Towards a Theory Model for Product Search

Beibei Li, Anindya Ghose, Panagiotis G. Ipeirotis

Department of Information, Operations & Management Sciences
Leonard N. Stern School of Business
New York University

WWW 2011, Hyderabad, India
3/31/2011
I Want to Buy…

“How can I find the best hotel in New York City?”

Great Price for what it offers!

Great Customer Reviews…

Great Location…

Great Service…

Ranking with single criterion is not enough!
Problem:
- For many products, low purchase frequency;
- Privacy: *Individual-level* purchase history to derive personal preference.
Research Challenge and Goal

How to find the best product?

- Low purchase frequency
- Privacy
- Heterogeneity
- Multi-dimensional preferences

A New Ranking System for Product Search

- Economic utility theory, “Best Value” ranked on Top;
- Infer personal preferences from aggregate & anonymous data;
- Validated with user study with +15000 users, 6 cities.
How to define “Best Value”?

Utility: Quantify the happiness.

Get Hotel (happy)
Pay Money (unhappy)

Utility of Products
Utility of Money

>=?=<
Utility of Money

- Utility of Money – The utility that the consumer will lose by paying the price for that product.

\[U_m(p) = \alpha \cdot p \]
Utility of Product

- Utility of Product – The utility that the consumer will gain from buying the product.

Simplest case using a linear combination:

\[U_p(X) = U_p(x^1, ..., x^K) = \sum_{k=1}^{K} \beta^k \cdot x^k + \xi. \]
Utility Surplus

Utility Surplus for a consumer is the \textit{gain} in the utility of product minus the \textit{loss} in the utility of money.

\[
\text{Utility Surplus} = \text{Utility of Product} - \text{Utility of Money} + \text{Stochastic Error}
\]

\[
\sum_{k=1}^{K} \beta^k x^k + \xi + \alpha \cdot p + \epsilon
\]

- The higher the surplus, the higher “value” from a product.

Key Challenge: How to estimate the preferences?
Logit Model \ (McFadden 1974)

Assumption: Everyone likes things the same, but also has a personal component of choice, the error term ε.

\[
\text{Observed Market Share}_j = \Pr(\text{Consumers choose } j \text{ over everything else}) = \Pr(\text{Surplus}_j > \text{Surplus}_\text{everything else})
\]

Solution by logistic regression!

Notice: Logistic Regression is a direct derivation from a theory-driven user behavior model. (McFadden 2000, Nobel Prize)

But, consumers are different...
BLP Model (Berry, Levinsohn, and Pakes 1995)

- All consumers are not the same;
- Consumers belong to groups with different preferences;
- Group preference defined through consumer demographics, income, purchase purpose, …, etc.

\[T = [\text{age, gender, income, purpose, …}] \quad \rightarrow \quad \text{Preference} = f (T) \]

Problem:
We do **NOT** know \(T \) for each *individual* consumer at the purchase.
BLP Model (Berry, Levinsohn, and Pakes 1995)

What do we know?
- Demographic distributions!
- Demographic differences in different markets!
- Overall demand in different markets!

Basic Idea: Monitor demand for similar products in different markets.

differences in demand \rightarrow different demographics
Example 2: Lunch Buffet

Lamb Roganjosh: Stewed lamb with Kashmiri chillies;
Chicken Alfredo: Flat pasta cooked with cream and cheese;

Table A: 80% Indians, 20% Americans;
- Lamb: 80% gone, Chicken: 20% gone.

Table B: 10% Indians, 90% Americans;
- Lamb: 10% gone, Chicken: 90% gone.

→ Indians favor lamb, and Americans favor chicken!

BLP: Aggregate Demand → Individual Preference
Surplus-based Ranking

Basic Idea: Compute the surplus for each product based on the estimated consumer preferences, and rank the products accordingly.

- Top-ranked product provides “best value”!

Personalized Ranking: by incorporating consumer demographics and purchase context, we can further derive *personalized* surplus.
Hotel Search Experiment - Data

Demographics: TripAdvisor, “Travel purpose,” “Age group.”

Location Characteristics:
- Social geo-tags
- Geo-Mapping Search Tools
- Image Classification

Service Characteristics: TripAdvisor & Travelocity

Stylistic Characteristics for the quality of word-of-mouth:
- Text Mining: “Subjectivity,” “Readability”
Result (1) - Economic Marginal Effects

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>Marginal Effect</th>
</tr>
</thead>
<tbody>
<tr>
<td>Public transportation</td>
<td>18.09%</td>
</tr>
<tr>
<td>Beach</td>
<td>18.00%</td>
</tr>
<tr>
<td>Interstate highway</td>
<td>7.99%</td>
</tr>
<tr>
<td>Downtown</td>
<td>4.70%</td>
</tr>
<tr>
<td>Hotel class (Star rating)</td>
<td>3.77%</td>
</tr>
<tr>
<td>External amenities</td>
<td>0.08%</td>
</tr>
<tr>
<td>Internal amenities</td>
<td>0.06%</td>
</tr>
<tr>
<td>Annual Crime Rate</td>
<td>-0.27%</td>
</tr>
<tr>
<td>Lake/River</td>
<td>-12.94%</td>
</tr>
</tbody>
</table>
Result (2) – Preference Deviations Based on Different Travel Purposes

Consumers with different travel purposes show different preferences towards the same set of hotel characteristics.
Result (2) - Sensitivity to Online Rating Based on Different Age Groups

Age 18-34 pay more attention to reviews than other age groups.
Ranking Evaluation - User Study (1)

Experiment 1: Blind pair-wise, 200 AMT users, 6 cities, 10 baselines.

Finding: Our surplus-based ranking is overwhelmingly preferred in any single comparison! (p=0.05 sign test)

User Explanations: Diversity; Price not the only factor; Multi-dimensional preferences.

Our reasoning: Our economic-based model introduces “diversity” *naturally*.
In all cases, the personalized approach is significantly preferred at the $p = 0.1$ level.
Conclusion & Future Work

A New Ranking System for Product Search

- Economic utility theory, “Best Value” ranked on Top;
- Validated with user study with +15000 users, 6 cities.

Major Contributions:

- Inter-disciplinary approach
- Captures consumer decision making process
- Privacy-preserving: Aggregate data → Personal preferences

Future Directions:

- Product bundles
- Consumer browsing data
Q & A

Demo: http://2.nyuhotels.appspot.com/

(April 1): 10am-12pm, 1:30-3:30pm

Thank you!

bli@stern.nyu.edu