

The Long Tail of Recommender Systems and How
to Leverage It

Yoon-Joo Park
Stern School of Business, New York University

ypark@stern.nyu.edu

Alexander Tuzhilin
Stern School of Business, New York University

atuzhili@stern.nyu.edu

ABSTRACT
The paper studies the Long Tail problem of recommender systems
when many items in the Long Tail have only few ratings, thus
making it hard to use them in recommender systems. The
approach presented in the paper splits the whole itemset into the
head and the tail parts and clusters only the tail items. Then
recommendations for the tail items are based on the ratings in
these clusters and for the head items on the ratings of individual
items. If such partition and clustering are done properly, we show
that this reduces the recommendation error rates for the tail items,
while maintaining reasonable computational performance.

Categories and Subject Descriptors
H.3.3 [Information Storage and Retrieval]: Information Search and
Retrieval.
I.2.6 [Artificial Intelligence]: Learning.

General Terms: Algorithm, Performance, Experimentation.

Keywords: Long Tail, clustering, recommendation, data
mining

1. INTRODUCTION
Many recommender systems ignore unpopular or newly
introduced items having only few ratings and focus only on those
items having enough ratings to be of real use in the
recommendation algorithms. Alternatively, such unpopular or
newly introduced items can remain in the system but would
require special handling using various cold start methods, such as
the ones described in [1].

Using the terminology introduced in [2], these unpopular or
new items belong to the Long Tail of the item distribution, as
shown in Figure 1 for the MovieLens dataset. Following the spirit
of extensive research on the Long Tail phenomena [2], these types
of items should not be discarded or ignored but gainfully utilized
in recommendation methods. In this paper, we study the Long
Tail of recommender systems and propose a new method of
managing such items from the Long Tail. In particular, we
propose to split items into the head and tail parts and group items
in the tail part using certain clustering methods. We show that
such splitting and grouping improves recommendation
performance as compared to some of the alternative non-grouping

and fully-grouped methods. We demonstrate this performance
improvement by running various experiments on two "real-world"
datasets. Finally, we examine head/tail splitting strategies
reducing error rates of recommendations and demonstrate that this
partitioning often outperforms clustering of the whole itemset.

The Long Tail problem in the context of recommender
systems has been addressed previously in [3] and [4]. In
particular, [3] analyzed the impact of recommender systems on
sales concentration and developed an analytical model of
consumer purchases that follow product recommendations
provided by a recommender system. The recommender system
follows a popularity rule, recommending the bestselling products
to all consumers, and they show that the process tends to increase
the concentration of sales. As a result, the treatment is somewhat
akin to providing product popularity information. The model in
[3] does not account for consumer preferences and their
incentives to follow recommendations or not. Also [3] studied the
effects of recommender systems on sales concentration and did
not address the problem of improving recommendations for the
items in the Long Tail, which constitutes the focus of this paper.
In [4], a related question has been studied: to which extent
recommender systems account for an increase in the Long Tail of
the sales distribution. [4] shows that recommender systems
increase firm’s profits and affect sales concentration.

Another related problem is the problem of the cold start [1].
This is the case because our approach can be viewed as a solution
to the cold start problem for the items in the Long Tail that have
only very few ratings. A popular solution to the cold start problem
utilizes content-based methods when two items with no or only
few ratings are inferred to be similar based on their content [1]. In
our work, we use grouping of items in the long tail, rather than the
content-based methods to identify similar items and to leverage
their combined ratings to provide better recommendations.

Our work is also related to the clustering methods used in
recommender systems. In particular, [9] clusters similar users into
the same cluster to overcome the data sparsity problem for
collaborative filtering. Also in [8], item clustering is used to
improve the prediction accuracy of collaborative filtering where
items were divided into smaller groups, and existing CF
algorithms were applied to each group category separately. We
use related clustering ideas but in the context of the Long Tail
phenomenon to leverage few ratings of the items in the Long Tail.

2. BACKGROUND
In this section, we provide some background information about
the Long Tail problem in recommender systems and its solutions.

2.1 Preliminaries
We assume that there is a set of items I, a set of customers C and
the set of known ratings R = {rij} provided by the customers in C

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
RecSys’08, October 23–25, 2008, Lausanne, Switzerland.
Copyright 2008 ACM 978-1-60558-093-7/08/10...$5.00.

11

for the items in I. Let Ri = {rij} be the set of ratings provided by
customers in C for item i. We order all the items in I according to
the number of ratings |Ri| provided by customers for that item.
The histogram in Figure 1 presents the frequency distribution of
the item’s rating numbers and follows the Long Tail [2] for the
MovieLens dataset [5] described in Section 4. The whole itemset I
can be partitioned into the head H and the tail T parts by selecting
a cutting point α along the x-axis of the histogram.

Figure 1. Histogram of the items’ (movies’) rating frequencies

for the MovieLens data.
In this paper, we assume that the recommendations are provided

as follows. First, we group items in I according to some clustering
algorithm [7]. Then for each cluster of items Ik we build a data
mining model predicting unknown ratings in the cluster Ik based on
the known ratings Rk = {rij}i∈Ik and the parameters of items in cluster
Ik and customers in C. For example, we can build a linear regression
model for a cluster of items Ik using the known ratings for that
cluster to estimate the unknown ratings for the items in Ik. We can
also determine the error rates of these models, such as RMSE and
MAE, by testing performance of these data mining models on the
holdout data.

In order to build these data mining models, we first need to
specify the variables pertaining to items I and customers C. We
assume that customers C have certain attributes, such as name, age,
gender and address, associated with the customers and that items in
I have attributes, such as item name, price, size and weight,
associated with them. In addition to these attributes, we also
introduce derived variables DV for the customers and items that are
computed from the customer and item attributes and the ratings
information. Some examples of derived variables are:
1) the average rating provided by a customer for the rated items
2) the total number of ratings that the customer provided
3) the total number of ratings for an item.

The independent variables used in the aforementioned data mining
models include the item-related and the derived variables.

If we do not group items, as explained above, and build data
mining models for each individual item i in I to estimate unspecified
ratings for i, we call it Each Item (EI) recommendation method. For
example, in case of the MovieLens dataset, we ordered 1682 movies
from that dataset based on the number of available ratings for a
movie. Than we build a predictive model for each of the 1682
movies using the ratings of that particular movie (thus, we built
1682 models in total). The independent variables are some of the
derived variables, such as the number of ratings that the customer
provided, the average popularity of the movies that customer gives
high rating and the popularity of the movie, etc. For example, if

movie Toy Story had 272 ratings, we can build a linear regression
model to predict the unknown ratings for that movie, use RMSE to
measure performance of the model, and apply 10-fold cross
validation to compute RMSE for that movie. This process was
repeated 1682 times for each movie in MovieLens. As Figure 1
demonstrates, the movies in its long tail have only few ratings, and
predictive models are learned from only few training examples
using the EI method. Finally, since we used 10-fold cross validation,
the minimal number of ratings needed for the model-building
purposes was 10, which was the case with MovieLens.

In contrast, when we group items by applying clustering
methods to the whole itemset I, we call it Total Clustering (TC)
recommendation method. In other words, TC clusters the whole
itemset I into different groups and builds rating predictive models
for each resulting group. Finally, if we split itemset I into the head H
and tail T, apply clustering only to the tail T while leaving head
items un-clustered, and build data mining models for each cluster in
tail T and individual models in head H, we call it Clustered Tail
(CT) recommendation method.

The main problem with the Each Item (EI) recommendation
method is that only few ratings are available in the Long Tail, and
the performance rates of these models deteriorate in the Long Tail
of the itemset I. We describe this problem in Section 2.2 and present
various ways to address it in the rest of the paper.

2.2 The Long Tail Problem of Recommender
Systems
We used the Each Item (EI) method to build rating estimation
models for individual items in I, as described in Section 2.1. We
have used Weka [7] to repeat this model building process across two
datasets (MovieLens and BookCrossing), two types of performance
measures (MAE and RMSE) and nine types of predictive models:
(1) SimpleLinearRegression (SLR), (2) Gaussian radial basis
function network (RBF), (3) Support vector machines (SVM), (4) K-
nearest neighbours (KNN), (5) Locally-weighted learning (LWL), (6)
Bagging classifier (Bagging), (7) DecisionStump tree
(DecisionStump), (8) M5P model tree (M5P) and (9) 0-R Rule
Induction classifier (ZeroR). Furthermore, we have build these
individual item models using five sets of derived variables that
served as independent variables in the model. Therefore, the total
number of experiments for Each Item method are 90 (2 × 9 × 5) for
each data set.

The performance results for some of these experiments are
presented in Figures 2 and 3. Figures 2(a, b) show the MAE and
RMSE error rates respectively for each of the aforementioned nine
predictive models for the MovieLens dataset. The movies in the
graphs are ordered according to the number of ratings (ranks) that
are plotted on the x-axis. Figures 3(a, b) provide the same
measurements information, but for the BookCrossings dataset.

All the four figures Fig 2-3(a, b) show that the error rates
increase in the tail of the figures (for the items with only few
ratings). To demonstrate this effect more clearly, we performed the
correlation analysis and computed Pearson’s correlation coefficients
between the rating numbers and error rates. The results are
presented in Table 1, and it shows that all the 90 models for the
BookCrossing dataset have significant negative correlations
between the rating numbers and the error rates and 70 (out of 90)
models have significant negative correlation for the MovieLens

12

dataset. This result demonstrates that, when the rating numbers
decrease, then the error rates tend to increase.

Figure 2. Error rates for Each Item method for the MovieLens

dataset for different predictive models. On the x-axis is the
number of ratings for movies in decreasing order.

Figure 3. Error rates for Each Item method for the BookCrossing

dataset for different predictive models. On the x-axis is the
number of ratings for books in decreasing order.

In summary, we showed that for the EI rating estimation
method, the error rates tend to increase for the low-ranked items
in the tail of itemset I. We call this problem the Long Tail
Recommendation Problem (LTRP). It occurs because rating
prediction models do not have enough data for the less popular
items in the Long Tail. We address this problem in the rest of this
paper. One way to do it is to cluster items in I so that predictive
models are learned using more data, thus, decreasing error rates
for the less popular items. We describe this approach next.

Table 1. Correlation analysis result for the graphs in Figures 2
and 3 for the BookCrossing and MovieLens datasets

Pearson’s Correlation
Coefficient

of EI models for
BookCrossing

of EI models for
MovieLens

Significant Correlation 90 (/90) 70(/90)
Less than -0.5 70 43
Less than -0.6 66 22
Less than -0.7 40 5

2.3 Solution to the Long Tail Problem:
Clustering the Whole Itemset
Since the LTRP problem is caused by the lack of data to build
good predictive models in the tail, clustering items using the Total
Clustering (TC) method from Section 2.1 can be a reasonable
solution since it can provide more data for the less popular items.

In this section we compare the EI and the TC methods. The
experimental settings for the TC method are the same as for EI, as
described in Section 2.2; however the TC method has an
additional factor – the number of clusters. Thus, for the TC
models, we consider nine data mining methods, five sets of the
independent variables, two performance measurements and five
clustering groups having 10, 20, 30, 40 and 50 clusters in total.
We cluster items in these groups using the Expectation-
Maximization (EM) clustering method [7]. Thus, the number of
experiments for the TC case becomes 450.

For example, in case of the MovieLens dataset, we cluster
1682 movies into 10 group using the EM method [7] and build a
predictive model, e.g., a Support Vector Machine for each group
(10 SVM models in total). If we want to predict the unknown
rating of movie The Other Boleyn Girl for customer C then the TC
method, first, determines into which of these 10 groups that movie
belongs. If the movie belongs to group G5, consisting of 30 other
movies having 10000 transactions among them, then TC applies
SVM method to group G5 and computes RMSE error rates using
10-fold cross validation on these 10000 ratings. This process was
repeated 10 times on MovieLens for each cluster.

Figures 4 and 5 show the RMSE rates for the TC and EI
methods across the MovieLens and BookCrossing datasets
respectively. Figure 4 uses the Simple Linear Regression (SLR)
method and 10 clusters for the TC method. Figure 5 uses the
Locally-Weighted Learning (LWL) method and also 10 clusters
for the TC method. These two graphs clearly show that the TC
outperforms the EI method, especially in the tail of the
distribution, where the gap between the two lines is clearly
visible. In order to formally verify this visual observation, we
performed the paired t-test. Table 2 presents the paired t-test
results and shows that for the MovieLens data in 448 (out of 450)
cases the error rates of the TC models are significantly smaller
than the EI error rates at the 95% confidence levels. Likewise, in

13

440 (out of 450) cases the error rates of the TC models are
significantly smaller than for the EI method for BookCrossing
data. Thus, we conclude that the TC outperforms the EI method.

Table 2. Paired t-test result comparing Total Clustering (TC) vs.
Each Item (EI) methods.

Dataset Err.CT<Err.EI Err.EI<Err.CT Err.CT=Err.EI
MovieLens 448 0 2
BookCrossing 440 1 9

Figure 4. RMSE error rates of Total Clustering (with 10 clusters)

vs. Each Item method using SLR for the MovieLens dataset.

Figure 5. RMSE error rates of Total Clustering (with 10 clusters)
vs. Each Item method using LWL for the BookCrossing dataset.

We next studied computational performance of the TC method
to see how scalable it is to large recommendation problems. To
address this issue, we ran all the 9 data mining methods described in
Section 2.2 on the MovieLens dataset and clustered all the items in
I. We ran this problem on a grid at the Stern school for 8 days and
would complete only 50% of the job (our job had to be terminated
for technical reasons). This example clearly demonstrates that,
although superior to EI, the TC method is very slow and does not
scale well to large recommendation problems.

To address the Long Tail Recommendation Problem while
achieving reasonable performance results, in Section 3, we present a
solution that partitions the itemset I into the head and the tail and
does clustering only in the tail. We also demonstrate that this
approach produces smaller error rates than TC in some cases.

3. PROPOSED SOLUTION
We next describe how we split the items in I into the head H and tail
T, cluster the tail items T and build predictive models on the
resulting groups. Also, how to split the items into the head and the
tail should be decided carefully because it can result in different
recommendation error rates. In Section 5.2, we examine good

cutting strategies. However, in this section, we assume some
arbitrary partitioning of the itemset I into the head and the tail.

Having split I into head H and tail T, we cluster items only in tail
T as follows. First, for each item, we compute several derived
variables from the transactional variables for that item. For example,
for the movie items, examples of these derived variables are the
average rating of a movie (I_aver_rating), the popularity of the
movie (I_popularity) and how much customers liked the movie
(I_likablility). As a result, each item becomes a point in the space of
the derived variables. For example, if we have 10 derived variables
and 100,000 movies, then each movie becomes a point in the 10-
dimensional space that has 100,000 data points in total. Next, we
apply standard clustering methods to identify particular clusters in
that space (e.g. cluster these 100,000 points in the 10-dimensional
space). In this paper we used the EM clustering method [7].

We do not use clustering methods in the head H and build
individual predictive models for each item in H for the following
reason. As Figures 4 and 5 show, the error rates for the TC and EI
methods are relatively close near the origin of these two graphs,
which is in contrast to the error rates in the right parts of the graphs.
This can be explained by observing that the popular items in the
head have already considerable ratings data, unlike the less popular
items in the tail. Thus, clustering items in the head should not
contribute significantly to the performance of the corresponding
data mining models. Therefore, we cluster items only in tail T and
build individual data mining models for each item in the head. We
call this approach the Clustered Tail (CT) method.

After we cluster the items in T, we build predictive rating
estimation models on the resulting clusters. For example, if we
clustered movies A, B and C into one cluster, we take the ratings
assigned to these three movies, information about the movies and
customers and use linear regression to estimate unknown ratings of
the three movies.

We applied this process of clustering tail items across a variety
of experimental settings and measured by how much it improves
performance and solves the LTRP problem. We present our
experimental settings in Section 4 and the results in Section 5.

4. EXPERIMENTAL SETUP
In this section, we explain the experimental settings used for
validating the Clustered Tail (CT) method, including an overview of
the data used, selected variables, data mining methods, performance
measurements and statistical tests.
Data. We used two popular datasets in our study MovieLens [5] and
BookCrossing [6]. The MovieLens dataset contains 100,000 ratings
on the scale of 1 to 5 from 943 customers on 1682 movies. The
BookCrossing dataset contains 1,149,780 ratings on the scale of 1 to
10 from 278,858 customers on 271,379 books.
Variables. In order to predict unknown ratings, we used the
following derived variables (DV) as independent variables in our
data mining models. Customer-related derived variables DV are :

1. c_aver_rating: The average rating that customer gives for the
items that he or she saw before.

2. c_quantity: The number of ratings the customer rated before.
3. c_seen_popularity: The average popularity of the items that

the customer rated before.
4. c_seen_rating: The average rating of the items rated by the

customer, each rating being an average of all the ratings
provided by all the customers for that item.

14

5. c_like_popularity: The average popularity of the items rated
higher than the customer’s average ratings.

6. c_like_rating: The average rating of the items rated higher
than the customer’s average ratings, each rating being an
average of all the ratings provided by all the customers for
that item.

7. c_dislike_popularity: The average popularity of the items
rated lower than the customer’s average ratings.

8. c_dislike_rating: The average rating of the items rated
lower than the customer’s average ratings, each rating being
an average of all the ratings provided by all the customers
for that item.

 Item-related derived variables DV are:
9. I_aver_rating: The average rating of the item
10. I_popularity: The popularity of the item.
11. I_likablility: The difference between the rating of the

customer and their average rating.
Head/Tail Partitioning. We partitioned the total itemset I into the
head (H) and tail (T) parts in several places in our study. In
particular, we selected the head/tail cutting points at levels α = 30,
50, 70, 90 and 110, where level α means that the items with
frequency > α belong to the head H and with frequency < α
belong to the tail T of the item distribution.
Clustering. After partitioning items into head and tail, as
described above, we cluster items only in tail T as follows. We,
first, select variables I_aver_rating (9), I_popularity (10), and
I_likablility (11) from the list of derived variables, then we map
each item from tail T into the 3-dimensional Euclidian space
formed from these three variables, and finally apply the EM
clustering method [7] to the set of the resulting points. The
number of clusters in tail T used in the EM method in our studies
are 1, 10, 20, 30, 40 and 50. Note that if the number of clusters is
1, this means that we actually do not do any clustering in the tail.
Data Mining Models. We build the models estimating ratings for
the items in each cluster in T and also for each item in H. In
particular, we use Weka [7] and deploy the following data mining
models from Weka in our studies that we have already described
in Section 2.2: 1) SimpleLinearRegression (SLR), 2) Gaussian
radial basis function network (RBF), 3) Support vector machines
(SVM), 4) K-nearest neighbours (KNN), 5) Locally-weighted
learning (LWL), 6) Bagging classifier (Bagging), 7)
DecisionStump tree(DecisionStump), 8) M5P model tree(M5P)
and 9) 0-R Rule Induction classifier (ZeroR).
 For each of these models, the dependent variable is Rating and
independent variables are selected as follows. We use the
following 5 sets of the derived variables (DV) (1) through (11)
described above1 as independent variables in these data mining
models:

1) Used the whole DV
2) Used DV – 1, 2, 5, 6, 9, 10, 11
3) Used DV – 3, 4, 9, 10, 11
4) Used DV – 1, 7, 8, 9, 10, 11

 5) Used DV – 3, 4, 5, 6, 9, 10, 11
Performance Measurements. We use Mean Absolute Error
(MAE) and Root Mean Square Error (RMSE) as performance

1 The numbers to the right specify the variable numbers (1

through 11) as specified in the Variables part of Section 5.

measures. After building the model, we predict the unknown
rating on the holdout sample and calculate the error rates as:

(1)
2

1

n

i
iRMSE

e

n
==
∑

 (2) 1

| |
n

i
i

e
MAE

n
==
∑

In this section we described the experimental settings. In the
next section we present the results of our experiments.

5. EXPERIMENTAL RESULTS
In this section we present the results of the experiments described
in Section 4. In Section 5.1, we will focus on comparing the
Clustered Tail (CT) and the Each Item (EI) methods and
demonstrate that CT outperforms EI. In Section 5.2, we will focus
on finding the most appropriate head/tail cutting point and
determining the appropriate clustering number for the CT method.

5.1 Comparing the Clustered Tail and the
Each Item Methods
To compare the Clustered Tail (CT) and the Each Item (EI)
methods, we performed the paired t-tests across various
experimental settings described in Section 4. In particular, we
perform these tests across five sets of variables, five cutting
points, six clustering groups, nine data mining methods and two
measurements. This results in 2700 comparisons of the CT and EI
methods for each dataset.

For each of the 2700 cases, we compute the error rates for the
particular predictive model for each item in the itemset I for the
CT and the EI methods. To check for the statistically significant
differences between them, we performed paired t-tests, but only
for the items in the tail T of the distribution. In other words, if E =
(e1, …, en) and E' = (e'

1, …, e'
n) are the error rates for items I from

the tail T for methods CT and EI respectively, then we perform
the paired t-test of sets E and E' to detect the statistically
significant differences between the two. The reason for
considering the errors only in the tail T, is that the errors in the
head H for the two methods CT and EI are the same, and there is
no point in including them in the test.

The t-test comparison results are presented in Table 3. Table 3
shows that for the MovieLens dataset the CT model outperforms
the EI model in 2464 cases at a 95% confidence interval out of the
total 2700 comparisons. Similarly, for the BookCrossing dataset,
the CT model outperforms the EI model in 2525 cases.

Table 3. Paired T-test Result (Statistically significant at the 95%
confidence interval)

Dataset Err.CT<Err.EI Err.EI<Err.CT Err.CT=Err.EI
MovieLens 2464 116 120
BookCrossing 2526 70 104

Table 3 provides only overall comparison information across
the CT and the EI methods, without showing any specifics for the
individual comparisons. Since there are 2700 of them in total, it is
impossible to present the specifics on all of them. Therefore, we
decided to examine the performance differences between the CT and
the EI models for some selected individual setting (out of the total
of 2700 of them).

15

As an example, Figure 6 shows the RMSE error rates for the CT and
EI methods using the whole set of 11 derived variables as the
independent variables and building the model using the
DecisionStump data mining method for the MovieLens dataset.
Also, the head/tail cutting point is 110 and the number of clusters is
10 for the CT method presented in Figure 6. Similarly, Figure 7
shows the RMSE error rates for the CT and the EI methods using
the whole derived variables as the independent variables and
building Bagging predictive model for BookCrossing dataset. Also,
the head/tail cutting point is 90 and the number of clusters is 10 for
the CT method presented in Figure 7.

The graphs in Figures 6 and 7 clearly show that the CT method
outperforms the EI method in the tail T. These representative
examples provide a typical picture of the paired comparisons across
the 2700 experimental settings: the CT and the EI graphs are the
same in the head and the initial parts of the tail, but then error rates
diverge at the end of the tail, as Figures 6 and 7 show. This
divergence accounts for the overwhelming dominance of the CT
over the EI method as is evident from the t-test results reported in
Table 3.

Figure 6. RMSE error rates of Each Item and ClustedTail using

110-10 methods for the MovieLens dataset.

Figure 7. RMSE error rates of Each Item and ClustedTail 90-10

methods for the BookCrossing dataset.

We next present the magnitudes of the performance differences
between the two methods. In particular, Figure 8 presents the
histogram of the average improvement rate of CT vs. the EI methods
for the RMSE errors for the MovieLens dataset taken across all the
1350 experimental settings described in Section 4, where the
Improvement rate is computed as

Improvement rate (%) 100(%)EI CT

EI

RMSE RMSE
RMSE

−
= ×

For example, as Figure 8 demonstrates the CT method achieves
the 8% improvement rate vs. the EI method in terms of the RMSE
errors on the MovieLens data in 217 cases. Similarly, Figure 9

presents the histogram of the average improvement rate of CT vs.
the EI methods for the RMSE errors for the BookCrossing dataset.

As Figures 8 and 9 demonstrate, the CT method significantly
outperforms the EI method in most of the cases. Only in 49 cases
(out of total of 1350) the differences between the CT and EI
performances are negative for the MovieLens and in 53 cases for the
BookCrossing datasets. Also, the performance improvements go as
high as 11.78% for the MovieLens and 72.45% for the
BookCrossing datasets.

Figure 8. Histogram of the average RMSE improvement rate of

CT models vs EI model for the MovieLens dataset.

Figure 9. Histogram of the average RMSE improvement rate of

CT models vs EI model for the BookCrossing dataset (the
rightmost bar stands for > 29).

All these statistical and visual comparisons of performance
results across extensive experimental conditions clearly show that
the CT method produces significant performance improvements vs.
the EI method. All this means that clustering each item in the Long
Tail T indeed produces better recommendations.

In the next subsection, we examine where to cut the itemset I
into head H and tail T parts and how to cluster the items in tail T.

5.2 Finding the Right Cutting Points
As was observed earlier in the paper, error rates in the tail T depend
on where we cut the itemset into the head and tail. In this section we
empirically study where the best cutting points are and whether it
makes sense to partition the items into the head H and tail T in the
first place.

To study this problem, we consider the following five cutting
points: i = 30, 50, 70, 90 and 110. A cutting point i means that the
items with the ratings frequency more than i belong to the head H
and the items with frequency less than i to the tail T. In addition, we
also consider the special case of a vacuous head H, where all the
items appear only in tail T (and nothing in the head). Note that this
is the Total Clustering (TC) case described and discussed in Section

16

2.3. As explained in Section 4, in addition to these cutting points,
we also consider different numbers of clusters in tail T, ranging
from 1 to 50 in the increments of 10 (i.e., 6 different numbers of
clusters: k = 1, 10, 20, 30, 40 and 50). However, we do not deal with
the clustering number k = 1 for the Total Cluster (TC) case (i.e.,
placing the whole dataset into one big cluster and having no items in
head H) because it turns out that this particular case is
computationally very expensive. This means that we deal with 35
cases in total in this section (6 cutting points i and 6 clustering
numbers k, minus the special case of k = 1 for the Total Cluster case,
as just described).

We next compute error rates for each of the 35 cut/cluster
combinations described above, and we do it across various
experimental settings described in Section 4 (45 such settings for
each error rate (RMSE and MAE) and each dataset (MovieLens and
BookCrossing) – 180 settings in total). For instance, two examples
of such cut/cluster combination graphs are presented in Figure 10
for the MovieLens and two in Figure 11 for the BookCrossing cases.

These four examples demonstrate that error rates are sensitive to
the right mixture of the cut/cluster combinations in certain
experimental settings. For example, in Figure 10(a), the
combination of cutting point 110 and cluster number 1 (110-1)
produces the minimum average error rate RMSE = 0.9295 for
MovieLens dataset, and in comparison, the worst cut/cluster
combination of 30-50 Produces RSME = 0.967, which constitutes
3.75% performance improvement. Similar observations are
applicable to the other three graphs presented in Figures 10(b) and
11(a, b).

Figure 10. Average RMSE according to the cutting point and

the clustering number for MovieLens dataset.
Another important question is to determine for which values of i

and k the error rates reach the minimal levels (such as i = 110 and k
= 1 in Figure 10(a)). We did this analysis across all the 90

experimental conditions for each of the two datasets (while only 4
of them are presented in Figures 10(a, b) and 11(a, b)).

The results of this analysis are presented with the white bars
(representing the best model case) in Figure 12 for the MovieLens
and in Figure 13 for the BookCrossing datasets. Both Figures 12 and
13 show that in a significant number of cases, the TC solution
constitutes the best case scenario producing the minimal error rates.
For example, Figure 11(a) clearly demonstrates this point since the
minimal error rate is achieved for the Total_50 case.

However, if we examine Figure 10(b), we can see that the
difference between the smallest error rate achieved for Total_20 and
the second best point of 110-30 is highly insignificant (1.0218 vs.
1.0227 in this case). This means that, even though the Total
Clustering (TC) is theoretically the best solution, in practice it may
not be the case since it is usually computationally very expensive,
while it achieves highly insignificant improvements in error rates.
Therefore, it may be better to replace such TC model with the
second best, but much cheaper CT model. We next compare
performances of the Best vs. Second-best models by applying the
paired t-tests to the overall performances of the corresponding
models. If the differences are statistically insignificant at the 95%
confidence level, we replace the best-performing TC with the
second-best-performing CT model. Then the Practical best
performing model (Practical solution) is: select the best-performing
model TC if the second-best one is significantly worse.
Alternatively, if the performance differences are statistically
insignificant, then select the second best CT model. The histograms
of the Practical solutions are shown with black bars in Figures 12
and 13 for MovieLens and BookCrossing datasets respectively.

 Figure 11. Average RMSE according to the cutting point and the

clustering number for BookCrossing dataset.
As Figures 12 and 13 demonstrate, there are significantly

fewer best-performing Practical models for the Total Clustering
(TC) case. In fact, most of the practically best-performing models
fall within the middle region in both figures (Figures 12 and 13).

17

This result demonstrates that partitioning the itemset I into head
and tail and clustering items in the tail is often the best solution
dominating the Total Clustering in practice.

Figure 12. Histogram of the best model for MovieLens

dataset.

Figure 13. Histogram of the best model for BookCrossing dataset.

6. CONCLUSION
In this paper, we identified the Long Tail Recommendation
Problem (LTRP) responsible for the increased error rates of the
items in the Long Tail of the item distribution. We showed that a
simple item grouping method, although effective at reducing these
rates, is not practical since it does not scale well to large
problems.

Therefore, we proposed to partition itemset I into the head H
and the tail T parts and cluster the items in the tail T, while
keeping the basic Each Item (EI) approach for the head items H.
We showed that this solves the LTRP problem in the sense that
the error rates of the items in tail T are significantly lower than for
the basic EI method. Moreover, we also showed that this approach
of the head/tail partitioning of itemset I and grouping items in T is
more scalable than grouping the whole itemset I.

We also studied the problem of selecting good head/tail
cutting points α and identifying the right numbers of item clusters
in the tail. We showed that in some cases grouping of the whole

itemset I (no head/tail partitioning) results in the best performance
results. However, in many cases in our study, it turns out that the
best cutting point α lies somewhere in the middle of the itemset
distribution histogram and therefore the TC method does not
always constitute the best approach. This also means that a good
cutting point α and the right number of tail clusters need to be
selected carefully since these parameters affect the performance
of recommender systems significantly and the good choices of
their values depends on various parameters that vary across
different datasets and recommendation approaches.

In summary, the contributions of this work lie in showing that
a) the item-based Long Tail of the ratings distribution does
matter; b) the items in the Long Tail can be used productively by
clustering them into various groups; c) the practically best
head/tail cutting points often lie in the middle of the range, as
Figure 13 shows, and empirically finding such cutting points.

In the future, we plan to address scalability issue since some
of our experiments took a long time to run, especially when the
head/tail cutting point α was skewed more towards the head and
the number of clusters in the tail was small. We would also like to
develop incremental algorithm for determining optimal splitting
points when new rating and other data about items and users is
added or changed dynamically. We would also like to combine
our CT method with other recommendation approaches, such as
collaborative filtering, and see if this combined method improves
performance even further. Finally, we studied the binary splitting
problem of the itemset into the Head and Tail. In the future, we
would like to consider multiple (non binary) partitioning of the
item base, each partition having its own grouping methods.

7. REFERENCES
 [1] Schein, A., Popescul, A., Ungar, L. and Pennock, D. 2002.

Methods and Metrics for Cold-Start Recommendations. Proc.
of the 25th ACM SIGIR Conference.

[2] Anderson, C. 2006. The Long Tail. Hyperion press.
[3] Fleder, D.M., and Hosanagar, K. 2008. Blockbuster Cultures

Next Rise or Fall: The Impact of Recommender Systems on
Sales Diversity. NET Institute Working Paper No. #07-10.

[4] Hervas-Drane, A. 2007. Word of Mouth and Recommender
Systems: A Theory of the Long Tail. NET Institute Working
Paper No.07-41, November 2007.

[5] http://movielens.umn.edu.
[6] http://www.bookcrossing.com.
[7] Witten, I.H., and Frank, E. 2005. Data Mining: Practical

machine learning tools and techniques with Java
implementations. Morgan Kaufmann.

[8] Truong, K.Q., Ishikawa, F., Honiden, S. 2007. Improving
Accuracy of Recommender System by Item Clustering,
IEICE TRANSACTIONS on Information and Systems, E90-
D-I(9).

 [9] Ungar, L.H. and Foster, D.P. 1998. Clustering Methods for
Collaborative Filtering. Proceedings of the Workshop on
Recommendation Systems. AAAI Press.

18

