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Abstract

This paper extends the generalized method of moments technique of Hansen (1982) to cases
where moment conditions are observed over different sample periods. Many applications in fi-
nancial economics use data series that have different starting dates or different ending dates.
Common practice is to take the intersection of the sample periods over which the data are ob-
served; the intersection then becomes the sample period for the study and the rest of the data
are ignored. This paper describes an alternative that allows the researcher to make use of all of
the data available for each moment condition. We describe two asymptotically equivalent esti-
mators and show that these estimators are consistent, asymptotically normal, and more efficient
asymptotically than standard GMM. We then extend both of these estimators to settings with
more general patterns of missing data and show that the extended estimators are asymptotically
more efficient than estimators that ignore intervals of the sample, even if some series are not
observed over all these intervals. By implication, the extended estimators are more efficient
than standard GMM.
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Introduction

This paper extends the generalized method of moments technique of Hansen (1982) to cases where
moment conditions are observed over different sample periods. Many applications in financial eco-
nomics involve data series that have different starting dates, or, more rarely, different ending dates.
Settings where some data series are available over a much shorter time frame than other series in-
clude estimation and testing using international data, and performance evaluation of mutual funds.
These problems represent only the most extreme examples of differences in data length. More
broadly, aggregate stock return data may be available over a longer time frame than macroeco-
nomic data, cash flow and earnings data, or term structure data. Common practice is to take the
intersection of the sample periods over which the data are observed; the intersection then becomes
the sample period for the study and the rest of the data are ignored. This paper describes an alter-
native that allows the researcher to make use of all of the data available for each moment condition.
A key question is whether using the full data set provides more reliable estimates of parameters.
We will show that our estimator is indeed more efficient than standard GMM. However, not all
ways of introducing the additional data are the same. It must be done carefully or efficiency may
deteriorate rather than improve.

The problem of unequal sample lengths in financial time series was first addressed by Stambaugh
(1997).! Stambaugh derives a maximum likelihood and a Bayesian estimator for the mean and the
variance of a joint normal distribution, assuming returns are homoscedastic and independently
distributed, in a setting where some return series start at a later date than others. Little and
Rubin (2002) also derive maximum likelihood estimators when a portion of the data is missing
(generally in non-economic applications), but their approach is similarly dependent on the specifics
of the data generating process. In contrast, our approach, because it is based on GMM, does
not require the data generating process to be normal. It can be used for dependent, stationary
processes, and it permits estimation of parameters that are related to the observed functions in
non-linear ways. As shown in Cochrane (2001), most common estimation techniques can be seen as
special cases of GMM. Assumptions required for the consistency and asymptotic normality of the

standard GMM estimator are also required here. In particular, we adopt the mixing assumption

!Pastor and Stambaugh (2002a,2002b) derive Bayesian posteriors for means and variances of mutual fund returns
using samples of unequal length, under the assumption of normality and identically and independently distributed
returns. Storesletten, Telmer, and Yaron (2004) combine a time series of macro-economic variables dating back to
1930 with the shorter Panel Study of Income Dynamics to estimate the relationship between cross-sectional variance
and recessions.



of White and Domowitz (1984) as a means of limiting the temporal dependence of the underlying
stochastic proces.s.2

Because our method is based on GMM, the results we derive are asymptotic. Developing an
asymptotic approach to a problem of missing data may at first seem strange. After all, asymptotics
involve taking the sample size to infinity, which seems in opposition to the notion of missing data.
We argue, however, that it is no more strange than applying asymptotics in the usual setting, where
samples have the same length. In such cases, the number of data points is, of course, finite, so the
asymptotic distribution must be treated as an approximation to the true sampling distribution of
the parameters. Our asymptotic distribution can be thought of as an approximation in exactly the
same way.

So that this approximation is not unreasonable, care must be taken to insure that the missing
data problem does not become trivial as the sample size becomes large. For this reason, we develop
an asymptotic theory that keeps the fraction of missing data fixed as the sample size approaches
infinity. To be precise, if T denotes the length of the longer sample, we say that AT is the length
of the shorter sample, for 0 < A < 1. We hold A constant, as T" approaches infinity. This approach
has a parallel in the simulated method of moments estimation technique (see Duffie and Singleton
(1993)), where the length of the simulated series divided by the length of the observed series is
assumed to be constant as the both series lengths approach infinity.

Our initial setting supposes that some moment conditions are observed over the full data set,
and some moment conditions are observed over a data set that has the same ending date but a
later starting date (we later generalize this to other patterns of missing data). The two sets of
moment conditions may depend on the same underlying parameters, or on different underlying
parameters. We develop two asymptotically equivalent estimators that make use of all of the data.
While general, these estimators are straightforward to implement (as shown in Lynch, Wachter,
and Boudry (2004) for the case of performance evaluation of mutual funds), and have natural and
intuitive interpretations.

The first estimator (which we call the adjusted-moment estimator) uses sample averages over the
full sample to estimate the moments for which full-sample data are available, and sample averages
over the short sample to estimate moments for which only the short-sample data are available.

Then the moments for which only the short sample is available are “adjusted” using coefficients

2Under stationarity, mixing is a slightly stronger condition than ergodicity. Intuitively, mixing requires that
autocovariances vanish as the lag length increases, but sufficiently slowly to allow processes with memories much
longer than finite ARMA processes.



from a regression of the short-sample moments on the full-sample moments. This is reminiscent of
an adjustment that appears in Stambaugh (1997) and Little and Rubin (2002) but here operates
in a more general context. The second estimator, (which we call the over-identified estimator) uses
the extra data available from the full sample as a new set of moment conditions. This estimator was
suggested in Stambaugh (1997), and, in the linear context of that paper, turns out to be identical to
our adjusted-moment estimator (and the maximum-likelihood estimator proposed in that paper).
In the more general context of our paper, the two estimators are equivalent asymptotically but
typically differ in finite samples. As we show, both estimators are consistent and asymptotically
normal. Both estimators we derive are asymptotically more efficient than truncating the sample at
the beginning of the shorter data set.

Our approach can be extended to many other patterns of missing data. One pattern of interest
is the case where there are more than two starting dates but all series end at the same date
(this case satisfies a condition that Little and Rubin (2002) call monotonicity). This pattern is
analyzed in detail in a maximum likelihood setting for independent and identically distributed
normal observations by Little and Rubin, and by Stambaugh (1997). Both of our estimators can be
extended not only to this case, but further, to cases where the series do not satisfy monotonicity.
The extension works for an arbitrary number of ending dates and starting dates. It is also possible to
have data missing in the middle of the sample. Despite the general nature of this problem, it is still
possible to prove that the adjusted-moment and the over-identified estimator are asymptotically
equivalent, though different in finite samples. Each preserves key properties of its counterpart
when there are only two starting dates. Moreover, we show that it is always more efficient to “add”
an interval of data, even if some series are not observed over the interval. By implication, these
generalized estimators are also more efficient than standard GMM.

The organization of the paper is as follows. The first section develops the asymptotic theory
that will be the basis for the consistency and asymptotic normality proofs. The key result in
this section is that sample averages (multiplied by the square root of the length of the sample)
taken over disjoint intervals of data are independent as the number of data points in each interval
approaches infinity. This result clearly holds when observations are independent. Even when
there is dependence the result holds, provided that the process satisfies a mixing condition in the
sense of White and Domowitz (1984). Intuitively, mixing insures that autocovariances are small at
arbitrarily long lags. As the number of data points approaches infinity, the data from one partial

sum that is “near” the data from the other partial sum becomes negligible in the overall average,



implying that the partial sums are independent.

With this result as background, the second section defines four estimators in a setting where
data are missing at the beginning of the sample for some of the moment conditions. The first of
these estimators is the standard GMM estimator (we call it “short”). The second of these estimators
combines the long and short data in a naive way (we call it “long”). The third and the fourth are
the adjusted-moment and the over-identified estimator mentioned above. All four estimators are
shown to be consistent and asymptotically normal under standard assumptions. Moreover, for
each estimator, the efficient weighting matrix is the inverse of the variance-covariance matrix of the
moments, just as in standard GMM.

The third section shows that the adjusted-moment estimator and the over-identified estimator
are asymptotically equivalent. They are both more efficient than the short estimator (standard
GMM), and more efficient than the long estimator (which takes into account the additional data
in a naive way). The long estimator is not necessarily more efficient than the short estimator;
thus including the additional data in a naive way could cause the efficiency of the estimators
to deteriorate rather than improve. Fortunately, the adjusted-moment and the over-identified
estimator are just as easy to compute as the short and long estimator. Finally, this section shows
that in finite samples, the adjusted-moment and the over-identified estimators generally differ.

The fourth section investigates a special case in which the original system is exactly identified,
and some variables can be identified by the long-sample data alone. In this case, it is possible to
gain additional intuition about the forms of the adjusted-moment and over-identified estimators,
and to estimate the size of the efficiency gain from using the adjusted-moment or the over-identified
estimator. For simplicity, moments for which the full sample is available are assumed to depend on
a subset of the parameters 01, while moments for which only the short sample is available depend on
6, as well as, possibly, 8. Asymptotic standard errors for 6; are a fraction v/ of their values under
standard GMM; thus the percent decrease is 1 — v/A. For 6a, 1 — v/A represents an upper bound
on the percent decrease. The actual decrease depends on the correlation between the moment
conditions, and the extent to which #; influences the moments for which only the short sample is
available.

The fifth section extends the analysis to the general case, where there can be an arbitrary
number of starting dates, ending dates, and data can be missing in the middle of the sample. Data
interval endpoints are identified by points in time at which data for at least one sample moment

starts or ends. Asymptotic theory is developed assuming that the ratios of these various data



intervals stay the stay same as the sample size grows large. Both the adjusted-moment and over-
identified estimators are extended in this more general setting in natural ways. The over-identified
estimator is obtained by treating the sample moments for each data interval as separate sample
moments in the GMM estimation. The adjusted-moment estimator is defined inductively: the
moments used when a data interval is added are obtained by taking the moments used without
that interval and adding an adjustment term that uses the data in the added interval. It is shown
that these extensions to the two estimators, while different in finite samples, are asymptotically
equivalent, and moreover, that adding an additional data interval, even though not observed for all

moments, improves efficiency. The sixth section concludes.

1 Large sample theory for sums covering different sample periods

Let {x:}72_ ., denote a p-component stochastic process defined over an underlying probability
space (Q,F, P). Let F° = o(xy;a < t < b), the Borel o-algebra of events generated by z,, ..., .
Consider a function f: RP? x © — R/ for ©, a compact subset of R?. The function f provides the
restrictions that determine 6 based on the observations of z;. In what follows we make standard
assumptions on {z;} and f in order to guarantee consistency and asymptotic normality of the
estimates. Particularly useful is a notion of dependence known as mixing.

Following White and Domowitz (1984), define

a(F,G)= sup |P(FG)— P(F)P(G)]
{FeF,Geg}

for o-algebras F and G, and

a(m) =supa (Flo, Fitm) -
t

The process {z;} is said to be a- mixing if a(m) — 0 as m — co. As White and Domowitz (1984)
discuss, a-mixing guarantees that autocovariances vanish at at arbitrarily long lags. Mixing is a
convenient assumption because it allows a trade-off between the speed at which «(m) approaches
zero and the conditions required on {z;}. In particular, a process is said to be a-mixing of size

r/(r —1) for r > 1 if for some n > r/(r — 1), a(m) is O(m™"). We assume that {z;} is mixing:

Assumption 1 {z:}2  is a-miving of size 5 for v > 1, and stationary.

Assumption 2 guarantees that f(zy,0) is also mixing.

Assumption 2 f(-,0) is measurable for all § € O.



The following assumption specifies the sense in which f(z, ) determines 6 given observations on

Tt.
Assumption 3 There exists a unique 6y € O such that E [f(x¢,6p)] = 0.

The next assumptions form the basis for the consistency and asymptotic normality results of esti-

mators based on partial sums of f(x¢,6).

Assumption 4 There exists A € R such that E (‘fi(xt,t%)%’) <A, i=1,...,L

Assumption 5 f(x¢,6) is continuous in 6. There exists a measurable function M (x;) € R! such
that | fi(x¢,0)| < Mi(xy) for all € © and such that E|M;(z,)|"+° < A < oo, for some § > 0 and
alli=1,...,1.

Assumptions 4 and 5 illustrate the usefulness of the definition of mixing. As White and Domowitz
(1984) explain, the greater is 7, the more dependence is allowed for the process x, but the stronger
are the required conditions on the function f. For example, if x; is independent then o(m) = 0 for
all m, and hence we can set r = 1. If x; follows an ARMA process, r can be taken to be arbitrarily
close to 1.

White and Domowitz (1984) prove the following:

Lemma 1.1 Assumptions 1 and 2 imply that {f(x,0)}2_ o is a(m) mizing of size r/(r — 1) and

stationary.

Following Hansen (1982), define the I x [ matrix R(7) = E [f(z0,00)f(z_+,00)"] and let

[e.e]

S= > R(r)=R(0)+ ) (R(r)+R(r)"). (1)
T=1

T=—00

Lemma 1.1 implies that this sum converges, because a(m) mixing combined with stationarity

implies that the series is ergodic (see White (1994, Proposition 3.44)). Define

1 T
gr(0) = = > f(x1.0)
t=1

for 8 € ©, and
Wt = f(xt,ﬁo).



Lemma 1.2 Let F € F°__. Let u be 1 x I, and let a be a scalar. Then Assumptions 1-8 and 5
imply that

Jim P ((VTugr(6o) < a) F) = 1im P (VIugr(d) < a) P(F).

Proof For any integer T,

\/—QT o) = Z wy + —F= Z W,
\/_t VT ]+1

where |/T] is the largest integer less than the square root of T. Assumptions 1-3, and 5 imply

that
VT

1 L\/TJ 1 .
fz VT ] 2

t=1
as T'— oo, by Theorem 2.3 of White and Domowitz (1984). Because

1 T

ﬁ Z thf\o/OT,
t=|VT]+1
P % Z pwy < a| F | —P % Z pw; < a | P(F)| < a(VT).
t=|VT]+1 t=|VT|+1

By Lemma 1.1, w; is a-mixing. Therefore a(v/T) goes to 0 as T — oco. By the Slutsky theorem,

1
%%P((ﬁugT(00)<a)F) = TlgréoP Wia Z pwy < a| F
t=|VT]+1
1 T
= lim P| — < P(F
pr(f 5 o) e
t=VT|+1

= Jim P (VTpgr(60) < a) P(F),

where the second line follows from Lemma 1.1, and the last line follows from a repeated application
of the Slutsky Theorem. 1
Let A be a rational number between 0 and 1, and define ng to be the smallest positive integer

n such that n) is an integer. We consider partial sums of f of length AT" and (1 — \)T" for T" a



AT

T

Figure 1: Notation for data missing at the start of the sample

multiple of ng. For T a multiple of ng, define

) (1-\T
ga-nr(0) = A= NT > flan,0) (2)
1 . t=1
o) = 57 D o). (3)
t=(1—-\)T+1

Sums of f are indexed by the length of the sample. This is a slight abuse of notation because the
subscript AT does not refer to the sum taken over observations 1,..., AT. Figure 1 illustrates the
notation. Thus the subscripts AT, (1 — A)T and T can be understood as referring to intervals of
the data rather than the ending point of the sample.

For the next theorem and in the remainder of the paper, we let T' approach infinity along the

subsequence of integer multiples of ng.?

Theorem 1.1 Assumptions 1-5 imply that as T — oo,

AAE) 03 3)

Proof Assumptions 1-4 imply that

(1 =NTga-xr(b) —a N(0,5) (5)
and
VAT gxr (60) —a N(0,5) (6)

by Theorem 2.4 of White and Domowitz (1984). Stationarity of x; (Assumption 1) implies that
random variables f(x_(1_x)741,0),- ., f(zx7,0) have the same joint distribution as random vari-

ables f(z1,0),..., f(rr,0). Thus partial sums taken over f(z__xy1r41,0),--., f(zar,0) have the

3 Alternatively, we could define partial sums of length AnoT” and (1 — X)noT” for any integer T7”. The results would
be identical, but the notation would be more cumbersome.



same distribution as the corresponding partial sums taken over f(z1,6),..., f(xr, ). Define

r(0) = 57> fl@n0)
t=1
L 0T
Ja-nr(0) = AT Z f(x—,0).

It suffices to prove the results for gaxr and g _yyr-
Let N (a) denote the cumulative distribution function of the standard normal distribution eval-

uated at a. Let p3 and po be 1 x [ vectors such that pip{ = popg = 1. By Lemma 1.2,

Jim P (Ml V(I = NTS™ ganr(6o) < a, uaVATS  gar(6o) < b) =
Am P (Ml V(I =NTS  ga_nr() < a) Am <M2V ATS ™ gar(6o) < b) = N(a)N(b)

for scalars a and b. This shows grr(fo) and g_xyr(fo) are asymptotically independent, and
therefore that g (6o) and g;_x)7(fo) are asymptotically independent. The result follows from (5)
and (6). 1

2 Consistency and asymptotic normality of estimators

In many applications, it happens that data is missing for the early part of the sample period for
some moment conditions (see Stambaugh (1997) for an application to international data and Lynch,
Wachter, and Boudry (2004) for an application to mutual funds). In the notation of Section 1, some
elements of the vector x; are observed for dates 1,...,T, while others are observed only for the last
fraction A of the sample, namely dates (1 —\)T' +1,...7T.

Without loss of generality, order the elements in x; so that

=) @

) = (o)),

and f(x¢,0) so that

f2(‘73t7 9)
where z1; € RP', 29y € RP2, f; : RP1 x © — R and f, : R? x © — R"2. In an application, this

corresponds to the case where data on x9; is available for only the last AT dates of the sample.



Analogously, define

1 T
ar0) = = fila.0),
t=1

L aor
g1,a-n7(0) = =T > fila ),
t=1
) T
giar(0) = 5 > filwn0),
t=(1-\)T+1
and .
1
g2a1(0) = 377 > fa(w,06).
t=(1—NT+1

It is useful to define partitions of the matrix S. Let R;;(7) be the l; x [; matrix

Rij(r) = E [ fi(wo, 60)fi(@—,00) |, 4,5 =1,2,

and define -
Sz'j = Z RU(T)
Then
S11 Si2
S = .
[ So1 S22 ]

It is also useful to define the matrix of coefficients from a regression of the second series on the
first. This is the [ x [ matrix

By = 52151_11.
The residual variance from this regression will be denoted 3., where
¥ = Sgg — 89157, S1a. (8)

We consider four estimators, distinguished by their moment conditions. In what follows, we
will emphasize the case where the weighting matrix converges almost surely to the inverse of the

variance-covariance matrix of the moments. Define

1360) = [oar®) g ®)7] ©
W50) = [0rO) 0] (10)
wt6) = |or®)" (gZAT(eHBm,AT(l—A)(gl,u_A)T(e)—gww)))T]T (1)
WE0) = [oa-nr® e ® exr®)] (12)

10



where B’21’>‘T is an Iy x [ matrix such that BQL)\T —as Bo1. Let
05 = argming h3(0) T WEhs (). (13)

The estimator HA% corresponds to the standard GMM. Observations on zy; for t = 1,...,(1 = \)T
are discarded. Let

0% = argming h%(0) T WERL(0). (14)

The estimator é% corresponds to incorporating all of the data in the most straightforward way. Let
07 = argming h7(0) T Wi hsH(0) (15)

and

0% = argming h%(0) T WEhE(0) (16)

Estimators 9}4 and é% are less straightforward, but, as we will argue, superior ways of including

the long data. Note that, because

g1 = (L = Ng1,1-n1 + AgLT,

the second component of (11) can be rewritten as

hé‘f:r = g2 T t le,AT(gl,T — G1AT)- (17)

Equation (17) illustrates the role of the longer sample in helping to estimate the second set of
moment conditions. Consider for example the case where g1 and go are univariate. If g; is below
average in the second part of the sample, and if g; and go are positively correlated, go is also likely
to be below average. Thus the estimate of E[f2(xo, 8)] should be adjusted upward relative to ga. We
call HA% the “adjusted moment” estimator, because it involves adjusting the second set of moments.
We refer to é% as the “over-identified” estimator, because it involves adding an additional moment
condition. As we will show, é% has the same asymptotic properties as 974 In order to present
theorems that apply to all the estimators, we use the notation 9# to denote a member of the class

of estimators defined above, and similarly for W,

Theorem 2.1 Assumptions 1-5 imply that as T — oo,

VATRE (6) —4 N(0,5%),

11



where

L )\SH )\512
= [)\521 S22 1
s [ )
Szt S ASa1 Sz — (1= A)S2157;' S
2551 00
T
st = 0 St S (21)
0 Sa1 522

Proof Equation (18) follows from Theorem 1.1. We show (20); the proofs of (19) and (21) are
similar. In what follows, the argument 6y is suppressed and convergence is in the sense of almost
surely.

Stationarity implies that Sy} = AS1;. By Theorem 1.1,

lim F [V AT (Aginr + (1= N gia—nyr) VAT (95,0-27 — gj,AT))T]

T—o0
— lim (—E [\/ﬁ)\gi,m\/ﬁg;m} +E [\/ﬁ(l - )\)gi,(lf)\T)\/ﬁng,(l—)\)T}>

T—o0
=AS;; —AS;; =0 (22)
for i,j = 1,2. Therefore,

. T
Sy = lim E [V AT (Agipr + (1= Ng1,a-n1) VAT (g7 + Ba1(1 = N)(g91,0-07 — 91.7)) }

T—o0
= TJE};OE [\/ AT (>\91,AT + (1 - )\)91,(17,\)T) v )‘T92T,/\T]
= Tlim E [\/ AT Ag1 TV )\TQZ,\T}
= )\512.

The second line follows from (22) and the third and fourth lines follow from Theorem 1.1. Using
similar reasoning,

S = lim B |[VaTgxrvVATgi | =2 lim (1= NE [VATg2arVATg] yr| By

oo

+ lm By1(1—\)’E [V AT (g1,(1-x3)7 — GiAT) VAT (g1,(1-3)7 — gl,AT)T} By,

A
= S22 —2(1 = \)S215,' Sz + (1 = A)? <m + 1) S21571 Sz

= Soo — (1 —N)S215' S12,

12



which completes the derivation of (20). 1

To establish consistency, we require the following condition on the weighting matrices.

Assumption 6 For k € {S,L, A, T}, the weighting matrix W)’fT converges almost surely to a

positive-definite matriz W*.
Theorem 2.2 establishes consistency of the estimators.
Theorem 2.2 Assumptions 1-6 imply that as T — oo, é;’? —as. 0o for ke {S,L,AT}.
Proof White and Domowitz (1984) show that under these assumptions
lgxr(0) — Ef (x4, 0)] —as. 0
l91-0)7(0) — Ef(21,0)] —as 0
as T' — oo uniformly in § € ©. By the continuous mapping theorem,
Wp(0)TWENE(0) —as. Ef (24,0)]TWPE[f (24, 0)]
for k € {S, L, A}, and
Wp(0)TWEE(0) —as. Elfi(214,0)" f(2:,0)T]"WTE [ ?(Evi,lg)e) ]

uniformly in 6. The result then follows from Amemiya (1985, Theorem 4.1.1) 1

Three remaining assumptions allow us to establish asymptotic normality of the estimators:
Assumption 7 6y lies in the interior of ©.
Assumption 8 f(z,0) is continuously differentiable in 6.

Assumption 9 There exists a measurable matriz-valued function M (z;) € R*9 such that \29? (x,0)] <
J

M(mt)(@j) for all 8 in the interior of © and such that for some § > 0, E|M(xt)(i’j)\”+5 <A<

foralli=1,...,1,j=1,...q.

Define
Ofi
Dyi=E|—
0 90 90]
and Do = [D{,, Dg,]". Let
Dt = Dy kelS L A (23)
T
Df = |Ddy Dy Dia] - (24)

The following theorem establishes asymptotic normality.

13



Theorem 2.3 Assumptions 1-9 imply

VAT(6% — 6) —a N <0, ((D’g)TM/kz)’g)_1 ((D’g)TWkSkW’“D’g> ((D’g)TWkD’g)_1> .

Proof Define
Ohk
DE(6) = L0
£0) = 22(0)
for 0 in the interior of ©. For T sufficiently large é:’% lies in the interior of ©, and by the mean value

theorem, there exists a 8% in the segment between 6, and GA]% such that
hp(0%) — Bi(60) = DF(6%)(0F — bo).
Pre-multiplying by D%(é:]})TWFF
DE(0%)TWE (W5(8F) — W(680)) = D5 (05) TWEDE(@®) (0F - o).
By the first-order condition of the optimization problem,
D (05) " WED(6%)(6F — 60) = —DF(07) "W h% (6).

The assumptions and Theorem 2.3 of White and Domowitz (1984) imply that

0
DE(0) —.s E [a—‘g(xt,ﬁ)}
for k € {S, L, A} and
%(x 0)
DZ 0 s E|: 0 1t :|
70 4 (w1.0)
uniformly in #. Therefore by Theorem 2.2 and Assumptions 7 and 8, Amemiya (1985, Theorem

4.1.5) implies

Dh(0%) —.s. DE (25)
DE(%) —. DE (26)
Wik“ —a.s. Wk- (27)

The result follows from the Slutsky Theorem. |
As in Hansen (1982) choosing the weighting matrix that is a consistent estimator of the inverse

variance-covariance matrix is efficient for a given set of moment conditions.

Theorem 2.4 Suppose W)’fT —as. Wi = (SF)7L. Then Assumptions 1-5 and 7-9
. ~1 -1
VT (@ — 00) —a N (o, (b7 ()" ob) ) . (28)
Moreover, this choice of W* is efficient for each estimator.

14



3 Comparison

Interestingly, the over-identified estimator and the adjusted-moment estimator have identical asymp-

totic properties when the optional weighting matrix is used.

Theorem 3.1 Assume W% —as (SI)_1 and I/Vz“fl —— (SA)_I. Assumptions 1-5 and 7-9 imply
that the asymptotic distribution of v/ )\Té% is identical to that of \/ )\THA%.

Proof It suffices to compare the asymptotic variances as the mean of both asymptotic distributions
is VATHy. In the case of the over-identified estimator, the inverse of the asymptotic variance of

vV )\TGA% equals

—1 1—)\ _ B BL.Y !By —BJ, 21
(DH)T (SI) Dt = )\DOT,1S111D0,1+D0T,15111D071+D0T[ _212—1321 221—1 Dy
1 B BLY"1By —BJX!
= XD(]T715111D0’1+D0T[ _212_1321 s | Do, (29)

where ¥ is defined by (8). This follows from Theorem 2.4 and Lemma A.3.

It follows from the distribution of the adjusted moment estimator (28) and Lemma A.3 that
the inverse of the variance of VAT 914 equals
1
A

By ¥ 'By —By X!

Dy ($4)" D = -X7'By X!

Dg,87' Doy + DJ [ ] Dy,

which equals (29). Thus the estimators are asymptotically equivalent. 1

Theorem 3.1 shows that asymptotically, the distributions of the two estimators are the same.
However, the interpretation of the over-identified estimator is different from the adjusted-moment
estimator. Rather than adjusting the second set of moments based on the covariance with the first,
the over-identified estimator turns the early data into a new moment condition.

Now we ask whether there is indeed an efficiency gain from using the longer sample. Are the
adjusted-moment estimator and the over-identified estimator indeed more efficient than the short

estimator?
Theorem 3.2 Assume 1-5 and 7-9 then

(1) If W)’fT —as. (SF)7Y, for k € S, A, T, the estimators é% and 9% are asymptotically more

efficient than 92‘%

(2) If W/’\“T —as WE for Wk positive definite, and such that WA =WS almost surely, éﬁ 1S more

efficient than 9}?

15



Proof We first prove statement (1) for é? By Theorem 2.4 and Lemma A.2, it suffices to show
that S — S# is positive semi-definite. Note

S—SA:(I—)\) St S12 :|

Sa1 82157, S12

For any vector n x 1 vector ¢ = [¢], ¢g]"

)

CT(S — S“A)C = (1 — )\) <CIS1101 + 6151262 + 6552101 + CQTSzlSﬂlslgcz)
= (1 — )\) (CIS;SilsHCl + CIS115ﬁ151202 + C;—SP—QS;IISHQ + CQS;—QSi151262>

= (1= M)(S11e1 + Si2c2) " S11 (S11er + Siac2) > 0

because Sl_ll is positive-semi-definite and A < 1. Therefore S — S4 is positive semi-definite and, as
a consequence, HA% is more efficient than 9:_‘% The statement for é% then follows from Theorem 3.1.

To prove statement (2), define
M = WADZ ((Dg‘)TW«“D(;‘)*l . (30)
Because the weighting matrix is assumed to be the same for both estimators,
M =WwSD§ ((D;?)TW"SD;;Sy1 .

By Theorem 2.3, proving (2) is equivalent to showing M T SM — M T SAM is positive semi-definite.

But for any vector c,
cT(MTSM — MTSAM)e = (Me)T(S — S4)Me> 0

because S — S is positive semi-definite. Therefore é{} is more efficient then HA‘; when WS = WA,
|

Note that statement (2) of Theorem 3.2 does not make sense for the over-identified estimator é%
because é% has /1 more moment conditions than 9}4 and 0}91 It is not possible to keep the weighting
matrices the same.

Theorem 3.2 shows that introducing the extra data from the longer series reduces the variance
of the estimates relative to using the shorter series alone. It is also interesting to ask whether the
estimator is more efficient than the one that would result from using the longer sample in a more
“naive” way, namely using the longer data series to estimate the first set of moment conditions, and
the shorter series to estimate the second. In the terminology of Section 1 this involves comparing

éé with the estimator é%

16



Theorem 3.3 Assume 1-5 and 7-9 then

(1) If W)’fT —as. (S)7L for k € L, A, T, the estimators 9}4 and é% are asymptotically more
efficient than é%

(2) If WfT —as. WE for W¥ positive definite, and such that WA = W~ almost surely, HA% s more
efficient than é%

Proof As in Theorem 3.2, it suffices to show that

0 0

gF — 54 = _
0 (1—X\)S9157 Sz

is positive semi-definite. Note that for any vector ¢ = [¢], ¢g]"

CT(Sﬁ — SA)C = (1 — )\)(Slgcg)TSiISucz Z 0

because A < 1 and Sy is positive semi-definite. Lemma A.2 then implies that HAIA is more efficient
than é% By Theorem 3.1, é% is also more efficient then é% This proves (1).

To show the second statement, define M analogously to (30):
= wf (o Twef)
and note that WA = W£. Because S — S4 is positive semi-definite, for any vector ¢,
T (MTSEM — MTSAM)e = (Mc)T (S5 — S4)Me > 0.

By Theorem 2.3, 67 is more efficient then 6% when WA = W¥£. This proves (2). I

Surprisingly, é% is not necessarily more efficient than é% Efficiency would require that

Sﬁ—s—u—x)[sﬂ 512]

So1 0

be positive semi-definite. However, if the covariances between the first and second set of moment
conditions are nonzero, this may not be the case. Thus it is not sufficient to simply use the first
part of the sample, it must be combined with the second part of the sample in precisely the right
way to produce a gain in efficiency.

We further explore the relation between these estimators by looking at the first order conditions.

For the purpose of this discussion, we assume W% = (SI)_I, Wf‘ = (SA)_I, and BQL)\T = Bo.

17



Differentiating (16) with respect to 6 yields

J R - 1991,0-07 1 410917
0 = Tgl,(l—)\)TSHlT + 90 S o0
_ _ P
T T B),Y~7'Byy —Bj 7! ot
T 19T 9ot y-1p »-1 g2 AT
21 90
1—X 1991,0-07 T 10917
= 91,1315 o8 + 91751 a0
4 0
+ (927 — ]92191,,\T)T )Y 1% (9237 — B21g1.a7) -

Equation (31) is the first-order condition that determines the over-identified estimator é%

contrast, the first order condition associated with (15) is

1+ 00 B, 1By —Bju-1] [ 2
XQIT,TS ' + [ng,T hzT,T} ° 2! 8I?§T =0,

11 " 59 Tyl ~1
00 Y7 By Y =

which reduces to

1 + 1001 Two10

0 = ~—glps 19T (g ) 2 2 (B _h
NILTP1I g + (Ba1g1,7 — ho,1) 60( 21917 — haT)
1 o, r 0

T o1 Ty-1
= — S B — > '— (B — .
NILTOI 5 + (B2191.,0T — 92.7) 80( 2191AT — 92,0T)

Equation (32) is the first-order condition that determines the adjusted-moment estimator 6774

(32)

Ac-

cording to Theorem 3.1, these two first order conditions must be equivalent as T — oco. Indeed

they are, because

. Ogra-nr| . Ogiar| . Oqir|
lim ————— = lim = lim 0,15
T—o0 é% T—o0 é% T—oo 08 éi‘“\
and
1=Ay ST Do+ glarST Dot = — (1—N)g{ + g1 g ) STD
N ILa-nrRin For T giaren For =y 91,1—071 T AdiaT ) 211 Lot
1 _
= XQITSUIDO'

In finite samples however, they will generally be equivalent only when

991,1-01 _ Ogipr
o0 00

which occurs, for example, when the moment conditions are linear. This corresponds to the case

examined by Stambaugh (1997) in a maximum likelihood context.
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4 A special case

This section examines a special case of the set-up of Section 2. We assume the system is exactly
identified, and that the variables can be decomposed into 6 = [91T 0; |7, where f is a function of
0, alone. Let l; be the length of 81, and Iy = ¢ — 1 the length of 8. In this setting, we can draw
additional conclusions about the first-order conditions of the adjusted-moment and over-identified
estimators, and we can quantify the gains from including the longer sample.

. -1 ~
For convenience assume that WZ = (SZ and Bsi 7 = Bs. Because
T b

Ig91,0-n1 _ Ogipr _ Ogir

20, 00y 00y

0,

and because 2_1% (B21g1, a7 — g2,a7) is invertible, the first order conditions for the over-identified

estimator H% reduce to

g2 7 — Bargiar =0 (33)
for 05, and thus 5
1—X _1991,1-0T 19917
Tng,(l—A)TSanl + 90 S 09, 0 (34)

for 01. The first order conditions for the adjusted-moment estimator éé reduce to (33) for f2 but
gir =0

for 6;. This is no surprise. When the adjusted-moment estimator is exactly identified, the first-
order conditions must be equivalent to setting g1 7 equal to zero, and hyr equal to zero. When
g1,7 =0, ho 7 is equivalent to the left-hand side of (33).

We have shown that in the case considered here, the adjusted-moment estimator gives the same
estimate for #; as simply using the long sample. The over-identified estimator gives a possibly
different estimate, one that depends on the point in time in which the second series begins. While
this dependence is possibly unattractive, (34) nonetheless has an interpretation; it is a weighted
average of the moment conditions from the first part and the second part of the sample, where the
weights are proportional to the derivatives, and thus to the amount of information contained in
each part of the sample.

We now quantify the effects of using the adjusted-moment estimator or the over-identified
estimator on the standard errors for 6. In the special case where the system is exactly identified

and f; depends on #1, the derivative matrix Dy is invertible and takes the form
Do din 0
D = ’ = s
0 ( Do 2 ) [ do1  da2
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for an [; x [ invertible matrix dq1, an Iy X [1 matrix ds; and an Iy X [y invertible matrix doo. The
matrix di; gives the derivatives of fi with respect to 01, d21 gives the derivatives of fo with respect
to 01, and doo gives the derivatives of fo with respect to 6s.

The inverse of Dy takes the form
Dy’ = —d—clliill d d(_)l '

22 Y2141 22
Therefore the first diagonal block of (D SilDo)f1 equals di' S11(dyh) . Similarly, the first block
of (DOT (SA)_l Do) o can be written as*

dfllsﬂ(dﬁl)T = )‘dfllsll(dﬁl)T

This shows that asymptotic standard errors for the estimates of #; shrink by a factor of 1 — v/
when the adjusted-moment estimator is used rather than the short estimator. Because the over-
identified estimator is asymptotically equivalent to the adjusted-moment estimator, the shrinkage
is the same.

It is more interesting to look at the effect on the standard errors of the second set of parameters
-1
f5. The second diagonal block of (D(—)r (SA)fl Do) equals
-1 —1 _ _ _ _
(DOT (SA) DO) 22 - (d221d21d111)5ﬁ(d221d21d111)T -
_ _ _ _ _ _1\ T _ _
(d221d21d111)5$(d221)T - d22ls§41 (d221d21d111) + d2215'2A§(d221)Ta

which reduces to:

-1
= dyy [dandy)' St — S31] ST [dordyy ST1 — S5i] (doy) "

(07 (5" o),

Ty S5 - S (S7) 7 S (da) T (35)

The variance for the second set of variables can be decomposed into two parts. The first part
represents the effect of the first moment conditions on the second variables. The second part
represents the variance due only to the residual variance of the second set of moment conditions:
So9—S21 51_11 S19 is the variance-covariance matrix of the second set of moment conditions conditional
on the first.

Because the new data reduces the asymptotic variance of the first set of moment conditions by

a factor of A, the data will also reduce the asymptotic variance of the second set of variables:

[dgldl_llsﬁ — Sﬁ] (Sﬁ)_l [dgldl_llsﬁ — Sﬁ] =\ [dgldl_llsu — 521] Sl_ll [dgldl_llsn — 521] .

4Recall that Dg' = Do.
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However the second term in (35) does not change with the addition of new data, not surprisingly
because it represents the variance of the second moment conditions conditional on the value of the
first:

Sf — S (SA) T SA = Sag — 591553 Sha.
Thus the decrease in the standard errors depends on the extent to which the first term dominates
the second term. For example, when the second set of moments are perfectly correlated with the

first set, the residual variance is zero,
Sgg — 891571512 = 0, (36)

and the standard errors for 6, also shrink by a factor of 1 — v/X. At the other extreme, suppose
that fo tells you nothing about 6o, i.e. da; = 0 (6; does not enter into f2) and Sa; = S, = 0 (the
moment conditions are independent). Then the inclusion of the longer series leads to no shrinkage
in the asymptotic variance of 6,.

Of course, even if the two moment conditions are independent (S9; = S}, = 0), the sampling
variance of € may still fall because the sampling variance of 6y is reduced. As long as do; # 0,
the first term in (35) is nonzero and there is an effect on the standard errors. Similarly, even if
there is no impact of 6; on the second set of moment conditions (da; = 0) the first set of moment

conditions help to estimate 65 if the covariance between the two moment conditions is nonzero.

5 Extensions

The previous sections considered cases where there were two relevant sample periods: a “short”
sample period over which all data are observed, and a “long” sample period over which only some
of the data are observed. This section extends the methods to cases where there are more than two
different sample periods. In order to extend the estimators of Section 2, it is necessary to prove
a theorem analogous to Theorem 1.1 for the case where the data of length T is divided into more
than two blocks. Let 11,72, ...,n, denote rational numbers such that > ;_, 7, = 1. Let ng be the
smallest integer such that the product with 7; is an integer, for all j. As above, we will restrict

attention to values T" that are a multiple of ng. Define the following partial sums of g:

1 mT
gmr(0) = m—TZf@t,H) (37)
t=1
L T
gn,r(0) = T > flze,0), j=2,...,n. (38)

t=(m+-+nj-1)T+1
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—(m A+ + )T +1 —(m+-+n-)T+1 1 T
| | | |

Figure 2: Numbering scheme used in the proof of Theorem 5.1

Theorem 5.1 Define gy, as in (37) and gy, as in (38) for j =2,...,n. Assumptions 1-5 imply

\/mng(eo) S

\/* \/n_an:zT(eo)

T —aN|o, (39)

co o

OO O
no oo

ngr(6)

asT — 0.

Proof We proceed by induction. The case for n = 1 follows from standard results (e.g. White and
Domowitz (1984, Theorem 2.4)). Suppose (39) holds for n — 1. Because z; is stationary, we can
define a new set of partial sums g with the same joint distribution as the partial sums g. Let

1 L
gT)nT(QO) = 7’]717T tz:; f(xtv 9)5

while
—(nj+1t-m-1)T

gn;T(00) = Z flx,0), j=1,....n—1.

—(mj+-nn—1)T+1

As Figure 2 illustrates, the start data of new sample is —(n1 + -+ - +7,—1)T + 1 while the end date
is n,T. Then gy, 7(6o), ..., gn,7(00) have the same joint distribution as g,,7(6o), - ., gn,7(00). By

Lemma 1.2, for any 1 x [ vectors 1, ..., u, such that ,uj,ujT =1, and scalars aq,...,ay,,

Jim P (VT 1S ™ 5, 7(00) < @y v/ 1 Titn 1S ™ Gy, 7(00) < ncryos /TS Gy (B0) < a1) =
Jim. P( T n S G (00) < an) x
TILIEOP (Wun—ﬁ*lﬁnn_ﬂ“(%) <an—t1,- s /mTur S g (6o) < a1> .
The result then follows from the induction assumption and asymptotic normality of v/, Tg,,7. |
5.1 Extending the Over-Identified Estimator

An advantage of the over-identified estimator is that it is has a transparent extension to samples
where there is a more general pattern of missing data. Theorem 5.1 gives the joint distribution of

partial sums of g. We now use this result to extend the over-identified estimator.
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As before, we consider the situation where not all moments are observed over the whole sample.
Here, however, we allow for an arbitrary number of missing “blocks” of data, and they can occur
anywhere in the sample, rather than simply at the beginning. Our asymptotic results will keep
the size of these missing blocks of data proportional to the size of the overall sample, so that the
missing data problem does not become trivial, just as in the case where there was data missing at
the start of the sample.

Consider segments of the data defined by points in time where at least one sample moment
starts or ends. Say these points in time divide the sample up into disjoint regions 1,...,n. We
can create a weak ordering on these segments by how many of the sample moments are observed
over each segments. That is, m; sample moments are observed over the first segment, mo < 7 over
the second segment, etc. We let \; denote the ratio of the length of the first region (the region
over which the greatest number of moments are observed) to the length of the entire sample, Ay
the ratio of the length of the second region to the length of the entire sample, etc. Then Aq,..., A,
can be thought of in the same way as 71, ...,7, in the previous section, except that while the ns
are labeled according to their order in the sample, the As are labeled according to how many data
moments are observed over that segment. Note that > ; \; = 1.

Define points %1, .. .t, so that the first data segment begins at ¢; 4+ 1, the second data segment
at t9 + 1, etc. Then

1 tj+)\jT
g)\jT(H): NG Z f(xtve)a Jj=1...,n
AT t=t;+1

For the case described in Section 2, the first segment consist of points (1 — A\)T + 1 to T. All
moments were observed over this segment. The second segment consists of points 1 to (1 — \)7.
Only a subset of moments are observed over these points. In this example, ¢; = (1 — \)T, to = 0,
A1 = A, and A2 = (1 — ). We adopt the same notational convention as in Section 2: A\;T" will refer
to the length of the segment between t; + 1 and t; + \;T, and the segment itself.

Finally, let ¢; denote the set of data series that are observed in data segment A;. Define

}
Jo@es0) = (ful@n0), ooy fio) (@0,0))

where {i1,...,ir;} € ¢; and i1 < --- < ip;. Then fy are the components of f observed over the

segment \;T'. Similarly, define the 7; x ¢ matrix

.
_ T T
- (Doﬂ-l,..., Dojiwj) ,
o
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the 7; x 1 vector
1 ti+A;
g(bj,)\ T — —T Z :L‘ta
t=t;+
and the 7; x m; matrices

Ry, (7) = E | £5,(w0,00)fs,(@—r.00) |

and

Y Ry(7)

T=—00
The extended over-identified estimator, for the case where there are n blocks of data and the

total data length is T', has moment conditions

T
h%“n (9) = g¢>17/\1T(0)T7 g¢>27/\2T(0)T7 SRR gdm,)\nT(G)T] ) <4O>

for 6 € ©. The Z, superscript refers to the fact that these are moment conditions for the over-
identified estimator, and that there are n non-overlapping segments. The T" subscript refers to the
fact that the data length is 7.° As in Section 2, /T h%" (0) is asymptotically normally distributed.

The following is analogous to Theorem 2.1.

Theorem 5.2 Assumptions 1-5 imply

VThE (69) —a N (0,5),

where .
/\_15¢>1 1 0 0
6Tn _ 0 )\—25@ . 0 (1)
0 - 0
0 0 0 =S4,
as T — 0.

The extended over-identified estimator takes (40) as moment conditions. In principle, any
weighting matrix can be used, but we will emphasize the case when the weighting matrix converges

almost surely to (41). Define

NLn __ : In Ty1/Zn1,In
67" = argming hy" (0) Wi hy(6). (42)
5This notation does not, of course, completely define the over-identified estimator. For that, one would need the
points at which the data segments begin, ¢1,...,t,. These points in turn depend in a complicated way on Ai,..., A,
and 7.
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Not surprisingly, the same consistency and asymptotic efficiency results go through for the extended
over-identified estimator as for the original over-identified estimator. Here, we repeat the results

but omit the proofs, which follow along the same lines as the corresponding proofs in Section 2.

Assumption 10 The weighting matriz WTI” converges almost surely to a positive-definite matrix

Wi,
Theorem 5.3 Assumptions 1-5 and 10 imply that as T — oo, é%" —as. 0o.

Define
-
. _ [T T T
D3 = [D3g, Dig, - Do,

Note that Assumptions 1-5 imply that

Oh%
Tn _ 1: T
Do = im =59

o

Theorem 5.4 Assumptions 1-5, and 7-10 imply that as T — oo,

G =)= 5 (0, (0BT D) (08T s ) (0w D) )

Theorem 5.5 Suppose W%” —as. Whn = (8T0)=L Assumptions 1-5 and 7-10 imply
~ 1 -1
VI~ 00) 4 & (0, ((0F)T (5%)7 0F) ). (43)
Moreover, this choice of W is efficient given the moment conditions (40).

The extended over-identified estimator reduces to the over-identified estimator considered in Sec-
tion 2 when there is a single block of data. Section 5.3 gives examples where there are multiple
blocks of data.

We now prove a result analogous to Theorem 3.2. That theorem showed that including the data
segment for which some data were missing improved efficiency relative to standard GMM. Here we
show that including a new data segment improves efficiency relative to the estimator that includes
all data but this segment. Without loss of generality, we consider the full over-identified estimator

relative to the over-identified estimator defined over the first n — 1 blocks of data.

Theorem 5.6 Assume W%" — (S’I”)f1 and W(II"_*;R)T — (SInfl)fl. Assumptions 1-5 and 7-9

éz-nf 1

imply é%” s asymptotically more efficient than (AT
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Proof Tt suffices to compare the asymptotic variance of v/T' 9?” with /T éé":in)T. By Theorem 5.5,

E [(1 AT (éﬁ"_jn)T - 90) (é(zl"_jn)T - Ho) T] = ((Dé["’l)T (5%-) (Dg”’l)) o

where -
N n S¢1 1_)\0 . 0
SIn—l _ 0 >\an¢2 . 0 ’
0 0 0
R

because data segment A; occupies a fraction A /(1 — A,) of the data segment (1 — A,)7T" (note that
Aj < 1— A, because Z;l:_ll Aj =1—\,). Therefore,

T, T T 1 Tni\T (@Zo1\—L o Tn1y)
E[T(%—in)f‘)o) (9<1—in>T_9“” =, (@7 Em) T o) (44)
-1
lg 0 0 !
A1 1
0 Lg 0
S K A (DF)
0 0 0 ﬁS@H

By (44) and Lemma A.1, it suffices to show that

(DE)T (87) " (DF) — = KRN G G

is positive semi-definite. Applying (44), we have

§Tn — S 0
0 =56,
and
DIn — [(DInfl)T DT, ,JT
Therefore

-1 T e —1 Tn—1\ __ _
(Dg) T (95 (Dg™) = (L= A)(Dy" )T (851) (D" ™) = ADg 3,55 Do, (45)
which is positive semi-definite. 1

5.2 Extending the Adjusted-Moment Estimator

This section shows that the adjusted-moment estimator can also be extended to the case where

there is are series of n lengths, where n is greater than 2. In fact, it is possible to define an
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adjusted-moment estimator that is asymptotically equivalent to the over-identified estimator, just
as in the case where there were two blocks of data. Rather than a formulation (40), the extended
adjusted-moment estimator is defined by induction.

An advantage of the adjusted moment estimator over the over-identified estimator was described
in Section 3. When the model is exactly identified, and there is a set of series that have data
throughout the sample period that depend on a subset of the parameters, the adjusted-moment
estimator gives the same estimate for those parameters as simply using the long sample.

Consider the same set-up as in Section 5.1. To simplify notation, we consider a slightly less
general problem than in Section 5.1. We require that all series have a segment in common, in
other words, m; = [ and ¢1 = {1,...,l}. Of course, this segment could be a small portion of
the total data available. To inductively define the adjusted-moment estimator, we first give a
definition of the adjusted-moment estimator when all series are observed for all the data. This is
standard GMM. Then we assume that the adjusted-moment estimator has been defined over the
first n — 1 segments of data, and extend the adjusted moment estimator to all n segments of data.
This procedure can be used to construct the adjusted-moment estimator over the same patterns
of missing data as for the over-identified estimator (assuming that all data has been observed over
at least one segment), provided that one starts the construction with the segment over which all
the data has been observed (of length \{T"), and then proceeds to the segment where w9 < 71 =1
moment conditions have been observed, and so forth. While the induction approach may appear
somewhat cumbersome, the procedure is quite straightforward, as demonstrated by the examples
in Section 5.3.

We begin by defining the adjusted-moment estimator when there is a single data segment and

no missing data. This is the standard GMM estimator:

Wil = g (46)

As in the previous section, the subscript on h denotes the data region over which h is measured.
The superscript refers to the fact that it is the adjusted-moment estimator, while the subscript on

A refers to the number of blocks of data. It follows from standard arguments that
E [h307(60)| = E [ (w1,60)] =0,

and that
h;lllT(Q) —a.s. E[f(fCt, ‘9)]



as T' — oo. Assume by induction that

B 7 (0) —as Elf(21,0)], (47)

and that
E [(1 — )T (héTAln)T(Ho)) (hén_)\ln)T(HO))T] —as S, (48)
for some symmetric, positive-definite matrix S*»~1. Finally, assume that hé”_j\ln)T(Go) is a linear

combination of g4, (6o), ..., g¢,_, (fo) with non-random coefficients that do not depend on T'. That
is

B p(80) = My 1[5, (00) -, 96,1 (60) ] (49)
This allows Theorem 5.1 to be applied. Note that (47) implies that there is a one-to-one corre-

spondence between moment conditions in the adjusted-moment estimator, and moment conditions

fi-

Let h:;:}zll_/\n)T(@) denote the m, components of hé"_’)\ln)T(H) that converge to E[fg, (x,0)].
These are the elements of A"~ (0) corresponding to moments observed over the new data

Gn,(1=2p)T
length. We define the adjusted-moment estimator for n segments as the residual from a regression of

the previous adjusted-moment estimator on the difference between the components of the previous
adjusted-moment estimator for which the new data is available, and the sample average over the

new segment of data. Define

. . An_ T
BAn-1 — Th_rgoE [Th’(l)\ln)T(eo) <h¢n,(11*/\n)T(90) — g¢n,(1—)\n)T(90)> :| X
-1
An_ An_ T
E [T (h(;,n,(f,xn)T(GO) —g¢n,(1—xn):r(90)> (hd,n,(f,An)T(%) —9¢n,(1—An)T(90)) ] . (50)

BAn-1 is the | x 7, matrix of asymptotic regression coefficients from a regression of the (n — 1)st

adjusted-moment estimator on hﬁ:ﬂi ,\n)T(HO) — 9o a7 (00), appropriately scaled by the square

root of the sample length. In practice, B4 can be replaced by a sample estimate B;}j such that

E;}j —as BY as T — 0.8 Finally define the nth adjusted-moment estimator as

n Ap— n— Ap—
g (0) = Wt (0) = BAt (W 1 (0) = g, 0,(0)) (51)

5Tn that case, (49) would be replaced by the requirement that

A
W5 7 (00) = Ma1,7(96,(00) T, -, 96,1 (60) '],

where limr My —1,7 —a.s. Mn—1. None of the arguments would change.
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When evaluated at 6, h?" is a regression residual. This completes the definition of the adjusted-
moment estimator.

We now verify that the induction hypotheses (47)—(49) are valid for n. These are necessary to
define (51).” Because

An—
W 2(0) = Gunt(8) —as. B [fs, (510 = F [fon (20,0)] = 0,
(47) is satisfied for n. To show (48) for n, note first that Theorem 5.1 implies
. Ap—
Jim E [Tg¢n,>\nT(90)h¢n,(11—)\)T(00)—1 =0.

Because h%" (fp) is a regression residual, (51) implies

1 1 1 T
: .An An T _ An,1 _ _An,1 -Anfl .An,1
Jim B\ Thm (60) b7 (6o) ] ) An)s B [—Ans% + =W _An)s% } (B,
(52)
where

.Anf 1 A"7 An7 T
S¢n 1 - TlE}gOE |:Th¢n1(11_)\7L)T(00)h¢"’(11_>\n)T(60) i| ’

Clearly (52) is well-defined and symmetric. It is positive definite because ¢,, is a strict subset of

h-An—l

(1-A,)T Ca0 be explained by hiint Finally, (49) follows

{1,...,1}, so not all the variance in (1= An) T

from the form of (51).

It may not be immediately clear that this estimator reduces to the one defined in Section 2
when there are only two blocks of data. In fact, it does reduce to the previously-defined adjusted-
moment estimator. As stated in Section 5.1, A\; = A and A2 = (1 — X). We also have ¢; = {1,2},
and ¢ = {1}. The moment conditions for the first adjusted-moment estimator are the same as in

standard GMM:
hﬁlT = gxT-

It follows from (51) that

A A A A
we = iy B (Y g )

= or— B (giar —91,0-07) -

"Equation (47) insures a one-to-one correspondence between moment conditions and components of h*n. Equa-
tion (49) insures that \/Thﬁi}ln)T and VTgy,, (1-»,) have an asymptotic distribution that is well-defined (by Theo-

rem 5.1). This implies that B#An-1 is well-defined. Equation (48) will be useful later in determining the asymptotic
distribution of the adjusted-moment estimator.
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By (50),
Al : T T -1
B = lim E [TQAT(QLAT — 91,0-NT) ] (E [T(gl,)\T = 91,0=07)(GIAT — 91,(1-0)T) D
1/ Sh 1 1 -t
= 3 —+ S
(o) ()
B < (1-=N1I )
(1=XN)Bg21 )’
where we have suppressed the argument 6y in the first line. Therefore, the moment conditions for

the adjusted-moment estimator equal

pA2 _ < giar + (1 =X (91,0-07 — 91.07) >
T goxr + (1 = A)Ba1(g1,1-n1 — 9127) )’

which are the same moment conditions as those given in Section 2.%

(53)

The usual asymptotic results hold for the extended adjusted-moment estimator. The following

lemma, is helpful:

Lemma 5.1 Assumptions 1-5 imply

An—l 1 Anfl
ﬁ( h(l—)\n)T(GO) > —q N <0, [ S 1 0 D )

émrnT (00) 0 A O0n

Proof Tt follows from (49) and Theorem 5.1 that \/Thé[‘/\ln)T(Go) and VTgg, x,7(00) are asymp-
totically independent, and that each are asymptotically normally distributed. The form of the
asymptotic variance follows from (48) and Theorem 5.1. 1

This lemma implies that the sample moment conditions for the nth adjusted-moment estimator,
scaled by v/T are asymptotically normally distributed. Equation (51) implies an inductive equation

for the variance.
Theorem 5.7 Assumptions 1-5 imply
\/Th?" (90) —q N (O, S'A") ,

where SA» is defined inductively as

1
SAn—l _ BAn—l
1—XM\ An

1 1

s = Sen +

S ) (54)

with
Sh =G (55)

8Here we make use of the equation gir = Mgt + (1= X)g1,a-n7-
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As with the extended over-identified estimator, any positive definite weighting matrix can be
used with moment conditions h?“ to produce a consistent estimator. As usual, we will emphasize

the case when the weighting matrix converges almost surely to S“». Define
7 = argming hi (0) T WA (6), (56)
where Wj“fl" satisfies Assumption 11:

Assumption 11 The weighting matriz W{FA” converges almost surely to a positive-definite matrix

W,

Consistency for the extended adjusted moment estimator follows from the fact that
Wi (0) —as. B [f (21, 6)

(proved above by induction) and the arguments of Section 2.

Theorem 5.8 Assumptions 1-5, and 11 imply that as T — oo, 04—, ¢ 0.

Similarly, it is possible to show that the estimator is asymptotically normally distributed:

Theorem 5.9 Assumptions 1-5, 7-9 and 11 imply that as T — oo,

VT4 — 0) =4 N (0, (DOT WA"D(J)A (DJ Py GAn WA”DO) (DOT WA"D0>1) .

Proof We show by induction on n that

Ohzin
0

0
A (w1.6)

(90) —as B

0o

By definition, and White and Domowitz (1984, Theorem 2.3) it follows that

ahAl a
4L (69) = “H1L (60) —as. Do
Assume (57) holds for n — 1. By (51),
n 'A’ﬂ* n— ‘A"*
g (0) = Wt (0) = BAt (W 1 (0) = g, 0,(0)) (58)

Applying White and Domowitz (1984, Theorem 2.3) again, it follows that

09 AnT

99 (‘9) —a.s. DO'
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Taking limits on both sides of (58) and using the induction hypothesis produces the desired result.
The rest of the proof follows along the same lines as that of Theorem 2.3 in Section 2. 1
Lastly, given moments h?", the most efficient asymptotic weighting matrix is the inverse of the

variance of these moments.

Theorem 5.10 Suppose ij‘” —as. WA = (84~ Assumptions 1-5 and 7-9 imply that
R " _ -1
VT (64 — 0y) & N (o, (DOT (54~ D0> > . (59)
Moreover, this choice of WA is efficient given the moment conditions (40).

While the extended adjusted-moment estimator appears completely different from the extended

over-identified estimator, they are asymptotically equivalent.

Theorem 5.11 Assume that W{F“" — (SA")_l and W%" — (S’I")_l. For any integer n, as-
sumptions 1-5 and 7-9 imply that the extended adjusted-moment estimator (56) is asymptotically

equivalent to the extended over-identified estimator (42).

A full proof is given in the Appendix. The structure of the proof is similar to that of Theorem 3.1.
The preceding theorems show that it suffices to compare the asymptotic variances. Then matrix
partition results are used to relate the inverse of the asymptotic variance for the over-identified
estimator to the asymptotic variance of the adjusted-moment estimator.

Intuitively, the reason for the equivalence is that both estimators insure that each additional
segment reduces the variance in the most efficient way. The variance reduction is easier to see in
the case of the over-identified estimator, where each additional segment introduces a new moment
condition. The efficient weighting matrix, along with a standard “diversification” argument insures
that the new estimator will have a smaller variance than the old estimator. For the adjusted-
moment estimator, each step of the further reduces the variance of the moment conditions, because
the new moment conditions are defined as regression residuals from the previous step. As regression
residuals, they must have smaller variance than the variable on the right-hand side of the regression
— the previous moment conditions.

Theorem 5.11 shows that the extended adjusted moment estimator is asymptotically equivalent
to the extended over-identified estimator. By Theorem 5.6, we can conclude that adding a block

of data always increases efficiency for the adjusted-moment estimator.

Corollary 5.1 Assume that Wf‘" — (S““")f1 and Wéi:\i)T — (SA”*)fl. Assumptions 1-5 and

7-9 imply \/Té;}" s asymptotically more efficient than \/Téé’f;n)T.
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Defining the adjusted-moment estimator as a regression residual has some appealing properties;
it facilitates the proof of equivalence for the over-identified estimator, and it demonstrates clearly
the reduction in variance. In other respects, it may appear counterintuitive. In the next section,
we compute three examples of the adjusted-moment estimator and show that indeed, they have an

interpretation that is equally appealing as in the case where only one data block is missing.

5.3 Examples

This section computes explicit estimators for three examples of missing data patterns. The first
example is like that explored in Section 2, except here data is missing at both ends of the sample
for one of the series, rather than just at the beginning. The second example is where there are three
different starting dates, but all data have the same ending dates. This case is treated in Stambaugh
(1997) in a maximum-likelihood setting, and applied to international data. This example shows
that our methods can be easily applied to this setting as well. Given the form of the estimators for
examples 1 and 2, one could easily combine the reasoning and put together an example where the
data have both different starting and ending dates, but that the available data are “nested” (e.g.
there are three series, the first of which is observed for the full sample, the second is observed for
a subset of the dates, and the third is observed for a subset of the dates for which the second is
observed). Little and Rubin (2002) refer to this condition as monotonicity, and derive a maximum
likelihood estimator under normality and independent, identically distributed observations.

The last example is a case where the series have different starting dates and different ending
dates, but that the series that start later also end later. This example illustrates the power of our
generalization above, as its form for the adjusted-moment estimator is non-obvious.

In all of these cases, we derive both the over-identified estimator and the adjusted-moment
estimator. For the over-identified estimator, we derive both the moment conditions, the optimal
matrix, and the form of DOI . For the adjusted-moment matrix, the derivative of the moments
always equals Dy asymptotically. The optimal weighting matrix is the inverse of the variance of
the moments, which can be computed from (54). If the original problem is exactly identified, it will
remain so with the adjusted-moment estimator. Also, the extended adjusted-moment estimator
will be consistent, and efficient relative to the estimator that uses a shorter length of data, for any

choice of positive-definite weighting matrix.
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5.3.1 Data missing at both ends

The first example is similar to the case in Section 2, except that data from the second set of series
is missing not only at the beginning of the sample, but also at the end.? Figure 3 illustrates this

pattern of missing data. As in Section 2, group the moment conditions observed for the full data

| )\QT | AlT | )\3T |

| MT |

Figure 3: Illustration of Example 1. Example 1 explicitly calculates the extended estimators for
data missing at both ends. The notation above the horizontal lines refers to the length of each
segment as a function of the sample size T'.

set into a vector fi(x1¢,0), and moment conditions only observed for the middle segment into a
vector fa(x¢,0). This situation would occur if the series for which data is missing at the start of the
sample also is updated less frequently. We use ¢1,.(6) to denote partial sums of fi(x1, ) and go,.(6)
to denote partial sums of fa(x¢,6), where - will represent the length of the segment over which the
observation is taken. The notation for sub-matrices of S and Dy follows the same conventions as
in Section 2.

As shown in Figure 3, A1 is the length of the middle segment divided by the total data length.
Without loss of generality, we assume As is the length of the first segment of missing data divided
by the total length (we could also have set Ay equal to the length of the second segment of missing
data divided by the total data length). The moment conditions for the over-identified estimator
h%?’ are

.
h;Ir3(9) = 1970 g20,70)" g12,7(0)" 91,,\3T(9)T} .

Then the results in Section 5.1 imply that \/Th%ﬁ’ (6) has asymptotic variance!'®

51 S12 0 0
oTs _ %21 xS 0 0
0 0 xSu 0
0 0 0 %Su

9If the observations were independent, then this case is clearly identical to that described in Section 2 because
the data points could be rearranged without effecting the joint distribution. Under dependence, this does not follow
immediately.

10The asymptotic variance does not take exactly the same form as SZ in Section 2. The reason for the discrepancy is
that S was defined as the asymptotic variance of the moment conditions scaled by v/ AT, while S73 is the asymptotic
variance of the moment conditions scaled by \/T
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The extended over-identified estimator with efficient weighting matrix is therefore
6% = argming W2 (0)TWERE(0), WE -, (57)7
for W%S positive definite. The asymptotic distribution is given by
. 1 ~1
VI~ 00) —a N (0. (0F)T (%) 0F)) ).

where

.
D% = Dy, Di, Di, Dy,

We now describe the extended adjusted-moment estimator. The moment conditions for the first

adjusted-moment estimator are the same as in standard GMM:
A
h)\llT = g)\lT. (60)

Substituting (60) into (51) yields the adjusted-moment estimator that includes the Ay block:

héglﬂg)T = g1 — BY (g1, — 91007) (61)
where
—1
B = Jim B [()\1 + A2)Tgxn1 (9107 — 91,A2T)T} (E [(Al + X2)T (91,37 — 910.7) (G107 — gl,AQT)TD

= 5t (b )
A+ \ B /)7

where we have suppressed the 6y argument in the first line. Substituting into (61) produces

91,(M14+22)T
h.AQ — 1 2 , 62
(A1+22)T ( go T + ﬁBm (9107 — 91.0.7) > (62)

which is the same estimator described in Section 2, except that the length of the sample is taken
to be (A1 + A2)T rather than 7.1

To construct the full adjusted-moment estimator for this case, we apply (51) again:

A A Ay (A
h® = WX yxnyr — B7? <h1,fA1+A2)T - 91:A3T> ’ (64)

"Here and in the following computations, we make use of the equation

Al /\2
=L 2 . 63
I1OuA)T = 3 g T (63)
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where

T
Az q: A A

T—)oo
T -1
A A
X <E [T (h()\21+)\2)T - 91,A3T> <h1f,\1+A2)T - 91,,\3T> })

(65)

. T A
= lim F |:Th.(;\21+)\2)T (gl,(/\1+)\2)T - gl,)\3T) i| (E |:T (gl,()\1+)\2)T - gl,)\gT) (gl,(/\1+)\2)T - gl,)\3T) i|> .

T—o0

It follows from Theorem 5.1 that

. T 1 1
Jim E [T (91002007 = 91007) (91,00 +22)T — GL207) } = (73 R v /\2> Su. (66)

Using (62) and the same argument,

) A T 1
TlfgoE |:Th1,?/\1+)\2)T (91,00 +22)T = 91.25T) } TN St (67)
Finally, Theorem 5.1 and the same reasoning used to show (22) that
3 A T . A T
Jm E [T 1 syt (91,0020 = 91.057) ] = Jim B [T RS Ot a0)T 9L +20)T
1
_ o1 68
A1+ A2 2t (68)

where we have continued to suppressed the argument 6y. Combining (66), (67), and (68), and

BM:&<; )
21

12

rearranging,

Substituting into (64) and rearranging produces

hy® = ( T A by > :
Go T + (A2 + A3)Bay <,\2T2,\391,,\2T + 525G T asT — 91,,\1T>
Several features of this extended adjusted-moment estimator are worth noting. First, the moment
condition for the series observed for the full data set is the same as if these series were estimated
independently of the second set of moments. The basic adjusted-moment estimator described in
Section 2) also had this property, and, as we argued in Section 3 this may be a reason to prefer
the adjusted-moment estimator over the over-identified estimator. Second, the adjustment to the
moments of the second series is the same as if the segments A and A3 were contiguous rather than
separated by A;. For our asymptotic results, it does not matter whether the blocks defined by

starting and ending points are contiguous.

12Here and in the following example, we use the fact that A\; + A2 + Az = 1, and that

gt = (M4 A2)91,004a0)7 + A3g2asT
= Ag1, 0T + A201,0,T + A3g2. 0T
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5.3.2 Data missing in a monotonic pattern

The second example represents a problem dealt with in detail in a maximum likelihood context by
Little and Rubin (2002) and Stambaugh (1997). Here, the data series all end at the same point,
but may start from more than two different points. This may occur, for example, if one is using
international data as in the study by Stambaugh. Figure 4 illustrates the missing data pattern in
this case. For ease of notation, we illustrate the extended over-identified and extended adjusted-
moment estimators for the case where there are three starting dates. Extending the method further

to more than three starting dates is straightforward.

| )\3T | )\QT | )\1T |
’ )\QT ’ )\1T ‘

I

Figure 4: Mlustration of Example 2. Example 2 explicitly calculates the extended estimators for
data missing in a monotonic pattern. The notation above the horizontal lines refers to the length
of each segment as a function of the sample size T'.

As shown in Figure 4, Ay is the length of the final segment divided by the total data length.
This is because all series are observed for the segment of length A\1T. A subset of these series are
also observed for the middle segment: this has length A\27T. A smaller subset is also observed for
the first segment, of length A\37" = (1 — A\ — A2)T'. Following the notational convention of Section 2
and the previous example, we group the moment conditions observed for the full data set into
a vector fi(x1¢,0), the moment conditions observed for the last two data segments into a vector
fa(x1¢, 221, 0), and the moment conditions observed only for the last data segment into a vector
fa(x1e, xat, €3¢, 0). The notation for sub-vectors of g and submatrices of Dy and S follows the same
convention as in the previous example.

The moment conditions for the over-identified estimator h%” are

h(0) = [gl,AlT(e)T Gt 930,707 G10,7(0) " G20,7(0) T g1AsT(0) T
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The results of Section 5.1 imply that /T h:IF3 has asymptotic variance

[ +S1 ?Sm %5*13 0 0 0
¥521 022 ¥523 0 0 0
oTs _ 081 3932 3933 0 0 0
0 0 0 ALQSH xS2 0
0 0 0 A—lzsm 712522 0

0 0 0 0 0 xSu |

In this example the extended over-identified estimator is therefore

0% = argming hZ?(0) WL hE:(9),
for W%“ positive definite and WIIR —as. (513)71. The estimator has asymptotic distribution
. _ —1
VI~ 00) —a N (0. (0F)T (%) 0F) ).

where

T
I3 __ T T T T T T
D™ = [DO,I D0,2 D0,3 DO,I D0,2 DO,I}

We now describe the extended adjusted-moment estimator. The first step is the same as stan-

dard GMM for the three series:

4 ginT
hylr = | 921
93T

The second step is the same as the second step in the example above. However, here two sets of

series are observed for the longer sample, g; and go. Therefore

Ao I
BA =
AL+ A2 < B3.12 )

91,(A14+22)T
hAz 92,(A14+X)T (69)

(A1+22)T Ganr + A2 B, 91 2T — 91\T
AL A1+A 92T — 92T

and

where Bs.19 are the coefficients from a multivariate regression on the third set of series on the first

two:

So1 S22
In the third step, we add the segment of length A37T. Then

1
S S
Bs.qo = [S31 Ss32] [ 1ol } .

As _ 1 A A A
hp* = B2 s,y — B <h1b1 )T gl,A3T> , (70)
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where the expression for B2 is given by (65). Tt follows from Theorem 5.1 that

-1
Too 1,(A\14+X2)T ) L(A14+X2)T ’ A3 A1+ Ao

Similar reasoning shows that

1
lim E |Th?? hA2

T
Tooo [ 5,(A1+A)T ( 1,(A14+A2)T - gl,)\3T) :| = 7)\1 n )\2 Sjl, ] = 1,2337

where we have made use of (22) for j = 3. Substituting into (70), and applying footnote 12 results
in
gir
pds _ | 92.004a0)7 F A3B21(91as = 91,00+ 20)7)
T < PLAT — G T

92 2T — 92T 1 (91, 3T glv()‘1+)\2)T)

A
3T + 535 Bz

where B3, = 83151*11.

Note that the moment conditions for the data series observed for the full data set are the same
as if these series were estimated independently of the second and third set of moments. Indeed, the
moment conditions for the data series observed for both A1 and Ay are the same as if these series
were estimated (using the adjusted-moment estimator) without the third set of moments. Thus
the principle advantage of the adjusted-moment estimator for two starting dates is retained and
extended in this example with multiple starting dates.

In constructing this estimator, we have assumed that all the missing data occurs at the beginning
of the sample. However, the estimator would take the same form if the missing data were at the
end. Indeed, as the previous section shows, it suffices to have the data observed for the third set
of series be nested in the data observed for the second set, which is nested in the data observed for
the first set. In other words, data could be missing at both ends of the sample. In this case, the

adjusted-moment estimator would take the same form as above.

5.3.3 Data missing in a non-monotonic pattern

Our last example represents a case not handled in the maximum likelihood settings of Little and
Rubin (2002) and Stambaugh (1997). In this example, there are two sets of moments. These
moments have different starting dates and different ending dates, as in the first example. However,
the series that ends earlier also starts earlier, so neither series is observed for the full length. Figure 5
illustrates the pattern of missing data in this example.

We refer to the length of the middle data segment as A\1T" because all data are observed over

this segment. We could let A2T denote the length of the first or the last data segment. Without
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‘ )\2T | >\1T |

‘ AlT ‘ A3T |

Figure 5: Illustration of Example 3. Example 3 explicitly calculates the extended estimators for
data missing in a non-monotonic pattern. The notation above the horizontal lines refers to the
length of each segment as a function of the sample size T'.

loss of generality, we let it refer to the length of the first segment. We let \sT' = (1 — Ay — A2)T
denote the length of the final segment. Following the notation convention of Section 2 and the
previous examples, we group the moment conditions observed for the first two segments into a vector
fi(z1¢,0) and the moment conditions observed for the last two segments into a vector fa(zay,6).
The notation for sub-vectors of g and submatrices of Dy and S follows the same convention as in
the previous example.

The moment conditions for the over-identified estimator h%? are
T
W (0) = | g7 (0)" gon1(0)" giar(0)" .92,A3T(9)T} :

Then the results in Section 5.1 imply that /7' h%i‘ (0) has asymptotic variance

)\%Sn %1512 0 0
oTs _ %1521 %1522 0 0
0 0 %2511 0

0 0 0 352

The extended over-identified estimator is therefore
0% = argming h2?(0) T WEhE (9)
for WII;‘ positive definite and WjIﬁ —as. (513)_1. The asymptotic distribution is
R _ -1
VI~ t0) 0 N (0. ((0F) (%) (0F) ).

where

.
D% = Dy, Di, Diy Dy

We now describe the adjusted-moment estimator. The first two steps in constructing the

adjusted-moment estimator are identical to those in the first example. Therefore we can write

[ 91,0u+2)T >
h.A2 — 1 2 . 71
A1HA2)T ( G271 + 3255 Bar (91001 — g1.007) ()
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We have
As _ 3 A As (1 A
hp® = Iy — B (h27?>\1+/\2)T B 927*3T> ’ (72)

where

T
Az _ 1 A A
B2 = lim FE |:Th()\21+/\2)T (h27§>\1+)\2)T - 92,>\3T) :|

T—o00
A A T
b <[T (hzfxlﬂz)T - 92’A3T> <h2761“2)T N gQ’A:”T) D ’

where we have suppressed the argument 6. Define

Y A3
_)\14—)\2)\14-)\3'

v

Standard arguments (given in the Appendix) show that

Az 2= S1o B .
B.A2 _ < A+A2 B S 1 I _ B B . 73
A1+ A3 ( Sog — ﬁsmsnlsm > 5 (I —vB21Bi2) (73)

Given B2, (72) gives the moments for the adjusted-moment estimator. The first component

is as follows:

Bo1(g1. 0,17 — 91.u7T) |
(74)

while more extensive matrix algebra results in the following expression for the second component:

A A _
thS = 01,0\ 42)T T N ! > By (I — yBag1B1a) ™! <92,A3T — Jo T —

2
4+ A3 A1+ A3 AL+ A2

) A1 A2 1 A3
hil = I —~vByBiy) ' B - - = _B - :
27 92,()\1+)\3)T+)\1_|_)\3 )\1+>\2( YBo1B12)" " Bo1 | 91,07 — 91T N1y 12(92.057 — G20 T)
(75)
Because
By (I —yBa1Bia) ™" = (I —vB12Ba1) " Bus, (76)

these expressions are symmetric.!3

At first glance, the adjustments implicit in (74) and (75) do not seem as intuitive as their

counterparts in Section 2, or, for that matter, in Sections 5.3.1 and 5.3.2. However, there is a

13Equation (76) can be shown by noting that

(I — ’szlB12)71 = ’ym(leBm)m. (77)

M2

0

3
I
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reason for the apparently strange form. It follows from (77) and (63) that (74) can be rewritten as

A2
hAs _
1T = 3 g T Ty +>\

A A3 > Ao
B Bo1B1a)™ — -—B — . (78
VSV WL (mzzo(v 21B12) ) <92,,\3T GonT = N 21 (g1 20T 91,,\1T)> (78)

ginTt+

It is instructive to expand out the infinite sum explicitly:

)\2 )\1 )\1 )\3
pAs — 2 A 5 .
TN +)\291,A2T+ N +)\291,>\1T+ SV T VW 12(92. 07 — 92,0 7T)
A1 A3 Ao
- B
A+ A2 A+ )\3 AT+ N\ 21(91,07 — G10T)
A1 A3 Ao A3

B B — ... (79
)\1_1_)\2 VRIS WLES v w1 v 12(92. 07 — 92,0, 7T) (79)

The first two terms are partial sums of g over the data segment of length A\o7" and the data segment
of length \T', weighted appropriately. The third term is the adjustment to g; x,7, given that gs
is observed over the longer data segment (precisely, the segment of length (A; 4+ A3)7). This is
the same adjustment as in Section 2, except here it is the first rather than the second series that
is being adjusted. Because g; ,7 is weighted by A1/(A1 + A2), the adjustment also receives this
weight. Note that there is no adjustment to g; ), because the second data series is not observed
over the period of length AT

One possibility would be to stop with the third term. However, the resulting estimator would be
inefficient relative to the generalized adjusted-moment estimator. Instead, the extended adjusted-
moment estimator has additional terms. The reason is that the adjustment, )\1>_\i_73/\3B12(927)\3T —
g2\, 1), must itself be adjusted to reflect the fact that the first set of series is observed over the

data segment of length \oT". More precisely, — Bi2g2 7 must be adjusted. This is the reason

>\1+>\3
for the fourth term. But then this must also be adjusted, and so forth. Repeating this argument
results in the telescoping matrix series (79), which, by (77), converges to the extended adjusted-
moment estimator (74). A symmetric explanation holds for (75). Thus even in this complicated

problem, the adjusted-moment estimator produces moments that have intuitive appeal.

6 Conclusion

This paper has introduced two estimators that extend the generalized method of moments of
Hansen (1982) to cases where moment conditions are observed over different sample periods. Most

estimation procedures, when confronted with data series that are of unequal length, require the
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researcher to truncate the data so that all series are observed over the same interval. This paper
has provided an alternative that allows the researcher to use all the data available for each moment
condition.

Under assumptions of mixing and stationarity, we demonstrated consistency, asymptotic nor-
mality, and efficiency over standard GMM. Our base case assumed that the two series had the same
end date but different start dates. We then generalized our results to cases where the start date and
the end date may differ over multiple series. In all cases, using all the data produces more efficient
estimates. Interestingly, this gain in efficiency is not only present for the parameters that enter
into the moment conditions observed over the longer data. As long as there is some interaction
between the moment conditions observed over the long data and the series observed over the short
data there is an efficiency gain for all the parameters. This interaction can be through covariances
between the moment conditions, or through the fact that some parameters appear in both the
long-sample and short-sample moment conditions.

Our two estimators are as straightforward to implement as standard GMM and have intuitive
interpretations. The adjusted-moment estimator calculates moments using all the data available
for each series, and then adjusts the moments available over the shorter series using regression
coefficients from a regression of the short-series moments on the long-series moments. The over-
identified estimator uses the non-overlapping data to form additional moment conditions. These
two estimators are equivalent asymptotically, and superior to standard GMM, but differ in finite
samples. We leave the question of which estimator has superior finite-sample properties to future

work.
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Appendix A

Lemma A.1 Assume Vi and Vs are invertible. If Vi — Vo is positive semi-definite, then VQ_1 — V1_1

s also positive semi-definite.

Lemma A.2 Assume Vi and Vo are invertible. If Vi — Vo is positive semi-definite, then for any

matriz Z, (Z TV Z)7V —(ZTVy 1 Z) 7 s also positive semi-definite.

Proof Assume Vj — V5 is positive semi-definite. By Lemma A.1, V{l — Vfl is positive semi-definite.

For any vector ¢ and matrix Z,
(2)T (V™ — Vi) (Ze) 0.
Therefore
2TVt — v Ze>0 e,
which shows Z T(VQ_1 — Vl_l)Z is positive semi-definite. Applying Lemma A.1 a second time shows

that (ZTV,'Z2)™' — (ZTV, 1 Z)~! is positive semi-definite as required. 1

Lemma A.3 Let

S11 Si2
S —
[ So1 S22 ]

be a symmetric invertible matrixz. Then

- Sit + By X7 'By —Bj 2!
51 = [ i (80)
where Y. is defined by (8). Moreover, if S is defined as
/\521 822 - (1 - /\)52151_11312 7
with X\ # 0, then )
1g— Ty-1 Ty-1
S 5877 + ByyX " 'Bis —By X
St = [ S v } (81)

Proof The first statement follows from the expression for the matrix inverse (see e.g. Green (1997,

Chapter 2)). Applying the same formula to S results in

51 _ 51_11 -I—_l;’ng;_lel —B;,x™!
—2_1312 »-1 ’

where

Bo = Sy (S11)_1 = 599187, = Boa1,
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and
Y = Sy — 591552
= Sap — (1 —A\)S215; S12 — AS9157," 12 = .

Therefore (81) holds. 1

Proof of Theorem 5.11:
By Theorem 5.10, it suffices to show that the asymptotic variance of \/THA%" is the same as the

asymptotic variance of v/T' 974” The proof is by induction on n. For n =1,

Zn _ pAl
0)\1T - 0)\1T

because they both equal the standard GMM estimator over data of length A17. We assume by

induction that
_ T _
Dy ($4+1) " Dy = (Dg™t) ($7) " g,
Without loss of generality, let ¢, = {1,...,m,}. That is, the first 7, moment conditions are
observed over data region \,. By (45) it suffices to show

Dy (5*) " Do~ (1= Aa)Dg (541) " Do = AuDy 4,55 Do g, -

Equivalently, it suffices to show

(54) ™ = (1= An) (54 1) A, [ ngn 8 } : (82)

We use the formula for the inverse of a partitioned matrix (Lemma A.3). Let —¢,, denote
the set of data series not observed over A,, i.e. the complement of ¢,. The assumption that

¢n ={1,...,m,} implies that S can be written as

An An
g — | Sal 5o o
S S|
_¢ny¢n _¢n
where

% =B [T hy 10002, +(00)7],

S"_“(Z'nv(ﬁn =K [Thf;;n7T(90)h$,:,T(90)Ti| )
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and 54— (SA"

-
br—n = \ P, %) . Note that under this ordering,

=X, \ s An 1=\, %

A'nfl —1
SRS | r——

7¢n:¢n

Analogously to Bs; in Section 2, define
A A AN\
B21n - S_(;an¢n (S¢nn>

-1
-Anfl _ Anfl -Anfl
By = 8l en (Sm ) :

Analogously to 3 in Section 2, define

—1
A’n/ J— An — A7L An An
S S b (5¢>n ) Smr—tm
.Anf _ Anfl _ Anfl Anfl -1 Anfl
X = 8 s T S bntn <S¢n ) Somr—n”

By Lemma A.3, (82) holds if and only if

—1 —1
(Sq;tn) — (1= (Sq“i"*) + A (Ss,) !
An Ap—
B21 - B21 !
1
»An = A1,
-\,

We first show (88). Equation (54) implies

SAn — 1 S-An—l _ 1 S-An—l LS + 1 S-An—l - 1 An—1
on T 1= A, On D W T D W I I W 1= A, ¢
-1
Pre-multiplying by (1 — \,) <S$1”_1> yields
-1 1 1 A B A
1— A (sAﬂ—l) §An = J | g, 4o g gn-1
( ) (5%, on 0 TN, Do 1=\, ¢n
[t I B |
= |:)\n8¢"+1—)\n8¢" ] )\nS¢n.
Taking inverses yields
1 1A, ! 1 A,
75An)snlzxns G, 4 G
1—)\n(¢” on (S6.) [)\n o T T, Do ]
An _

1-A,
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—1
Post-multiplying by (1 — An) (S;L"*) yields (88).
We now show (89). By (54),

1 1 1 1 -
An -An—l An 1 . An 1 An—l
Si¢n7¢n 1— )\n Sf¢ny¢n 1— A —Pn,Pn |:)\ S¢" 1— )\ S¢n :| S '

-1
Post-multiplying by (S(f:) and applying (88) produces
An An -An -1 1 An—l -An—l -1 —1
B = 5% (s%) = s (1= ) (S% ) + S

1 An_1 1 a1t A,y B A\ "L .
T )\nS,d,m% {ES@L + T S¢n T Sdm (1—=X\,) (S¢>n ) + )\”Sdm )

Expanding out the first term on the right hand side and multiplying through by Sf:’l in the

second term produces

An Ane A An 1
By =By + 1 _n)\ S—qﬁn,lqﬁns%

1 A 1 A -1 A A
- n—1 _S 75 n—1 I n S n—1 5,71
1— An —Pn,Pn |:An én + 1— )\n n :| |: + dn On

Factoring out /\nqun1 in the last term yields (89).
Lastly, we show (90). Equation (54) implies

1 1 1 1 -1
A An 1 »An 1 .An 1 .Anfl
iy — S . 91
S—¢n7_¢n 1-— )\ S_¢n _¢n 1— )\ —bn,Pn |:)\ S¢" 1-— )\ S¢n :| 1— )\n b, —bn ( )
By (89),
.
An An An _ An gAn An
S bn <S¢»n> Som—tn = Ba"5G, (le )
An1 ahn ( pAn-1) "
= By 15% <321 1)
Therefore,

s () st = st () o (st s (s T,

= st [amass, s ] s (52) 7 S

Substituting in (91) and (92) into (86),

I A
E.An _ n—1 _
1— )\n —¢n,—bn

1 An—1 —S ]' S-An 1 - 1 I+ LS <S-An—1>_1 S-An—l
T, "o | X, 200 T TN, P D W Wt L Gn,—¢n’
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Which implies

I A
E.An — n—1 _
1— )\TL —¢n,—Pn

L .4 1 1o a1 1 A1) 71 qA
S n—1 —S S n—1 S n71+_S (S n—l) S n—1
1 An—l 1 An 1 An—l -1 An—l
- 1— )\TL Si(z)nv*d)n 1— )\ Sfﬁbnvﬁbn <S¢n ) Sﬁbnvfﬁbn
— 1 EAnfl’
1— A\,

which shows (90). 1

Proof that B*? in Section 5.3.3 is equal to (73):
From Theorem 5.1 and (71), it follows that

lim E [ (hA(/\ +22)T 927/\3T> (h;}z\ﬁrkz)T B 92”\3T) T]

TS0
L 1 A2 271 1 1 A
= S By1511 By, S91Bg; + Ba1 S
<)\3 )\1> 22+<)\1+)\2> ()\2+A> PP AN N ( 21091 + D21 12)

11 1 X .
= ()\—3 + )\—1> Sog — )\—1)\1 NIy 521511 S12, (93)
and
lim E |Th{? Rz U moE|T h2 !
o 1,(AM+A2)T ( 2, (M +A)T 92,A3T) = 91,(M+22)T ( 2,(A1+A2)T)
1

= S1a. 94
A+ A (54)

where we have applied the reasoning of (22). (94) multiplied by the inverse of (93) equals the first

component of B#2. The second component equals

T T
Ay A o A As
Am E [Th 2,(A1+A2)T (h2,?A1+A2)T_927A3T) } = TIEI;OE[ 7 Oura) (h2 (422)T ) ]
1 A2 1
= — (S — ——8915; 8 95
/\1 ( 22 /\1+)\2 21211 12>7 ( )

multiplied by the inverse of (93). The resulting expression for B#2 can be simplified considerably.

The inverse of (93) equals

11 1 X -1 1M
—+—1s — s 851578 = ST —~S91S71 51955
<<)\3 +>\1> 22 — )\1 )\1 )\ 2111 12) 22 ( YO21011 P12 22) /\1+)\3
_ 1 A3
= S5Y (I —~ByBya)~ ! 96
22( Y521 12) )\1+)\37 ( )
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where Bio = 5’1252_21. Therefore,

A3 T S12 _ 3
B.A2 -2 A1+A2 B S L] — BB 1 '
AL+ A3 ( S99 — ﬁsmsnlgm 92 (I —vB21Bi2)
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