
DIFFERENCING AND UNIT ROOT TESTS
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In the Box-Jenkins approach to analyzing time series, a key question is whether to difference th

ata, i.e., to replace the raw data {x } by the differenced series {x −x }. Experience indicates that

m

t t t −1

ost economic time series tend to wander and are not stationary, but that differencing often yields a

e

r

stationary result. A key example, which often provides a fairly good description of actual data, is th

andom walk,x = x + ε , where {ε } is white noise, assumed here to be independent, each having the

s

t t −1 t t

ame distribution (e.g., normal,t , etc.). The random walk is said to have aunit root.
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To understand what this means, let’s recall the condition for stationarity of anAR (p ) model. I

hapter 3, part II, we said that theAR (p ) series

x = α x + α x + . . . + α x + εt

w

t 1 t −1 2 t −2 p t −p

ill be stationary if the largest rootθ of the equation (in the complex variablez )

)z = α z + α z + . . . + α z + α (1p
1

p −1
2

p −2
p −1 p

.satisfies eθ e <1 . So stationarity is related to the location of the roots of Equation (1)

We can think of the random walk as anAR (1) process,x = αx + ε with α = 1. But since it hast t −1 t

l

r

α = 1, the random walk is not stationary. Indeed, for anAR (1) to be stationary, it is necessary that al

oots of the equationz = α have "absolute value" less than 1. Since the root of the equationz = α is

h

just α, we see we see that theAR (1) is stationary if and only if−1< α < 1. For the random walk, we

ave aunit root, that is, a root equal to one. The first difference of a random walk is stationary, how-

ever, sincex − x = ε , a white noise process.t t −1 t

t t t

s

In general, we say that a time series {x } is integrated of order 1, denoted byI (1), if { x } is no

tationary but the first difference {x − x } is stationary and invertible. If {x } is I (1), it is considered

i

t t −1 t

mportant to difference the data, primarily because we can then use all of the methodologies developed

,

i

for stationary time series to build a model, or to otherwise analyze, the differenced series. This, in turn

mproves our understanding (e.g., provides better forecasts) of the original series, {x }. For example, int

)

p

the Box-JenkinsARIMA (p , 1 ,q ) model, the differenced series is modeled as a stationaryARMA (p , q

rocess. In practice, then, we need to decide whether to build a stationary model for the raw data or for



the differenced data.
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More generally, there is the question of how many times we need to difference the data. In the

f

o

ARIMA (p , d , q ) model, thed ’th difference is a stationaryARMA (p , q ). The series isintegrated o

rder d , denoted byI (d ), whered is an integer withd ≥ 1, if the series and all its differences up to

f

o

the d −1’st are nonstationary, but thed ’th difference is stationary. A series is said to beintegrated o

rder zero, denoted byI (0), if the series is both stationary and invertible. (The importance of inverti-

bility will be discussed later). If the series {x } is I (d ) with d ≥1, then the differenced series {x − x }t t t −1

is I (d −1).

For an example of anI (2) process, consider theAR (2) seriesx =2x − x + ε . This process is

n 2 2

t t −1 t −2 t

ot stationary. Equation (1) becomesz =2z −1, that is, z −2z +1=0. Factoring this gives

"

(z −1) (z −1)=0, so the equation hastwo unit roots. Since the largest root (i.e., one) does not have

absolute value" less than one, the process is not stationary. It can be shown that the first difference is

not stationary either. The second difference is

x − x − [x − x ] = x −2x + x ,

w t

t t −1 t −1 t −2 t t −1 t −2

hich is equal toε by the definition of ourAR (2) process. Since the second difference is white noise,

{ x } is an ARIMA (0 , 2 , 0). Since the second difference is stationary, {x } is I (2). In general, for anyt t

,

h

ARIMA process which is integrated of orderd , Equation (1) will have exactlyd unit roots. In practice

owever, the only integer values ofd which seem to occur frequently are 0 and 1. So here, we will

limit our discussion to the question of whether or not to difference the data one time.

If we fail to take a difference when the process is nonstationary, regressions on time will often

-

t

yield a spuriously significant linear trend, and our forecast intervals will be much too narrow (optimis

ic) at long lead times. For an example of the first phenomenon, recall that for the Deflated Dow Jones

f

t

series, we got at -statistic for the slope of 5.27 (creating the illusion of a very strong indication o

rend), but the mean of the first differences was not significantly different from zero. For an example

w

of the second phenomenon, let’s compare a random walk with a stationaryAR (1) model. For a random

alk, the variance of theh -step forecast error is
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]var [x − x ] = var [ε + ε + . . . − (ε + ε + . . . )n +h n n +h n +h −1 n n −1

= n +h n +1 tvar [ε + . . . + ε ] = h var [ε ] ,

-which goes to∞ as h increases. The width of the forecast intervals will be proportional toh , indicat√dd

s

i

ing that our uncertainty about the future value of the series grows without bound as the lead time i

ncreased. On the other hand, for the stationaryAR (1) processx = αx + ε with −1< α < 1, the best

l n , h
h

n

t t −1 t

inear h -step forecast isf = α x , which goes to zero ash increases. The variance of the forecast

,error is var [x − α x ], which tends tovar [x ], a finite constant. So as the lead timeh is increasedn +h
h

n t

the width of the h -step prediction intervals grows without bound for a random walk, but remains

d

bounded for a stationaryAR (1). Clearly, then, if our series were really a random walk, but we failed to

ifference it and modeled it instead as a stationaryAR (1), then our prediction intervals would give us

much more faith in our ability to predict at long lead times than is actually warranted.

It is also undesirable to take a difference when the process is stationary. Problems arise here

.

F

because the difference of a stationary series is not invertible, i.e., cannot be represented as anAR (∞)

or example, ifx = .9x + ε , so that {x } is really a stationaryAR (1), then the first difference {z } ist t −1 t t t

t t −1 t t −1 -

n

the non-invertibleARMA (1 , 1) processz = .9z + ε − ε , which has more parameters than the origi

al process. (Recall that anARMA (p , q ) is invertible if the largest rootθ of the equation

ez + b z + . . . + b =0 satisfies eθ e <1, whereb , . . . , b are theMA parameters.) Because of thq
1

q −1
q 1 q

n ton-invertibility of {z }, its parameters will be difficult to estimate, and it will be difficult to construct a

forecast ofz . Consequently, taking an unnecessary difference (i.e.,overdifferencing ) will tend tot +h

degrade the quality of forecasts.

Ideally, then, what we would like is a way to decide whether the series is stationary, or integrated

-

c

of order 1. A method in widespread use today is to declare the series nonstationary if the sample auto

orrelations decay slowly. If this pattern is observed, then the series is differenced and the autocorrela-

t

tions of the differenced series are examined to make sure that they decay rapidly, thereby indicating

hat the differenced series is stationary. This method is somewhatad hoc , however. What is really

gneeded is a more objective way of deciding between the two hypotheses,I (0) andI (1), without makin
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any further assumptions. Unfortunately, each of these hypotheses covers a vast range of possibilities

nd any classical approach to discriminate between them seems doomed to failure unless we limit the

scope of the hypotheses.

The Dickey-Fuller Test of Random Walk Vs. Stationary AR(1)

y

D

A test involving much more narrowly-specified null and alternative hypotheses was proposed b

ickey and Fuller in 1979. In its most basic form, the Dickey-Fuller test compares the null hypothesis

H : x = x + ε ,0 t t −1 t

si.e., that the series is a random walk without drift, against the alternative hypothesi

H : x = c + ρx + ε ,1 t t −1 t

1 h

m

where c and ρ are constants witheρ e <1. According toH , the process is a stationaryAR (1) wit

eanµ = c /(1−ρ). To see this, note that, underH , we can write

t

1

t −1 t ,

so that

x = µ(1−ρ) + ρx + ε

x − µ = ρ(x − µ) + ε .

N

t t −1 t

ote that by making the random walk thenull hypothesis, Dickey and Fuller are expressing a prefer-

c

ence for differencing the data unless a strong case can be made that the raw series is stationary. This is

onsistent with the conventional wisdom that, most of the time, the data do require differencing. A

s

c

Type I error corresponds to deciding the process is stationary when it is actually a random walk. In thi

ase, we will fail to recognize that the data should be differenced, and will build a stationary model for

t

i

our nonstationary series. A Type II error corresponds to deciding the process is a random walk when i

s actually stationary. Here, we will be inclined to difference the data, even though differencing is not

desirable.

We should mention two additional important differences between theAR (1) and the random

awalk. Whereas the innovationε has a temporary (exponentially decaying) effect on theAR (1), it hast

permanent effect on the random walk. Whereas the expected length of time between crossings ofµ is
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nite for theAR (1) (so theAR (1) fluctuates around its mean ofµ), the expected length of time between

o

w

crossings of any particular level isinf inite for the random walk (so the random walk has a tendency t

ander in a non-systematic fashion from any given starting point).

rThe Dickey-Fuller test is easy to perform. Given datax , . . . , x , we run an ordinary linea1 n

tr 2 negression of the observations (x , . . . , x ) of the "dependent variable" {x }, against the observations

(x , . . . , x ) of the "independent variable" {x }, together with a constant term. Under bothH and1 n −1 t −1 0

H 1 t, the datax obey the linear regression model

x = c + ρx + ε ,

a 0

t t −1 t

nd H corresponds toρ =1, c =0.

yDenote thet -statistic for the least squares estimateρ̂ b

τ = (ρ̂ −1)/s ,

ρ

µ ρ̂

ˆ µ ρ̂ e

o

wheres is the estimated standard error forρ̂. Note thatτ is easy to calculate, sinceρ̂ and s can b

btained directly from the output of the standard computer regression packages.

gFor the Deflated Dow data, regressingx , . . . , x on x , . . . , x , we obtain the followin2 547 1 546

regression output:

Residual Standard Error = 0.6933, Multiple R-Square = 0.9907
N = 546, F-statistic = 57991.38 on 1 and 544 df, p-value = 0

coef std.err t.stat p.value
Intercept 0.1095 0.0832 1.3165 0.1886

X 0.9963 0.0041 240.8140 0.0000

The R-Square statistic is .9907, indicating a very strong linear relationship between {x } and

{ t −1 ρ̂

t

x }. The estimated slope isρ̂ = .9963, ands = .0041. We calculate

.τ = (ρ̂ −1)/s = (.9963−1)/.0041= −.9024µ ρ̂

Note that we do NOT use the t statistic (240.8140) from the output, since this was computed relative to

a null value of zero, instead of 1.
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The statisticτ can be used to testH versusH . The percentiles ofτ underH are given in theµ 0 1 µ 0

µ r

fi

attached table. The null hypothesis is rejected ifτ is less than the tabled value. The tabulations fo

nite n were based on simulation, assumingε are iid Gaussian. The tabled values for the asymptotic

d t

t

istribution (n = ∞) are valid as long as theε are iid with finite variance. (No Gaussian assumption is

tneeded here.) It should be noted thatτ does not have at distribution in finite samples, and does noµ

have a standard normal distribution asymptotically. In fact, the asymptotic distribution is longer-tailed

fthan the standard normal. For example, the asymptotic.01 percentage point ofτ is at −3.43, instead oµ

-

o

−2.326 for a standard normal. Thus, use of the standard normal table would result in an excess of spuri

us declarations of stationarity.

For the Deflated Dow data, we obtainedτ = −.9024, which is not significant according to the

T

µ

able. So we are not able to reject the random walk hypothesis. As usual in statistical hypothesis test-

-

l

ing, this does not mean that we should conclude that the series is a random walk. In fact, from our ear

ier analysis we have strong statistical evidence that the series isnot a random walk, since the lag-1

r

t

autocorrelation for the first differences is highly significant. All we can conclude from the Dickey-Fulle

est is that there is no strong evidence to support the hypothesisH that the series is a stationaryAR (1).1

t

d

This is the type of alternative that the test was designed to detect. The question of whether the firs

ifference has any autocorrelation is another issue altogether, and the test was not designed to detect

t

w

this type of failure of the random walk hypothesis. In any case, the results of the test indicate that i

ould be a good idea to difference the data. We could have come to this same conclusion by examin-

d

ing the ACF of the raw data, but the Dickey-Fuller test provides a more objective basis for making this

ecision.

As an illustration of the long tails in theτ distribution, consider the random walk data (n =547)

w

µ

hich was used in the last handout for comparison with the Dow and Deflated Dow series. For this

random walk data set, we obtain the following regression output.
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3
N
Residual Standard Error = 0.9917, Multiple R-Square = 0.982

= 546, F-statistic = 30111.83 on 1 and 544 df, p-value = 0

I
coef std.err t.stat p.value

ntercept 0.0771 0.0550 1.4028 0.1612
0

W

X 0.9913 0.0057 173.5276 0.000

e therefore getτ = (.9913−1)/.0057= −1.53. If τ had a standard normal distribution, we would

o

µ µ

btain a p -value of .063 (one-sided), indicating some evidence in favor of the alternative hypothesis

,

a

(that the series is a stationaryAR (1)). Of course, we know that this series was in fact a random walk

nd so it is somewhat distressing that we are almost being led to commit a Type I error. But when we

euse the true distribution ofτ under the null hypothesis (see table) we find that the actual significancµ

level is substantially greater than .10, although the table is not precise enough to allow us to find the

exactp -value.

Of course, the null and alternative hypothesesH and H described above are too narrow to be0 1

a

b

very useful in a wide variety of situations. Often, we will want to consider differencing the dat

ecause we hope the difference may be stationary, but we do not want to commit ourselves to the

l

n

assumption that the series is either a random walk or a stationaryAR (1). Fortunately, although we wil

ot describe the details here, there is a similar test known as the Augmented Dickey-Fuller test, which

e

p

allows us to test anARIMA (p , 1 , 0) null hypothesis versus anARIMA (p +1 , 0 , 0) alternative, wher

≥ 0 is known. If p =1, for example, the null hypothesis would be that the series is nonstationary, but

a

its first difference is a stationaryAR (1); the alternative hypothesis would be that the series is a station-

ry AR (2). In retrospect, it seems that the Deflated Dow series is better described by the above null

t

hypothesis than by the one which was actually tested, i.e., the random walk. But it is never a good idea

o change a statistical hypothesis after looking at the data; it can destroy the validity of the test. Furth-

-

e

ermore, the use of the random walk as a null hypothesis for financial time series seems wise as a gen

ral rule.

Difference Stationarity Vs. Trend Stationarity

,In the ordinary Dickey-Fuller (τ ) test, the series is assumed to be free of deterministic trendµ

under both the null and alternative hypotheses. Many actual series do have trend, however, and it is of
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nterest to study the nature of this trend. Perhaps the most important issue is the way in which the trend

t

x

is combined with the random aspects of the series. In the case of a random walk with drif

= c + x + ε where {ε } is zero mean white noise, there is a mixture of deterministic and stochastic

t

t t −1 t t

rend, the process has a unit root, and the forecast intervals grow without bound as the lead time

sincreases. Differencing {x } yields a stationary series, so {x } is said to bedifference stationary. (Thit t

is the same asI (1)).

Another way to combine trend and randomness is to start with a deterministic linear trend and

hbury it in white noise:x = α + α t + ε . This is a standard linear regression (trend-line) model, whict 0 1 t

0 1 t n

t

can be analyzed without using time series methods. If the parameters (α ,α , var [ε ]) are known, the

he forecast ofx is simply f = α + α (n +h ). If the ε are normally distributed, a forecast interval

n

n +h n , h 0 1 t

+h n , h α/2 t√dddddfor x is given for largeh by f ± z var ε . The width of this forecast intervaldoes not tend

to infinity as the lead time increases.

More generally, any series

x = α + α t + ytt 0 1

t s

s

formed by adding a deterministic linear trend to a stationary, invertible, zero mean "noise" series {y } i

aid to betrend stationary. Trend stationary series do not contain a unit root. The width of their fore-

cast intervals for largeh is 2z var y , which does not tend to infinity. Trend stationary series areα/2 t√ddddd

t e

t

not difference stationary, since it can be shown that the difference of {y } is not invertible. Since th

rend stationary series obeys a regression model with autocorrelated errors, we can use generalized least

l

s

squares (a popular linear regression technique) to estimate the trend and assess its statistica

ignificance.

Here, we show how to test a specific form of difference stationarity against a specific form of

trend stationarity, using a variant (τ ) of the Dickey-Fuller test. The null hypothesis isτ

0 t t −1 t ,H : x = c + x + ε

sa random walk with drift (which is difference stationary), versu

H : x = α + α t + y ; y = ρy + ε .1 t 0 1 t t t −1 t
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eUnder H , {x } is trend stationary, and the "noise" term isAR (1). If we put ρ =0, then we get th1 t

1 t strend-line model. It can be shown that underH , {x } can be expressed a

x = β + β t + ρx + ε , (2)

0

t 0 1 t −1 t

1 0 0 1 1 1 ,

t

where β and β are constants. (Specifically,β = α (1− ρ) + ρα and β = α (1− ρ).) If we put ρ =1

hen Equation (2) reduces to

x = α + x + ε ,

i

t 1 t −1 t

.e., a random walk with drift. Thus, we want to test the null hypothesis thatρ =1 versus the alternative

that ρ <1 in Equation (2).

To perform the test, we run an ordinary linear regression of the "dependent variable" {x } againstt

tt t −1he explanatory variables time (t ) and {x }, together with a constant term. The observations on {x }

eare (x , . . . , x ), the observations ont are (2, . . . , n ), and the observations on {x } ar2 n t −1

( 1 n −1x , . . . , x ). The test statistic is the standardized estimate ofρ in Equation (2),

hhhhh .
1ρ̂ −

s
τ =τ

ρ̂

µ y

d

Although this may appear to be the same as the ordinary Dickey-Fuller statisticτ , it is actuall

ifferent because of the presence of time as an explanatory variable. The percentiles ofτ under the null

τ

τ

e

t

hypothesis (ρ =1) are given in the attached table. The null hypothesis is rejected ifτ is less than th

abled value. The percentiles ofτ are considerably less than the corresponding percentiles ofτ , indi-

c

τ µ

ating the effects of including time as an explanatory variable. For example, the asymptotic.01 percen-

tage point ofτ is at −3.96 for τ , compared with−3.43 for τ .τ τ µ

e

m

The log10 Dow data seems to contain a trend, but what is the nature of this trend? Would it b

ore appropriate to model this data as a random walk with drift, or as a trend line plus stationary

d

a

AR (1) errors? In our original analysis of this data, we first tried an ordinary trend-line model, and foun

highly significant trend. We then questioned the validity of this finding, since the Durbin-Watson

l

(

statistic showed strong error autocorrelation. We could have pursued the use of a trend stationary mode

i.e., linear trend plus autocorrelated errors) for this series, by re-estimating the trend line using general-
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zed least squares. This still would not have answered the question as to whether such a model is more

.appropriate than a random walk with drift, however. To address this question, we now run theτ testτ

The regression described above yielded

Residual Standard Error = 0.0147, Multiple R-Square = 0.9977
N = 546, F-statistic = 119357.4 on 2 and 543 df, p-value = 0

coef std.err t.stat p.value
8

T
Intercept 0.0207 0.0130 1.5885 0.112

ime 0.0000 0.0000 1.3508 0.1773
0

w

x.lag 0.9923 0.0054 182.1997 0.000

here Time denotes (2, . . . , 547), x.lag is (x , . . . , x ) and the dependent variable is1 546

ˆ( 2 547 ρx , . . . , x ). The estimated coefficient of x.lag isρ̂ = .9923, ands = .0054. We calculate

τ = (ρ̂ −1)/s = (.9923−1)/.0054= −1.43 .τ ρ̂

Since this is not less than the tabled value of−3.42, we do not reject the null hypothesis of random

twalk with drift at level .05. In fact, examination of the table reveals that our observedτ is not small aτ

y

f

all, with a p -value around .9, indicating that there is virtually no evidence in favor of trend stationarit

or this series. This does not mean that the log10 Dow data is actually a random walk with drift.

t

(Indeed, we previously found strong evidence that the differences of this data are not uncorrelated, even

hough they seem to have a nonzero expectation.) It just means that we cannot reject the random walk

with drift hypothesis in favor of trend stationarity.


