Lecture 8-9: Portfolio Management-2 Risky Assets and a Riskless Asset.

I. Reading.
II. Standard Deviation of Portfolio Return: Two Risky Assets.
III. Graphical Depiction: Two Risky Assets.
IV. Impact of Correlation: Two Risky Asset Case.
V. Portfolio Choice: the Two Risky Asset Portfolio.
VI. Portfolio Choice: Combining the Two Risky Asset Portfolio with the Riskless Asset.
VII. Applications.
Lecture 8-9: Portfolio Management-2 Risky Assets and a Riskless Asset.

I. Reading.
 A. BKM, Chapter 8: read Sections 8.1 to 8.3.

II. Standard Deviation of Portfolio Return: Two Risky Assets.
 A. Formula:

 \[\sigma^2[R_p(t)] = \omega_{1,p}^2 \sigma[R_1(t)]^2 + \omega_{2,p}^2 \sigma[R_2(t)]^2 + 2 \omega_{1,p} \omega_{2,p} \sigma[R_1(t), R_2(t)] \]

 where
 - \(\sigma[R_1(t), R_2(t)] \) is the covariance of asset 1’s return and asset 2’s return in period t;
 - \(\omega_{i,p} \) is the weight of asset i in the portfolio p;
 - \(\sigma^2[R_p(t)] \) is the variance of return on portfolio p in period t.

 B. Example 2 (cont): Consider a portfolio formed at the start of January 2005 with 60% invested in the small firm fund and 40% in ADM.
 2. What is the portfolio’s standard deviation ignoring DP?

 \[
 \sigma^2[R_p] = 0.6^2 \times 5.27^2 + 0.4^2 \times 8.65^2 + 2 \times 0.6 \times 0.4 \times 16.07 \\
 \]

 \[
 \sigma[R_p] = \sqrt{29.684} = 5.45.
 \]

 3. Obtain expected portfolio return using the formula on page 1 of Lecture 7-8.

 \[
 E[R_p] = \omega_{Small,p} E[R_{Small}] + \omega_{ADM,p} E[R_{ADM}] \\
 = 0.6 \times 1.25 + 0.4 \times 1.52 \\
 = 1.36
 \]
III. Graphical Depiction: Two Risky Assets.
A. The standard deviation of return on a portfolio consisting of the small firm asset and ADM and its expected return can be indexed by the weight of the small firm asset in the portfolio. The curve is known as the portfolio possibility curve.

<table>
<thead>
<tr>
<th>(\omega_{\text{small},p})</th>
<th>(\omega_{\text{ADM},p})</th>
<th>(\sigma[R_p(t)])</th>
<th>(E[R_p(t)])</th>
</tr>
</thead>
<tbody>
<tr>
<td>-0.2</td>
<td>1.2</td>
<td>10.05</td>
<td>1.57</td>
</tr>
<tr>
<td>0.0</td>
<td>1.0</td>
<td>8.65</td>
<td>1.52</td>
</tr>
<tr>
<td>0.2</td>
<td>0.8</td>
<td>7.36</td>
<td>1.47</td>
</tr>
<tr>
<td>0.4</td>
<td>0.6</td>
<td>6.25</td>
<td>1.41</td>
</tr>
<tr>
<td>0.6</td>
<td>0.4</td>
<td>5.45</td>
<td>1.36</td>
</tr>
<tr>
<td>0.8</td>
<td>0.2</td>
<td>5.09</td>
<td>1.31</td>
</tr>
<tr>
<td>1.0</td>
<td>0.0</td>
<td>5.27</td>
<td>1.25</td>
</tr>
<tr>
<td>1.2</td>
<td>-0.2</td>
<td>5.94</td>
<td>1.20</td>
</tr>
</tbody>
</table>

Portfolio of the Small Firm Asset and ADM: Ignoring DP
\(\{\sigma[R_{\text{small}}], E[R_{\text{small}}]\} \) marked by + and \(\{\sigma[R_{\text{ADM}}], E[R_{\text{ADM}}]\} \) marked by x
IV. Impact of Correlation: Two Risky Asset Case.

A. Standard Deviation Formula.

1. Can be rewritten in terms of correlation rather than covariance (using the definition of correlation):

\[
\sigma^2[R_p(t)] = \omega_{1,p}^2 \sigma[R_1(t)]^2 + \omega_{2,p}^2 \sigma[R_2(t)]^2 + 2 \omega_{1,p} \omega_{2,p} \rho[R_1(t), R_2(t)] \sigma[R_1(t)] \sigma[R_2(t)]
\]

where \(\rho[R_1(t), R_2(t)]\) is the correlation of asset 1’s return and asset 2’s return in period \(t\);

2. For a given portfolio with \(\omega_{1,p} > 0\) and \(\omega_{2,p} > 0\) and \(\sigma[R_1(t)]\) and \(\sigma[R_2(t)]\) fixed, \(\sigma[R_p(t)]\) decreases as \(\rho[R_1(t), R_2(t)]\) decreases.

B. Example 2 (cont):

a. Suppose the \(E[R]\) and \(\sigma[R]\) for the small firm asset and for ADM remain the same but the correlation between the two assets is allowed to vary:

Portfolio of the Small Firm Asset and ADM: Ignoring DP

\(\rho = \rho[R_{Small}, R_{ADM}]\)

\{\(\sigma[R_{Small}], E[R_{Small}]\) marked by +, \(\sigma[R_{ADM}], E[R_{ADM}]\) marked by x

V. Portfolio Choice: the Two Risky Asset Portfolio.
 A. A risk averse investor is not going to hold any combination of the two risky assets on the negative sloped portion of the portfolio possibility curve.
 1. So the negative-sloped portion is known as the inefficient region of the curve.
 2. And the positive-sloped portion is known as the efficient region of the curve.
 B. The exact position on the efficient region that an individual holds depends on her tastes and preferences.
 C. Example 2 (cont): The portfolio possibility curve for the small firm asset and ADM can be divided into its efficient and inefficient regions.
 1. Any risk averse individual combining the small firm asset with ADM wants to lie in the efficient region: so wants to invest a positive fraction of her portfolio in ADM.
VI. Portfolio Choice: Combining the Two Risky Asset Portfolio with the Riskless Asset.

A. Two-step Decision Process:

1. What is the preferred weights of the two risky assets in the risky portfolio?
 a. all risk averse individuals want access to the CAL with the largest slope; this involves combining the riskless asset with the same risky portfolio (● in the graph below).
 b. this same risky portfolio is the one whose CAL is tangential to the portfolio opportunity curve; this is why ● is known as the tangency portfolio (denoted T).
 c. Can calculate the weight of risky asset 1 in the tangency portfolio T using the following formula:

\[
\omega_{1,T} = \frac{\sigma[R_2]^2 E[r_1] - \sigma[R_1, R_2] E[r_2]}{\{\sigma[R_2]^2 E[r_1] - \sigma[R_1, R_2] E[r_2]\} + \{\sigma[R_1]^2 E[r_2] - \sigma[R_1, R_2] E[r_1]\}}
\]

where \(r_i = R_i - R_f\) is the excess return on asset i (in excess of the riskless rate).

2. What is the preferred weights of the risky portfolio T and the riskless asset in the individual’s portfolio?
 a. the weight of T (●) in an individual’s portfolio \(\omega_{T,p}\) depends on the individual’s tastes and preferences.
B. Example 2 (cont): Suppose I form a portfolio (ignoring DP) of the small firm asset, ADM and T-bills.

1. What is the preferred weights of the two risky assets in the risky portfolio?
 a. Graph suggests that the risky asset portfolio I want to hold has positive weights invested in the small firm asset and in ADM (since \mathbf{w} is between $+$ and x on the portfolio possibility curve for the small firm asset and ADM).
 b. Can calculate the weight of the small firm asset in the tangency portfolio using the following formula:

 $$
 \omega_{\text{Small},T} = \frac{\sigma[R_{\text{ADM}}]^2 E[r_{\text{Small}}] - \sigma[R_{\text{Small}}] R_{\text{ADM}} E[r_{\text{ADM}}]}{\{\sigma[R_{\text{ADM}}]^2 E[r_{\text{Small}}] - \sigma[R_{\text{Small}}] R_{\text{ADM}} E[r_{\text{ADM}}] \} + \{\sigma[R_{\text{Small}}]^2 E[r_{\text{ADM}}] - \sigma[R_{\text{ADM}}] R_{\text{Small}} E[r_{\text{Small}}] \}}
 $$

 c. Now (using Lecture 6-7, pages 12-15)

 $E[r_{\text{Small}}] = 1.25 - 0.16 = 1.09.$

 $E[r_{\text{ADM}}] = 1.52 - 0.16 = 1.36.$

 $\sigma[R_{\text{Small}}]^2 = 5.27 \times 5.27 = 27.81.$

 $\sigma[R_{\text{ADM}}]^2 = 8.65 \times 8.65 = 74.75.$

 $\sigma[R_{\text{ADM}}] R_{\text{Small}} = 16.07.$

 $$
 \omega_{\text{Small},T} = \frac{74.75 \times 1.09 - 16.07 \times 1.36}{\{74.75 \times 1.09 - 16.07 \times 1.36 \} + \{27.81 \times 1.36 - 16.07 \times 1.09 \}}
 $$

 $= 59.622 / [59.622 + 20.305] = 0.75.$

2. What is the preferred weights of the risky portfolio T and the riskless asset in the individual’s portfolio?
 a. Depends on the tastes and preferences of the particular individual.
3. Suppose Individual Y wants to invest 60% in the tangency portfolio (⊕) and 40% in T-bills. What is the weight of the small firm asset and of ADM in Y’s total portfolio?
 a. Use the following formula:

 \[\omega_{i,p} = \omega_{i,T} \omega_{T,p} \]

 where
 - \(\omega_{i,T} \) is the weight of risky asset \(i \) in the tangency portfolio \(T \).
 - \(\omega_{i,p} \) is the weight of risky asset \(i \) in the total portfolio \(p \).
 - \(\omega_{T,p} \) is the weight of portfolio \(T \) in the total portfolio \(p \).

 b. So, the answer is:

 \[\omega_{\text{Small},p} = \omega_{\text{Small},T} \omega_{T,p} = 0.75 \times 0.60 = 0.45. \]
 \[\omega_{\text{ADM},p} = \omega_{\text{ADM},T} \omega_{T,p} = 0.25 \times 0.60 = 0.15. \]
VII. Applications.
A. Adding a New Stock: The two-risky-asset formulas can be used to assess the impact of adding a new stock to a portfolio or varying the weight of an existing stock in the portfolio.
 1. Example 2 (cont): Above considered the impact of adding ADM to the small firm fund (ignoring DP).
B. Asset Allocation between Two Broad Classes of Assets: The two-risky-asset formulas can be used to determine how much to invest in each of two broad asset classes.
 1. Example 2 (cont): If I intend to form a risky portfolio from the small firm asset and the S&P 500 (ignoring DP) and then combine that risky portfolio with the riskless asset, what weight will the small firm asset have in the risky portfolio?

Portfolio of the Small Firm Asset, S&P 500 and T-bills: Ignoring DP
\(\{\sigma[R_{Small}], \mu[R_{Small}]\} \) marked by +, \(\{\sigma[R_{S&P}], \mu[R_{S&P}]\} \) marked by o

- Small & S&P
- T-bill & Small & S&P
2. Can see from the graph that using historical data from 1/65 to 12/04 to approximate the return distribution for 1/05, would lead a risk averse individual to hold a risky portfolio with positive weights in both the small firm asset and in the S&P 500 ($\omega_{\text{Small,T}} = 0.92$ using formula above).

3. Weight of the small firm asset in the tangency portfolio $\omega_{\text{Small,T}}$ is sensitive to the $E[R_{\text{Small}}]$:
 a. As $E[R_{\text{Small}}]$ declines so does $\omega_{\text{Small,T}}$ holding $E[R_{\text{S&P}}]$, the standard deviations and correlation fixed:

<table>
<thead>
<tr>
<th>$E[R_{\text{Small}}]$</th>
<th>$E[R_{\text{S&P}}]$</th>
<th>$\omega_{\text{Small,T}}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.25%</td>
<td>0.94%</td>
<td>93%</td>
</tr>
<tr>
<td>1.10%</td>
<td>0.94%</td>
<td>47%</td>
</tr>
<tr>
<td>0.94%</td>
<td>0.94%</td>
<td>-2%</td>
</tr>
</tbody>
</table>

 b. This sensitivity of $\omega_{\text{Small,T}}$ to changes in $E[R_{\text{Small}}]$ explains why the small firm effect is of interest to practitioners.

C. International Diversification: The two-risky-asset formulas can also be used when deciding how much to invest in an international equity fund and how much in a U.S. based fund.