The Financial Origins of the Rise and Fall of American Inflation

Itamar Drechsler1 Alexi Savov2 Philipp Schnabl2

1Wharton and NBER 2NYU Stern and NBER

March 2020
The Great Inflation (1965–1982)

1. A defining event in economics
 - inflation got out of control despite high interest rates
 - Keynesian toolbox stopped working: high inflation without low unemployment → a crisis of understanding

2. Standard narrative blames the Fed
 - did not raise rates aggressively enough
 (Taylor coefficient < 1; e.g., Clarida, Gali, & Gertler 1999)
 ⇒ Fed lost credibility → higher inflation expectations → inflation spiral

3. Ended by Paul Volcker who restored Fed credibility
 - raised rates and kept them high despite severe 1981–82 recession
 - credited with lower inflation and longer expansions that followed
 ⇒ credibility view underlies monetary policy theory and practice today
The Great Inflation

1. Fed funds rate and CPI inflation, annual over following year:

<table>
<thead>
<tr>
<th>Year</th>
<th>Fed funds rate</th>
<th>Inflation</th>
</tr>
</thead>
<tbody>
<tr>
<td>1965.I</td>
<td></td>
<td>0.04</td>
</tr>
<tr>
<td>1980.IV</td>
<td></td>
<td>0.16</td>
</tr>
</tbody>
</table>

2. Inflation rose from 2% in 1965 to 14% in 1979, back to 2% in 1982
 - 1965.I: start of Great Inflation
 - 1980.IV: Volcker’s credibility-restoring rate hike

Drechsler, Savov, and Schnabl (2020)
This paper

We propose and test a new explanation for the Great Inflation

1. Due to imposition and repeal of Regulation Q
 - an important law that placed hard ceilings on bank deposit rates
 - deposits were the main form of saving for most households
 → Reg Q suppressed the return to saving
 - disabled the transmission of monetary policy to households:
 → no passthrough of Fed funds rate to deposit rates
1. 1965.I: Reg Q deposit rate ceiling becomes binding
2. No passthrough of Fed funds rate to deposit rates
1. 1965.I: Reg Q deposit rate ceiling becomes binding
2. No passthrough of Fed funds rate to deposit rates
3. Real deposit rate increasingly negative:
 - from +2% in 1964 to −8% in 1979 (real Fed funds rate ∼ 0)
 - real deposit rate × deposits/consumption ≈ 4% of consumption
2. How does Reg Q raise inflation?

- suppressed return to saving \rightarrow higher incentive to spend (aggregate demand \uparrow) \rightarrow upward pressure on prices \rightarrow higher inflation

- spiral: higher inflation \rightarrow lower real deposit rate \rightarrow demand increases further \rightarrow inflation increases further . . .

- similar to nominal rate peg as in Friedman (1968), but with Reg Q as the relevant peg
A new explanation for the Great Inflation

3. What broke the inflation spiral?
 - Reg Q effectively repealed in late 1978–79 with the introduction of new, deregulated deposit accounts
 - deposit rates immediately shot up far above the old ceilings
 - households poured vast sums into the new accounts:
 462 billion $= 16.2\%$ of GDP (\sim 3.5 trillion in 2019)
 - removed incentive to spend, no more upward pressure on prices
Repeal of Regulation Q

2. Passthrough restored from near 0 to almost 1
3. Deposit rates immediately shot up far above the old ceilings
Repeal of Regulation Q

2. Passthrough restored from near 0 to almost 1

3. Real deposit rate shot up from −8% in 1979 to 0% in '80 and +4% in '81
1. Timing: quarterly inflation peaks 3 quarters before Volcker’s hike in 1980.IV, inflation already down to 7.3% by 1980.III

2. Inflation expectations: 10-year rate remained at pre-Volcker levels until 1985!
 ⇒ investors expected inflation to return, goes against credibility view
The transmission view of monetary policy

➢ The Great Inflation was due to a failure of monetary policy transmission, not the Fed’s policy rule

- inflation spiral resulted from a large friction in the financial system and ended when the friction was removed
Empirical results overview

1. Aggregate time series

2. Cross-sectional tests using data on local deposits and inflation
 - use CPI and wage inflation data at the MSA level
 - local deposit data from Call Reports and Savings and Loans (S&Ls) Financial Reports

3. Use four plausibly exogenous sources of geographic variation in exposure to Reg Q
 - due to staggered imposition and repeal of Reg Q across different types of deposits, and for banks vs S&Ls

⇒ All four tests show a large cross-sectional impact of Reg Q on inflation; magnitude and timing can explain Great Inflation
Related literature

1. **The Great Inflation**: Friedman (1968); Sargent and Wallace (1975); Kydland and Prescott (1977); Barro and Gordon (1983); Romer and Romer (1989); Taylor (1993); Clarida, Gali, and Gertler (1999)
 - emphasize Fed credibility and expectations, our focus is on transmission through the financial system

2. **Regulation Q**: Samuelson and Skidmore (1967); Tobin (1970); Friedman (1970); Kane (1980); Wojnilower (1980); Burns (1988); Gilbert (1986); White (1991)
 - believed Reg Q reduced inflation by constraining money and credit, we find the opposite is true, due to suppressed return to saving

 - deposits important for credit supply, our focus is on inflation

4. **Liquidity trap and ZLB**: Krugman (1998); Eggertsson and Woodford (2003); Svensson (2003); Woodford (2012); Summers (2014); Farhi and Werning (2016); Guerrieri and Lorenzoni (2017)
 - emphasize ZLB (deposit rate floor), analogous to Reg Q (deposit rate ceiling)
History of Regulation Q

1. Enacted in 1933 following Depression bank failures

2. In order to prevent “excess competition” for insured deposits by banks wanting to take risk

3. Until 1965: the Fed kept the ceiling rate well above the Fed funds rate \rightarrow non-binding
 - only prevented banks who wanted to pay anomalously high rates

4. In 1965: Fed stopped raising ceiling, letting it bind to slow money and credit growth to prevent economy from overheating

\Rightarrow Fed believed Reg Q was reducing inflation
Empirical strategy

Did Regulation Q increase inflation?

⇒ Analyze cross-sectional variation in exposure to Reg Q to control for aggregate economic conditions and monetary policy, e.g. Fed credibility

Identification challenge:

Exposure to Reg Q and inflation may be reacting to local economic conditions (omitted variable)

⇒ Four natural experiments covering rise and fall of inflation:

1. Regulation Q first becomes binding (1965–66)
2. NOW Account Experiment (1974–80)
3. Deregulation of small time deposits (1978–79)
4. Local interest rate passthrough (1966–84)
Data

Deposits:

Inflation:

1. CPI inflation (BLS, 25 largest MSAs, 1965–90)

2. Wage inflation (nominal wage growth):
 - all private sector employees (BLS, 316 MSAs, 1975–90)
 - manufacturing employees (BLS, 169 MSAs, 1972–90)
Measures

We compute local deposit rates and inflation

Inflation:

1. Compute MSA-level inflation using local CPI/nominal wages
2. Computed over 1- and 2-year period, rolled over quarterly
3. Data shows substantial differences in local inflation

Deposit:

1. Deposit supply limited to local banks/S&Ls (pre interstate banking)
2. Compute local deposit rates and quantities using all banks/S&Ls in the given MSA

Drechsler, Savov, and Schnabl (2020)
1. Reg Q became binding for banks in 1965.1

2. S&Ls were exempt from Reg Q until September 1966
 - due to being regulated by FHLBB, not Fed

⇒ Reg Q less binding in S&L dominated areas over 1965.1–66.III
 - these areas should see less inflation increase

3. Identification assumption: S&L share is predetermined, not correlated with unobserved factors affecting inflation in 1965-66
 - historically determined and highly persistent
S&Ls and inflation, 1965–66

\[\pi_{i,t-1\rightarrow t+1} = \alpha_t + \beta_t (S&L \text{ Share})_{i, 1966.III} + \epsilon_{i,t} \]

1. Shows inflation increases less in S&L-dominated areas once Reg Q becomes binding for banks in 1965.I

2. Gap disappears once S&Ls become subject to Reg Q in 1966.III
S&Ls and inflation, 1965–66

<table>
<thead>
<tr>
<th></th>
<th>Inflation (1966.I)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(1)</td>
</tr>
<tr>
<td>S&L share</td>
<td>−0.028**</td>
</tr>
<tr>
<td></td>
<td>(0.012)</td>
</tr>
<tr>
<td>Deposit growth</td>
<td>0.035</td>
</tr>
<tr>
<td></td>
<td>(0.092)</td>
</tr>
<tr>
<td>Asset growth</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Constant</td>
<td>0.063***</td>
</tr>
<tr>
<td></td>
<td>(0.005)</td>
</tr>
<tr>
<td>Obs.</td>
<td>25</td>
</tr>
<tr>
<td>R^2</td>
<td>0.198</td>
</tr>
</tbody>
</table>

1. Shows inflation was 2.7% lower in 1966.I in S&L-dominated areas
2. National inflation rose by $\sim 2.7\%$ between 1965.I and 1966.III, when Reg Q became binding everywhere
 → Reg Q can explain the increase in aggregate inflation

Drechsler, Savov, and Schnabl (2020)
NOW Account Experiment (middle of Great Inflation)

1. In 1972, a small bank in Worcester, MA, created the “NOW Account” (interest-paying checking account, 0 → 5%)

2. Violated Reg Q → other banks sued for “unfair” competition

3. In surprise move, MA Supreme Court authorized NOW accounts for state-chartered banks

4. National banks now lobbied D.C. to allow NOW accounts → in 1974, Congress authorized NOW Accounts in MA and NH only

5. Hugely popular: 80% penetration rate in MA

6. Staggered roll-out to neighboring states by geographic proximity
Staggered roll-out in North East

- NOW Account Experiment starts in MA and NH in 1974.I
- Expands to rest of New England in 1976.I
Staggered roll-out in North East

- Expands to New York in 1978.I

Drechsler, Savov, and Schnabl (2020)
Staggered roll-out in North East

- Expands to New Jersey in 1979.I
Staggered roll-out in North East

- Expands to all of U.S. in 1980.IV
Empirical strategy: NOW Account Experiment

1. A partial repeal of Reg Q

2. Sample: all MSAs with CPI or nominal wage data, 1971–83

3. Exploit staggered roll-out for identification:

 \[\text{Inflation}_{it} = \alpha_i + \gamma_t + \beta \text{Deregulated}_{it} + \varepsilon_{it} \]

 \(\text{Deregulated}_{it} = \) Indicator variable if MSA\(_{it} \) allows NOW accounts

4. Identification assumption: Roll-out driven by geographic proximity, not local inflation or economic activity
Results: NOW Account Experiment

\[
\text{Inflation}_{it} = \alpha_i + \gamma_t + \beta_t \text{Deregulated}_{it} + \varepsilon_{it}
\]

1. Introduction of NOW Accounts lowers inflation rate
 - effect is largest in earlier states, where NOW account penetration was highest
 ⇒ Economically large given partial repeal of Reg Q

Drechsler, Savov, and Schnabl (2020)
Results: NOW Account Experiment

\[\text{Inflation}_{it} = \alpha_i + \gamma_t + \beta \text{Deregulated}_{it} + \varepsilon_{it} \]

<table>
<thead>
<tr>
<th></th>
<th>Inflation</th>
<th>Wage inflation (all)</th>
<th>Wage inflation (manuf.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Deregulated</td>
<td>(1)</td>
<td>(2)</td>
<td>(3)</td>
</tr>
<tr>
<td></td>
<td>-1.203***</td>
<td>-1.228***</td>
<td>-1.400***</td>
</tr>
<tr>
<td></td>
<td>(0.426)</td>
<td>(0.406)</td>
<td>(0.358)</td>
</tr>
<tr>
<td>Empl. growth</td>
<td>0.173***</td>
<td>0.407***</td>
<td>0.192***</td>
</tr>
<tr>
<td></td>
<td>(0.035)</td>
<td>(0.041)</td>
<td>(0.071)</td>
</tr>
<tr>
<td>Time FE</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>MSA FE</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Obs.</td>
<td>1,300</td>
<td>1,300</td>
<td>10,021</td>
</tr>
<tr>
<td>MSAs</td>
<td>25</td>
<td>25</td>
<td>315</td>
</tr>
<tr>
<td>R^2</td>
<td>0.903</td>
<td>0.910</td>
<td>0.603</td>
</tr>
</tbody>
</table>

⇒ Introduction of NOW Accounts lowers inflation rate by \(\sim 1.2\% \)

- Robust to controlling for employment growth
The Repeal of Reg Q (the end of the Great Inflation)

 - response to pressure from households and competition to banks from nascent money market funds

2. New deposits paid close to the Fed funds rate \rightarrow deposit rate jumped from 5% in 1978.II to 12% in 1979.IV

3. Households responded en masse: 462 billion in 2 years $\sim 50\%$ of deposits $= 16.2\%$ of GDP ~ 3.5 trillion in 2019

\Rightarrow Effective repeal of Reg Q, restores passthrough of monetary policy
Empirical strategy

1. Examine impact of take-up of deregulated accounts on inflation
2. Identification challenge: take-up could be correlated with economic activity
3. Use share of small time deposits in 1975 (three years prior):
 - checking, savings, and time deposits differ in their maturity and liquidity → imperfect substitutes
 - deregulated accounts most substitutable with other small time deposits
 ⇒ take-up should be larger in areas with traditionally more small-time deposits
4. Identification assumption: 1975 small time deposit share only affects inflation through take-up of deregulated accounts
 - economic conditions in 1975 (low inflation) are very different than in 1978 (high inflation)
OLS regression: inflation

\[\Delta \text{Inflation}_{i,78.\text{III} \rightarrow t} = \alpha_t + \beta_t \text{MMC Share}_{i,t} + \epsilon_{i,t} \]

1. Inflation drops much more in MSAs with high MMC take-up
 - coefficient peaks at \(-0.4 \rightarrow 40\%\) less inflation in 100\% vs. 0\% take-up MSAs

\[\Rightarrow \] Agg. MMC share 0.28 \rightarrow 11.2\% decline in agg. inflation

Drechsler, Savov, and Schnabl (2020)
OLS regression: inflation

\[\text{Inflation}_{it} = \alpha_i + \delta_t + \beta \text{MMC Share}_{it} + \varepsilon_{it} \]

<table>
<thead>
<tr>
<th></th>
<th>Inflation (1978.III = 0)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(1)</td>
</tr>
<tr>
<td>MMC share</td>
<td>-0.240^{***}</td>
</tr>
<tr>
<td></td>
<td>(0.064)</td>
</tr>
<tr>
<td>Inflation, pre-period</td>
<td>0.200</td>
</tr>
<tr>
<td></td>
<td>(0.140)</td>
</tr>
<tr>
<td>Employment growth</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Time FE</td>
<td>Yes</td>
</tr>
<tr>
<td>MSA FE</td>
<td>No</td>
</tr>
<tr>
<td>Obs.</td>
<td>300</td>
</tr>
<tr>
<td>R^2</td>
<td>0.577</td>
</tr>
</tbody>
</table>

1. Table shows average effect over 1978.III–1981.III

2. Large, very significant relation between MMC take-up and inflation
 - robust to controlling for pre-period inflation and employment growth

Drechsler, Savov, and Schnabl (2020)
IV first stage

1. Use small-time share in 1975.III to instrument for MMC take-up
2. Binscatter plot, 316 MSAs

3. Large variation in small-time deposit share and MMC take-up
 - 10% higher 1975 small-time share \rightarrow 4.2% higher MMC take-up
IV second stage: inflation

\[
\text{Inflation}_{it} = \alpha_i + \delta_t + \beta \widehat{\text{MMC Share}}_{it} + \varepsilon_{it}
\]

<table>
<thead>
<tr>
<th></th>
<th>Inflation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(1)</td>
</tr>
<tr>
<td>MMC share</td>
<td>-0.243***</td>
</tr>
<tr>
<td></td>
<td>(0.086)</td>
</tr>
<tr>
<td>Past inflation</td>
<td>0.227</td>
</tr>
<tr>
<td></td>
<td>(0.148)</td>
</tr>
<tr>
<td>Empl. growth</td>
<td>-0.174</td>
</tr>
<tr>
<td></td>
<td>(0.159)</td>
</tr>
<tr>
<td>Time FE</td>
<td>Yes</td>
</tr>
<tr>
<td>Obs.</td>
<td>300</td>
</tr>
<tr>
<td>Weak IV p-val</td>
<td>0.00</td>
</tr>
</tbody>
</table>

1. IV coefficients are very similar to OLS
 - robust, economically large, and highly significant
Reduced form: wage inflation

1. Binscatter plot, 316 MSAs

2. 10% higher 1975 small time deposit share \rightarrow 1% lower wage inflation
IV second stage: wage inflation

\[
\text{Wage inflation}_{it} = \alpha_i + \delta_t + \beta \text{MMC Share}_{it} + \epsilon_{it}
\]

<table>
<thead>
<tr>
<th>Wage inflation</th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MMC Share</td>
<td>-0.159***</td>
<td>-0.157***</td>
<td>-0.144***</td>
<td>-0.143***</td>
</tr>
<tr>
<td></td>
<td>(0.026)</td>
<td>(0.027)</td>
<td>(0.026)</td>
<td>(0.028)</td>
</tr>
<tr>
<td>Past wage infl.</td>
<td>-0.015</td>
<td></td>
<td>-0.008</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.048)</td>
<td></td>
<td>(0.045)</td>
<td></td>
</tr>
<tr>
<td>Empl. growth</td>
<td></td>
<td>0.137**</td>
<td>0.138**</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.057)</td>
<td>(0.057)</td>
<td></td>
</tr>
<tr>
<td>Time FE</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Obs.</td>
<td>3,615</td>
<td>3,555</td>
<td>3,615</td>
<td>3,555</td>
</tr>
<tr>
<td>Weak IV p-val</td>
<td>0.009</td>
<td>0.005</td>
<td>0.004</td>
<td>0.002</td>
</tr>
</tbody>
</table>

1. Large, highly significant impact of MMC take-up on wage inflation
 - 100% increase in MMC take-up → reduces wage inflation by 16%

⇒ Agg. deregulated share 0.28 → 4.5% decline in agg. wage inflation
 (similar to actual decline)
Inflation: timing

\[\Delta \text{Inflation}_{i,78.III \rightarrow t} = \alpha_t + \beta_t \text{MMC Share}_{i,1981.III} + \epsilon_{i,t} \]

1. Cross-sectional effect of take-up occurs right at time of deregulation
 - leads aggregate by 3 quarters

Drechsler, Savov, and Schnabl (2020)
Wage inflation: timing

\[\Delta \text{Wage inflation}_{i,78.III \rightarrow t} = \alpha_t + \beta_t \text{MMC Share}_{i,1981.III} + \epsilon_{i,t} \]

1. Cross-sectional effect of take-up occurs right at time of deregulation
 - leads aggregate by 3 quarters
S&Ls and deposit passthrough

1. Average deposit rates of banks and S&Ls:

2. S&Ls had even lower passthrough than banks during Reg Q period
 - by regulation they had longer-duration assets (mortgages) → issued more long-term time deposits
 - after Reg Q was repealed (MMC line) passthroughs equalized

⇒ Inflation should be less responsive to Fed funds rate changes in S&L-dominated areas
 - difference should disappear after Reg Q was lifted

Drechsler, Savov, and Schnabl (2020)
First stage: S&Ls and local deposit passthrough

<table>
<thead>
<tr>
<th></th>
<th>Average deposit rate</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(1)</td>
</tr>
<tr>
<td>S&L share × Fed funds</td>
<td>−0.301***</td>
</tr>
<tr>
<td></td>
<td>(0.045)</td>
</tr>
<tr>
<td>S&L share</td>
<td>0.019***</td>
</tr>
<tr>
<td></td>
<td>(0.005)</td>
</tr>
<tr>
<td>Empl. growth</td>
<td>0.000</td>
</tr>
<tr>
<td></td>
<td>(0.007)</td>
</tr>
<tr>
<td>Inflation, lag</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Obs.</td>
<td>1,079</td>
</tr>
<tr>
<td>R^2</td>
<td>0.890</td>
</tr>
</tbody>
</table>

1. S&Ls had ~ 0.3 lower passthrough than banks
 ⇒ use S&L share \times Fed funds rate to instrument for deposit rate
Reduced form: S&Ls and local deposit passthrough

<table>
<thead>
<tr>
<th></th>
<th>Inflation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(1)</td>
</tr>
<tr>
<td>S&L share × Fed funds</td>
<td>0.452***</td>
</tr>
<tr>
<td></td>
<td>(0.171)</td>
</tr>
<tr>
<td>S&L share</td>
<td>0.036*</td>
</tr>
<tr>
<td></td>
<td>(0.021)</td>
</tr>
<tr>
<td>Empl. growth</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Inflation, lag</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Time FE</td>
<td>Yes</td>
</tr>
<tr>
<td>MSA FE</td>
<td>Yes</td>
</tr>
<tr>
<td>Obs.</td>
<td>1,079</td>
</tr>
<tr>
<td>R^2</td>
<td>0.066</td>
</tr>
</tbody>
</table>

1. When Fed tightens by 1%, inflation is $\sim 0.5\%$ higher in areas with S&L share of 1 vs. 0
 - robust to controlling for employment growth, lagged inflation

Drechsler, Savov, and Schnabl (2020)
IV: S&Ls and local deposit passthrough

<table>
<thead>
<tr>
<th></th>
<th>Inflation</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(1)</td>
<td>(2)</td>
<td>(3)</td>
<td>(4)</td>
</tr>
<tr>
<td>Deposit rate</td>
<td>−1.503**</td>
<td>−1.779***</td>
<td>−1.357**</td>
<td>−1.637***</td>
</tr>
<tr>
<td></td>
<td>(0.619)</td>
<td>(0.590)</td>
<td>(0.642)</td>
<td>(0.631)</td>
</tr>
<tr>
<td>S&L share</td>
<td>0.064***</td>
<td>0.060***</td>
<td>0.008**</td>
<td>0.010**</td>
</tr>
<tr>
<td></td>
<td>(0.018)</td>
<td>(0.019)</td>
<td>(0.004)</td>
<td>(0.004)</td>
</tr>
<tr>
<td>Empl. growth</td>
<td>0.179***</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.038)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inflation, lag</td>
<td></td>
<td></td>
<td>0.181***</td>
<td>0.094</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(0.063)</td>
<td>(0.064)</td>
</tr>
<tr>
<td>Time FE</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>MSA FE</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Obs.</td>
<td>1,079</td>
<td>904</td>
<td>1,075</td>
<td>900</td>
</tr>
<tr>
<td>Weak IV F-stat</td>
<td>45</td>
<td>74</td>
<td>26</td>
<td>40</td>
</tr>
<tr>
<td>p-val</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
</tbody>
</table>

1. 1% increase in deposit rate lowers inflation by $\sim 1.6\%$
 - can account for Great Inflation: $1.6 \times 6\% = 9.6\%$ increase in inflation
S&Ls and local deposit passthrough

\[\Delta \text{Inflation}_{i,t} = \alpha_t + \beta_t (\text{S&L share})_{i,t} + \epsilon_{i,t} \]

1. Inflation responds less to Fed tightening in S&L-denominated MSAs
2. Relationship disappears after Reg Q is repealed (MMC line)
Takeaways

1. Propose and test a new explanation for the Great Inflation

2. Due to Reg Q, which disabled monetary policy transmission

3. the Great Inflation was the result of a serious financial friction, not the Fed’s policy rule

⇒ post-1982 low inflation/interest rates may be much less dependent on aggressive interest-rate policy than is argued by the standard narrative

- once the friction was removed, inflation went back to low levels
- inflation and interest rates were very low prior to the Great Inflation
- and for most of history

- Explains why high inflation is not “just around the corner”
Appendix
Historical context

Yield on 10-Year U.S. Government Bond

Source: Homer and Sylla (2005), Global Financial Data

1. Inflation was low before and after the Great Inflation
2. The Great Inflation is a historical anomaly
Median household asset allocation

1. Data from first Survey of Consumer Finances (1983):
 - 94% of 5th decile households had deposits vs 15% stocks, 4% MMF

2. Median household had 28% of total assets in deposits

3. 76% of liquid assets → important for marginal savings

Drechsler, Savov, and Schnabl (2020)