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1. Introduction

Recent "nancial research investigates the impact of transaction costs and
return predicatability on asset allocation and consumption decisions. Studies
that incorporate transaction costs typically assume that the opportunity set is
constant through time. This assumption is inconsistent with the documented
predictability of U.S. asset returns.1 On the other hand, studies that examine the
impact of return predictability on expected utility and portfolio rebalancing
typically do not consider transaction costs.

Our paper contributes to this literature by considering a multiperiod indi-
vidual who possibly faces both transaction costs and predictable returns. We
numerically solve the individual's multiperiod problem in the presence of trans-
action costs and predictability. In particular, we characterize the consumer's
optimal portfolio choice with both "xed and proportional transaction costs, and
with return predictability similar to that observed for the U.S. stock market.

Armed with this solution technique, we consider the utility costs associated
with three di!erent dimensions of ignorance on the part of the consumer. First,
the consumer can behave in either a myopic or a dynamic manner, depending on
whether the chosen portfolio weights maximize a one-period or a multiple-
period problem. A myopic investor does not hedge against future changes in the
investment opportunity set. Second, the consumer can use either the conditional
or the unconditional distribution of asset returns for decision-making. A con-
sumer that uses the unconditional distribution is ignoring return predictability
when making decisions. If the risk-free rate is constant and transaction costs are
zero, myopic and dynamic consumers who use the unconditional distribution
rebalance identically because their opportunity set is constant across states and
over time (see Samuelson, 1969). Finally, the consumer can either account for
transaction costs or ignore them (no-transaction-costs problem). Thus, we exam-
ine the impact of transaction costs on the utility costs associated with ignoring
predictability.

Transaction costs can be modeled either as proportional to the change in the
holding of the risky asset, or as a xxed fraction of portfolio value. Constantinides
(1986) "nds that proportional transaction costs a!ect portfolio choice since the
optimal policy is a no-trade region with return to the closer boundary when
rebalancing. Davis and Norman (1990) consider the same problem, and are able
to solve it exactly, without imposing restrictions on the consumption process.
Morton and Pliska (1993) and Schroder (1995) characterize portfolio choice
with "xed transaction costs and "nd that the optimal policy is a no-trade region

1Campbell (1987) and Fama and French (1989), among others, "nd that stock return variation
can be explained by the one-month Treasury bill rate, by a contemporaneous and a lagged measure
of the term premium, and by the dividend yield.
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with a single return point inside the region. All of these papers allow continuous
decision-making and impose a constant opportunity set.2

Our paper extends this literature in several ways. First, our discrete-time
setting allows the utility cost of ignoring transaction costs to be quanti"ed.
Earlier papers did not consider this utility cost because a consumer who ignores
transaction costs, and trades continuously, would end up bankrupt. Second, our
law of motion for the opportunity set incorporates the return predictability
observed in the data. Finally, the solution technique allows the simultaneous
presence of both proportional and "xed transaction costs. This is realistic, since
investors are subject to brokerage fees and bid-ask spreads, which generate
proportional costs of trading, as well as costs of gathering and processing
information, which generate "xed costs.

A number of recent studies examine the e!ects of ignoring predictability or
behaving myopically. Brennan and Schwartz (1996) and Brennan et al. (1996)
analyze numerically the impact of myopic versus dynamic decision-making
when the consumer bases decisions on the conditional distribution of returns.
Campbell and Viceira (1996) obtain a closed-form solution to the consumer's
multiperiod problem in the presence of predictability by using log-linear ap-
proximations to the budget constraint. Kim and Omberg (1996) solve the
continuous-time analog without any approximations. Barberis (1996) considers
the e!ect of asset-return predictability on myopic portfolio choices at di!erent
investment horizons; he also considers the e!ect of predictability on dynamic
portfolio choices, when the investor rebalances every year. Finally, Kandel and
Stambaugh (1996) explore the e!ects of predictability in a myopic setting, where
the investor rebalances monthly.3 All of these papers assume away transaction
costs on the grounds that existing "nancial markets, especially for futures
contracts, allow for inexpensive hedging. We relax this assumption and quantify
the impact of realistic transaction costs for consumers who behave myopically
or ignore predictability.

We calibrate both returns and transaction costs to those faced by U.S.
investors, and "nd that the utility costs of behaving myopically and of ignoring
predictability can be substantial. Allowing for intermediate consumption

2Several recent papers account for transaction costs in general equilibrium models, in empirical
testing, and with di!erent decision-making structures. Koo (1991) and Vayanos (1996) investigate
the equilibrium implications of proportional transaction costs. Heaton and Lucas (1996) consider
a dynamic equilibrium model where in"nitely lived workers trade a bond and a stock, and show that
large transaction costs are needed to generate a sizable equity premium in equilibrium. Hansen et al.
(1995), Luttmer (1996), and He and Modest (1995) develop pricing-operator tests of asset-pricing
models which explicitly account for bid-asked spreads and short-sale constraints. Du$e and Sun
(1990) model consumers who face "xed transaction costs and decide the interval of time until their
next rebalancing at the time of their current rebalancing. The authors "nd that the optimal interval
between trades is a constant.

3These last two papers account for the e!ects of estimation error on portfolio choice.
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reduces these utility costs. This result implies that the e!ects of ine$cient
portfolio choices are likely to be more important for institutional investors, who
manage assets for the long run only, than for individual investors, who consume
as time goes by. Further, ignoring realistic transaction costs ("xed and propor-
tional) imposes signi"cant utility costs which range from 0.8% up to 16.0% of
wealth.

In all scenarios, the presence of transaction costs increases the utility cost of
behaving myopically. So by not accounting for transaction costs, the utility cost
estimates of Barberis (1996) and Brennan et al. (1996) represent a lower bound.
In contrast, the large utility cost associated with ignoring predictability is
reduced by the presence of transaction costs. Thus, the utility cost estimates of
Kandel and Stambaugh (1996) represent an upper bound.

Regarding portfolio-choice policies, proportional transaction costs induce
a no-trade region such that the consumer rebalances to the nearer boundary
when the risky-asset weight goes outside the region. Fixed and proportional
transaction costs also induce a no-trade region, but now rebalancing places the
risky-asset portfolio weight inside the boundary. Thus, the basic nature of the
optimal policy identi"ed by previous studies carries over to the case when the risky
return is predictable, at least for the parameter values that we consider.4 Also, we
"nd that realistically-small transaction costs induce sizable no-trade regions.

The paper also makes contributions at the methodological level. We show
how the investor's multiperiod problem can be numerically solved in the
presence of time varying conditional expected returns, and both proportional
and "xed transaction costs. Since our solution technique is quite #exible, it can
be applied to a variety of scenarios with di!erent constraints facing the con-
sumer and di!erent laws of motion for the state variables.

The paper is organized as follows. Section 2 describes the consumer's optim-
ization problem. Section 3 calibrates the state variables and asset returns to the
U.S. economy. Section 4 describes the various scenarios studied in the paper.
Section 5 discusses the portfolio choices, while Section 6 looks at the utility costs
for di!erent types of consumer ignorance. Section 7 concludes.

2. Portfolio allocation with transaction costs and predictable returns

This section lays out the preferences of and constraints faced by the consumer.
We characterize the optimization problem for a consumer who is either dynamic
or myopic, and who does or does not take into account asset-return predictability.
We also describe the nature of the utility comparisons to be performed later in the
paper, and the solution technique for numerically solving the consumer's problem.

4See Constantinides (1986) and Davis and Norman (1990) for proportional transaction costs, and
Morton and Pliska (1993) and Schroder (1995) for "xed transaction costs.
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2.1. Constraints and preferences

We consider the portfolio allocation between two assets, a risky asset and
a riskless asset. The consumer faces transaction costs that are proportional to
wealth. The law of motion of the consumer's wealth,=, is given by
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where c is consumption, a is the share of wealth allocated to the risky asset, R is
the rate of return on the risky asset, R& is the risk-free rate, and f is the
transactions cost per dollar of portfolio value. We further de"ne i as the fraction
of wealth consumed and R
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The law of motion for wealth in Eq. (1) implicitly assumes that consumption at
time t and any transaction costs to be paid at time t are obtained by liquidating
costlessly the risky and the riskless asset in the proportions a( and (1!a( ), where
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This assumption is not so onerous given the availability of money-market bank
accounts and given that equities pay dividends. To the extent that the risky
asset's dividend exceeds the consumption out of the risky asset, ia(=, a dividend
reinvestment plan can be used to costlessly reinvest the excess dividend in the
risky asset.

In general, we model the cost of transacting, f, as a function of the di!erence
between the end-of-period wealth allocation to the risky asset, a( , and a. Speci"-
cally, we assume transaction costs to have two components:5

f"/
1
Da!a( D#/

2
Ia~a(E0

, (4)

where /
1
, /

2
*0 and Ia~a(E0

is an indicator function which equals one if
a!a(O0 and zero otherwise. The "rst term is proportional to the change in the
value of the risky asset holding, as in Constantinides (1986). The second term is
a "xed fraction of the total value of the portfolio, as in Morton and Pliska (1993)
and Schroder (1995). This second term re#ects the "xed cost of rebalancing the
portfolio, regardless of the size of the rebalancing. This "xed cost increases with
the investor's wealth, since it is likely to depend on the opportunity cost of the
investor's time.

5To keep notation simple, we drop the time subscript when all variables in a mathematical
expression are contemporaneous.
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We assume there is a &predictive' variable, D (to be explicitly identi"ed later in
the calibration exercise), which a!ects the conditional mean of the risky asset's
return. We assume D follows a "rst-order Markov process. For simplicity, the
riskless rate is assumed to be constant, and so R&

t
"R& for every t.

We consider the optimal portfolio problem of a consumer with a "nite life of
¹ periods. Preferences are time separable and exhibit constant relative risk
aversion (CRRA). Since earlier papers consider situations where expected life-
time utility depends only on terminal wealth (e.g., Barberis, 1996; Brennan and
Schwartz, 1996; Brennan et al., 1996), we use the following preferences in most
simulations:
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where c is the relative-risk-aversion coe$cient. Note that the expected lifetime
utility depends on the state of the economy at time 1. Further, the inherited
portfolio allocation a(

1
is a state variable when /

1
or /

2
is greater than zero,

since its value determines the transaction costs to be paid at time 1. Our
framework can also be modi"ed to allow expected lifetime utility to depend on
intermediate consumption:
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where the rate of time preference equals one. These preferences have been
extensively used in empirical work by Grossman and Shiller (1981), Hansen and
Singleton (1982), and many others. Values of the time-discount parameter close
to one are consistent with the empirical "ndings for the U.S. economy. Thus, we
examine the sensitivity of our results and those in earlier papers to the presence
of intermediate consumption.

2.2. Consumer policies

We now consider various optimization problems and the associated Bellman
equations for a consumer who is aware of some, but not necessarily all, features
of the environment. Throughout, we present Bellman equations for a consumer
whose utility does not depend on intermediate consumption. The Appendix
discusses the case with intermediate consumption. The fraction of portfolio
value allocated to the risky asset at time t is denoted by a

t
"a(D

t
, a(

t
, t), which is

time dependent since the time horizon ¹ is "nite.
The "rst dimension of the consumer's problem that we vary is the consumer's

time horizon when choosing the portfolio weights. The Dynamic consumer
(D policy) correctly considers all remaining periods before death when choosing
portfolio weights. In this case, the consumer anticipates future changes in the
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investment opportunity set, which generates hedging demand. On the other
hand, the Myopic consumer (M policy) chooses portfolio weights using a one-
period horizon, although the consumer's remaining lifetime may be longer.
Consequently, future changes in the investment opportunity set are not ac-
counted for and, hence, are not hedged against. When utility depends on
intermediate consumption, the Myopic consumer is assumed to dynamically
choose consumption, taking the portfolio choice to be the myopic choice. This
assumption is made to make comparisons between the Myopic and Dynamic
consumers meaningful.

Another dimension that we vary is the consumer's beliefs about the law of
motion for the state variable D. The individual can ignore any predictability,
and behave as if the risky return R is independently and identically distributed
(i.i.d.) with a distribution equal to its steady-state or unconditional distribution
(the U policy). On the other hand, the individual can incorporate predictability
by using the conditional distribution for R when making portfolio choices (the
C policy).

Combining these two distinctions gives rise to four optimization problems
and associated policies. However, in the absence of transaction costs and given
a constant riskless rate, it is well-known that the asset allocation for the M-U
policy is the same as that for the D-U policy (see Samuelson, 1969). Thus, the
M-U policy is the same as the D-U policy in the no-transaction-cost case.

2.2.1. Dynamic-conditional (D-C) policy
Given our parametric assumptions, the Bellman equation faced by the con-

sumer is given by
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where E[.DD, a( ] denotes the expectation taken using the conditional distribution
given D. This form of the value function derives from the CRRA utility speci"ca-
tion in Eqs. (5) and (6), and from the linearity in = of the budget constraint
Eq. (2).

2.2.2. Myopic-conditional (M-C) policy
In this case, the optimal portfolio policy is not time dependent, and equals

that of a dynamic optimizer in the next-to-last period of life. We have
a
t
"a(D

t
, a(

t
) for t"1,2, ¹!1, which solves the following problem:
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Hence, the consumer takes into account the current value of D, but not any
covariance between next period's risky asset return and future realizations of D.

2.2.3. Dynamic-unconditional (D-U) policy
The Bellman equation faced by the consumer is given by
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where EU[.Da(
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] denotes expectations taken using the unconditional distribution

for future realizations of R. This expectation does not depend on D
t
, and neither

does a
t
. Note that the Bellman Eqs. (7) and (9) are solved by backward iteration,

starting with t"¹!1 and either a(D, a( , ¹)"1 or a(a( , ¹)"1.

2.2.4. Myopic-unconditional (M-U) policy
The consumer's portfolio composition policy a
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Note that the only di!erence between the conditional polices D-C and M-C and
the unconditional policies D-U and M-U is the distribution used to take
expectations.

2.2.5. Transaction costs
The last dimension along which the consumer can exhibit ignorance is

transaction costs. Of course, this is not possible if transaction costs are zero.
Thus, there are only three possible problems in the no-transaction cost econ-
omy: D-U-N, M-C-N, D-C-N, where N denotes that there are no transaction
costs.

In the presence of transaction costs, the consumer could use the as from the
analogous no-transaction cost case (denoted N-T) or could choose as taking
transaction costs into account (denoted T). Thus, when utility only depends on
terminal wealth, the N-T policy is the same as the analogous N policy described
above. On the other hand, when utility depends on intermediate consumption,
the consumer is assumed to make consumption decisions taking transaction
costs into account, and so each of the N-T consumption policies di!ers from the
analogous N policy. Combining the transaction cost dimension with the two
above gives seven policies in the transaction cost economy: D-U-N-T, M-C-N-
T, D-C-N-T, M-U-T, D-U-T, M-C-T, and D-C-T.

With transaction costs taken into account, each conditional (C) problem
has an associated policy function a(D, a( , t) for t"1,2, ¹!1, while each
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unconditional (U) problem has an associated policy function a(a( , t) for
t"1,2, ¹!1.6 In the no-transaction costs economy, neither a (nor i in the
intermediate consumption case) varies across a( . In other words, a( is no longer
a state variable, and we have a

t
"a in the D-U-N case, a

t
"a(D

t
, t) in the

D-C-N case, and a
t
"a(D

t
) in the M-C-N case, for t"1,2, ¹!1.7

2.3. Economies and utility comparisons

Each of the consumer problems described above imply a policy function that,
in turn, yields a particular level of expected lifetime utility. Speci"cally, the
policy function Ma(D

t
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can be substituted into the actual law of motion

for wealth (Eq. (1)) (with Mc
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T
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distribution of terminal wealth is then substituted into Eq. (5) to obtain the
consumer's expected lifetime utility. Similarly, when utility depends on inter-
mediate consumption, the policy functions Ma(D
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to obtain the consumption sequence Mc
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. This consumption
sequence is then substituted into Eq. (6) to obtain the consumer's expected
lifetime utility.

As mentioned above, the expected lifetime utility depends on the initial value
of the inherited portfolio allocation, a(

1
, and the initial value of the vector

characterizing the state of the economy, D
1
. For simplicity, in the utility

comparisons we assume that, for a given D
1
, a(

1
equals the optimal a

1
for the

D-U-N case. Thus, expected lifetime utility only varies with D
1
.

In our utility calculations, we are interested in the fraction of wealth that the
consumer, who is adopting a sub-optimal policy, would be prepared to give up
to be allowed to use the optimal dynamic-conditional (D-C) policy. We consider
both the no-transaction-costs and the transaction-costs economies. For the
no-transaction costs economy, we calculate the percentage of wealth that
a consumer using the dynamic-unconditional (D-U-N), or myopic-conditional
(M-C-N) policy functions would sacri"ce to use the D-C-N policy function.
Similarly, for the transaction costs economy, we calculate the percentage of
wealth that a consumer using any of the suboptimal policies, D-U-N-T, M-C-
N-T, D-C-N-T, M-U-T, D-U-T, or M-C-T, would give up to use the D-C-T
policy.

6 When utility depends on intermediate consumption, each conditional (C) problem has asso-
ciated policy functions a(D
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2.4. Solution technique

The dynamic programming problems are solved by backward recursion. The
state variable a( is discretized and the value function is linearly interpolated
between a( points. This technique yields an approximate solution that
converges to the actual solution as the a( grid becomes "ner. In all the
optimizations, the holdings of both the risky and the riskless asset are con-
strained to be non-negative, 0)a)1, and to lie on the grid, a"M0.00, 0.02,
0.04,2, 0.96, 0.98, 1.00N. These restrictions imply that the inherited portfolio
allocation, a( , also lies between zero and one, 0)a()1. Consequently, the grid
for a is also used as the grid for a( . Constraining a to lie between 0 and 1 is
realistic, since individual investors typically face high costs in taking short
positions, while institutional investors are often precluded by their clients from
taking short positions.

3. Calibration

This section describes how we calibrate the evolution of the investment
opportunity set to U.S. data. The law of motion is a discrete approximation
based on the Gaussian quadrature method developed by Tauchen and Hussey
(1991). Several statistics are calculated to assess the closeness of this approxima-
tion.

3.1. Law of motion of the investment opportunity set

To estimate a law of motion for the investment opportunity set, we need to
identify real-life counterparts for the three variables R, R&, and D. Speci"cally, we
use the monthly rate of return on the value-weighted NYSE index as a proxy for
the risky return R, the one-month Treasury-bill rate as a proxy for the risk-free
rate R&, and the twelve-month dividend yield on the value-weighted NYSE index
as a proxy for the predictive variable D. Both the stock return and interest rate
series are de#ated using monthly CPI in#ation. Also, the dividend yield and
stock return series are converted to a continuously compounded basis; hence,
R is replaced by r,ln(R) and the dividend yield D is replaced by d,ln(1#D).
The stock return, interest rate, and dividend yield series are taken from the
Center for Research in Securities Prices (CRSP) and the CPI series is taken from
CITIBASE. We use x to denote the vector [r, d]@.

We assume that x follows the vector autoregressive model (VAR):

x
t`1"b#Ax

t
#e

t`1, (11)

where b is a coe$cient vector, A"Ma
i, jN is a coe$cient matrix, and e"[e1, e2]@

is a vector of mean-zero, serially uncorrelated, multivariate normal
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disturbances, with constant covariance matrix R%"Mpe
i, j

N. R9"Mpx
i, j

N is the
unconditional covariance matrix for x. We assume that d is the only state
variable; i.e., that a

i,1
equals zero for i"1, 2. This characterization of the

investment opportunity set is in line with other papers on optimal portfolio
selection (e.g., Barberis, 1996; Campbell and Viceira, 1996). The VAR is esti-
mated using ordinary least squares (OLS).8

We discretize the VAR using a variation of the gaussian quadrature method
described by Tauchen and Hussey (1991). First, Tauchen and Hussey's method
is used to discretize the dividend yield, treating it as a "rst-order autoregressive
process. Second, we exploit the fact that the VAR implies the following expres-
sion for stock returns:

r
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1
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t
#oe

2, t`1
#u
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where o is the regression coe$cient from regressing e
1

on e
2

and u is i.i.d.
normally distributed with variance p2

u
and is uncorrelated with e

2
. The quadra-

ture method is used to calibrate a discrete distribution for the innovation u. We
can then calculate a discrete distribution for r

t`1
for each Md

t`1
, d

t
N pair from

the discretization of d, since e
2, t`1

"d
t`1

!b
2
!a

2, 2
d
t
.

As to the number of quadrature points, we are constrained by computational
considerations. The solution algorithm that we employ is numerically very
intensive, so we chose a speci"cation with nineteen quadrature points for the
dividend yield and three points for the innovations in stock returns.9 Since the
pair Md

t`1
, d

t
N can take on 19]19 values, stock returns can therefore take

19]19]3"1083 values.
This modi"cation of the Tauchen}Hussey approach has two advantages for

our application. First, in contrast to the Tauchen}Hussey approach applied to
x, the modi"cation ensures that d is su$cient to describe the state of the world at
time t. Second, a large number of values can be taken by the stock return
variable, which improves accuracy without seriously increasing computation
time since the stock return is not a state variable.

Note that the values of the parameters for the stochastic process (Eq. (11)) are
taken as known. Thus, we are ignoring the important issue of parameter
uncertainty to concentrate on the impact of transaction costs. The e!ects of
parameter uncertainty on optimal portfolio choice have been addressed by
Kandel and Stambaugh (1996) and Barberis (1996), among others.

8Hodrick (1992) argues that in small samples a VAR supplies long-horizon returns statistics that
appear to be unbiased. This is especially important for our analysis, since the consumer is long-lived
and hence is concerned with the properties of long-horizon asset returns.

9We experimented with larger numbers of quadrature points for both d and u, with essentially the
same results.
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Table 1
Stock returns and dividend yield: data vs. quadrature approximation

We estimate the model

r
t`1

"b
1
#a

1,2
d
t
#e

1,t`1
,

d
t`1

"b
2
#a

2,2
d
t
#e

2,t`1
,

where d is the log twelve-month dividend yield and r is the continuously-compounded real return,
both on the value-weighted NYSE index, a

i,2
and b

i,2
(i"1, 2) are coe$cients, and e

i
(i"1, 2) are

mean-zero, serially uncorrelated disturbances. Both r and d are measured in percent. The model is
estimated using OLS for the period January 1927 through November 1991. Panel A reports the
estimated coe$cients and R2s for the data and contrasts them with those implied by the quadrature
approximation. Panel B reports the unconditional volatility of e

1,t`1
and e

2,t`1
, and the correlation

between them, for both the data and the quadrature approximation. Panel C reports the uncondi-
tional volatility of r

t`1
and d

t`1
, and the correlation between them, for both the data and the

quadrature approximation. A full description of the quadrature approximation is contained in
Section 3

Panel A: coezcients and R2's

Equation b a
.,2

R2

r
t`1

Data !0.795 0.304 0.361%
Quad. !0.795 0.304 0.362%

d
t`1

Data 0.133! 0.969! 93.8%
Quad. 0.173 0.959 92.0%

Panel B: unconditional volatility and correlation for e
1

and e
2

e
1

e
2

e
1

Data 5.66 !0.907
Quad. 5.61 !0.905

e
2

Data !0.907 0.317
Quad. !0.905 0.314

Panel C: unconditional volatility and correlation for r and d

r d

r Data 5.67 !0.159
Quad. 5.62 !0.197

d Data !0.159 1.27
Quad. !0.197 1.11

!For rows labeled &Data', denotes signi"cance at the 1% level in a two-sided test.

3.2. A comparison: the data vs. the quadrature approximation

We estimate the model in Eq. (11) and o using monthly data from January
1927 through November 1991. Assuming that the degree of return predictability
in the U.S. is constant through time, the long time-series should produce precise
parameter estimates. The continuously compounded risk-free rate is estimated
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to be the mean of the continuously compounded one-month Treasury-bill rate
over this period, which gives a value for (R&!1) of 0.03961%. Panel A of Table 1
reports the estimated coe$cients for the data together with the implied coe$-
cients from the quadrature approximation. Panel B reports the unconditional
volatility of e

1, t`1
and e

2, t`1
, and the correlation between them, for both the

data and the quadrature approximation. Panel C reports the unconditional
volatility of r

t`1
and d

t`1
, and the correlation between them, for both the data

and the quadrature approximation.
The estimates in Panel A highlight two salient features of the data. First, the

dividend yield exhibits a marked and signi"cant persistence. Second, the stock
return series is positively, though not signi"cantly, predicted by the dividend
yield. These essential features are captured by the quadrature approximation,
which reproduces quite well the coe$cients of the stock return equation and the
persistence in d. Panels B and C show that the quadrature approximation also
replicates well the covariance matrices R% and R9. The estimates in Panel B are
used to obtain an estimate of !16.18 for o.

We also calculate the conditional Sharpe ratio (not reported) for each of the
19 states of the quadrature approximation. The conditional Sharpe measure S in
each state (calculated using the continuously compounded rates) is given by

S
it
,

E[r
t`1

Dd
it
]!r&

p[r
t`1

Dd
it
]

, (13)

where i denotes the state, and p denotes the volatility of the corresponding
variable. This measure describes the investment opportunity set available at
time t, given state i, using the conditional distribution of asset returns. We
calculate the conditional Sharpe ratio for each of the 19 states of the quadrature
approximation using the transition probability matrix to calculate conditional
means and variances. We then compare these to the conditional Sharpe ratios
calculated at each of the same 19 values of d for the data assuming the VAR
speci"cation holds and using the estimated coe$cients and innovations
covariance matrix. This comparison is important because predictability mainly
a!ects portfolio choices through the conditional Sharpe ratio varying across
states. The Sharpe ratios for both the data and the quadrature approximation
vary monotonically with d. While the monotone relation for the data follows
immediately from the VAR speci"cation and a positive value for a

1, 2
, the

monotonicity for the approximation is further evidence that the quadrature
approximation is capturing the predictability in the data. Indeed, the correlation
between the two Sharpe ratios across states is quite high, 0.97.10

10The correlation is somewhat lower when the "rst and last state are included. This discrepancy
between the data and the quadrature approximation is not a cause of concern because in these two
states the asset allocation is likely to be at an endpoint (either zero or one) for both assets.
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Since the consumer is long-lived, the predictability of long-horizon equity
returns implied by the quadrature approximation relative to that implied by the
data is also of interest. One measure of this predictability is the R2 from
a predictive regression of long-horizon stock returns on the previous
period's dividend yield, assuming that the VAR in Eq. (11) is correctly speci"ed
for the data and the quadrature approximation. Panel A of Fig. 1 graphs the
percentage of total variation in long-horizon equity returns that is predictable
for the data and the quadrature approximation using the VAR parameters
reported in Table 1. The pattern of the R2 implied by the quadrature ap-
proximation essentially replicates that of the data. Since the quadrature
approximation tends to understate the R2, it is likely that our estimates of the
utility cost from behaving myopically are a lower bound on the cost of such
behavior.

As a second measure of predictability, Panel B reports the residual standard
deviation of the predictive regression for di!erent horizons assuming that the
VAR is correctly speci"ed. Since the unconditional variance of equity returns
may vary with the horizon di!erently for the data VAR than the quadrature
VAR, the residual volatility could behave very di!erently from the R2 plotted in
Panel A. However, we see that the residual volatility implied by the quadrature
VAR replicates very well the pattern of residual volatility for the data VAR. We
also report the residual volatility for di!erent horizons assuming that one-
period returns are i.i.d. The residual volatility for both the data and the
quadrature approximation increases with the horizon at a substantially lower
rate than for the i.i.d. case.

Fig. 1 also shows the conditional long-horizon Sharpe measure, again assum-
ing the VAR in Eq. (11) is correctly speci"ed. The conditional long-horizon
Sharpe measure is the ratio of the conditional mean to the conditional volatility
of the q-period return on a portfolio long $1 in the risky and short $1 in the
riskless asset:

Sq
it
,

E[+q
j/1

r
t`j

Dd
it
]!qr&

p[+q
j/1

r
t`j

Dd
it
]

. (14)

Panel C reports, as a function of horizon, the mean (across states) conditional
Sharpe ratio implied by the VAR for the data, by the VAR for the quadrature
approximation, and by i.i.d. returns. Again, the quadrature method replicates
well the pattern of long-horizon Sharpe ratios estimated from the data. Both the
data and the quadrature approximation imply a substantially better trade-o!
between return and risk than the i.i.d. case.

As a "nal comparison of the data with the quadrature approximation, Panel
D reports the volatility across states of the conditional Sharpe ratios for
di!erent horizons. The quadrature approximation would be distorting the
variation in the risk-return trade-o! across states if it produced a substantially
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Fig. 1. Comparison of the properties of the long-horizon risky return and the long-horizon Sharpe
ratio. A vector autoregression (VAR) with the lagged dividend yield as the only predictor is used to
calculate conditional expectations of long horizon variables for the data, and, for the quadrature
approximation of the data. The data, the quadrature approximation, the VAR speci"cation, and the
long-horizon Sharpe ratio are all described in Section 3.

di!erent pattern of volatility than the data. However, the patterns exhibited by
the data and the quadrature approximation are again similar. In sum,
the quadrature approximation appears to capture important features of the
data.
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Fig. 1. Continued.

4. Scenarios and parameter choices

We examine the e!ects of transaction costs and predictability under several
di!erent assumptions about the investment horizon, risk aversion, and transac-
tion costs.

In Scenario 1, which is the base case, the risk aversion parameter, c equals six,
the horizon ¹ is 240, there is no intermediate consumption, the proportional
transaction cost parameter, /

1
, equals 0.005, and "xed per-dollar transaction
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costs, /
2
, are zero. The other scenarios are variations on the base case. In

Scenarios 2 and 3, we set c equal to ten and two, respectively. In Scenarios 4 and
5, we set ¹ to 360 and 120, respectively. Scenario 6 introduces intermediate
consumption. Scenario 7 sets the "xed-cost parameter, /

2
, equal to 0.001. In the

last three scenarios, the proportional-cost parameter, /
1
, is set equal to 0.0001,

with the "xed cost parameter varying from zero to 0.0001 to 0.001 across
Scenarios 8, 9 and 10, respectively.

In the choice of the relative risk aversion parameter, we follow Mehra and
Prescott (1985), who argue that the existing evidence from macro and micro
studies constitutes an a priori justi"cation for restricting the value of c to be
a maximum of ten. The base-case investment horizon of 240 months (20 years) is
a realistic investment horizon for an investor planning for retirement, for
example. It is also the same horizon used in Brennan et al. (1996).

For the choice of the proportional-cost parameter, observe that the propor-
tional component of transaction costs is given by /

1
Da!a( D(=!c). The cost of

changing the holdings of the risky asset from a(= to a=, and back, amounts to
2/

1
Da!a( D=. Hence, 2/

1
has the interpretation of the ratio of a bid}asked spread

plus commission (plus any possible price impact) over the value of the asset.
Bhardwaj and Brooks (1992), Lesmond et al. (1996), and Stoll and Whaley (1983)
estimate the round-trip costs for individual stocks listed on the NYSE and the
NASDAQ, and the value 2/

1
"0.01 (100 basis points) in Scenario 1 is realistic for

an investor who trades individual stocks directly (rather than futures on the S&P
500). The value 2/

1
"0.0002 (2 basis points) in Scenarios 8 through 10, on the

other hand, is ballpark for an investor who trades futures contracts on the S&P
500 index. For example, Fleming et al. (1995) calculate an average cost of $3390 to
trade 100 S&P 500 futures contracts during March 1991. In that month the index
was at roughly 370, which translates into a relative cost of 3390/(100]
500]370)"0.00018 (recall that each contract pays 500 times the index).

These two values for /
1

should bracket the range of relevant proportional
costs facing di!erent investors. In particular, the denomination of the S&P 500
futures contract is such that using the contract to replicate a long position in the
underlying securities is only viable for investors with high net wealth. For
example, with a grid size of 0.02 for a and given the May 20, 1997 level of the
S&P 500 index of about 840, an investor needs a portfolio value of $21 million to
be able to rebalance one grid point using a futures contract. While large
institutional investors can use futures contracts to hold equity, we have not
incorporated the costs of margin requirements and contract roll-over. Thus,
small investors probably face a proportional transaction cost closer to the
/
1
"0.005 in Scenario 1, while large investors likely face costs greater than the

/
1
"0.0001 in Scenarios 8 to 10.
In regard to the "xed transaction costs parameter, the lower /

2
value of

0.0001 translates into a fee of $10 when a consumer reshu%es a $100,000
portfolio. Viewed as the opportunity cost for an individual investor to process
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information and instruct a broker to change the portfolio composition, this
value seems conservative. Thus, the actual "xed costs faced by an investor
probably lie between the high and low values of 0.001 and 0.0001 that we use.

5. Portfolio choices

Fig. 2 illustrates the optimal portfolio choice for the base case, Scenario 1, for
the D-C-N and D-C-T policies, for "ve of the nineteen dividend-yield states.
Constantinides (1986) and Davis and Norman (1990) show that optimal port-
folio choice in the case without predictability and proportional transaction costs
involves a no-trade region with boundaries. When the portfolio weight in the
risky asset goes outside this region, the CRRA individual trades to return the
weight to the closest boundary. Fig. 2 shows that, for the particular set of
parameter values considered here, the basic structure of the individual's port-
folio choice is una!ected by return predictability.11 Each state has a no-trade
region whose size and position varies across states. These no-trade regions are
represented here by the portions of the a(a( , .) policy function with a slope of one.
While there is good intuition for the state-dependent no-trade regions that we
report, our paper is the "rst to characterize the optimal portfolio choice in the
presence of proportional transaction costs and return predictability.

Fig. 3 illustrates optimal portfolio choices in the presence of both xxed and
proportional transaction costs (Scenario 7). There are two characteristics of the
policy function in this Scenario. First, there is a state-dependent no-trade region,
as in Scenario 1, and, second, when portfolio rebalancing does take place, a is
brought to the interior of the no-trade region, not just to the boundary. In other
words, since the "xed component of transaction costs does not increase with the
size of the trade, a consumer who "nds it optimal to rebalance does so by an
amount that makes another portfolio change in the near future unlikely.

Table 2 reports statistics for portfolio choices in Scenario 1 for the seven sets
of policies: D-U-N, M-C-N, D-C-N, M-U-T, D-U-T, M-C-T and D-C-T.
Speci"cally, Panel A reports means and standard deviations (calculated using
the unconditional distribution) for the midpoint of the no-trade region for the
T (transaction-cost) policies, and the optimal portfolio choice for the N (no-
transaction-cost) policies. Panel B reports means and standard deviations for
the size of the no-trade region for the four T policies. Panel C reports the
optimal portfolio choice for the two C-N policies, and the midpoint and size of
the no-trade region for the two C-T policies, for the "ve states in Figs. 2 and 3.

Several features of the portfolio choice rules are worth noting. The portfolio
choices for the N policies are qualitatively similar to those described in earlier

11Since we have only solved the consumer's problem numerically, the form of the consumer's
portfolio choice that we "nd may be speci"c to our calibration of U.S. equity return.
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Fig. 2. Portfolio allocation to the risky asset in Scenario 1. The consumer lives for 240 months,
possesses a risk aversion coe$cient of six, consumes only at a "nal date, and faces a proportional
transaction cost equal to 0.005, and no "xed cost. The time-1 policy for a dynamic-conditional
consumer aware of the transaction costs (D-C-T) is shown to the right of the dashed line for "ve
states where d denotes the log dividend yield and is measured in percent. The optimal portfolio
allocation is a function of the inherited portfolio allocation. The left of the dashed line shows the
optimal time-1 allocation for a D-U individual unaware of transaction costs. Details of the
consumer's problem are contained in Section 2, while the return calibration is described in Section 3.

work. Speci"cally, a comparison of the M-C-N and D-C-N policies reveals that
the allocation to the risky asset is on average higher with dynamic policies than
with myopic policies (see Panel A). This result is consistent with the "ndings of
Barberis (1996), Brennan et al. (1996), and Campbell and Viceira (1996) for risk
aversion coe$cients greater than one. The intuition for this result, described by
Campbell and Viceira (1996), is that the dividend yield predicts future stock
returns with a positive slope coe$cient, while the innovations in the dividend
yield and current stock return are negatively correlated. Therefore, expected
future stock returns are low when current stock return is high, and vice versa.
This implies that stocks provide a hedge against changes in the investment
opportunity set. A dynamic investor with a risk aversion parameter greater than
one appreciates the &hedging virtues' of stocks, and allocates more to stocks than
a myopic investor with the same risk aversion.

Our results are qualitatively similar to earlier papers in other respects. For
example, Campbell and Viceira "nd that for power utility individuals, hedging
demand (dynamic less myopic portfolio allocation) as a fraction of the dynamic
portfolio allocation is increasing in risk aversion, while the slope of the dynamic
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Fig. 3. Portfolio allocation to the risky asset in Scenario 7. The consumer lives for 240 months,
possesses a risk aversion coe$cient of six, consumes only at a "nal date, and faces a proportional
transaction cost equal to 0.005, and a "xed cost of 0.001. The time-1 policy for a dynamic-
conditional consumer aware of the transaction costs (D-C-T) is shown to the right of the dashed line
for "ve states where d denotes the log dividend yield and is measured in percent. The optimal
portfolio allocation is a function of the inherited portfolio allocation. The left of the dashed line
shows the optimal time-1 allocation for a D-U individual unaware of transaction costs. Details of
the consumer's problem are contained in Section 2, while the return calibration is described in
Section 3.

portfolio allocation as a function of dividend yield is declining in risk aversion.
Comparing the portfolio allocations (not reported) for Scenario 1 (c"6) to
those for Scenario 2 (c"10), these results hold for our calibration of U.S.
returns as well. Barberis (1996) "nds, for c'1, that hedging demand is increas-
ing in the dividend yield, and our results con"rm this "nding (see, for example,
Table 2, Panel C).

Table 2 also shows that conditional myopic portfolio choices are on average
similar to unconditional ones, but the conditional choices vary substantially
across states (see Panel A). In fact, the standard deviation of the conditional
portfolio choice across states can be up to 19.8%. Hence, as documented by
Kandel and Stambaugh (1996), even little predictability in stock returns (the
R2 of the stock-return regression implied by the quadrature approximation is
only 0.36%) signi"cantly a!ects the consumer's portfolio decisions.

Panel B shows that the average size of the no-trade region for T policies is
larger for myopic than for dynamic policies. This result is robust to whether the
conditional (C) or unconditional (U) transition probability matrix is used by the
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Table 2
Portfolio choices: Scenario 1

Transaction costs in Scenario 1 are proportional, giving rise to portfolio rebalancing rules with
no-trade regions for the portfolio allocation to the risky asset. Panel A reports the mean and
standard deviation (SD) across states of the midpoint of the no-trade region for the T policies, which
account for transaction costs, and the portfolio choice for the N policies, which ignore transaction
costs. Panel B reports the mean and standard deviation across states of the size of the no-trade
region for the T policies. Means and standard deviations are calculated using the unconditional
distribution. Panel C reports the midpoints of the no-trade region and the size of the no-trade region
for "ve of the nineteen states, where d denotes the log dividend yield and is measured in percent. The
table considers several consumer policies: the myopic (M) and dynamic (D) policies, the unconditional
(U) and conditional (C) policies, and the no-transaction-costs (N) and transaction-costs (T) policies. We
combine the three distinctions to obtain seven policies: D-U-N, M-C-N, D-C-N, M-U-T, D-U-T,
M-C-T, and D-C-T. Panel C does not report information for the policies D-U-N, M-U-T and
D-U-T, because they do not display any variation across states. Descriptions of the seven consumer
problems are contained in Section 2

Panel A: midpoint of the no-trade region

D-U-N M-C-N D-C-N M-U-T D-U-T M-C-T D-C-T

Mean 0.320 0.329 0.525 0.330 0.330 0.339 0.528
SD 0.000 0.148 0.198 0.000 0.000 0.140 0.190

Panel B: size of no-trade region

M-U-T D-U-T M-C-T D-C-T

Mean 0.540 0.060 0.489 0.159
SD 0.000 0.000 0.108 0.048

Panel C: midpoint and size of no-trade region

State d M-C-N D-C-N M-C-T D-C-T M-C-T D-C-T

Midpoints No-trade region

1 1.91 0.000 0.000 0.000 0.000 0.000 0.000
3 2.56 0.180 0.300 0.220 0.290 0.440 0.180

10 4.25 0.320 0.500 0.320 0.510 0.520 0.140
17 5.94 0.460 0.840 0.460 0.840 0.520 0.240
19 6.59 1.000 1.000 1.000 1.000 0.000 0.000

consumer. Balduzzi and Lynch (1997) "nd a similar result for the constant
opportunity set case. The intuition for this result is described by Balduzzi and
Lynch. Brie#y, a myopic investor ignores the future gains from changing the
current portfolio composition, and hence is reluctant to pay transaction fees.
Consequently, the no-trade region is relatively wide. A dynamic investor, on the
other hand, cares about the future gains from changing the current composition
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and so is more inclined to trade and incur fees. This reasoning does not depend
on either predictability or hedging demands by the consumer, which explains
why the no-trade region is larger for myopic than dynamic policies in the U as
well as the C case.12 Note that the average size of the no-trade region for
T policies is substantial. The average no-trade region ranges from 0.540 for the
M-U-T policy to 0.060 for the D-U-T policy.

Panel C shows that, even in the presence of hedging demands and transaction
costs, there is a close positive correlation across states between the value of the
a(., a( , t) policy function for conditional investors and the Sharpe measure. In
addition, the size of the D-C-T no-trade region varies substantially with the
dividend yield.

To illustrate how portfolio choices di!er across policies, Fig. 4 plots the
portfolio choices that would have been made using the M-C-T, D-C-T and
D-C-N policies from Scenario 1 over the sample period 1/27-11/91. The policies
are those calculated as described in Sections 3 and 4 and summarized in Table 2.
The real riskless rate is taken to be the sample average of 0.03961% and the real
risky asset return is that of the value-weighted NYSE index. The inherited risky
asset weight at the start of 1/27 is the midpoint of the no-trade region for the
relevant policy given the d state at that time. The DCT and DCN rebalancing
rules are implemented assuming a long-lived investor, which means that the
t"1 rule is used over the entire period. Each month, the calibration state whose
dividend yield is closest to the dividend yield on the value-weighted NYSE is
taken to be the prevailing state. The circles in Fig. 4 indicate when the investor is
actually rebalancing.

We o!er several observations about Fig. 4. First, the three conditional policies
imply substantial variation in a over the sample period, with values ranging
from 0.3 to one. Second, the range and pattern of variation is consistent with
results in Campbell and Viceira (1996). For quarterly data and a relative risk
aversion coe$cient of four, they "nd that the risky asset allocation ranges from
about 0.5 to "ve over a similar period (1947}1995), with little time being spent
below one. We use a higher risk aversion coe$cient and "nd that, while the
pattern of the D-C-N allocation is similar to theirs, it is always substantially
lower, and generally less than one. Third, the D-C-T allocation di!ers consider-
ably from the D-C-N allocation over the period, even though the average
D-C-N allocation and the average midpoint of the D-C-T allocation are similar
(see Table 2, Panel A). Fourth, the D-C-T policy exhibits more variation in a and
more frequent rebalancing than the M-C-T policy. These two results are consis-
tent with the no-trade region being narrower for D-C-T policy than the M-C-T

12Since the result holds in the U case, it implies that transaction costs cause the portfolio
rebalancing rule to change over the lifecycle even in the absence of predictability. Thus, Samuelson's
irrelevance result (that portfolio choice by a CRRA investor is invariant over the lifecycle when
returns are i.i.d.) is not robust to transaction costs. See Balduzzi and Lynch (1997) for further details.
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Fig. 4. Portfolio allocation over the period January 1927 through November 1991 by the consumer
of Scenario 1. The consumer lives for 240 months, possesses a risk aversion coe$cient of six,
consumes only at a "nal date, and faces a proportional transaction cost equal to 0.005, and no "xed
cost. The portfolio allocation for a myopic-conditional consumer aware of the transaction costs
(M-C-T) is shown together with the allocations made by a dynamic-conditional consumer. The
dynamic-conditional consumer is either aware of the transaction costs (D-C-T), or ignores them
(D-C-N). Details of the consumer's problem are discussed in Section 2, while the calibration is
described in Section 3. The portfolio rebalancing rules are applied given the sequence of realized real
returns on stocks over the period and assuming a real riskless rate of 0.03961% as in the calibration.
The inherited risky asset weight at the start of January 1927 is the midpoint of the trade region given
the calibration state prevailing at that time. The last two rebalancing rules (D-C-T and D-C-N) are
implemented for a long-lived investor, which means that the time-1 rule is used over the entire
period. Circles indicate when the consumer is actually rebalancing.

policy, together with the state changing as the investor moves through the
sample period. Finally, the D-C-N policy results in the most volatile a over the
sample period.

6. Utility costs

Table 3 reports utility cost calculations for each of the ten scenarios. Calcu-
lations for the analogous no-transaction case are also reported for each scenario.
Since the utility cost depends on the state at time 1, the table reports both the
mean and the standard deviation of the utility cost using the unconditional
distribution.

We have three possibilities for each scenario. First, transaction costs exist and
are taken into account by the consumer, which corresponds to four policies,
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Table 3
Utility comparisons

The table reports the mean and (underneath) the standard deviation of the percentage of wealth that
a consumer, who is possibly only partially informed about the economy, would sacri"ce to become
fully informed. The individual consumes only at a "nal date (all Scenarios but 6) or as time goes by
(Scenario 6). For each of the ten scenarios considered, /

1
is the proportional-cost parameter, and

/
2

is the "xed-cost parameter. The individual lives for T months and has a relative-risk-aversion
coe$cient of c. The table considers several consumer policies: the myopic (M) and dynamic (D)
policies, the unconditional (U) and conditional (C) policies, and the no-transaction-costs (N) and
transaction-costs (T) policies. We combine the three distinctions to obtain seven policies: D-U-N,
M-C-N, D-C-N, M-U-T, D-U-T, M-C-T, and D-C-T. This table considers the no-transaction-costs
(N) economy, and compares the performance of D-U-N and M-C-N, to that of D-C-N. This table
also considers the transaction-costs (T) economy and compares the performance of D-U-N, M-C-N,
D-C-N, M-U-T, D-U-T, and M-C-T, to D-C-T. For each of the 19 possible states, the initial value of
the inherited portfolio allocation is set equal to the optimal portfolio allocation in the D-U-N case.
The unconditional distribution for the states is used to calculate means and standard deviations.
A full description of the seven consumer problems is contained in Section 2

D-U-N M-C-N D-C-N M-U-T D-U-T M-C-T D-C-T

Scenario 1: c"6, ¹"240, /
1
"0.005, /

2
"0

N: 23.10 8.76 0.00 * * * *

2.19 0.62 0.00 * * * *

T: 21.21 10.18 3.01 22.94 20.78 10.00 0.00
2.15 0.69 0.02 1.52 2.12 1.33 0.00

Scenario 2: c"10, ¹"240, /
1
"0.005, /

2
"0

N: 22.40 11.10 0.00 * * * *

2.31 0.90 0.00 * * * *

T: 19.77 10.67 2.43 21.93 19.82 11.27 0.00
2.17 0.87 0.03 1.73 2.17 0.67 0.00

Scenario 3: c"2, ¹"240, /
1
"0.005, /

2
"0

N: 7.37 0.40 0.00 * * * *

1.62 0.04 0.00 * * * *

T: 5.96 3.29 1.92 6.02 5.49 6.56 0.00
1.31 0.31 0.27 1.36 1.35 2.37 0.00

Scenario 4: c"6, ¹"360, /
1
"0.005, /

2
"0

N: 33.22 13.55 0.00 * * * *

1.90 0.59 0.00 * * * *

T: 30.79 15.61 4.46 32.87 30.20 15.27 0.00
1.89 0.65 0.02 1.12 1.86 1.43 0.00

Scenario 5: c"6, ¹"120, /
1
"0.005, /

2
"0

N: 11.46 3.72 0.00 * * * *

2.49 0.64 0.00 * * * *

T: 10.31 4.43 1.53 11.43 10.12 4.49 0.00
2.40 0.71 0.02 2.04 2.36 0.74 0.00
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Table 3. Continued.

D-U-N M-C-N D-C-N M-U-T D-U-T M-C-T D-C-T

Scenario 6: c"6, ¹"240, /
1
"0.005, /

2
"0, c

t
O0, t(¹

N: 10.97 3.29 0.00 * * * *

2.19 0.48 0.00 * * * *

T: 9.97 4.02 1.39 10.94 9.79 3.89 0.00
2.10 0.53 0.02 1.80 2.06 0.64 0.00

Scenario 7: c"6, ¹"240, /
1
"0.005, /

2
"0.001

N: 23.10 8.76 0.00 * * * *

2.19 0.62 0.00 * * * *

T: 27.46 22.65 15.95 21.22 19.79 14.85 0.00
1.93 0.56 0.20 1.53 2.09 4.12 0.00

Scenario 8: c"6, ¹"240,/
1
"0.0001, /

2
"0

N: 23.10 8.76 0.00 * * * *

2.19 0.62 0.00 * * * *

T: 23.02 8.74 0.01 22.71 23.02 8.80 0.00
2.19 0.62 0.00 2.15 2.19 0.65 0.000

Scenario 9: c"6, ¹"240, /
1
"0.0001, /

2
"0.0001

N: 23.10 8.76 0.00 * * * *

2.19 0.62 0.00 * * * *

T: 23.16 9.50 0.78 23.80 22.92 8.83 0.00
2.18 0.62 0.02 2.10 2.19 0.58 0.00

Scenario 10: c"6, ¹"240, /
1
"0.0001, /

2
"0.001

N: 23.10 8.76 0.00 * * * *

2.19 0.62 0.00 * * * *

T: 28.27 20.46 12.30 22.84 21.47 10.19 0.00
1.99 0.50 0.22 1.58 2.14 0.39 0.00

M-U-T, M-C-T, D-U-T and D-C-T. The utility costs for these policies are
reported in the T row and the appropriate column. Second, transaction costs are
zero, and so the M-U-N and D-U-N policies are the same. Thus, this case has
three policies, D-U-N, M-C-N, and D-C-N, whose utility costs are reported in
the N row.13 Third, transaction costs exist but are ignored by the consumer

13Note that the only di!erence between Scenario 1 and Scenarios 7 through 10 is the magnitude
of the transaction costs. Thus, the N rows for these four scenarios are the same.
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when making portfolio choices, which corresponds to three policies, D-U-N-T,
M-C-N-T, and D-C-N-T. Their utility costs are reported in the "rst three
columns of the T row.14

6.1. The cost of being a myopic optimizer

In general, the utility cost of being a myopic, rather than a dynamic, optimizer
can be substantial. In Scenario 1, behaving myopically using the conditional
distribution has a utility cost of 10.00%. This utility cost can be as high as
15.27% for Scenario 4 (360 month horizon).

Also, a comparison of the M-C-N cost in the N row with the M-C-T cost in
the T row shows that utility cost of being myopic is always higher in the presence
of transaction costs. The intuition for this result is as follows. In the absence of
transaction costs, the myopic optimizer is ignoring hedging demand. However,
with transaction costs, this optimizer is ignoring both hedging demand and the
impact of future transaction costs on portfolio choice today. As discussed above,
future transaction costs narrow the no-trade region for the dynamic optimizer
relative to the myopic optimizer. The failure by the myopic optimizer to narrow
the no-trade region has an incremental e!ect over and above that of ignoring the
hedging demand. This incremental e!ect causes a higher utility cost for myopic
behavior when there are transaction costs.

6.2. The cost of ignoring predictability

The relative cost of ignoring the conditional distribution of asset returns
(while still dynamically optimizing) can be quite high, both with and without
transaction costs. In Scenario 1, the cost exceeds 23% for the D-U-N case and
20% for the D-U-T case. This high cost of ignoring the weak stock-return
predictability in the data is consistent with the results of Kandel and Stambaugh
for a one-period investor who uses available data and a di!use prior. Kandel
and Stambaugh "nd that the investor's ability to time the market can be quite
valuable.

In addition, transaction costs a!ect the utility cost of ignoring predictability.
For a dynamic optimizer, the utility cost of ignoring predictability in the
absence of transaction costs (D-U-N policy in the N economy) can be compared
to this same utility cost with transaction costs which are properly accounted for
(D-U-T policy). This utility cost is always higher in the absence of transaction
costs and the reason is as follows. Transaction costs cause the consumer to
rebalance less frequently. Less frequent rebalancing means that the utility impact
of using the unconditional rather than the conditional distribution is reduced.

14Recall that, in this third case, the consumer who cares about intermediate consumption
(Scenario 6) takes the impact of transaction costs into account when making consumption choices.

72 P. Balduzzi, A.W. Lynch / Journal of Financial Economics 52 (1999) 47}78



6.3. The cost of ignoring transaction costs

The cost of ignoring realistically-small transaction costs when making port-
folio choices can be quite substantial. When the proportional transaction cost is
set at a value realistic for an investor trading in individual stocks (/

1
"0.005,

Scenarios 1}6), the utility cost of ignoring transaction costs ranges from a min-
imum of 1.39% (Scenario 6, intermediate consumption) to a maximum of 4.46%
(Scenario 4, 360 month lifetime horizon). When a large "xed cost is added to this
proportional cost, as in Scenario 7, a dynamic optimizer employing conditional
policies is subject to a utility cost in excess of 15% by ignoring transaction costs.
This result complements our previous "nding that these realistically small
transaction costs lead to wide no-trade regions.

When the proportional cost is set equal to the low value of 0.0001 and the
"xed cost of trading is zero (Scenario 8), the utility cost associated with ignoring
transaction costs is negligible. However, once realistic "xed costs are introduced,
the utility cost of ignoring transaction costs becomes quite substantial. In
particular, utility costs range from 0.78% when the "xed cost is 0.0001 (Scenario
9) up to 12.30% when the "xed cost is 0.001 (Scenario 10). Thus, even for those
wealthy individuals rebalancing using futures contracts, the presence of "xed
costs in addition to the proportional cost means that ignoring transaction costs
can have a signi"cant adverse e!ect on utility.

6.4. Changing the parameters

6.4.1. Changes in relative risk aversion (c)
An increase in c from six to ten reduces the utility cost of adopting uncondi-

tional policies both with and without transaction costs. The rationale for this
result is that a high c tends to shrink risky-asset portfolio allocations towards
zero, which reduces the di!erence between conditional and unconditional pol-
icies. In worlds with and without transaction costs, the utility cost of behaving
myopically rather than dynamically increases as c increases from six to ten. This
"nding is consistent with hedging demand, as a percentage of dynamic demand,
increasing as c becomes larger (see the discussion in Section 5 above).

When c decreases from six to two, the arguments are more complicated. With
low risk aversion, the restriction on short-sales of the riskless asset is binding in
a large number of states. This has two e!ects on the utility cost of behaving
myopically and also on the utility cost of using the unconditional distribution.
First, the binding constraint lowers the utility associated with the D-C policy.
Consequently, the utility cost of behaving myopically and of using the uncondi-
tional distribution increases, since that cost depends on the percentage change in
utility. In contrast, the second e!ect reduces the utility cost of behaving myopi-
cally and of using the unconditional distribution. If both the D-C and M-C
optimal as are one in a state, then the utility loss associated with behaving
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myopically in that state is zero. Similarly, if the D-C as are hitting the riskless
asset short-sale constraint in a number of states, the utility gain from using the
conditional distribution is reduced. Since the utility cost of the M-C and D-U
policies is lower for c"2 than c"6, in both the T and N-T economies, the
second e!ect dominates for both myopic policies and for policies using the
unconditional distribution.

6.4.2. Changes in the lifetime horizon ¹

An increase in ¹ increases all utility costs. In fact, any ine$ciency in the
policies adopted by the consumer is ampli"ed as the lifetime horizon increases:
a higher number of ine$cient decisions are taken.

6.4.3. Intermediate consumption
Introducing intermediate consumption decreases all utility costs. This "nding

suggests that ine$cient portfolio policies have a greater adverse e!ect on
investors only concerned with a terminal wealth (such as institutional investors
managing assets for the long run) than those consuming as time goes by.

6.4.4. Changes in transaction costs (/
1
, /

2
)

As proportional transaction costs increase (going from Scenario 8 to 1), the
cost of adopting the dynamic unconditional policy decreases. As mentioned
before, unconditional policies induce less variability in portfolio choices. Hence,
when proportional transaction costs increase and the individual trades less
aggressively, the disadvantage of using unconditional, rather than conditional,
policies is reduced. Similarly, the cost of adopting dynamic unconditional
policies decreases as "xed transaction costs increase and the individual trades
less frequently (going from Scenario 1 to 7, from Scenario 8 to 9, and from
Scenario 9 to 10).

On the other hand, higher transaction costs always increase the cost of
adopting ine$cient conditional policies (M-C-N-T, D-C-N-T and M-C-T). In
the case where the individual behaves myopically, larger transaction costs just
make the no-trade region for M-C-T even bigger relative to that for D-C-T,
causing the incremental utility cost associated with an excessively-wide no-trade
region to increase. In the cases where the consumer ignores transaction costs
(M-C-N-T and D-C-N-T), the variability in portfolio choice associated with
conditional policies means that excessive rebalancing occurs. When the actual
transaction cost parameters are larger, this excessive rebalancing leads to higher
transaction costs being paid and greater utility losses.

7. Conclusions

This paper solves the optimal consumption}investment problem of a "nitely-
lived agent facing asset-return predictability and transaction costs, who possibly
ignores some aspects of the economy. We "nd that the cost of behaving
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myopically, of ignoring predictability, or of ignoring realistic transaction costs
can be substantial. These costs are reduced if the investor is allowed to
consume as time goes by. The presence of transaction costs always increases
the utility cost of behaving myopically, but reduces the large utility cost
associated with ignoring predictability. Regarding portfolio-choice policies,
proportional transaction costs induce a no-trade region such that the consumer
rebalances to the nearer boundary when the risky-asset weight goes outside the
region. Fixed and proportional transaction costs together also induce a no-trade
region, but now rebalancing places the risky-asset portfolio weight inside the
boundary. Also, realistically-small transaction costs induce sizable no-trade
regions.

The paper also makes methodological contributions. We show how the
investor's multiperiod problem can be numerically solved, in the presence of
time-varying conditional expected returns, and proportional and "xed transac-
tion costs. This methodology could be used to calculate the utility cost asso-
ciated with using rules of thumb rather than the optimal rebalancing policy. For
example, a rule that involves rebalancing at "xed intervals can be compared
with the optimal rule in the presence of transaction costs.

This paper only considers time variation in the "rst moments of asset returns.
A natural extension of our analysis would be to consider the impact of time
variation in the conditional second moments as well. Such an extension is left for
future research.

Appendix A

Let i
t
"i(D

t
, a(

t
, t) denote the consumer's choice of consumption as a fraction

of wealth at time t, where the policy is time dependent since the assumed time
horizon ¹ is "nite.

A.1. Dynamic-Conditional Policy (D-C)

When the consumer consumes over time, her Bellman equation in the dy-
namic conditional case is given by

a(D
t
, a(

t
, t)=1~c

t
1!c

"max
it,at

i1~c
t
=1~c

t
1!c

#

(1!i
t
)1~c=1~c

t
1!c

E[a(D
t`1

, a(
t`1

, t#1)R1~c
W,t`1

DD
t
, a(

t
]

for t"1,2, ¹!1, (A.1)
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where E[.DD, a( ] denotes the expectation taken using the conditional distribution
given D. Note that the Bellman equation (A.1) is solved by backward iteration,
starting with t"¹!1 and a(D, a( , ¹)"1.

A.2. Myopic-Conditional Policy (M-C)

In the myopic case, the consumer's portfolio composition problem is separ-
able from her consumption decision. Given the optimal portfolio decision,
a(D,a( ), the consumer takes into account the current state D and the number of
periods she has left to live in determining her consumption as a fraction of
wealth. Formally, the optimal consumption problem is

a(D
t
, a(

t
, t)=1~c

t
1!c

"max
it

i1~c
t
=1~c

t
1!c

#

(1!i
t
)1~c=1~c

t
1!c

E[a(D
t`1

, a(
t`1

, t#1)R1~c
W,t`1

DD
t
, a(

t
]

for t"1,2, ¹!1, (A.2)

which is also solved by backward iteration, starting with t"¹!1 and
a(D, a( , ¹)"1. Note that, while the consumer is myopic in her portfolio choice,
she is a dynamic optimizer when it comes to consumption decisions. Hence, in
the intermediate consumption scenario, the utility loss due to adopting a myopic
policy can be entirely attributed to the less-than-fully-optimal portfolio choice.

A.3. Dynamic-Unconditional Policy (D-U)

The Bellman equation faced by the consumer is given by

a(a(
t
, t)=1~c

t
1!c

"max
it,at

i1~c
t
=1~c

t
1!c

#

(1!i
t
)1~c=1~c

t
1!c
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t`1

, t#1)R1~c
W,t`1

Da(
t
]

for t"1,2, ¹!1. (A.3)

A.4. Myopic-Unconditional (M-U)

The consumer's portfolio composition problem is again separable from her
consumption decision. Given a(a( ), consumption is determined based on

a(a(
t
, t)=1~c

t
1!c

"max
it

i1~c
t
=1~c

t
1!c

#

(1!i
t
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for t"1,2, ¹!1. (A.4)
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