A SEMIPARAMETRIC LONG MEMORY MODEL

The spectral density of the fractional ARIMA(p,d,q) model can be written as the product

\[f(\lambda) = \frac{\sigma^2}{2\pi} |1 - e^{-i\lambda}|^{-2d} f^*(\lambda) , \]

where \(f^*(\lambda) \) is the spectral density of an ARMA(p,q) process. Even if this model holds exactly, there is the possibility that we will misspecify \(p \) and \(q \) (i.e., use the wrong values). As a result, the maximum likelihood or Whittle estimate of \(d \) will be asymptotically biased. Another type of misspecification occurs if \(f^*(\lambda) \) is not in fact ARMA but we assume that it is. Here again, the standard estimates of \(d \) will be asymptotically biased. This asymptotic bias is a serious problem, since if our focus is on the long memory aspects of the series, then the only parameter of any real interest is \(d \). Clearly, then, it would be nice to have a way of estimating \(d \), even if we are not able to specify a fully parametric model for the short memory aspects of the process, \(f^* \).

We start by generalizing the model (1): We now suppose simply that \(f^*(\lambda) \) is continuous at \(\lambda=0 \), and that there exist finite positive constants \(C_1, C_2 \) such that \(C_1 \leq f^*(\lambda) \leq C_2 \) for all \(\lambda \in [0, \pi] \). (This is indeed a generalization of the fractional ARIMA(p,d,q) model, since the above assumptions are satisfied if \(f^* \) corresponds to a stationary invertible ARMA process. The point of making these assumptions is to ensure that \(f^* \) is not itself the spectral density of a long memory process.) Then (1) becomes a semi-parametric model, in the sense that the long memory aspects of the series are parametrically specified (by \(d \)), but the short memory aspects \((f^*) \) are not required to obey any parametric model.

Geweke and Porter-Hudak proposed an estimator of \(d \) in the semiparametric long memory model described above, based on regression of the log periodogram. They assumed that asymptotically (as \(n \to \infty \)), the first \(M \) normalized periodogram ordinates \(\{I_j/\hat{f}_j\}_{j=1}^M \) are \(iid \) \(\frac{1}{2}\chi^2_2 \). In fact, Hurvich and Beltrao have shown that this assumption is incorrect in the long-memory case \((d \neq 0) \), but it will be a reasonable approximation except at the first few Fourier frequencies. We will assume here that it holds exactly. Then it can be shown that \(E[\log(I_j/\hat{f}_j)] = -C \), where \(C = .577216 \ldots \) is Euler’s constant, and \(\text{var}[\log(I_j/\hat{f}_j)] = \pi^2/6 \). Therefore, \(\varepsilon_j = \log(I_j/\hat{f}_j) + C \) are \(iid \) with \(E[\varepsilon_j] = 0, \ \text{var}[\varepsilon_j] = \pi^2/6 \) for \(j = 1, \ldots, M \). Using (1), we obtain
\[
\log I_j = \log f_j + \log(I_j/f_j) \\
= \log f_j - C + \varepsilon_j \\
= [\log \left(\frac{\sigma^2}{2\pi f_j} \right) - C] - 2d \log |1 - e^{-i\omega_j}| + \varepsilon_j.
\]

If \(M \) is small compared to \(n \), then the continuity of \(f^*(\lambda) \) at \(\lambda = 0 \) implies that \(f^*(\omega) \) is essentially constant at \(f_0^* \) on the interval \(\omega \in [\omega_1, \omega_M] \). Therefore, we have, to a good approximation,

\[
\log I_j = [\log \left(\frac{\sigma^2}{2\pi f_0^*} \right) - C] - 2d \log |1 - e^{-i\omega_j}| + \varepsilon_j, \quad j = 1, \ldots, M. \tag{2}
\]

Using (2) as motivation, Geweke and Porter-Hudak proposed to estimate \(d \) using the least-squares estimator of the slope parameter, in a linear regression of \(\{\log I_j\}_{j=1}^M \) on \(\{-2\log |1 - e^{-i\omega_j}|\}_{j=1}^M \). We will denote the resulting estimate by \(\hat{d}^{(GPH)} \).

Assuming that (2) holds exactly, it can be shown that \(E[\hat{d}^{(GPH)}] = \hat{d} \), and \(\text{var}[\hat{d}^{(GPH)}] \propto \pi^2/(6M) \). Thus, if we let \(M \to \infty \) (slowly), then \(\hat{d}^{(GPH)} \) will be a consistent estimate of \(d \).

If \(f^* \) is actually ARMA(\(p,q \)) with \(p \) and \(q \) known, then the maximum likelihood estimator of \(d \) will have variance proportional to \(1/n \), and therefore will be more efficient than \(\hat{d}^{(GPH)} \). This is not so important, however, once we admit that the ARMA assumption on \(f^* \) will rarely be satisfied in practice. The GPH estimate of \(d \) is useful since it does not require the user to specify a parametric model for \(f^* \).

The main practical problem we encounter in using \(\hat{d}^{(GPH)} \) is the selection of the number of frequencies, \(M \). If we take \(M \) too small, the variance of \(\hat{d}^{(GPH)} \) will be unacceptably high. If we take \(M \) too large, then the assumption that \(f^*(\omega) \) is approximately constant for \(\omega \in [\omega_1, \omega_M] \) will break down, and \(\hat{d}^{(GPH)} \) will be biased. Thus, the choice of \(M \) involves a tradeoff between bias and variance. Hurvich and Beltrao have proposed a data-driven method of selecting \(M \), using frequency domain cross validation.