -3.53 (0.26) -3.38 (0.27)
Average Plants Rounded
2 1.06 (0.13)
3 1.92 (0.18)
4 2.52 (0.26)

Medium
Past Size
Small 4.74 (0.39) 4.40 (0.39)
Medium 7.98 (0.41) 7.55 (0.41)
Large 6.01 (0.41) 5.52 (0.41)

Productivity 1.50 (0.32) 1.51 (0.32)
Log Construction Employment 0.34 (0.13) 0.50 (0.13)
Log Competitors -0.64 (0.15) -2.37 (0.20)
Constant -6.25 (0.37) -6.19 (0.39)
Average Plants Rounded
2 1.35 (0.17)
3 2.42 (0.23)
4 3.32 (0.31)

Large
Size in the Past
Small 4.05 (0.48) 3.70 (0.49)
Medium 7.37 (0.47) 6.92 (0.47)
Large 9.15 (0.46) 8.61 (0.46)

Productivity 0.97 (0.35) 0.96 (0.35)
Log Construction Employment 0.74 (0.15) 0.90 (0.15)
Log Competitors -0.39 (0.16) -2.41 (0.23)
Constant -8.00 (0.47) -7.95 (0.49)
Average Plants Rounded
2 1.56 (0.20)
3 2.82 (0.27)
4 3.89 (0.35)

Observations 14278 14278
Log-Likelihood L -4066 -4166
χ2 17754 17555

Note: †: Small is 0 to 6 employees, ††: Medium is 7 to 17 employees, † † †: Big is more than 17 employees.
Out is the omitted category.

Table A6: Multinomial Logit Estimates of the Size and Entry Decision. Used as CCP’s P
in the dynamic model.
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Dependent Variable I II III IV
Jarmin-Miranda Exit (county fixed effects)
Size
Medium -0.918 -1.210 -1.209 -1.250

(0.050) (0.201) (0.202) (0.224)
Large -1.174 -1.276 -1.260 -1.163

(0.063) (0.234) (0.232) (0.260)

Log County Construction -0.078 -0.145 0.005 0.095
Employment (0.015) (0.062) (0.067) (0.217)
1st Competitor 0.791 0.511 0.915 0.801

(0.058) (0.201) (0.220) (0.260)
Log of competitors (above 1) 0.174 0.114 0.407 0.557

(0.019) (0.077) (0.095) (0.138)
Productivity
2nd Quintile 0.031 0.063 0.083

(0.190) (0.193) (0.221)
3rd Quintile -0.429 -0.394 -0.093

(0.221) (0.222) (0.243)
4th Quintile -0.748 -0.720 -0.587

(0.235) (0.237) (0.271)
5th Quintile -0.890 -0.913 -0.793

(0.245) (0.249) (0.284)

Average Plants in County Rounded
2 -0.899

(0.194)
3 -1.476

(0.269)
4 -2.004

(0.362)
Constant -2.810 -1.746 -2.338

(0.084) (0.349) (0.373)
Observations 64482 4627 4627 1747
χ2 1089 109 133 102
Log-Likelihood L -12656 -826 -807 -396

Table A7: Logit and Conditional Logit estimates of the Decision to Exit
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Market Size Category Median Number of Plants Productivity Share of Plants

1 1 Low Productivity* 41%
Medium Productivity** 33%
High Productivity*** 24%

2 3 Low Productivity 37%
Medium Productivity 32%
High Productivity 31%

3 5 Low Productivity 29%
Medium Productivity 34%
High Productivity 37%

4 16 Low Productivity 20%
Medium Productivity 34%
High Productivity 46%

* Lowest tercile of productivity

** Medium tercile of productivity

***Highest tercile of productivity

Table A8: In large markets a higher fraction of plants are productive.

Variable Mean Std. 10th Percentile 90th Percentile
NPV of periods as a small plant 7.96 1.62 5.60 10.00
NPV of periods as a medium plant 2.27 1.06 1.10 3.90
NPV of periods as a large plant 1.04 1.15 0.17 3.00
Log Construction Employment 2.20 0.51 1.60 2.70
NPV of Log Construction Employment 31.25 9.45 19.00 44.00
Productivity 0.93 0.38 0.68 1.60
NPV of Productivity 12.26 2.01 9.60 15.00
Log Competitors 1.31 1.16 0.00 3.00
NPV of Log Competitors 9.51 6.24 1.50 19.00

Note: Net Present Values (i.e. NPV) are simulated. The number of observations is N = 4113
in all regressions.

Table A9: Summary Statistics for Net Present Values
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D Effects of Age

In the ready-mix concrete industry there is no evidence that a firm’s age has an impact on its
exit decision.31 Figure A1 shows that the exit hazard decreases gently with age. Younger firms
could be less likely to exit if they delay shutting down in order to accumulate information on
their underlying productivity. In a Bayesian learning model, older firms use a higher productivity
cutoff for exiting than younger firms. If younger firms have less information about their true
productivity level, a younger firm has greater option value than an older firm, for a given realization
of productivity,. Figure A2 shows that the productivities of the 25th, 50th and 75th percentile plants
do not increase with age, indicating that firms face little uncertainty on the permanent component
of their productivities. 32

Age and Exit
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Figure A1: Older firms are slightly less likely to exit.

31In contrast, Abbring and Campbell (2003) find evidence that bars in Texas face considerable uncertainty
about their profitability in their first year in operation.

32Moreover, Figure ?? shows the average number of employees at a plant rises dramatically in a plant’s first
year, and subsequently grows slowly. Pakes and Ericson (1998) discuss the empirical content of the passive
learning models in the Jovanovic (1982) tradition. They show that one of the few empirical implications of
the passive learning model is that the expected firm size is increasing in the previous size of the firm. Pakes
and Ericson (1998) do not have data on plant level productivity, so their tests of the passive and active
learning models are not based on plant-level productivity.
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Age and Productivity
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Figure A2: Plant Productivity shows little change as it ages.
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Figure A3: Average plant employment rise slowly after the first year in operation.
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E Different Measures of Output in Estimating Produc-

tion Functions

I use three different definitions of output which generate corresponding measures of productivity:

1. Value Added (henceforth VA).

2. Total Value of Shipments (TVS).

3. Cubic Yards of Concrete (CYC).

Productivity residuals generated by these measure of output are somewhat correlated. Measures
based on revenues (VA and TVS) are highly correlated. The measure based on quantity (CYC)
has a weak correlation with the revenue measures (VA and TVS).

The first measure of productivity is the residual from the log-linear production function OLS
regression:

yti(value added) = βll
t
i(salaries) + βkk

t
i(capital) +At + ρti (36)

where a lower case variable denotes the logarithm of the actual variable, At is the intercept of the
production function for each year (so that year to year changes in technology do not affect the
dispersion of productivity) and ρti is a plant’s productivity. I deflate all items measured in dollars
by the producer price index (PPI). 33

The second measure of productivity is based on total value of shipments, the KLEM production
function:

yti(total value of shipments) = βll
t
i(salaries) + βkk

t
i(capital)

+βmm
t
i(cost of materials) +At + ρti

(37)

Finally, I measure productivity based on cubic yards of concrete produced by a plant. This is
an effective measure of output for the ready-mix concrete industry since ready-mix concrete is a
homogeneous good and ready-mix concrete is a plant’s sole output:34

qti(cubic yards of concrete) = βll
t
i(salaries) + βkk

t
i(capital)

+mt
i(materials) +At + ρti

(38)

Table A10 presents production function regressions with output defined as value added (VA),
total shipments (TVS) or volume of ready-mix concrete (CYC). Notice that the TVS and CYC
regressions have similar coefficients for materials, capital and labor. One might worry that the
total value of shipments mismeasures output. Prices are higher in more concentrated markets, and
thus the value of shipments will also be higher.35 The total volume of concrete produced can also

33It is important to deflate data measured in dollars since the log-linear production function is not linearly
homogeneous if the sum of the capital and labor coefficients differs from one, and thus is sensitive to rescaling
variables.

34See Collard-Wexler (2006) for evidence on the preponderance of ready-mix concrete in a plant’s output.
35Figure A2 in Collard-Wexler (2006) presents illustrates higher prices in markets with fewer plants.
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mismeasure output, since ready-mix concrete trucks do not need to drive as far in denser markets
to make a delivery. A plant located in a dense market can economize on trucks, drivers and fuel
giving the (mistaken) appearance that it is a more efficient operation. The “fit” of the regression
as measured by the R2 is much higher for the total shipments regression than the cubic yards of
concrete regression. Moreover, capital and labor coefficients are higher in the shipments regression
than in the volume regression. This could indicate either that different types of concrete require
different levels of inputs, or that the price level for concrete is correlated with the price level for
labor and capital (perhaps in the form of higher land prices for the latter).

Output Measure

Log Value Added Log Shipments Log Cubic Yards of Concrete
Log Salaries 0.633 0.270 0.138

(0.006) (0.003) (0.012)
Log Assets 0.269 0.116 0.084

(0.006) (0.003) (0.010)
Log Materials 0.587 0.689

(0.003) (0.011)
Constant 1.163 1.170 4.366

(0.022) (0.011) (0.042)

Observations 22114 21941 15636
R2 74% 94% 58%

Table A10: Production function regressions with different output measures.

E.1 Log Shipments as an Output Measure

Table A11 reports the results if one use a production function where shipments are the firm’s output
rather than value added:

yit (shipments) = β0 + βl (salaries) + βk (assets) + βm (materials) (39)
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Dispersion due to
Percentile TFP (ρq) Productivity (ωq) Measurement (εq)

10% 1.7 1.8 1.8
25% 1.8 1.9 1.9
50% 2.0 2.0 2.0
75% 2.3 2.2 2.3
90% 2.9 2.3 2.6

Table A11: Dispersion of Predicted Output due to TFP dispersion, true productivity, and
measurement error (in millions of dollars) using shipments measure of output.
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