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Abstract 
 

On the Web, where the search costs are low and the 
competition is just a mouse click away, it is crucial to 
segment the customers intelligently in order to offer more 
targeted and personalized products and services to them. 
Traditionally, customer segmentation is achieved using 
statistics-based methods that compute a set of statistics 
from the customer data and group customers into segments 
by applying distance-based clustering algorithms in the 
space of these statistics. In this paper, we present a direct 
grouping based approach to computing customer segments 
that groups customers not based on computed statistics, but 
in terms of optimally combining transactional data of 
several customers to build a data mining model of customer 
behavior for each group.  Then building customer segments 
becomes a combinatorial optimization problem of finding 
the best partitioning of the customer base into disjoint 
groups. The paper shows that finding an optimal customer 
partition is NP-hard, proposes a suboptimal direct 
grouping segmentation method and empirically compares it 
against traditional statistics-based segmentation and 1-to-1 
methods across multiple experimental conditions. We show 
that the direct grouping method significantly dominates the 
statistics-based and 1-to-1 approaches across all the 
experimental conditions, while still being computationally 
tractable.  We also show that there are very few size-one 
customer segments generated by the best direct grouping 
method and that micro-segmentation provides the best 
approach to personalization. 
 
Index Terms – customer segmentation, marketing 
application, personalization, 1-to-1 marketing, customer 
profiles 
 
1. Introduction 
 

Customer segmentation, such as customer grouping by 
the level of family income, education, or any other 
demographic variable, is considered as one of the standard 
techniques used by marketers for a long time [25].  Its 
popularity comes from the fact that segmented models 

usually outperform aggregated models of customer 
behavior [26].  More recently, there has been much interest 
in the marketing and data mining communities in learning 
individual models of customer behavior within the context 
of 1-to-1 marketing [23] and personalization [5], when 
models of customer behavior are learned from the data 
pertaining only to a particular customer. These learned 
individualized models of customer behavior are stored as 
parts of customer profiles and are subsequently used for 
recommending and delivering personalized products and 
services to the customers [1]. 

As was shown in [14], it is a non-trivial problem to 
compare segmented and individual customer models 
because of the tradeoff between the sparsity of data for 
individual customer models and customer heterogeneity in 
aggregate models:  individual models may suffer from 
sparse data, while aggregate models suffer from high levels 
of customer heterogeneity. Depending on which effect 
dominates the other, it is possible that models of individual 
customers dominate the segmented or aggregated models, 
and vice versa.  

A typical approach to customer segmentation is based on 
the statistics-based approach that computes the set of 
statistics from customer’s demographic and transactional 
data [3, 14, 28], such as the average time it takes the 
customer to browse the Web page describing a product, 
maximal and minimal times taken to buy an online product, 
RFM statistics [21], etc.  After such statistics are computed 
for each customer, the customer base is partitioned into 
customer segments by using various clustering methods on 
the space of the computed statistics [14]. It was shown in 
[14] that the best statistics-based approaches can be 
effective in some situations and can even outperform the 1-
to-1 case under certain conditions. However, it was also 
shown in [14] that this approach can also be highly 
ineffective in other cases. This is primarily because 
computing different customer statistics would results in 
different n-dimensional spaces, and various distance 
metrics or clustering algorithms would yield different 
clusters. Depending on particular customer statistics, 
distance functions and clustering algorithms, significantly 



different customer segments can be generated. 
In this paper, we propose the direct grouping 

segmentation approach that partitions the customers not 
based on computed statistics and particular clustering 
algorithms, but in terms of directly combining 
transactional data of several customers, such as Web 
browsing and purchasing activities, and building a single 
model of customer behavior on this combined data.  This 
approach avoids the pitfalls of the statistics based-approach 
in that it does not require selection of arbitrary statistics and 
grouping customers based on these statistics. Instead, it 
provides a more direct approach to customer segmentation 
by combining customers’ data collectively resulting in 
better model for this group of customers. 

  In this paper we try to partition the customer base into 
an optimal set of segments using the direct grouping 
approach, where optimality is defined in terms of a fitness 
function of a model learned from the customer segment’s 
data. We formulate this optimal partitioning as a 
combinatorial optimization problem and show that it is NP-
hard. Then we propose a suboptimal polynomial-time direct 
grouping method, called Iterative Merge (IM), and 
compare it to the standard statistics-based and 1-to-1 
approaches. We show that IM significantly dominates the 
statistics-based and 1-to-1 methods across all the 
experimental conditions examined in this paper, thus 
demonstrating the applicability of the direct grouping 
methods to building personalized models of customers. 
Therefore, we demonstrate empirically that it is better to 
segment customer bases by first directly partitioning 
customer data and then building predictive models from the 
partitioned data rather than first computing some arbitrary 
statistics, clustering the resulting n-dimensional data points 
into segments, and then building predictive models on these 
segments.  We also examine the nature of the segments 
generated by the IM method and observe that there are very 
few size-one segments, that the distribution of segment 
sizes reaches its maximum at a very small segment size, 
and that the rate of decline in the number of segments after 
this maximum follows a Zipf’s distribution. This 
observation, along with the dominance of IM over the 1-to-
1 method, provides support for the micro-segmentation 
approach to personalization [16], where the customer base 
is partitioned into a large number of small segments, such 
as undergraduate students at University of XYZ majoring 
in computer science and living in the dorms.  

In summary, we make the following contributions in this 
paper: 
• Propose the direct grouping method for segmenting 

customer bases, formulate the optimal segmentation 
problem, and show that it is NP-hard. 

• Propose a suboptimal direct grouping method, IM, and 

compare IM against the statistics-based segmentation and 
the 1-to-1 approaches and demonstrate that IM 
significantly dominates them. 

• Show that the tail of the cluster size distribution 
generated by IM follows a Zipf’s distribution and that 
there are very few size-one clusters. This provides 
support for the micro-segmentation approach to 
personalization. 

 
2. Problem formulation 
 

The problem of optimal segmentation of customer base 
can be formulated as follows. Let C be the customer base 
consisting of N customers, each customer Ci is defined by 
the set of m demographic attributes A = {A1, A2, ..., Am}, ki 
transactions  Trans(Ci) = {TRi1, TRi2, ..., TRiki

} performed 
by customer Ci, and h summary statistics Si = {Si1, Si2, ..., 
Sih}, computed from the transactional data Trans(Ci). 
Moreover, each transaction TRij is defined by a set of 
transactional attributes T = {T1, T2, ..., Tp}. The number of 
transactions ki per customer Ci varies.  Finally, we combine 
the demographic attributes {Ai1, Ai2, ..., Aim,} of customer Ci 
and his/her set of transactions {TRi1, TRi2, ..., TRiki

} into the 
complete set of customers’ data TA(Ci) = {Ai1, Ai2, ..., Aim, 
TRi1, TRi2, ..., TRiki

} which constitutes a unit of analysis in 
our work.  As an example, assume that customer Ci can be 
defined by attributes A = {Name, Age, Income, and other 
demographic attributes}, and by the set of purchasing 
transactions Trans(Ci) she made at a Web site, where each 
transaction defined by such transactional attributes T as an 
item being purchased, when it was purchased, and the price 
of an item. Finally, a summary statistics vector Si can be 
computed for all of Ci’s purchasing sessions and can 
include such statistics as the average amount of purchase 
per a Web session, the average number of items bought, 
and the average time spent per online purchase session. 

Given the set of n customers C1, ..., Cn, and their 
respective customer data pi = {TA(C1),...,TA(Cn)}, we want 
to build a single model Mi of this group of customers pi and 
measure its performance using some fitness function f 
mapping the set of customer data pi into reals, i.e., f(pi) ∈ 
ℜ. For example, model Mi can be a decision tree built on 
data pi of customers C1, ..., Cn, and the fitness function f is 
its predictive accuracy on the out-of-sample data or 
obtained using k-fold cross-validation.  

The function f can be very complex in general, as it 
represents the predictive power of an arbitrary predictive 
model Mi trained on all the customer data contained in pi.  
For example, f could the relative absolute error of a neural 
network model trained and tested on pi via ten-fold cross 
validation.  Another example could be the R2 value 



generated from a logistic regression of all the transactional 
and demographic variables on one dependent purchase 
variable using all data contained in pi. This means that, in 
general, function f does not have “nice” properties, such as 
additivity or monotonicity. For example, f({TA(Ci)}) can be 
greater than, less than, or equal to f({TA(Ci),TA(Cj)}) for 
any i, j. This lack of nice properties of fitness functions will 
be a defining issue when we formulate an optimal customer 
segmentation problem later in this section and will make 
this problem computationally complex. 

Partitioning the customer base C into a mutually 
exclusive collectively exhaustive set of segments P = 
{p1,...,pk}, by building models Mi for each segment pi, as 
described above, is called direct grouping segmentation.  
Note that in this approach we group customers into 
segments based on some performance criteria for the 
segment rather than clustering customers based on intra or 
inter cluster distance measures.  We next formulate an 
optimal segmentation problem that does this partitioning in 
the “best possible” manner. 

Optimal Customer Segmentation problem. Given the 
customer base C of N customers, we want to partition it 
into the disjoint groups P = {p1,...,pk}, such that the models 
Mi built on each group pi would collectively produce the 
best performance for the fitness function f(pi) taken over 
p1,...,pk. Formally, this problem can be formulated as 
follows. Let αi be a weighting measure specifying 
“importance” of segment i. Some examples of αi include 
simple average 1/k and proportional weights 
|TA(pi)|/|TA(C)|. Then we want to find partition of the 
customer base C into the set of mutually exclusive 
collectively exhaustive segments P = {p1,...,pk}, where 
segment pi is defined by its customer data pi = 
{TA(Cj),...,TA(Cm)}, such that the following fitness score   
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combinations of customer transactions groupings, known as 
the Bell numbers, which are the number of ways that N 
distinguishable objects can be grouped into non-empty sets. 
Since BN are very large numbers, even for small N’s, 
finding an optimal partition constitutes a complex 
optimization problem.  Due to the arbitrary nature of the 
fitness function f, the optimal customer segmentation is a 
combinatorial partition problem [13] with very little 
constraints.      

Proposition. Optimal Customer Segmentation (OCS) 
problem is NP-hard. 

This result can be obtained by reducing the clustering 

problem, that is NP-hard [4], to the OCS problem. 
Since the OCS problem is NP-hard, we propose the 

following suboptimal polynomial customer segmentation 
methods providing reasonable fitness scoring results: 

Statistics based – These methods group customers by 
first computing some statistics from customers’ 
demographic and transactional data, consider these 
statistics as points in an n-dimensional space, and then 
group customers into segments by applying various 
clustering algorithms to these n-dimensional points. 

1-to-1 – This approach builds customer segments of size 
1 (individual models of customers) by learning them only 
from the data pertaining to individual customers.   

Direct Grouping – We described direct grouping in this 
section. Instead of looking for an optimal grouping of 
customers, which is NP-hard, we present a polynomial-time 
suboptimal direct grouping method IM in Section 4.   

Before describing these methods, we present related 
work. 
 
3. Related work 
 

The problem of finding the global optimal partition of 
customers is related to the work on a) combinatorial 
optimization problems in operations research, b) customer 
segmentation and clustering in marketing, and c) data 
mining research on customer segmentation.  We examine 
the relationship of our work to these three areas of research 
in this section. 

Combinatorial optimization models are used across a 
wide range of applications.  The common feature among 
these problems is that in many practical problems, activities 
and resources, such as tasks and people are indivisible [13].  
Combinatorial optimization problems are in general 
considered NP-hard, however, depending on the 
mathematical formulation of a particular problem, exact 
solutions or close to exact approximations can be achieved.  
While we cannot use any existing problem formulations in 
solving our research question due to the lack of additivity, 
monotonicity and other “nice” characteristics of our fitness 
function, we could take cues from various approaches used 
in solving combinatorial optimization problems.  These 
approaches include “branch & bound” enumerative 
techniques [17], Lagrangian relaxation and decomposition 
methods [10], and cutting plane algorithms based on 
polyhedral combinatorics[9].   

Despite recent advances in finding solutions to various 
combinatorial optimizations problems, there are still a large 
set of problems considered too complex to derive optimal 
solutions [13].  Therefore, various heuristics were explored 
in obtaining good solutions that have no guarantees as to 
their “closeness” to the optimal solution.  Our research 
problem falls in this category.  Heuristics used by operation 



researchers in solving combinatorial optimizations 
problems include greedy hill-climbing [18], simulated 
annealing [11], evolutionary algorithms [20], and neural 
networks [2].  In our work, we deployed the greedy hill-
climbing approach in conjunction with the branch and 
bound enumerative techniques in developing our fitness 
function based methods. 

Our work is also related to the work on clustering that 
partitions the customer base and their transactional histories 
into homogeneous clusters for the purpose of building 
better models of customer behavior using these clusters [3, 
14, 28].  However, any objective measure of intra-cluster 
similarity and inter-cluster dissimilarity is hard to come by 
and is shown to be rather erratic [14].  Instead, in this paper 
we group customer’s transactions together and measure 
performance not in some sense of “intra-cluster similarity”, 
but rather based purely on some performance fitness 
function having direct implication on the effective utility of 
any subsequent customer groupings. 

Building on top of previous data mining research on 
customer segmentation [14, 28], this research aims to 
formulate automated customer segmentation methods that 
are not influenced by arbitrary selection of summary 
statistics or population specific factors such as customer 
heterogeneity and data volume. 
 
4. Predictive Models of Customer Behavior 
 

In this section, we describe the details of the statistics-
based, 1-to-1 and direct grouping approaches and propose 
their representative implementations before empirically 
comparing them across various experimental settings. 
 
4.1. Statistics-based Segmentation Methods  
 

In terms of the statistics-based segmentation, we 
consider the following two variants of the hierarchical 
approach that are described in [7, 12] and deployed in  [14, 
22]:  

Hierarchical Clustering (HC): Using the same 
hierarchical clustering techniques as in [14], we learn 
predictive models of customer behavior of the form  

    ),,,(ˆ
21 pXXXfY …=   (1) 

where X1, X2, ..., Xp are some of  the demographic attributes 
from A and some of the transactional attributes from T (see 
Section 2), and function f̂ is a model that predicts certain 
characteristics of customer behavior, such as prediction of 
the product category or the time spent on a Web site 
purchasing the product. The correctness measure of this 
prediction is our fitness function f (defined in Section 2).  
These models f̂ , defined by expression (1), are built for 

the groups of customers that are obtained as follows.  
Starting from a single aggregated grouping of all 

customers, we use hierarchical clustering methods on the 
set of summary statistics {S1, ..., Sh} and partition the set of 
m customers by iteratively applying Euclidean distance-
based clustering algorithms in the n-dimensional customer 
summary statistics space. The Hierarchical Clustering 
(HC) method generates new levels of segment hierarchy 
via progressively smaller groupings of customers’ 
transactions until the single customer (1-to-1) level is 
reached and each segment contains transactions from a 
single customer.  The decision to group certain customers 
together is done by clustering via FarthestFirst [12], a 
greedy k-center unsupervised clustering algorithm that is 
found to perform well in [14] on customer summary 
statistics and demographics attributes {A1, A2, ..., Am, S1, S2, 
..., Sh}.  We compute these segments for each level of the 
segmentation hierarchy (containing progressively smaller 
segments), and for each level L, compute the weighted sum 
of fitness scores. Then the segmentation level with the 
highest overall fitness score (besides the 1-to-1 level) is 
selected as the best possible segmentation of the customer 
base.   

 Entropy Clustering (EC): Instead of forming different 
groupings of customer transactions from unsupervised 
clustering algorithms, as HC does, EC forms customer 
groupings by building a C4.5 decision tree λ on customer 
summary statistics and demographics {A1, A2, ..., Am, S1, S2, 
..., Sh}, where the class label is the model’s dependent 
variable Y in (1).  Unlike HC, this approach is a supervised 
clustering algorithm, where “similar” customers are 
grouped in terms of summary statistics and demographics 
to reduce the entropy of the class label.  Once the C4.5 
forms the groupings based on the principle of class label 
entropy minimization, we compute the weighted sum of 
fitness scores generated by f̂ in (1) across these different 
groupings of customer transaction data.  Intuitively, this 
should be a better approach to clustering customers than 
HC because by making grouping decisions based on class 
label purity, we are in effect measuring similarity in the 
output space, which reduces the variance of the dependent 
variable Y classified by our predictive models.  In addition, 
there is no fixed splitting factor as in the case of HC, as 
each tree split is based on the number of different values an 
independent attribute may have.  Thus, each split could 
result in a different number of sub-clusters, which could 
provide extra flexibility for building more homogeneous 
and better performing customer segments.  However, the 
formation of customer groups is still based on customer 
summary statistics which, depending on the types of 
statistics used, can yield very different decision trees.  
 



4.2. 1-to-1 Method 
 

As explained in Section 2, the 1-to-1 approach builds 
predictive models of customer behavior only from 
individual customer’s transactional data.  In other words, 
we build a predictive model (1) for each customer Ci, i = 1, 
..., N, using only the demographic and the transactional data 
of that customer, and we do not have to deal with customer 
grouping at all in this case.  For each model of customer Ci, 
we compute fitness function f(Ci) (e.g., using 10-fold cross-
validation) and obtain the whole distribution of these 
fitness scores for i = 1, ..., N.   
 

4.3. Direct Grouping Methods 
 

The direct grouping approach makes decision on how to 
group customers into segments by directly combining 
different customers into groups and measuring the overall 
fitness score as a linear combination of fitness scores of 
individual segments, as described in Section 2. Since the 
optimal segmentation problem is NP-hard (see Section 2), 
we propose the following suboptimal method IM. 

Iterative Merge (IM): IM is an iterative segmentation 
reduction approach which starts from a set of single 
customer segments and iteratively merges together two 
segments that result in better performance combined.  More 
specifically, starting with segments containing individual 
customers, IM seeks to iteratively merge two existing 
segments SegA, and SegB at a time when 1) the predictive 
model based on the combined data performs better and 2) 
combining SegA with any other existing segments would 
have resulted in a worse performance than the combination 
of both SegA and SegB. IM is greedy because it attempts to 
find the best pair of customers groups and merge them 
together resulting in the best merging combination. The 
specifics of the IM algorithm are presented in Figure 1. 

 

1. Let W = {C1,C2,...,CN} // FIFO queue 
2. CustomerGroupSet P = {} // new set of customer groups 
3. While P is changing { 
4.  While W  ≠ 0 { 
5.         CustomerGroup CGi = W.pop() 
6.         CustomerGroup A = new 
CustomerGroup(TA(CGi)) 
7.         CGs = CGk that yields maximum  f(A+TA(CGk)) 
∀CGk∈W; 
8.         if (f(A+TA(CGk)) >= f(A)) {            
9.   W = {W- CGs}; A = {A ∪ TA(CGs)};  
10.  P={P ∪ A}; 

         } 
 } 

11.  W= { all CG’s in P}; P={} 
  }  

12. Return P 
Figure 1. Iterative Merge (IM) Algorithm. 

 

IM runs in O(n3) in the worst case because a single 
merge of two groups takes O(n2) time in the worst case, and 
there can be up to n of such merges. However, in practice, 
the search space of IM is not very large because it merges 
groups, not individual customers, at a time, and the 
empirical results reported in Section 6 confirm this 
observation. 

In addition, IM tends to make merging decisions on 
customer segments of comparable sizes, where each 
customer segment under merging consideration can 
significantly affect the performance of the combined 
segmentation, thus lessen the chance of building large and 
poorly performing customer segments.  
 
5. Experimental setup 
 

To compare the relative performance of direct grouping, 
statistics-based, and 1-to-1 approaches, we conduct pair-
wise performance comparisons using a variant of the non-
parametric Mann-Whitney rank test [19] to test whether the 
fitness score distributions of two different methods are  
statistically different from each other.   To ensure 
robustness of our findings, we set up the pair-wise 
comparisons across the following four dimensions: 

Types of datasets.  In our study we worked with the 
following datasets: 

(a) Two “real-world” marketing datasets containing 
panel data1 of on-line browsing and purchasing activities of 
Web site visitors and panel data on beverage purchasing 
activities of “brick-and-mortar” stores. The first dataset 
contains ComScore data from Media Metrix on Internet 
browsing and buying behaviors of one hundred thousand 
users across United States for a period of 6 months 
(available via Wharton Research Data Services - 
http://wrds.wharton.upenn.edu/). The second dataset 
contains Nielsen panelist data on beverage shopping 
behaviors of 1,566 families for a period of one year. 

     The ComScore and Nielsen marketing datasets are 
very different in terms of the type of purchase transactions 
(Internet vs. physical purchases), variety of product 
purchases, number of individual families covered, and the 
variety of demographics.  Compared to Nielsen’s beverage 
purchases in local supermarkets, ComScore dataset covers 
a much wider range of products and demographics and is 
more representative of today’s large marketing datasets.  
We further split these two real world datasets into four 
datasets of ComScore high- and low-volume customers, 

                                                        
1 Panel data [16], also called longitudinal or cross-sectional time series 

data, when used in the context of marketing means that the data about a 
pre-selected group of consumers on whom a comprehensive set of 
demographic information is collected is also augmented with the complete 
set of their purchases. Therefore, this panel data provides a comprehensive 
view of purchasing activities of a pre-selected panel of consumers. 



which represents the top and bottom 1,000 customers in 
terms of transaction frequencies respectively.  Similarly, 
Nielsen high- and low-volume customer datasets were 
generated using the top and bottom 500 customers in terms 
of transaction frequencies respectively. 

(b) Two simulated datasets representing high-volume 
customers (Syn-High) and low-volume customers (Syn-
Low) respectively, where within each dataset, customer 
differences are defined by generating different customer 
summary statistic vector Si for each customer i.  All 
subsequent customer purchase data are generated from the 
set of summary statistic vectors Si.    

The Syn-Low and Syn-High datasets were generated as 
follows. 2,048 unique customer summary statistics were 
generated by sampling from ComScore customer summary 
statistics distributions, which is then used to generate the 
purchase transactions with four transactional variables.  
The number of transactions per customer is also determined 
from ComScore customer transaction distributions.  This 
dataset is used to better simulate real world transactional 
datasets. 

Since for the ComScore and Nielsen we consider two 
datasets (each having high- and low-volume customers), 
this means that we use six datasets in total in our studies. 
Some of the main characteristics of these six datasets are 
presented in Table 1. In particular, CustomerType column 
specifies the transaction frequency of these datasets, High 
meaning that customers perform many transactions on 
average, while Low means only few transactions per 
customer. The columns “% of Total Population”, 
“Families”, and “TotalTransactions” specify the percentage 
of total data population, the number of families, and the 
sample family transactions contained in the sample 
datasets.  

 

TABLE 1. CUSTOMER TYPES AND TRANSACTION COUNTS 

 
 

Types of predictive models.  Due to computational 
expenses of the model-based methods, we build predictive 
models using two different types of classifiers via Weka 3.4 
system [27]: C4.5 decision tree [24] and Naïve Bayes [15].  
These are chosen because they represent popular and fast-
to-generate classifiers. 

Dependent variables.  We built various models to make 
predictions on transactional variables, TRij, and compare 
discussed approaches across different experimental 
settings.  Examples of some of the dependent variables are 

day of the week, product price, category of website in 
ComScore datasets, and category of drinks bought, total 
price, and day of the week in the Neilson datasets. The data 
we used to train any one model are customer Ci’s 
independent variables X1, X2,…, Xp, except TRij.   

  Performance measures.  We use the following 
performance measures: percentage of correctly classified 
instances (CCI), root mean squared error (RME), and 
relative absolute error (RAE) [27]. 

Given models α and β, α is considered “better” than β 
only when it provides better classification results and fewer 
errors, i.e., when 
( ) ( ) ( )βαβαβα RAERAERMERMECCICCI <∧<∧> .  This 

is the fitness function which we use in IM to pick the best 
possible merge during every iteration.  To pick the best 
segment level in HC, the CCI, RME, and RAE distributions 
of different segment levels are compared separately in 
choosing the best performing segment level that has the 
most right skewed CCI distribution and left skewed RME 
and RAE distributions.    

In terms of data pre-processing, we discretized our 
datasets to improve classification speed and performance 
[6].  Nominal transaction attributes, such as product 
categories, were discretized to roughly equal representation 
in sample data to avoid overly optimistic classification due 
to highly skewed class priors.  We also discretized 
continuous valued attributes such as price and Internet 
browsing durations based on entropy measures via our 
implementation of Fayyad’s [8] recursive minimal entropy 
partitioning algorithm. 

We compared statistics-based segmentation methods HC 
and EC across all these dependent variables, classifiers, and 
six datasets to select the best one. The results of these 
comparisons are reported in the next section. 
 
6. Empirical Results 
 

In this section, we present our empirical findings.  As 
mentioned in Section 5, we compare the distribution of 
performance measures generated by considered predictive 
models across various experimental conditions. Since we 
make no assumptions about the shape of the generated 
performance measure distributions, we use a variant of the 
non-parametric Mann-Whitney rank test [19] to test 
whether the distribution of performance measures of the 
one method is statistically different from another method.  
For example, to compare HC against the 1-to-1 method for 
the CCI measure, consider the distribution of the CCI 
measure generated for the best segmentation level of the 
HC hierarchical clustering, and compare it against the 
distribution of the CCI measure obtained for each 
individual customer.  Then we apply the Mann-Whitney 



rank test to compare the two distributions.     
The null hypothesis for comparing distributions 

generated by methods A and B for a performance measure 
is: 

(I) H0: The distribution of a performance measure 
generated by method A is not different from the distribution 
of the performance measure generated by method B.   

       H1+: The distribution of a performance measure 
generated by method A is different from the distribution of 
the performance measure generated by method B in the 
positive direction. 

H1-: The distribution of a performance measure 
generated by method A is different from the distribution of 
the performance measure generated by method B in the 
negative direction. 

To test these null hypotheses across distributions of 
performance measures generated by different methods, we 
proceeded as follows.  For each dataset, classifier and 
dependent variable we generate 3 sets of customer groups, 
CG1, CG2 and CG3, using our three segmentation methods 
IM, HC and EC.  Let cgij denote a particular group j of 
customers belonging to customer group set CGi generated 
by method i (IM, HC or EC).  For each cgij,, we generate a 
separate model, mij, that predicts the dependent variable of 
the model via ten-fold cross validation and computes three 
performance measures CCIij, RMEij, and RAEij.    

Let Mi denote the set of models generated from 
evaluating all customer groups in CGi for method i, and let 
CCIi, RMEi, and RAEi be three sets of performance 
measures evaluated on model set Mi for all customer groups 
in CGi.  To compare segmentation method i’s performance 
against method h, we would compare whether the 
distribution of performance measures of CCIi, RMEi, or 
RAEi is statistically different from that of CCIh, RMEh, or 
RAEh respectively via the Mann-Whitney rank tests using 
hypotheses H0, H1+, H1- specified above.      

For example, for the comparisons involving HC and 1-
to-1, the above scenario of comparing three measures is 
repeated across six datasets, three dependent variables per 
dataset, and two classifiers, resulting in 108 statistical 
significance tests per method to method comparison pair.   

We next compare HC against EC and the direct grouping 
method IM against the statistics-based and the 1-to-1 
approaches to determine the best segmentation approach. 
 
6.1. Comparing Statistics Based Methods 
 

We compare the two statistics-based methods HC and 
EC across six datasets, three dependent variables per 
dataset, two classifiers and three performance measures per 
model to determine which method is better. This resulted in 
the total of 108 Mann-Whitney tests for this pair-wise 

comparison. Table 2 lists the number of statistical tests 
rejecting the null hypothesis (I) at 95% significance level. 
As Table 2 shows, only 2 out of 108 produced statistically 
significant differences between the HC and EC methods, in 
which HC dominated EC. 

From this comparison we can conclude that HC and EC 
methods provide similar performance results with HC 
“slightly” dominating EC, i.e., EC≤ HC.   Since there is a 
small difference between the two statistics-based 
segmentation methods, we could have chosen any of the 
two methods. We decided to choose HC as a representative 
statistics-based segmentation method to be compared 
against IM and 1-to-1 approaches in the following section. 

 

TABLE 2. PERFORMANCE TESTS ACROSS ALL STATISTICS-BASED 
SEGMENTATION METHODS FOR HYPOTHESIS TEST (I)  

(NUMBERS IN COLUMNS H1+ AND H1- INDICATE THE NUMBER OF 
STATISTICAL TESTS THAT REJECT HYPOTHESIS H0. TOTAL SIGNIFICANCE 

TESTS PER METHOD TO METHOD COMPARISON PAIR IS 108) 
Method HC 
 H+ H- 

EC 0 2 

 
6.2. Comparing the Direct Grouping, Statistics-
based Segmentation and 1-to-1Methods 
 

In this section, we compare the best methods out of the 
three different modeling approaches to predicting customer 
behavior.  As stated in Sections 6.1, we selected the HC 
method to represent statistics-based grouping methods 
because it outperformed EC. Therefore, we compared HC, 
IM and 1-to-1 methods across the six datasets, three 
dependent variables per dataset, two classifiers, and three 
performance measures.  This resulted in the total of 108 
Mann-Whitney tests per pair-wise comparison. 

 

TABLE 3. PERFORMANCE TESTS ACROSS ALL 1-TO-1, HC, AND IM  
FOR HYPOTHESIS TEST (I)  

(NUMBERS IN COLUMNS H1+ AND H1- INDICATE THE NUMBER OF 
STATISTICAL TESTS THAT REJECT HYPOTHESIS H0. TOTAL SIGNIFICANCE 

TESTS PER METHOD TO METHOD COMPARISON PAIR IS 108) 

Methods  HC IM 
 H+ H- H+ H- 

1-to-1 76 29 21 86 
HC - - 3 104 

 

Table 3 summarizes the three pair-wise comparisons by 
listing the number of statistical tests rejecting the null 
hypothesis (I) at 95% significance level.  As evident from 
the number of statistically significant test counts, IM 
clearly dominates 1-to-1, which in turn dominates HC. 

As demonstrated in [14], HC dominates 1-to-1 for the 
low-volume, highly idiosyncratic customers assuming that 
a good clustering method is used for HC.  Therefore, we 
decided to do the same type of comparison, as reported in 
Table 3 but just for the High-Volume customers (Table 4) 



and the Low-Volume customers (Table 5), where the high-
volume customers constitute customers with at least 
hundred transactions per household, and the low-volume 
customers constitute customers with just ten transactions 
per household for ComScore and simulated datasets and 
about forty transactions per household for Nielsen datasets 
(See Table 1).    

As Tables 4 and 5 show, 1-to-1 still dominates HC for 
both high- and low-volume customers, suggesting that the 
statistics-based clustering is inferior to 1-to-1 for both the 
high- and the low-volume customers.  We also note that 1-
to-1 performs somewhat better against IM among high-
volume datasets relative to low-volume datasets, which 
does make intuitive sense, as the high-volume customers 
would be more probable to have enough transaction data to 
effectively model individual customer behavior.  However, 
IM still shows significant performance dominance against 
both 1-to-1 and HC across all the experimental conditions, 
including high- and low-volume customers. 
 

TABLE 4. PERFORMANCE TESTS ACROSS ALL 1-TO-1, HC, AND IM  
FOR HYPOTHESIS TEST (I)  

AMONG HIGH-VOLUME CUSTOMERS  
(NUMBERS IN COLUMNS H1+ AND H1- INDICATE THE NUMBER OF 

STATISTICAL TESTS THAT REJECT HYPOTHESIS H0. TOTAL SIGNIFICANCE 
TESTS PER METHOD TO METHOD COMPARISON PAIR IS 54) 

Methods HC IM 

 H+ H- H+ H- 

1-to-1 43 11 19 34 

HC - - 1 53 
 

To get a sense of the magnitude of the dominance that 
IM has over 1-to-1, we computed the difference between 
the medians of each distribution. For a particular dataset, 
dependent variable, classifier and performance measure, we 
took the two distributions of the performance measures 
across all the segments for the IM and all the individual 
customers for the 1-to-1 methods. Then we determined the 
medians of the two distributions2 (one for IM and one for 
1-to-1), and computed the differences between them. We 
repeated this process for all the 108 comparisons across the 
six datasets, 3 dependent variables per dataset, two 
classifiers, and 3 performance measures, and plotted out the 
histograms of the median differences for the CCI, RME, 
and RAE measures in Figure 2-4 respectively. Note that to 
plot out histograms across real values, we grouped the 
median differences across the distribution comparisons into 
bins along the X-axis, while the Y-axis represent the 
number of tests that falls within the median difference bin. 

The negative values for the CCI measure and positive 
values for the RME and RAE measures in Figures 2 – 4 
                                                        

2 We selected the medians, rather than the means, of these performance 
measure distributions because these distributions tend to be highly skewed 
and the medians are more representative of the performance of the 
distributions than their averages. 

show that IM significantly outperforms the 1-to-1 method 
across most of the experimental conditions, thus providing 
additional visual evidence and the quantitative extent of the 
dominance of IM over 1-to-1 that was already statistically 
demonstrated with the Mann-Whitney tests. 

We also did the same type of comparison for the HC and 
the IM methods. We show in Figure 5-7 the left skewed 
median difference distribution for the CCI measure and the 
right skewed median difference distributions for the RME 
and RAE measures.  As in the case of IM vs. 1-to-1, 
Figures 5 – 7 clearly demonstrate IM’s dominance over 
HC. 

 

TABLE 5. PERFORMANCE TESTS ACROSS ALL 1-TO-1, HC, AND IM  
FOR HYPOTHESIS TEST (I)  

AMONG LOW-VOLUME CUSTOMERS  
(NUMBERS IN COLUMNS H1+ AND H1- INDICATE THE NUMBER OF 

STATISTICAL TESTS THAT REJECT HYPOTHESIS H0. TOTAL SIGNIFICANCE 
TESTS PER METHOD TO METHOD COMPARISON PAIR IS 54) 

Methods HC IM 
 H+ H- H+ H- 
1-to-1 33 18 2 52 
HC - - 2 51 

 

Lastly, we did the same type of comparison for the HC 
and the 1-to-1 methods, and the results are reported in 
Figures 8 – 10.  As Figure 8 shows, 1-to-1 clearly 
dominates HC in terms of median CCI difference 
distributions.  However, the small difference in RME error 
and the relatively evenly distributed RAE median 
difference distribution indicate that 1-to-1 produces 
approximately the same amount of errors as HC.  Thus, 
unlike the case of IM’s dominance over HC, the 1-to-1 
approach does not clearly dominate HC across all the 
experimental conditions.         
 
6.3. Performance Distributions of the 1-to-1, HC, 
and IM Methods 
 

We can gain further insight into the issue of performance 
dominance by plotting percent histograms of CCI 
distributions across different methods and different 
experimental conditions.  Because of the space limitation, 
we present only three representative examples of these 108 
performance measure histograms in Figures 11 – 13.  

Figure 11 shows the histogram of the CCI performance 
measure distribution of the Naïve Bayes models generated 
by 1-to-1 approach across 1,000 unique customer’s data 
from the High-volume ComScore dataset. The x-axis 
indicated the actual CCI score from a specific NaiveBayes 
model trained and tested on a specific segment of 
customers, while the y-axis indicates the percentage of all 
the models having the corresponding CCI performance 
measure.  Note how the CCI score varies from 10% to 



100% correct, and the mean of the distribution is slightly 
above 50%. 
 

 
Figure 11. Example Histograms of CCI measures generated by the 1-to-1 
method using NaiveBayes on the attribute “Day of the Week” for High-
Volume ComScore data 

 

Figure 12 displays the histogram of the CCI performance 
measure distribution of the best performing segment-level 
(as explained in Section 4.1) within the set of models 
trained on segments generated by HC.  Note how the CCI 
scores now have a tighter range, from close to 20% to 60% 
correct if we discount some outliers.  However, the mean of 
the CCI distribution is significantly lower, at a little less 
than 30%.  This illustrates our findings in the previous 
section, where compared to 1-to-1, HC has reduced 
variance and error, but also has a lower CCI measure. This 
finding is consistent with the results of the Mann-Whitney 
distribution comparison tests for 1-to-1 vs. HC, as reported 
in Table 4. 

 

 
Figure 12. Example Histograms of CCI measures generated by the HC 
method using NaiveBayes on the attribute “Day of the Week” for High-
Volume ComScore data  

 

Figure 13 shows CCI distribution generated by the IM 
methods.  Note that the distribution is slightly wider than 
that of HC, ranging from 30% to 90%.  However, IM has 
tighter variance than 1-to-1 and does not drop in CCI mean 
relative to 1-to-1 and definitely has a higher mean 
compared to HC.  This CCI distribution generated by IM 
clearly shows improved performance over the HC and 1-to-
1 methods for the reasons demonstrated above, which is 
consistent with the results of the Mann-Whitney 
comparison tests as also reported in Table 4. 

 

 
Figure 13. Example Histograms of CCI measures generated by the IM 
method using NaiveBayes on the attribute “Day of the Week” for High-
Volume ComScore data  

 

Again, Figures 11 – 13 provide only three examples of 
distributions of the CCI measure out of the total of 108 
histograms. However, these examples are very typical and 
clearly delineate the differences between the IM, HC and 
1-to-1 methods. Therefore, these selected CCI histograms 
provide additional insights into the nature of the IM 
dominance over the 1-to-1 and HC methods, as 
demonstrated in Tables 3 – 5 and Figures 2-7. 

In summary, our empirical analysis clearly shows that, 
contrary to the popular belief [23], the 1-to-1 approach is 
definitely not the best solution for predicting customer 
behaviors.  On the other hand, IM, which is essentially a 
micro-segmentation approach to segmentation, shows clear 
dominance over all methods tried in our experimental 
settings. 

However, we noted that there are some high performing 
size-one segments that were present in the distribution of 1-
to-1 CCI in Figure 11, which did not get picked by the IM 
method as presented in Figure 13.  This shows that, while 
the IM method is statistically dominant over 1-to-1 and 
HC, IM is still not the optimal segmentation solution 
described in Section 2.  Nevertheless, IM’s dominance over 
other popular segmentation methods across all the 
experimental settings indicates that it constitutes a sound 
initial approach towards reaching the final goal of 
generating best computationally tractable approximate 
solutions of the intractable optimal segmentation problem. 
 
7. In depth analysis of IM 
 

In this section we make a closer examination of the 
segments created by the IM method.  Specifically, we want 
to study the distribution of segment sizes generated by IM 
and investigate ways to improve IM. 
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Figure 14. The distribution of segment sizes generated by IM across High-
volume datasets 

 

Figure 14 shows the distribution of segment sizes 
generated by IM for the high-volume customer datasets 
aggregated over all the experimental conditions.  We note 
that the overall counts of segments peaks at segments of 
size two and then decrease steadily as the segment sizes 
increase.  We also observe small counts among segments of 
odd sizes, which is an expected artifact of the IM algorithm 
where segment groups of roughly equal sizes were 
iteratively merged to improve performance.  However, IM 
does not inherently discriminate against segments of size 
one’s.  Rather, segments will remain as size one if there are 
no other segment, once combined, that could improve the 
new combinations’ overall fitness.  Thus, these 
observations provide evidence against the 1-to-1 approach 
to personalization, as most of size-one segments do find at 
least one other size-one segment to merge and improve the 
overall performance, as evident from the spike in size-two 
segments in Figure 14. 
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Figure 15. The distribution of segment sizes generated by IM across Low-
volume datasets 

 

Figure 15 shows the distribution of segment sizes 
generated by IM across low-volume customer datasets.  
Interestingly, the spike of the segment size distribution 
occurs at segments of size four. This does make intuitive 
sense, as low-volume customers need to form bigger groups 
in order to reach the “critical mass” in terms of the data 
necessary for building good predictive models.  Taken 
together, both Figure 14 and 15 suggest that IM’s 

dominance over 1-to-1 and HC is largely due to the 
formation of large numbers of small customer segments, 
thus adding support to the use of micro-segmentations in 
forming robust and effective customer behavior models. 

The distribution of segment sizes generated by IM (as 
shown in Figures 14 and 15), clearly indicates that IM was 
able to find better performing groupings than just simple 
size-one segments.   The peak at segment size of two and 
four implies that segments of small sizes, but sizes greater 
than one, are better performing segments for IM.  And by 
the definition of IM, these small multi-customer segments, 
when modeled together, significantly outperform their 
respective individual segments of size one, as demonstrated 
from IM’s dominance over 1-to-1.   

While the IM direct grouping approach does not 
constitute an optimal grouping, the lack of size-one 
segments after many rounds of attempted segment merges 
implies that there will not be many size-one segments in the 
optimal solution.  In addition, the optimal solution will 
definitely dominate the 1-to-1 solution, and we conjecture 
that it will contain predominantly small sized segments, 
resulting in a micro-segmented solution, as in the case of 
IM. We emphasize this lack of size-one segments in the 
optimal solution is only a conjecture and need to be proven, 
as we investigate better methods to approach the optimal 
partition solution.  

As one additional step in the analysis, we characterize 
the rate of decline in segment counts as segment sizes 
increase past the initial peaks in the distribution of segment 
sizes.  From Figures 14 and 15, we observe that the rate of 
decline in segment counts follows the Zipf’s distribution 
[29], and we formally tested and proven this conjecture as 
follows. Zipf’s law states that    
  

 ( ) ( )naPn loglog −≈   (2) 
where Pn is the frequency of occurrence of a segment of 
size n. 

We fitted the regression model (2) against the high-
volume and low-volume data to test the Zipf’s law 
hypothesis, and it turned out that the regression model 
indeed fitted the data. In particular, the coefficient a in 
Equation (2) for the high-volume customers, the 
segmentation size distribution starting from segment size 
two has a value of a=0.828, with p-value less than 0.001.  
As for low-volume customers, segmentation size 
distributions starting from segment size four has a=1.67, 
with p-value less than 0.01.  As with many natural 
phenomena that has a Zipf’s distribution, our result suggest 
that the decline rate in terms of segment counts per segment 
size, starting from the peak of the segment size distribution, 
would also follow a Zipf’s distribution in the optimal 
solution. However, formal analysis is required to prove this 



conjecture. 
 
8. Conclusions 
 

In this paper, we examined the problem of optimal 
partitioning of customer bases into homogeneous segments 
for building better customer profiles and proposed the 
direct grouping approach as a solution. This approach 
partitions the customers not based on computed statistics 
and particular clustering algorithms, but in terms of directly 
combining transactional data of several customers and 
building a single model of customer behavior on this 
combined data.  We formulated the optimal partitioning 
problem as a combinatorial optimization problem and 
showed that it is NP-hard. Then we proposed a suboptimal 
polynomial-time direct grouping method, IM, and 
compared IM against the traditional statistics-based and 1-
to-1 clustering approaches. We showed that IM 
significantly dominates the statistics-based approaches 
deploying standard clustering methods across all the 
experimental conditions examined in this paper. We also 
showed that, contrary to the popular beliefs, 1-to-1 turned 
out to be significantly inferior to IM across all the 
experimental conditions.  We then examined the nature of 
the segments generated by IM and observed that there were 
very few size-one segments, that the distribution of 
segment sizes reached a maximum at the very small 
segment sizes, and that the rate of decline in the number of 
segments after this maximum followed a Zipf’s 
distribution. This observation, along with the dominance of 
IM over 1-to-1, provides strong support for the micro-
segmentation approach to personalization, where the 
customer base is partitioned into a large number of small 
segments.  

As a future research, we would like to gain additional 
insights into the optimal customer partitioning problem, 
including the distribution of the segment sizes for this 
optimal partitioning (e.g., does it form the Zipf 
distribution?). We would also like to develop additional 
polynomial-time direct grouping methods that approach 
this optimal solution within some bounding limits and thus 
outperform IM and, hence, the 1-to-1 method.  Finally, we 
would like to test the effectiveness of our segmentation 
strategies not only in terms of predictive performance but 
also in terms of the standard marketing oriented 
performance measures such as customer value, profitability 
and other economics based performance measures.  
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