The Financial Origins of the Rise and Fall of American Inflation

Itamar Drechsler1 Alexi Savov2 Philipp Schnabl2

1Wharton and NBER 2NYU Stern and NBER

December 2020
The Great Inflation (1965–1982)

1. A very influential period for macro and monetary economics
 - inflation got out of control despite high interest rates
 - Keynesian toolbox stopped working: high inflation and high unemployment (“stagflation”) → a crisis of understanding

2. Standard narrative that has emerged blames the Fed
 - did not raise rates aggressively enough
 (Taylor coefficient < 1, shown by Clarida, Gali, & Gertler 2000)
 ⇒ Fed lost credibility → self-fulfilling, higher inflation expectations

3. Ended by Paul Volcker who restored Fed credibility
 - raised rates and kept them high despite severe 1981–82 recession
 - credited with lower inflation and longer expansions that followed (“Great Moderation”)
 ⇒ credibility view underlies monetary policy theory and practice today

Drechsler, Savov, and Schnabl (2020)
The Great Inflation

1. Fed funds rate and CPI inflation, annual over following year:

2. Inflation rose from 2% in 1965 to 14% in 1979, back to 2% in 1982
 - 1965.I: start of Great Inflation
 - 1980.IV: Volcker’s credibility-restoring rate hike
Stagflation and instability

1. Real GDP growth is highly *negatively* related to inflation
 \[\Rightarrow\text{ contradicts Phillips curve (high inflation} \longleftrightarrow \text{high GDP growth)}\]

2. GDP is very volatile: four recessions over this time period
This paper: financial origins

We propose and test a new explanation for the Great Inflation

1. Due to imposition and repeal of Regulation Q
 - an important law that placed hard ceilings on bank deposit rates
 - deposits were the main form of saving for most households
 → Reg Q suppressed the return to saving
 - disabled the transmission of monetary policy to households:
 → no passthrough of Fed funds rate to deposit rates
The Great Inflation and Regulation Q

1. 1965.I: Reg Q deposit rate ceiling becomes binding
 - previously, Fed had increased it to keep it from binding

2. No passthrough of Fed funds rate to deposit rates
The Great Inflation and Regulation Q

1. Real deposit rate increasingly negative:
 - from $+2\%$ in 1964 to -8% in 1979
 - in contrast, real Fed funds rate ~ 0

\implies Reg Q cost: real deposit rate $\times \frac{\text{deposits}}{\text{consumption}} \approx 4\%$ of consumption

Drechsler, Savov, and Schnabl (2020)
A new explanation for the Great Inflation

2. How does Reg Q raise inflation?

- suppressed return to saving \rightarrow greater incentive to spend (aggregate demand ↑) \rightarrow upward pressure on prices \rightarrow higher inflation

- spiral: higher inflation \rightarrow lower real deposit rate \rightarrow demand increases further \rightarrow inflation increases further . . .

- similar to nominal rate peg as in Friedman (1968), but with Reg Q as the relevant peg

3. How does Reg Q lead to recession ("stag" in stagflation):

- low real deposit rate \rightarrow deposit outflows \rightarrow banks lose funding ("disintermediation") \rightarrow credit crunch \rightarrow firms constrained \rightarrow output falls, unemployment rises
Credit crunch and stagflation

1. High inflation → low real deposit rate → deposit outflows

2. Banks lose funding → credit crunch
 - “credit crunch” coined in 1966 to describe first such event
 - right after imposition of Reg Q
Credit crunch and stagflation

1. High inflation → low real deposit rate → deposit outflows

2. Banks lose funding → credit crunch

⇒ Output growth plummets

Drechsler, Savov, and Schnabl (2020)
A new explanation for the Great Inflation

4. What ended the Great Inflation?

- Reg Q effectively repealed in late 1978–79 with the introduction of new, deregulated deposit accounts
- deposit rates immediately shot up far above the old ceilings (+7%)
- households poured vast sums into the new accounts: $462 billion = 16.2% of GDP (∼ $3.5 trillion in 2019)
- removed incentive to spend, no more upward pressure on prices
Repeal of Regulation Q

2. Passthrough restored from near 0 to almost 1

3. Deposit rates immediately shot up far above the old ceilings

Drechsler, Savov, and Schnabl (2020)
1. Real deposit rate shot up from -8% in 1979 to 0% in ’80 and +4% in ’81
2. Timing: Reg Q repealed right before inflation starts dropping
Consumption growth is highly correlated with the real deposit rate (74% correlation)

⇒ Euler equation holds using actual rate households get (implied EIS ∼ 1) - does not hold for real Fed funds rate

Drechsler, Savov, and Schnabl (2020)
History of Regulation Q

1. Enacted in 1933 following Depression bank failures

2. In order to prevent “excess competition” for insured deposits by banks wanting to take risk

3. Until 1965: the Fed kept the ceiling rate above the Fed funds rate → non-binding

4. In 1965: Fed stopped raising ceiling, letting it bind to slow money and credit growth

⇒ Fed believed Reg Q was reducing inflation
 - other countries enacted similar regulations (e.g., UK)
Cross-sectional analysis

1. Aggregate time series supports the hypothesis that Reg Q led to the Great Inflation

2. To further test this hypothesis, we use cross-sectional variation in exposure to Reg Q and measure its impact on inflation
 - controls for aggregate economic conditions and helps rule out alternative explanations, e.g., Fed credibility

3. Identification challenge: Exposure to Reg Q and inflation may be responding to local economic conditions (omitted variable)

⇒ Four natural experiments covering rise and fall of Great Inflation:
 1. Reg Q first becomes binding (1965–66)
 2. NOW Account Experiment (1974–80)
 4. Banks vs. S&Ls (1966–84)

Drechsler, Savov, and Schnabl (2020)
Data

Deposits:

Inflation:

1. CPI inflation (BLS, 25 largest MSAs, 1965–90)

2. Wage inflation (nominal wage growth):
 - all private sector employees (BLS, 316 MSAs, 1975–90)
 - manufacturing employees (BLS, 169 MSAs, 1972–90)
S&Ls and inflation, 1965–66 (onset of the Great Inflation)

1. Reg Q became binding for banks in 1965.

2. S&Ls were exempt from Reg Q until September 1966
 - due to being regulated by FHLBB, not Fed

⇒ Reg Q less binding in S&L dominated areas over 1965.I–66.III
 - these areas should see less inflation increase

3. Identification assumption: S&L share is predetermined, not picking up other factors driving inflation in 1965–66
 - historically determined and highly persistent

Drechsler, Savov, and Schnabl (2020)
S&Ls and inflation, 1965–66

\[
\pi_{i,t-1\rightarrow t+1} = \alpha_t + \beta_t (S&L \text{ Share})_{i,1966.III} + \epsilon_{i,t}
\]

1. Shows inflation increases less in S&L-dominated areas once Reg Q becomes binding for banks in 1965.I
 - gap disappears once S&Ls become subject to Reg Q in 1966.III

2. Coefficient consistent with aggregate inflation increase (\(\sim 3\%\))
NOW Account Experiment (middle of Great Inflation)

1. In 1972, a small bank in Worcester, MA, created the “NOW Account” (interest-paying checking account, 0 → 5%)

2. Violated Reg Q → other banks sued for “unfair” competition

3. In surprise move, MA Supreme Court authorized NOW accounts for state-chartered banks

4. National banks now lobbied D.C. to allow NOW accounts → in 1974, Congress authorized NOW Accounts in MA and NH only

5. Hugely popular: 80% penetration rate in MA

6. Staggered roll-out to neighboring states by geographic proximity
Staggered roll-out in North East

- NOW Account Experiment starts in MA and NH in 1974.1
Staggered roll-out in North East

- Expands to rest of New England in 1976.1
Staggered roll-out in North East

- Expands to New York in 1978.I

Drechsler, Savov, and Schnabl (2020)
Staggered roll-out in North East

- Expands to New Jersey in 1979.I

Drechsler, Savov, and Schnabl (2020)
Staggered roll-out in North East

- Expands to all of U.S. in 1980.IV
Empirical strategy: NOW Account Experiment

1. A partial repeal of Reg Q

2. Exploit staggered roll-out for identification:

\[\text{Inflation}_{it} = \alpha_i + \gamma_t + \beta \text{Deregulated}_{it} + \varepsilon_{it} \]

Deregulated_{it} = Indicator variable if MSA_{it} allows NOW accounts

3. Identification assumption: Roll-out driven by geographic proximity, not local inflation or economic activity
Results: NOW Account Experiment

\[\text{Inflation}_{it} = \alpha_i + \gamma_t + \beta_t \text{Deregulated}_{it} + \varepsilon_{it} \]

1. Introduction of NOW Accounts lowers inflation rate
 - effect is largest in earlier states, where NOW account penetration was highest

\[\begin{align*}
\text{Coefficient } \beta_t & \\
\text{1974} & -0.03 \\
\text{1975} & -0.02 \\
\text{1976} & -0.01 \\
\text{1977} & 0 \\
\text{1978} & 0.01 \\
\text{1979} & 0.02 \\
\text{1980} & 0.03 \\
\text{1981} & 0.04
\end{align*} \]
Results: NOW Account Experiment

\[
\text{Inflation}_{it} = \alpha_i + \gamma_t + \beta \text{Deregulated}_{it} + \varepsilon_{it}
\]

<table>
<thead>
<tr>
<th></th>
<th>Inflation</th>
<th>Wage inflation (all)</th>
<th>Wage inflation (manuf.)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(1)</td>
<td>(2)</td>
<td>(3)</td>
</tr>
<tr>
<td>Deregulated</td>
<td>−1.203***</td>
<td>−1.228***</td>
<td>−1.400***</td>
</tr>
<tr>
<td></td>
<td>(0.426)</td>
<td>(0.406)</td>
<td>(0.358)</td>
</tr>
<tr>
<td>Empl. growth</td>
<td>0.173***</td>
<td></td>
<td>0.407***</td>
</tr>
<tr>
<td></td>
<td>(0.035)</td>
<td></td>
<td>(0.041)</td>
</tr>
<tr>
<td>Time FE</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>MSA FE</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Obs.</td>
<td>1,300</td>
<td>1,300</td>
<td>10,021</td>
</tr>
<tr>
<td>MSAs</td>
<td>25</td>
<td>25</td>
<td>315</td>
</tr>
<tr>
<td>(R^2)</td>
<td>0.903</td>
<td>0.910</td>
<td>0.603</td>
</tr>
</tbody>
</table>

⇒ Introduction of NOW Accounts lowers inflation rate by \(\sim 1.2\%\)

- Robust to controlling for economic activity (employment growth)
The Repeal of Reg Q (the end of the Great Inflation)

1. Congress effectively repealed Reg Q by introducing two deregulated small-time deposits (CDs): MMCs and SSCs in 1978.III and 1979.III

⇒ Examine impact of local take-up of deregulated deposits on inflation

2. Identification challenge: take-up may be responding to local economic conditions

⇒ Instrument take-up with 1975 share of small time deposits:
 - checking, savings and time deposits differ in their maturity and liquidity (imperfect substitutes)
 - take-up should be larger in areas that had more small-time deposits in the past
 - 1975 economic conditions were very different than in 1978 (trough vs. peak of inflation cycle)
OLS: inflation

\[\text{Inflation}_{it} = \alpha_i + \delta_t + \beta \text{MMC Share}_{it} + \varepsilon_{it} \]

<table>
<thead>
<tr>
<th>Inflation (1978.III = 0)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1)</td>
</tr>
<tr>
<td>MMC share</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Inflation, pre-period</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Employment growth</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

Time FE	Yes	Yes	Yes	Yes
MSA FE	No	No	Yes	Yes
Obs.	300	300	300	300
R^2	0.577	0.588	0.835	0.836

1. Large, very significant relation between MMC take-up and inflation
 - robust to controlling for pre-period inflation and employment growth
 - coefficient magnitude consistent with drop in aggregate inflation
IV: first stage

1. Binscatter plot, 316 MSAs

MMC take-up vs. 1975 small-time deposit share

2. Large variation in small-time deposit share and in MMC take-up

⇒ 1975 small-time share strongly predicts MMC take-up
IV: inflation

\[
\text{Inflation}_{it} = \alpha + \delta_t + \beta \text{MMC Share}_{it} + \varepsilon_{it}
\]

<table>
<thead>
<tr>
<th></th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MMC share</td>
<td>−0.243***</td>
<td>−0.312***</td>
<td>−0.286***</td>
<td>−0.354***</td>
</tr>
<tr>
<td></td>
<td>(0.086)</td>
<td>(0.095)</td>
<td>(0.100)</td>
<td>(0.108)</td>
</tr>
<tr>
<td>Past inflation</td>
<td>0.227</td>
<td></td>
<td>0.215</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.148)</td>
<td></td>
<td>(0.147)</td>
<td></td>
</tr>
<tr>
<td>Empl. growth</td>
<td></td>
<td>−0.174</td>
<td>−0.183</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.159)</td>
<td>(0.158)</td>
<td></td>
</tr>
<tr>
<td>Time FE</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Obs.</td>
<td>300</td>
<td>300</td>
<td>300</td>
<td>300</td>
</tr>
<tr>
<td>Weak IV p-val</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
</tbody>
</table>

1. IV coefficients are very similar to OLS
 - robust, economically large, and highly significant
 - coefficient magnitude can explain full drop in aggregate inflation

Drechsler, Savov, and Schnabl (2020)
IV: wage inflation

\[
\text{Wage inflation}_{it} = \alpha_i + \delta_t + \beta \text{MMC Share}_{it} + \varepsilon_{it}
\]

<table>
<thead>
<tr>
<th></th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MMC Share</td>
<td>-0.159^{***}</td>
<td>-0.157^{***}</td>
<td>-0.144^{***}</td>
<td>-0.143^{***}</td>
</tr>
<tr>
<td></td>
<td>(0.026)</td>
<td>(0.027)</td>
<td>(0.026)</td>
<td>(0.028)</td>
</tr>
<tr>
<td>Past wage infl.</td>
<td>-0.015</td>
<td></td>
<td>-0.008</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.048)</td>
<td></td>
<td>(0.045)</td>
<td></td>
</tr>
<tr>
<td>Empl. growth</td>
<td></td>
<td></td>
<td>0.137^{**}</td>
<td>0.138^{**}</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(0.057)</td>
<td>(0.057)</td>
</tr>
<tr>
<td>Time FE</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Obs.</td>
<td>3,615</td>
<td>3,555</td>
<td>3,615</td>
<td>3,555</td>
</tr>
<tr>
<td>Weak IV p-val</td>
<td>0.009</td>
<td>0.005</td>
<td>0.004</td>
<td>0.002</td>
</tr>
</tbody>
</table>

1. Large, highly significant impact of MMC take-up on wage inflation
 - 100% increase in MMC take-up \rightarrow reduces wage inflation by 16%
 - can explain the aggregate decline in wage inflation
Inflation: timing

\[\Delta \text{Inflation}_{i, 78.III \rightarrow t} = \alpha_t + \beta_t \text{MMC Share}_{i, 1981.III} + \epsilon_{i,t} \]

1. Cross-sectional effect of take-up occurs right at time of deregulation
 - leads aggregate by 3 quarters \(\rightarrow \) inflation declined earlier in high take-up areas; followed soon by rest of US
1. German inflation was substantially lower than other developed countries
2. Germany eliminated deposit-rate caps in 1967 ⇒ German savings deposit rates were very sensitive to the short-term rate
 - German real deposit rate remains positive for much of this period

Drechsler, Savov, and Schnabl (2020)
Takeaways

1. Propose and test a new explanation for the Great Inflation
 - due to Reg Q, which disabled monetary policy transmission

2. The Great Inflation was the result of a serious financial friction, not the Fed’s policy rule
 - once the friction was removed, inflation returned to low levels (as in most of history)
 - explains the “stagflation,” which was unexplained

⇒ Low inflation post-1982 may not be due to aggressive monetary policy as conventionally believed
 - explains why inflation has not been “just around the corner” (e.g., 2015)

⇒ Reconciles eras: Great Inflation and post-2008 low inflation
 - Reg Q: deposit-rate ceiling → high inflation
 ZLB: deposit-rate floor → low inflation

Drechsler, Savov, and Schnabl (2020)
Appendix
Spot the Anomaly

Yield on 10-Year U.S. Government Bond

Source: Homer and Sylla (2005), Global Financial Data

1. Inflation was low before and after the Great Inflation
2. The Great Inflation is a historical anomaly
S&Ls and deposit passthrough

1. Average deposit rates of banks and S&Ls:

2. S&Ls had even lower passthrough than banks during Reg Q period
 - by regulation they had longer-duration assets (mortgages) → issued more long-term time deposits
 - after Reg Q was repealed (MMC line) passthroughs equalized

⇒ Inflation should be less responsive to Fed funds rate changes in S&L-dominated areas
 - difference should disappear after Reg Q was lifted

Drechsler, Savov, and Schnabl (2020)
First stage: S&Ls and local deposit passthrough

<table>
<thead>
<tr>
<th></th>
<th>Average deposit rate</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(1)</td>
<td>(2)</td>
<td>(3)</td>
<td>(4)</td>
</tr>
<tr>
<td>S&L share × Fed funds</td>
<td>-0.301***</td>
<td>-0.296***</td>
<td>-0.301***</td>
<td>-0.292***</td>
</tr>
<tr>
<td></td>
<td>(0.045)</td>
<td>(0.034)</td>
<td>(0.058)</td>
<td>(0.046)</td>
</tr>
<tr>
<td>S&L share</td>
<td>0.019***</td>
<td>0.015***</td>
<td>0.020***</td>
<td>0.020***</td>
</tr>
<tr>
<td></td>
<td>(0.005)</td>
<td>(0.004)</td>
<td>(0.004)</td>
<td>(0.003)</td>
</tr>
<tr>
<td>Empl. growth</td>
<td>0.000</td>
<td>0.005</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.007)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inflation, lag</td>
<td>-0.010</td>
<td>-0.020</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.019)</td>
<td>(0.016)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Obs.</td>
<td>1,079</td>
<td>904</td>
<td>1,075</td>
<td>900</td>
</tr>
<tr>
<td>R^2</td>
<td>0.890</td>
<td>0.879</td>
<td>0.850</td>
<td>0.902</td>
</tr>
</tbody>
</table>

1. S&Ls had ~ 0.3 lower passthrough than banks
 \Rightarrow use S&L share × Fed funds rate to instrument for deposit rate
Reduced form: S&Ls and local deposit passthrough

<table>
<thead>
<tr>
<th></th>
<th>Inflation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(1)</td>
</tr>
<tr>
<td>S&L share × Fed funds</td>
<td>0.452***</td>
</tr>
<tr>
<td></td>
<td>(0.171)</td>
</tr>
<tr>
<td>S&L share</td>
<td>0.036*</td>
</tr>
<tr>
<td></td>
<td>(0.021)</td>
</tr>
<tr>
<td>Empl. growth</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Inflation, lag</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Time FE</td>
<td>Yes</td>
</tr>
<tr>
<td>MSA FE</td>
<td>Yes</td>
</tr>
<tr>
<td>Obs.</td>
<td>1,079</td>
</tr>
<tr>
<td>R^2</td>
<td>0.066</td>
</tr>
</tbody>
</table>

1. When Fed tightens by 1%, inflation is $\sim 0.5\%$ higher in areas with S&L share of 1 vs. 0

- robust to controlling for employment growth, lagged inflation

Drechsler, Savov, and Schnabl (2020)
IV: S&Ls and local deposit passthrough

<table>
<thead>
<tr>
<th></th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Deposit rate</td>
<td>-1.503^{**}</td>
<td>-1.779^{***}</td>
<td>-1.357^{**}</td>
<td>-1.637^{***}</td>
</tr>
<tr>
<td></td>
<td>(0.619)</td>
<td>(0.590)</td>
<td>(0.642)</td>
<td>(0.631)</td>
</tr>
<tr>
<td>S&L share</td>
<td>0.064^{***}</td>
<td>0.060^{***}</td>
<td>0.008^{**}</td>
<td>0.010^{**}</td>
</tr>
<tr>
<td></td>
<td>(0.018)</td>
<td>(0.019)</td>
<td>(0.004)</td>
<td>(0.004)</td>
</tr>
<tr>
<td>Empl. growth</td>
<td>0.179^{***}</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.038)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inflation, lag</td>
<td></td>
<td>0.181^{***}</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.063)</td>
<td></td>
<td>(0.064)</td>
</tr>
<tr>
<td>Time FE</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>MSA FE</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Obs.</td>
<td>1,079</td>
<td>904</td>
<td>1,075</td>
<td>900</td>
</tr>
<tr>
<td>Weak IV F-stat</td>
<td>45</td>
<td>74</td>
<td>26</td>
<td>40</td>
</tr>
<tr>
<td>p-val</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
</tbody>
</table>

1. 1% increase in deposit rate lowers inflation by $\sim 1.6\%$
 - can account for Great Inflation: $1.6 \times 6\% = 9.6\%$ increase in inflation

Drechsler, Savov, and Schnabl (2020)
S&Ls and local deposit passthrough

\[\Delta \text{Inflation}_{i,t} = \alpha_t + \beta_t (\text{S&L share})_{i,t} + \epsilon_{i,t} \]

1. Inflation responds less to Fed tightening in S&L-denominated MSAs
2. Relationship disappears after Reg Q is repealed (MMC line)
1. Inflation drops soon after deregulation, but 3 quarters before Volcker’s hike in 1980.IV
 - by 1980.III inflation already was less than 8%

2. Inflation expectations stayed high: 10-year rate at pre-Volcker levels until 1985!
 ⇒ investors expected inflation to return, goes against credibility view
Median household asset allocation

1. Data from first Survey of Consumer Finances (1983):
 - 94% of 5th decile households had deposits vs 15% stocks, 4% MMF

2. Median household had 28% of total assets in deposits

3. 76% of liquid assets → important for marginal savings

Drechsler, Savov, and Schnabl (2020)