DIFFERENCING AND UNIT ROOT TESTS

In the Box-Jenkins approach to analyzing time series, a key question is whether to difference th
data, i.e., to replace the raw data ) by the differenced series{—x;_;}. Experience indicates that
most economic time series tend to wander and are not stationary, but that differencing often yields a
stationary result. A key example, which often provides a fairly good description of actual data, is th
random walk,x; =x;_; + €, where &} is white noise, assumed here to be independent, each having the

same distribution (e.g., normat, etc.). The random walk is said to haveuait root.

To understand what this means, let's recall the condition for stationarity &fR{p) model. h

Chapter 3, part I, we said that th&R(p) series
X =0 X+ 00X+ =" +OpXp +&
will be stationary if the largest rodt of the equation (in the complex variak#g
2P = oZP Tt 0P gz + 1)
satisfies|8l <1 . So stationarity is related to the location of the roots of Equation (1)

We can think of the random walk as @R (1) processy =ax;_; +& with a=1. But since it has
a=1, the random walk is not stationary. Indeed, forAR(1) to be stationary, it is necessary thalt al
roots of the equatiorz =a have "absolute value" less than 1. Since the root of the equation is
just a, we see we see that th&R(1) is stationary if and only i1<a<1. For the random walk, we
have aunit root, that is, a root equal to one. The first difference of a random walk is stationary, how-

ever, since —x-1= &, a white noise process.

In general, we say that a time serieg{is integrated of order 1, denoted by (1), if {x} is not
stationary but the first differencex{ —x;_4} is stationary and invertible. If %} is 1(1), it is considered
important to difference the data, primarily because we can then use all of the methodologies developed
for stationary time series to build a model, or to otherwise analyze, the differenced series. This, in turn
improves our understanding (e.g., provides better forecasts) of the original sgrjesFér example, in
the Box-JenkinsARIMA (p , 1,q) model, the differenced series is modeled as a statioARMA (p ,q)

process. In practice, then, we need to decide whether to build a stationary model for the raw data or for



the differenced data.

More generally, there is the question of how many times we need to difference the data. In the
ARIMA(p ,d,q) model, thed'th difference is a stationarARMA (p,q). The series igntegrated of
order d, denoted byl (d), whered is an integer withd =1, if the series and all its differences up to
the d—1'st are nonstationary, but th&'th difference is stationary. A series is said to in¢egrated of
order zero, denoted byl (0), if the series is both stationary and invertible. (The importance of inverti-
bility will be discussed later). If the seriesqf is 1(d) with d =1, then the differenced series {x;-1}
is I (d-1).

For an example of ah(2) process, consider th&R(2) seriesx, =2%_1—X >+ &. This process is
not stationary. Equation (1) become®z®=2z -1, that is, z?>-2z+1=0. Factoring this gives
(z-1)(z-1)=0, so the equation hasvo unit roots. Since the largest root (i.e., one) does not have
"absolute value" less than one, the process is not stationary. It can be shown that the first difference is

not stationary either. The second difference is
X =X-1~ [Xe-1= X2l =X =21+ %2

which is equal tce; by the definition of ourAR(2) process. Since the second difference is white noise,
{x} is an ARIMA(0, 2,0). Since the second difference is stationary} {s 1(2). In general, for any
ARIMA process which is integrated of order Equation (1) will have exactlg unit roots. In practice
however, the only integer values af which seem to occur frequently are 0 and 1. So here, we will

limit our discussion to the question of whether or not to difference the data one time.

If we fail to take a difference when the process is nonstationary, regressions on time will often
yield a spuriously significant linear trend, and our forecast intervals will be much too narrow (eptimis
tic) at long lead times. For an example of the first phenomenon, recall that for the Deflated Dow Jones
series, we got d-statistic for the slope of 5.27 (creating the illusion of a very strong indicatifon o
trend), but the mean of the first differences was not significantly different from zero. For an example
of the second phenomenon, let's compare a random walk with a statiéfgh) model. For a random

walk, the variance of thé-step forecast error is



-3-
var [Xnpen =Xp] =Vvar [€nsn +Ensn-1t 0 —(En +E+ )]

=var[epp + 0 el =hvar[g] ,

which goes tow ash increases. The width of the forecast intervals will be proportionalhto indicat

ing that our uncertainty about the future value of the series grows without bound as the lead time i
increased. On the other hand, for the stationaR(1) processx =ax;_;+¢& with —-1<a<1, the best
linear h-step forecast id, , =a"x,, which goes to zero ab increases. The variance of the forecast
error isvar [¥,., — a"x,], which tends tovar [x], a finite constant. So as the lead tirheis increased

the width of the h-step prediction intervals grows without bound for a random walk, but remains
bounded for a stationamyR(1). Clearly, then, if our series were really a random walk, but we failed to
difference it and modeled it instead as a stationAR/(1), then our prediction intervals would give us

much more faith in our ability to predict at long lead times than is actually warranted.

It is also undesirable to take a difference when the process is stationary. Problems arise here

because the difference of a stationary series is not invertible, i.e., cannot be representefiR{s)an

For example, ifx, =.9%_; + &, so that {} is really a stationaryAR(1), then the first differencez} is

the non-invertibleARMA (1, 1) process =.9z_; + & —&_4, Which has more parameters than the origi

nal process. (Recall that aMRMA(p,q) is invertible if the largest root@ of the equation

29 +bz97+ - - +b, =0 satisfiesl®l <1, whereby, . .., by are theMA parameters.) Because ofeth
non-invertibility of {z}, its parameters will be difficult to estimate, and it will be difficult to construct a
forecast ofz,,. Consequently, taking an unnecessary difference @werdifferencing ) will tend to

degrade the quality of forecasts.

Ideally, then, what we would like is a way to decide whether the series is stationary, or integrated
of order 1. A method in widespread use today is to declare the series nonstationary if the sample auto
correlations decay slowly. If this pattern is observed, then the series is differenced and the autocorrela-
tions of the differenced series are examined to make sure that they decay rapidly, thereby indicating
that the differenced series is stationary. This method is someadhatoc, however. What is really

needed is a more objective way of deciding between the two hypothg®@snd| (1), without makigy



any further assumptions. Unfortunately, each of these hypotheses covers a vast range of possibilities
and any classical approach to discriminate between them seems doomed to failure unless we limit the

scope of the hypotheses.

The Dickey-Fuller Test of Random Walk Vs. Stationary AR(1)

A test involving much more narrowly-specified null and alternative hypotheses was proppsed b

Dickey and Fuller in 1979. In its most basic form, the Dickey-Fuller test compares the null hypothesis
HoiX =X-1+¢& ,
i.e., that the series is a random walk without drift, against the alternative hypothesi
Hiixg=Cc+pX-1+& ,

wherec and p are constants witHpl <1. According toH,, the process is a stationadR(1) with

meanp =c/(1-p). To see this, note that, undelr;, we can write

X =H(1-p) +PX 1+ &

so that

X ~H=pX-1— W) +& .

Note that by making the random walk timell hypothesis, Dickey and Fuller are expressing a prefer-
ence for differencing the data unless a strong case can be made that the raw series is stationary. This is
consistent with the conventional wisdom that, most of the time, the data do require differencing. A
Type | error corresponds to deciding the process is stationary when it is actually a random walk. In thi
case, we will fail to recognize that the data should be differenced, and will build a stationary model for
our nonstationary series. A Type Il error corresponds to deciding the process is a random walk when i
is actually stationary. Here, we will be inclined to difference the data, even though differencing is not

desirable.

We should mention two additional important differences betweenAR€1) and the random
walk. Whereas the innovatiogy has a temporary (exponentially decaying) effect onAR{1), it hasa

permanent effect on the random walk. Whereas the expected length of time between crossgirigs of
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finite for the AR(1) (so theAR(1) fluctuates around its mean pj, the expected length of time between
crossings of any particular level iafinite for the random walk (so the random walk has a tendeicy t

wander in a non-systematic fashion from any given starting point).

The Dickey-Fuller test is easy to perform. Given data ..., X,, we run an ordinary linaa
regression of the observations,( . . ., x,) of the "dependent variable"x{}, against the observations
(X1, ..., X,—1) of the "independent variable"x{_;}, together with a constant term. Under bdih, and

H, the datax; obey the linear regression model
X =CH+pPX-1t+& ,
and H, corresponds tp=1, c =0.
Denote thet -statistic for the least squares estimatey
,=P-1fs;
Wheresﬁ is the estimated standard error for Note thatt, is easy to calculate, singeand S, can e
obtained directly from the output of the standard computer regression packages.

For the Deflated Dow data, regressirg, . .., X547 ON X 4, . . . ,X 546 We Obtain the followig

regression output:

Residual Standard Error = 0.6933, Multiple R-Square = 0.9907
N = 546, F-statistic =57991.38 on 1 and 544 df, p-value = 0

coef std.err t.stat p.value

Intercept 0.1095 0.0832 1.3165 0.1886
X 0.9963 0.0041 240.8140 0.0000

The R-Square statistic is .9907, indicating a very strong linear relationship betweprar{d

{%-1}. The estimated slope i§=.9963, ands, =.0041. We calculate
T, = (P~ 1)/s,=(.9963-1)/.0041=-.9024 .

Note that we do NOT use the t statistic (240.8140) from the output, since this was computed relative to

a null value of zero, instead of 1.
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The statistict, can be used to te#i, versusH,. The percentiles of, underH, are given in the
attached table. The null hypothesis is rejected,ifis less than the tabled value. The tabulations fo
finite n were based on simulation, assumiggare iid Gaussian. The tabled values for the asymptotic
distribution ( =) are valid as long as thg areiid with finite variance. (No Gaussian assumption is
needed here.) It should be noted thigtdoes not have & distribution in finite samples, and doestno
have a standard normal distribution asymptotically. In fact, the asymptotic distribution is longer-tailed
than the standard normal. For example, the asymptofipercentage point af, is at -3.43, instead ©
—-2.326 for a standard normal. Thus, use of the standard normal table would result in an excess of spuri

ous declarations of stationarity.

For the Deflated Dow data, we obtaingg=-.9024, which is not significant according to the
Table. So we are not able to reject the random walk hypothesis. As usual in statistical hypothesis test-
ing, this does not mean that we should conclude that the series is a random walk. In fact, from our ear
lier analysis we have strong statistical evidence that the seripst i random walk, since the lag-1
autocorrelation for the first differences is highly significant. All we can conclude from the Dickey-Fulle
test is that there is no strong evidence to support the hypothigsikat the series is a stationaAR (1).

This is the type of alternative that the test was designed to detect. The question of whethert the firs
difference has any autocorrelation is another issue altogether, and the test was not designed to detect
this type of failure of the random walk hypothesis. In any case, the results of the test indicate that i
would be a good idea to difference the data. We could have come to this same conclusion by examin-
ing the ACF of the raw data, but the Dickey-Fuller test provides a more objective basis for making this

decision.

As an illustration of the long tails in theg, distribution, consider the random walk data<547)
which was used in the last handout for comparison with the Dow and Deflated Dow series. For this

random walk data set, we obtain the following regression output.



Residual Standard Error = 0.9917, Multiple R-Square = (03982
N = 546, F-statistic = 30111.83 on 1 and 544 df, p-value = 0

coef std.err t.stat p.value

Intercept 0.0771 0.0550 1.4028 0.1612
X 0.9913 0.0057 173.5276 0.000

We therefore getr,=(.9913-1).0057=-1.53. If 1, had a standard normal distribution, we would
obtain ap-value of .063 (one-sided), indicating some evidence in favor of the alternative hypothesis
(that the series is a stationaAR(1)). Of course, we know that this series was in fact a random ,walk
and so it is somewhat distressing that we are almost being led to commit a Type | error. But when we
use the true distribution of, under the null hypothesis (see table) we find that the actual signiécanc
level is substantially greater than .10, although the table is not precise enough to allow us to find the

exactp-value.

Of course, the null and alternative hypothests and H, described above are too narrow to be
very useful in a wide variety of situations. Often, we will want to consider differencing tha dat
because we hope the difference may be stationary, but we do not want to commit ourselves to the
assumption that the series is either a random walk or a statigkR({). Fortunately, although we Wil
not describe the details here, there is a similar test known as the Augmented Dickey-Fuller test, which
allows us to test arARIMA(p, 1,0) null hypothesis versus aARIMA (p+1,0,0) alternative, whex
p =0 is known. Ifp =1, for example, the null hypothesis would be that the series is nonstationary, but
its first difference is a stationarR (1); the alternative hypothesis would be that the series is a station-
ary AR(2). In retrospect, it seems that the Deflated Dow series is better described by the above null
hypothesis than by the one which was actually tested, i.e., the random walk. But it is never a good idea
to change a statistical hypothesis after looking at the data; it can destroy the validity of the test. Furth-
ermore, the use of the random walk as a null hypothesis for financial time series seems wise as a gen

eral rule.

Difference Stationarity Vs. Trend Stationarity

In the ordinary Dickey-Fuller 1(,) test, the series is assumed to be free of deterministic trend

under both the null and alternative hypotheses. Many actual series do have trend, however, and it is of
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interest to study the nature of this trend. Perhaps the most important issue is the way in which the trend
is combined with the random aspects of the series. In the case of a random walk with drif
X =C *+X%_1+ & where {} is zero mean white noise, there is a mixture of deterministic and stochastic
trend, the process has a unit root, and the forecast intervals grow without bound as the lead time
increases. DifferencingX{} yields a stationary series, s is said to bedifference stationary. (This

is the same ab(1)).

Another way to combine trend and randomness is to start with a deterministic linear trend and
bury it in white noise:x, =ag+a;t +¢&. This is a standard linear regression (trend-line) model, lhic
can be analyzed without using time series methods. If the parametgrs( var [€;]) are known, tha
the forecast ok, ., is simply f,, , =0g+ay(n+h). If the g are normally distributed, a forecast interval
for X,.n is given for largeh by f, , £zq,vvar €. The width of this forecast intervaloes not tend

to infinity as the lead time increases.

More generally, any series
X = Ot agt +V;

formed by adding a deterministic linear trend to a stationary, invertible, zero mean "noise" $gyies {

said to betrend stationary. Trend stationary series do not contain a unit root. The width of their fore-

cast intervals for largén is 2z,,+v/var y;, which does not tend to infinity. Trend stationary series are

not difference stationary, since it can be shown that the differencey,$fi§ not invertible. Since th

trend stationary series obeys a regression model with autocorrelated errors, we can use generalized least
squares (a popular linear regression technique) to estimate the trend and assess its | statistica

significance.

Here, we show how to test a specific form of difference stationarity against a specific form of

trend stationarity, using a variant) of the Dickey-Fuller test. The null hypothesis is
Ho: X% =C+X-1+& ,
a random walk with drift (which is difference stationary), vessu

Hiix =dg+ ot +Y; ; Vi =PVi-1+& -
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Under Hq, {%} is trend stationary, and the "noise" term AR(1). If we put p=0, then we get tb
trend-line model. It can be shown that undey, {x} can be expressedsa

X =Po+ Pt +pXe-1tE (2)
where 3, and B; are constants. (SpecificallBg=0a¢1-p)+pa,andB=a{l-p).) If we put p=1,
then Equation (2) reduces to

X =01+ X 1+& ,

i.e., a random walk with drift. Thus, we want to test the null hypothesisgh=t versus the alternative
thatp <1 in Equation (2).

To perform the test, we run an ordinary linear regression of the "dependent variajlelghinst

the explanatory variables timea)(and {x._;}, together with a constant term. The observations & {

are Ks,...,X,), the observations ot are (2 ...,n), and the observations onx{;} are
(X1, ..., X%,—1). The test statistic is the standardized estimatpe of Equation (2),
-1
T,= pSA .

p

Although this may appear to be the same as the ordinary Dickey-Fuller stagjstit is actualy
different because of the presence of time as an explanatory variable. The percentilesdér the null
hypothesis f=1) are given in the attached table. The null hypothesis is rejectedi#f less than ta
tabled value. The percentiles of are considerably less than the corresponding percentileg, ofdi-
cating the effects of including time as an explanatory variable. For example, the asym@iofiercen-

tage point oft, is at-3.96 fort,, compared with-3.43 for,,.

The logl0 Dow data seems to contain a trend, but what is the nature of this trend? Woelld it b
more appropriate to model this data as a random walk with drift, or as a trend line plus stationary
AR(1) errors? In our original analysis of this data, we first tried an ordinary trend-line model, ardl foun
a highly significant trend. We then questioned the validity of this finding, since the Durbin-Watson
statistic showed strong error autocorrelation. We could have pursued the use of a trend stationary mode

(i.e., linear trend plus autocorrelated errors) for this series, by re-estimating the trend line using general-
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ized least squares. This still would not have answered the question as to whether such a model is more
appropriate than a random walk with drift, however. To address this question, we now rap ttet

The regression described above yielded

Residual Standard Error = 0.0147, Multiple R-Square = 0.9977
N = 546, F-statistic = 119357.4 on 2 and 543 df, p-value = 0

coef std.err tstat p.value
Intercept 0.0207 0.0130 1.5885 0.B12

Time  0.0000 0.0000 1.3508 0.1773
xlag  0.9923 0.0054 182.1997 0.@O

where Time denotes (2 ..,547), xlag is X4,...,Xss9 and the dependent variable is

(X2, . .., X549). The estimated coefficient of x.lag fs=.9923, ands, =.0054. We calculate
= (p-1)/s,=(9923-1)/.0054=-1.43 .

Since this is not less than the tabled value-8t42, we do not reject the null hypothesis of random
walk with drift at level.05. In fact, examination of the table reveals that our obseryas not small &

all, with a p-value around .9, indicating that there is virtually no evidence in favor of trend statipnarit

for this series. This does not mean that the logl0 Dow data is actually a random walk with drift.
(Indeed, we previously found strong evidence that the differences of this data are not uncorrelated, even
though they seem to have a nonzero expectation.) It just means that we cannot reject the random walk

with drift hypothesis in favor of trend stationarity.



