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ABSTRACT 
The paper studies the Long Tail problem of recommender systems 
when many items in the Long Tail have only few ratings, thus 
making it hard to use them in recommender systems. The 
approach presented in the paper splits the whole itemset into the 
head and the tail parts and clusters only the tail items. Then 
recommendations for the tail items are based on the ratings in 
these clusters and for the head items on the ratings of individual 
items. If such partition and clustering are done properly, we show 
that this reduces the recommendation error rates for the tail items, 
while maintaining reasonable computational performance.   

Categories and Subject Descriptors 
H.3.3 [Information Storage and Retrieval]: Information Search and 
Retrieval. 
I.2.6 [Artificial Intelligence]: Learning. 

General Terms: Algorithm, Performance, Experimentation. 

Keywords: Long Tail, clustering, recommendation, data 
mining 

1. INTRODUCTION 
Many recommender systems ignore unpopular or newly 
introduced items having only few ratings and focus only on those 
items having enough ratings to be of real use in the 
recommendation algorithms. Alternatively, such unpopular or 
newly introduced items can remain in the system but would 
require special handling using various cold start methods, such as 
the ones described in [1]. 

Using the terminology introduced in [2], these unpopular or 
new items belong to the Long Tail of the item distribution, as 
shown in Figure 1 for the MovieLens dataset. Following the spirit 
of extensive research on the Long Tail phenomena [2], these types 
of items should not be discarded or ignored but gainfully utilized 
in recommendation methods. In this paper, we study the Long 
Tail of recommender systems and propose a new method of 
managing such items from the Long Tail. In particular, we 
propose to split items into the head and tail parts and group items 
in the tail part using certain clustering methods. We show that 
such splitting and grouping improves recommendation 
performance as compared to some of the alternative non-grouping 

and fully-grouped methods. We demonstrate this performance 
improvement by running various experiments on two "real-world" 
datasets. Finally, we examine head/tail splitting strategies 
reducing error rates of recommendations and demonstrate that this 
partitioning often outperforms clustering of the whole itemset. 

The Long Tail problem in the context of recommender 
systems has been addressed previously in [3] and [4]. In 
particular, [3] analyzed the impact of recommender systems on 
sales concentration and developed an analytical model of 
consumer purchases that follow product recommendations 
provided by a recommender system. The recommender system 
follows a popularity rule, recommending the bestselling products 
to all consumers, and they show that the process tends to increase 
the concentration of sales. As a result, the treatment is somewhat 
akin to providing product popularity information. The model in 
[3] does not account for consumer preferences and their 
incentives to follow recommendations or not. Also [3] studied the 
effects of recommender systems on sales concentration and did 
not address the problem of improving recommendations for the 
items in the Long Tail, which constitutes the focus of this paper. 
In [4], a related question has been studied: to which extent 
recommender systems account for an increase in the Long Tail of 
the sales distribution. [4] shows that recommender systems 
increase firm’s profits and affect sales concentration.   

Another related problem is the problem of the cold start [1]. 
This is the case because our approach can be viewed as a solution 
to the cold start problem for the items in the Long Tail that have 
only very few ratings. A popular solution to the cold start problem 
utilizes content-based methods when two items with no or only 
few ratings are inferred to be similar based on their content [1]. In 
our work, we use grouping of items in the long tail, rather than the 
content-based methods to identify similar items and to leverage 
their combined ratings to provide better recommendations. 

Our work is also related to the clustering methods used in 
recommender systems. In particular, [9] clusters similar users into 
the same cluster to overcome the data sparsity problem for 
collaborative filtering.  Also in [8], item clustering is used to 
improve the prediction accuracy of collaborative filtering where 
items were divided into smaller groups, and existing CF 
algorithms were applied to each group category separately. We 
use related clustering ideas but in the context of the Long Tail 
phenomenon to leverage few ratings of the items in the Long Tail. 

2. BACKGROUND 
In this section, we provide some background information about 
the Long Tail problem in recommender systems and its solutions.  

2.1 Preliminaries 
We assume that there is a set of items I, a set of customers C and 
the set of known ratings R = {rij} provided by the customers in C 
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for the items in I. Let Ri = {rij} be the set of ratings provided by 
customers in C for item i. We order all the items in I according to 
the number of ratings |Ri| provided by customers for that item. 
The histogram in Figure 1 presents the frequency distribution of 
the item’s rating numbers and follows the Long Tail [2] for the 
MovieLens dataset [5] described in Section 4. The whole itemset I 
can be partitioned into the head H and the tail T parts by selecting 
a cutting point α along the x-axis of the histogram.  

 
Figure 1. Histogram of the items’ (movies’) rating frequencies 

for the MovieLens data. 
In this paper, we assume that the recommendations are provided 

as follows. First, we group items in I according to some clustering 
algorithm [7]. Then for each cluster of items Ik we build a data 
mining model predicting unknown ratings in the cluster Ik based on 
the known ratings Rk = {rij}i∈Ik and the parameters of items in cluster 
Ik and customers in C. For example, we can build a linear regression 
model for a cluster of items Ik using the known ratings for that 
cluster to estimate the unknown ratings for the items in Ik. We can 
also determine the error rates of these models, such as RMSE and 
MAE, by testing performance of these data mining models on the 
holdout data.  

In order to build these data mining models, we first need to 
specify the variables pertaining to items I and customers C. We 
assume that customers C have certain attributes, such as name, age, 
gender and address, associated with the customers and that items in 
I have attributes, such as item name, price, size and weight, 
associated with them. In addition to these attributes, we also 
introduce derived variables DV for the customers and items that are 
computed from the customer and item attributes and the ratings 
information. Some examples of derived variables are: 
1) the average rating provided by a customer for the rated items  
2) the total number of ratings that the customer provided 
3) the total number of ratings for an item. 

The independent variables used in the aforementioned data mining 
models include the item-related and the derived variables.  

If we do not group items, as explained above, and build data 
mining models for each individual item i in I to estimate unspecified 
ratings for i, we call it Each Item (EI) recommendation method. For 
example, in case of the MovieLens dataset, we ordered 1682 movies 
from that dataset based on the number of available ratings for a 
movie. Than we build a predictive model for each of the 1682 
movies using the ratings of that particular movie (thus, we built 
1682 models in total). The independent variables are some of the 
derived variables, such as the number of ratings that the customer 
provided, the average popularity of the movies that customer gives 
high rating and the popularity of the movie, etc. For example, if 

movie Toy Story had 272 ratings, we can build a linear regression 
model to predict the unknown ratings for that movie, use RMSE to 
measure performance of the model, and apply 10-fold cross 
validation to compute RMSE for that movie. This process was 
repeated 1682 times for each movie in MovieLens. As Figure 1 
demonstrates, the movies in its long tail have only few ratings, and 
predictive models are learned from only few training examples 
using the EI method. Finally, since we used 10-fold cross validation, 
the minimal number of ratings needed for the model-building 
purposes was 10, which was the case with MovieLens. 

In contrast, when we group items by applying clustering 
methods to the whole itemset I, we call it Total Clustering (TC) 
recommendation method.  In other words, TC clusters the whole 
itemset I into different groups and builds rating predictive models 
for each resulting group. Finally, if we split itemset I into the head H 
and tail T, apply clustering only to the tail T while leaving head 
items un-clustered, and build data mining models for each cluster in 
tail T and individual models in head H, we call it Clustered Tail 
(CT) recommendation method.  

The main problem with the Each Item (EI) recommendation 
method is that only few ratings are available in the Long Tail, and 
the performance rates of these models deteriorate in the Long Tail 
of the itemset I. We describe this problem in Section 2.2 and present 
various ways to address it in the rest of the paper. 

2.2 The Long Tail Problem of Recommender 
Systems  
We used the Each Item (EI) method to build rating estimation 
models for individual items in I, as described in Section 2.1. We 
have used Weka [7] to repeat this model building process across two 
datasets (MovieLens and BookCrossing), two types of performance 
measures (MAE and RMSE) and nine types of predictive models: 
(1) SimpleLinearRegression (SLR), (2) Gaussian radial basis 
function network (RBF), (3) Support vector machines (SVM), (4) K-
nearest neighbours (KNN), (5) Locally-weighted learning (LWL), (6) 
Bagging classifier (Bagging), (7) DecisionStump tree 
(DecisionStump), (8) M5P model tree (M5P) and (9) 0-R Rule 
Induction classifier (ZeroR). Furthermore, we have build these 
individual item models using five sets of derived variables that 
served as independent variables in the model. Therefore, the total 
number of experiments for Each Item method are 90 (2 × 9 × 5) for 
each data set.    

The performance results for some of these experiments are 
presented in Figures 2 and 3. Figures 2(a, b) show the MAE and 
RMSE error rates respectively for each of the aforementioned nine 
predictive models for the MovieLens dataset. The movies in the 
graphs are ordered according to the number of ratings (ranks) that 
are plotted on the x-axis. Figures 3(a, b) provide the same 
measurements information, but for the BookCrossings dataset. 

All the four figures Fig 2-3(a, b) show that the error rates 
increase in the tail of the figures (for the items with only few 
ratings). To demonstrate this effect more clearly, we performed the 
correlation analysis and computed Pearson’s correlation coefficients 
between the rating numbers and error rates. The results are 
presented in Table 1, and it shows that all the 90 models for the 
BookCrossing dataset have significant negative correlations 
between the rating numbers and the error rates and 70 (out of 90) 
models have significant negative correlation for the MovieLens 
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dataset. This result demonstrates that, when the rating numbers 
decrease, then the error rates tend to increase. 

 

 

 
Figure 2. Error rates for Each Item method for the MovieLens 

dataset for different predictive models. On the x-axis is the 
number of ratings for movies in decreasing order. 

 

 
Figure 3. Error rates for Each Item method for the BookCrossing 

dataset for different predictive models. On the x-axis is the 
number of ratings for books in decreasing order. 

In summary, we showed that for the EI rating estimation 
method, the error rates tend to increase for the low-ranked items 
in the tail of itemset I. We call this problem the Long Tail 
Recommendation Problem (LTRP). It occurs because rating 
prediction models do not have enough data for the less popular 
items in the Long Tail. We address this problem in the rest of this 
paper. One way to do it is to cluster items in I so that predictive 
models are learned using more data, thus, decreasing error rates 
for the less popular items. We describe this approach next. 

Table 1. Correlation analysis result for the graphs in Figures 2 
and 3 for the BookCrossing and MovieLens datasets 

 

Pearson’s Correlation 
Coefficient 

# of EI models for  
BookCrossing 

# of EI models for 
MovieLens 

Significant Correlation  90 (/90) 70(/90) 
Less than -0.5 70 43 
Less than -0.6 66 22 
Less than -0.7 40 5 

 

2.3 Solution to the Long Tail Problem: 
Clustering the Whole Itemset  
Since the LTRP problem is caused by the lack of data to build 
good predictive models in the tail, clustering items using the Total 
Clustering (TC) method from Section 2.1 can be a reasonable 
solution since it can provide more data for the less popular items.  

In this section we compare the EI and the TC methods. The 
experimental settings for the TC method are the same as for EI, as 
described in Section 2.2; however the TC method has an 
additional factor – the number of clusters. Thus, for the TC 
models, we consider nine data mining methods, five sets of the 
independent variables, two performance measurements and five 
clustering groups having 10, 20, 30, 40 and 50 clusters in total. 
We cluster items in these groups using the Expectation-
Maximization (EM) clustering method [7]. Thus, the number of 
experiments for the TC case becomes 450.  

For example, in case of the MovieLens dataset, we cluster 
1682 movies into 10 group using the EM method [7] and build a 
predictive model, e.g., a Support Vector Machine for each group 
(10 SVM models in total). If we want to predict the unknown 
rating of movie The Other Boleyn Girl for customer C then the TC 
method, first, determines into which of these 10 groups that movie 
belongs. If the movie belongs to group G5, consisting of 30 other 
movies having 10000 transactions among them, then TC applies 
SVM method to group G5 and computes RMSE error rates using 
10-fold cross validation on these 10000 ratings. This process was 
repeated 10 times on MovieLens for each cluster. 

Figures 4 and 5 show the RMSE rates for the TC and EI 
methods across the MovieLens and BookCrossing datasets 
respectively. Figure 4 uses the Simple Linear Regression (SLR) 
method and 10 clusters for the TC method. Figure 5 uses the 
Locally-Weighted Learning (LWL) method and also 10 clusters 
for the TC method. These two graphs clearly show that the TC 
outperforms the EI method, especially in the tail of the 
distribution, where the gap between the two lines is clearly 
visible. In order to formally verify this visual observation, we 
performed the paired t-test. Table 2 presents the paired t-test 
results and shows that for the MovieLens data in 448 (out of 450) 
cases the error rates of the TC models are significantly smaller 
than the EI error rates at the 95% confidence levels. Likewise, in 
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440 (out of 450) cases the error rates of the TC models are 
significantly smaller than for the EI method for BookCrossing 
data. Thus, we conclude that the TC outperforms the EI method.  

Table 2. Paired t-test result comparing Total Clustering (TC) vs. 
Each Item (EI) methods. 

Dataset  Err.CT<Err.EI   Err.EI<Err.CT  Err.CT=Err.EI 
MovieLens 448 0 2 
BookCrossing 440 1 9 

 

 
Figure 4. RMSE error rates of Total Clustering (with 10 clusters) 

vs. Each Item method using SLR for the MovieLens dataset. 

 
Figure 5. RMSE error rates of Total Clustering (with 10 clusters) 
vs. Each Item method using LWL for the BookCrossing dataset. 

We next studied computational performance of the TC method 
to see how scalable it is to large recommendation problems. To 
address this issue, we ran all the 9 data mining methods described in 
Section 2.2 on the MovieLens dataset and clustered all the items in 
I. We ran this problem on a grid at the Stern school for 8 days and 
would complete only 50% of the job (our job had to be terminated 
for technical reasons). This example clearly demonstrates that, 
although superior to EI, the TC method is very slow and does not 
scale well to large recommendation problems. 

To address the Long Tail Recommendation Problem while 
achieving reasonable performance results, in Section 3, we present a 
solution that partitions the itemset I into the head and the tail and 
does clustering only in the tail. We also demonstrate that this 
approach produces smaller error rates than TC in some cases.  

3. PROPOSED SOLUTION 
We next describe how we split the items in I into the head H and tail 
T, cluster the tail items T and build predictive models on the 
resulting groups. Also, how to split the items into the head and the 
tail should be decided carefully because it can result in different 
recommendation error rates. In Section 5.2, we examine good 

cutting strategies. However, in this section, we assume some 
arbitrary partitioning of the itemset I into the head and the tail. 

Having split I into head H and tail T, we cluster items only in tail 
T as follows. First, for each item, we compute several derived 
variables from the transactional variables for that item. For example, 
for the movie items, examples of these derived variables are the 
average rating of a movie (I_aver_rating), the popularity of the 
movie (I_popularity) and how much customers liked the movie 
(I_likablility). As a result, each item becomes a point in the space of 
the derived variables. For example, if we have 10 derived variables 
and 100,000 movies, then each movie becomes a point in the 10-
dimensional space that has 100,000 data points in total. Next, we 
apply standard clustering methods to identify particular clusters in 
that space (e.g. cluster these 100,000 points in the 10-dimensional 
space). In this paper we used the EM clustering method [7].  

We do not use clustering methods in the head H and build 
individual predictive models for each item in H for the following 
reason. As Figures 4 and 5 show, the error rates for the TC and EI 
methods are relatively close near the origin of these two graphs, 
which is in contrast to the error rates in the right parts of the graphs. 
This can be explained by observing that the popular items in the 
head have already considerable ratings data, unlike the less popular 
items in the tail. Thus, clustering items in the head should not 
contribute significantly to the performance of the corresponding 
data mining models. Therefore, we cluster items only in tail T and 
build individual data mining models for each item in the head. We 
call this approach the Clustered Tail (CT) method. 

After we cluster the items in T, we build predictive rating 
estimation models on the resulting clusters. For example, if we 
clustered movies A, B and C into one cluster, we take the ratings 
assigned to these three movies, information about the movies and 
customers and use linear regression to estimate unknown ratings of 
the three movies.  

We applied this process of clustering tail items across a variety 
of experimental settings and measured by how much it improves 
performance and solves the LTRP problem. We present our 
experimental settings in Section 4 and the results in Section 5. 

4. EXPERIMENTAL SETUP 
In this section, we explain the experimental settings used for 
validating the Clustered Tail (CT) method, including an overview of 
the data used, selected variables, data mining methods, performance 
measurements and statistical tests.  
Data. We used two popular datasets in our study MovieLens [5] and 
BookCrossing [6]. The MovieLens dataset contains 100,000 ratings 
on the scale of 1 to 5 from 943 customers on 1682 movies. The 
BookCrossing dataset contains 1,149,780 ratings on the scale of 1 to 
10 from 278,858 customers on 271,379 books.  
Variables. In order to predict unknown ratings, we used the 
following derived variables (DV) as independent variables in our 
data mining models. Customer-related derived variables DV are : 

1. c_aver_rating: The average rating that customer gives for the 
items that he or she saw before.  

2. c_quantity: The number of ratings the customer rated before. 
3. c_seen_popularity: The average popularity of the items that 

the customer rated before. 
4. c_seen_rating: The average rating of the items rated by the 

customer, each rating being an average of all the ratings 
provided by all the customers for that item. 
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5. c_like_popularity: The average popularity of the items rated 
higher than the customer’s average ratings. 

6. c_like_rating: The average rating of the items rated higher 
than the customer’s average ratings, each rating being an 
average of all the ratings provided by all the customers for 
that item. 

7. c_dislike_popularity: The average popularity of the items 
rated lower than the customer’s average ratings. 

8. c_dislike_rating: The average rating of the items rated 
lower than the customer’s average ratings, each rating being 
an average of all the ratings provided by all the customers 
for that item. 

 Item-related derived variables DV are: 
9. I_aver_rating: The average rating of the item  
10. I_popularity: The popularity of the item.  
11. I_likablility: The difference between the rating of the 

customer and their average rating.  
Head/Tail Partitioning. We partitioned the total itemset I into the 
head (H) and tail (T) parts in several places in our study. In 
particular, we selected the head/tail cutting points at levels α = 30, 
50, 70, 90 and 110, where level α means that the items with 
frequency > α belong to the head H and with frequency < α 
belong to the tail T of the item distribution.  
Clustering. After partitioning items into head and tail, as 
described above, we cluster items only in tail T as follows. We, 
first, select variables I_aver_rating (9), I_popularity (10), and 
I_likablility (11) from the list of derived variables, then we map 
each item from tail T into the 3-dimensional Euclidian space 
formed from these three variables, and finally apply the EM 
clustering method [7] to the set of the resulting points. The 
number of clusters in tail T used in the EM method in our studies 
are 1, 10, 20, 30, 40 and 50. Note that if the number of clusters is 
1, this means that we actually do not do any clustering in the tail. 
Data Mining Models. We build the models estimating ratings for 
the items in each cluster in T and also for each item in H. In 
particular, we use Weka [7] and deploy the following data mining 
models from Weka in our studies that we have already described 
in Section 2.2: 1) SimpleLinearRegression (SLR), 2) Gaussian 
radial basis function network (RBF), 3) Support vector machines 
(SVM), 4) K-nearest neighbours (KNN), 5) Locally-weighted 
learning (LWL), 6) Bagging classifier (Bagging), 7) 
DecisionStump tree(DecisionStump), 8) M5P model tree(M5P) 
and 9) 0-R Rule Induction classifier (ZeroR).  
   For each of these models, the dependent variable is Rating and 
independent variables are selected as follows. We use the 
following 5 sets of the derived variables (DV) (1) through (11) 
described above1 as independent variables in these data mining 
models: 

1) Used the whole DV  
2) Used DV – 1, 2, 5, 6, 9, 10, 11  
3) Used DV – 3, 4, 9, 10, 11  
4) Used DV – 1, 7, 8, 9, 10, 11 

                5) Used DV – 3, 4, 5, 6, 9, 10, 11 
Performance Measurements. We use Mean Absolute Error 
(MAE) and Root Mean Square Error (RMSE) as performance 

                                                                 
1  The numbers to the right specify the variable numbers (1 

through 11) as specified in the Variables part of Section 5.  

measures. After building the model, we predict the unknown 
rating on the holdout sample and calculate the error rates as:  
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In this section we described the experimental settings. In the 
next section we present the results of our experiments. 

5. EXPERIMENTAL RESULTS 
In this section we present the results of the experiments described 
in Section 4.  In Section 5.1, we will focus on comparing the 
Clustered Tail (CT) and the Each Item (EI) methods and 
demonstrate that CT outperforms EI. In Section 5.2, we will focus 
on finding the most appropriate head/tail cutting point and 
determining the appropriate clustering number for the CT method.  

5.1 Comparing the Clustered Tail and the 
Each Item Methods  
To compare the Clustered Tail (CT) and the Each Item (EI) 
methods, we performed the paired t-tests across various 
experimental settings described in Section 4. In particular, we 
perform these tests across five sets of variables, five cutting 
points, six clustering groups, nine data mining methods and two 
measurements. This results in 2700 comparisons of the CT and EI 
methods for each dataset.  

For each of the 2700 cases, we compute the error rates for the 
particular predictive model for each item in the itemset I for the 
CT and the EI methods. To check for the statistically significant 
differences between them, we performed paired t-tests, but only 
for the items in the tail T of the distribution. In other words, if E = 
(e1, …, en) and E' = (e'

1, …, e'
n) are the error rates for items I from 

the tail T for methods CT and EI respectively, then we perform 
the paired t-test of sets E and E' to detect the statistically 
significant differences between the two. The reason for 
considering the errors only in the tail T, is that the errors in the 
head H for the two methods CT and EI are the same, and there is 
no point in including them in the test. 

The t-test comparison results are presented in Table 3. Table 3 
shows that for the MovieLens dataset the CT model outperforms 
the EI model in 2464 cases at a 95% confidence interval out of the 
total 2700 comparisons. Similarly, for the BookCrossing dataset, 
the CT model outperforms the EI model in 2525 cases. 

 

Table 3. Paired T-test Result (Statistically significant at the 95% 
confidence interval) 

Dataset  Err.CT<Err.EI   Err.EI<Err.CT  Err.CT=Err.EI 
MovieLens 2464 116 120 
BookCrossing 2526 70 104 

 

 

Table 3 provides only overall comparison information across 
the CT and the EI methods, without showing any specifics for the 
individual comparisons. Since there are 2700 of them in total, it is 
impossible to present the specifics on all of them. Therefore, we 
decided to examine the performance differences between the CT and 
the EI models for some selected individual setting (out of the total 
of 2700 of them). 
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As an example, Figure 6 shows the RMSE error rates for the CT and 
EI methods using the whole set of 11 derived variables as the 
independent variables and building the model using the 
DecisionStump data mining method for the MovieLens dataset. 
Also, the head/tail cutting point is 110 and the number of clusters is 
10 for the CT method presented in Figure 6.  Similarly, Figure 7 
shows the RMSE error rates for the CT and the EI methods using 
the whole derived variables as the independent variables and 
building Bagging predictive model for BookCrossing dataset. Also, 
the head/tail cutting point is 90 and the number of clusters is 10 for 
the CT method presented in Figure 7. 

The graphs in Figures 6 and 7 clearly show that the CT method 
outperforms the EI method in the tail T. These representative 
examples provide a typical picture of the paired comparisons across 
the 2700 experimental settings: the CT and the EI graphs are the 
same in the head and the initial parts of the tail, but then error rates 
diverge at the end of the tail, as Figures 6 and 7 show. This 
divergence accounts for the overwhelming dominance of the CT 
over the EI method as is evident from the t-test results reported in 
Table 3.  

 
Figure 6. RMSE error rates of Each Item and ClustedTail using 

110-10 methods for the MovieLens dataset. 

 
Figure 7. RMSE error rates of Each Item and ClustedTail 90-10 

methods for the BookCrossing dataset. 
    

We next present the magnitudes of the performance differences 
between the two methods. In particular, Figure 8 presents the 
histogram of the average improvement rate of CT vs. the EI methods 
for the RMSE errors for the MovieLens dataset taken across all the 
1350 experimental settings described in Section 4, where the 
Improvement rate is computed as 

Improvement rate (%) 100(%)EI CT

EI

RMSE RMSE
RMSE

−
= ×  

For example, as Figure 8 demonstrates the CT method achieves 
the 8% improvement rate vs. the EI method in terms of the RMSE 
errors on the MovieLens data in 217 cases. Similarly, Figure 9 

presents the histogram of the average improvement rate of CT vs. 
the EI methods for the RMSE errors for the BookCrossing dataset. 

As Figures 8 and 9 demonstrate, the CT method significantly 
outperforms the EI method in most of the cases. Only in 49 cases 
(out of total of 1350) the differences between the CT and EI 
performances are negative for the MovieLens and in 53 cases for the 
BookCrossing datasets. Also, the performance improvements go as 
high as 11.78% for the MovieLens and 72.45% for the 
BookCrossing datasets. 

 
Figure 8. Histogram of the average RMSE improvement rate of 

CT models vs EI model for the MovieLens dataset. 

 
Figure 9. Histogram of the average RMSE improvement rate of 

CT models vs EI model for the BookCrossing dataset (the 
rightmost bar stands for > 29). 

 

All these statistical and visual comparisons of performance 
results across extensive experimental conditions clearly show that 
the CT method produces significant performance improvements vs. 
the EI method. All this means that clustering each item in the Long 
Tail T indeed produces better recommendations.  

In the next subsection, we examine where to cut the itemset I 
into head H and tail T parts and how to cluster the items in tail T. 

5.2  Finding the Right Cutting Points 
As was observed earlier in the paper, error rates in the tail T depend 
on where we cut the itemset into the head and tail. In this section we 
empirically study where the best cutting points are and whether it 
makes sense to partition the items into the head H and tail T in the 
first place.  

To study this problem, we consider the following five cutting 
points: i = 30, 50, 70, 90 and 110. A cutting point i means that the 
items with the ratings frequency more than i belong to the head H 
and the items with frequency less than i to the tail T. In addition, we 
also consider the special case of a vacuous head H, where all the 
items appear only in tail T (and nothing in the head). Note that this 
is the Total Clustering (TC) case described and discussed in Section 
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2.3.  As explained in Section 4, in addition to these cutting points, 
we also consider different numbers of clusters in  tail T, ranging 
from 1 to 50 in the increments of 10 (i.e., 6 different numbers of 
clusters: k = 1, 10, 20, 30, 40 and 50). However, we do not deal with 
the clustering number k = 1 for the Total Cluster (TC) case (i.e., 
placing the whole dataset into one big cluster and having no items in 
head H) because it turns out that this particular case is 
computationally very expensive. This means that we deal with 35 
cases in total in this section (6 cutting points i and 6 clustering 
numbers k, minus the special case of k = 1 for the Total Cluster case, 
as just described). 

We next compute error rates for each of the 35 cut/cluster 
combinations described above, and we do it across various 
experimental settings described in Section 4 (45 such settings for 
each error rate (RMSE and MAE) and each dataset (MovieLens and 
BookCrossing) – 180 settings in total). For instance, two examples 
of such cut/cluster combination graphs are presented in Figure 10 
for the MovieLens and two in Figure 11 for the BookCrossing cases. 

These four examples demonstrate that error rates are sensitive to 
the right mixture of the cut/cluster combinations in certain 
experimental settings. For example, in Figure 10(a), the 
combination of cutting point 110 and cluster number 1 (110-1) 
produces the minimum average error rate RMSE = 0.9295 for 
MovieLens dataset, and in comparison, the worst cut/cluster 
combination of 30-50 Produces RSME = 0.967, which constitutes 
3.75% performance improvement. Similar observations are 
applicable to the other three graphs presented in Figures 10(b) and 
11(a, b). 

 

 
Figure 10. Average RMSE according to the cutting point and 

the clustering number for MovieLens dataset. 
Another important question is to determine for which values of i 

and k the error rates reach the minimal levels (such as i = 110 and k 
= 1 in Figure 10(a)). We did this analysis across all the 90 

experimental conditions for each of the two datasets (while only 4 
of them are presented in Figures 10(a, b) and 11(a, b)).  

The results of this analysis are presented with the white bars 
(representing the best model case) in Figure 12 for the MovieLens 
and in Figure 13 for the BookCrossing datasets. Both Figures 12 and 
13 show that in a significant number of cases, the TC solution 
constitutes the best case scenario producing the minimal error rates. 
For example, Figure 11(a) clearly demonstrates this point since the 
minimal error rate is achieved for the Total_50 case.  

However, if we examine Figure 10(b), we can see that the 
difference between the smallest error rate achieved for Total_20 and 
the second best point of 110-30 is highly insignificant (1.0218 vs. 
1.0227 in this case). This means that, even though the Total 
Clustering (TC) is theoretically the best solution, in practice it may 
not be the case since it is usually computationally very expensive, 
while it achieves highly insignificant improvements in error rates. 
Therefore, it may be better to replace such TC model with the 
second best, but much cheaper CT model. We next compare 
performances of the Best vs. Second-best models by applying the 
paired t-tests to the overall performances of the corresponding 
models. If the differences are statistically insignificant at the 95% 
confidence level, we replace the best-performing TC with the 
second-best-performing CT model. Then the Practical best 
performing model (Practical solution) is: select the best-performing 
model TC if the second-best one is significantly worse. 
Alternatively, if the performance differences are statistically 
insignificant, then select the second best CT model. The histograms 
of the Practical solutions are shown with black bars in Figures 12 
and 13 for MovieLens and BookCrossing datasets respectively. 

 

 
 Figure 11. Average RMSE according to the cutting point and the 

clustering number for BookCrossing dataset. 
As Figures 12 and 13 demonstrate, there are significantly 

fewer best-performing Practical models for the Total Clustering 
(TC) case. In fact, most of the practically best-performing models 
fall within the middle region in both figures (Figures 12 and 13). 
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This result demonstrates that partitioning the itemset I into head 
and tail and clustering items in the tail is often the best solution 
dominating the Total Clustering in practice. 

 

 
Figure 12. Histogram of the best model for MovieLens 

dataset. 
 

 
Figure 13. Histogram of the best model for BookCrossing dataset. 
 

6. CONCLUSION 
In this paper, we identified the Long Tail Recommendation 
Problem (LTRP) responsible for the increased error rates of the 
items in the Long Tail of the item distribution. We showed that a 
simple item grouping method, although effective at reducing these 
rates, is not practical since it does not scale well to large 
problems.  

Therefore, we proposed to partition itemset I into the head H 
and the tail T parts and cluster the items in the tail T, while 
keeping the basic Each Item (EI) approach for the head items H. 
We showed that this solves the LTRP problem in the sense that 
the error rates of the items in tail T are significantly lower than for 
the basic EI method. Moreover, we also showed that this approach 
of the head/tail partitioning of itemset I and grouping items in T is 
more scalable than grouping the whole itemset I.  

We also studied the problem of selecting good head/tail 
cutting points α and identifying the right numbers of item clusters 
in the tail. We showed that in some cases grouping of the whole 

itemset I (no head/tail partitioning) results in the best performance 
results. However, in many cases in our study, it turns out that the 
best cutting point α lies somewhere in the middle of the itemset 
distribution histogram and therefore the TC method does not 
always constitute the best approach. This also means that a good 
cutting point α and the right number of tail clusters need to be 
selected carefully since these parameters affect the performance 
of recommender systems significantly and the good choices of 
their values depends on various parameters that vary across 
different datasets and recommendation approaches.  

In summary, the contributions of this work lie in showing that 
a) the item-based Long Tail of the ratings distribution does 
matter; b) the items in the Long Tail can be used productively by 
clustering them into various groups; c) the practically best 
head/tail cutting points often lie in the middle of the range, as 
Figure 13 shows, and empirically finding such cutting points.  
 

In the future, we plan to address scalability issue since some 
of our experiments took a long time to run, especially when the 
head/tail cutting point α was skewed more towards the head and 
the number of clusters in the tail was small. We would also like to 
develop incremental algorithm for determining optimal splitting 
points when new rating and other data about items and users is 
added or changed dynamically. We would also like to combine 
our CT method with other recommendation approaches, such as 
collaborative filtering, and see if this combined method improves 
performance even further. Finally, we studied the binary splitting 
problem of the itemset into the Head and Tail. In the future, we 
would like to consider multiple (non binary) partitioning of the 
item base, each partition having its own grouping methods. 
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