American Options

1. Introduction/Motivation

2. Problem with Black-Scholes

3. Put-Call Non-Parity

4. Payoff and Price of an American Option

5. Valuation with Trees

6. Example: Callable Coupon Bond

7. Bermuda Option

8. Approximation an American Option with Bermuda Options

9. Barrier Options

10. Approximating an American Option with Barrier Options

11. Other Exotic/Path-Dependant Options
1. **Introduction/Motivation**

 - Many popular options allow for "early" exercise, *i.e.*, can be exercised before the option expires.

 - Common for exchange-traded options and embedded options

 - Less common for OTC options

 - **Examples:**

 - Embedded options

 * callable (putable) bonds
 * sinking funds
 * mortgage-backed securities

 - Bond and bond futures options

 - American swaptions

 - Slightly different than American options on stocks → stocks don’t mature but bonds typically do
2. Problems with Black-Scholes

- Key assumption in deriving Black-Scholes is European option

- If you knew the exact date an American option will be exercised, then it is equivalent to a European options \rightarrow B-S formula applies

- Value clearly changes as the exercise date changes

- Terminology: “exercise policy” is a rule that specifies the option holder’s actions at each time and at each state

- Cash flows of the option depend critically on the option holder’s exercise policy

- Is knowledge of the exercise policy sufficient for the use of Black-Scholes?

 - **No.** Since the exercise policy depends on the future state, it does not predict with certainty the date the option will be exercised.

 - \rightarrow cash flows are “path dependant”
2. Problems... cont’d

- We will assume “optimal exercise,” i.e., the option holder chooses the action (exercise or not exercise) that maximizes the option’s value

 - Note: As usual, this abstracts from tricky issues like liquidity, incentive issues, etc.

- Bottom Line: Black-Scholes can at best be used to place a lower bound on an American option, but not to accurately value the option (even if all of the other assumptions are satisfied)

 - since the holder of an American option always has the option of waiting until expiration to exercise (effectively converting the American option to a European option), an American option can’t be worth less than an otherwise identical European option (which can be prices with the B-S formula)
3. Put-Call Non-Parity

- Put-call parity built on the idea of simultaneously buying an call and selling a put on the same underlying with the same strike, K, and maturity

 - this locks in the future price of the underlying at K

- With the possibility of early exercise, this logic breaks down

- Example:

 - 1 year to maturity
 - option to exercise puts and calls in 6 months or 1 year
 - price falls dramatically over the first 6 months
 - → induces the holder of the put to exercise and the writer of the put to finance the cash flow

 - no guarantee that the price will rise over the second 6 months to offset this loss with a profit from the call

- → put-call strategy with American options is risky
4. Payoff and Price of an American Option

- At each point in time during the life of an American option, the holder can exercise the option or leave it alone.

- Optimal exercise implies that they will take the strategy that is worth more.

- Cash flow at date τ of an American call with n-period left until expiration:
 \[
 \max\{S_\tau - K, C_{n-1}^\tau\}
 \]
 - S is the price of the underlying.
 - K is the strike price.
 - C_{n-1}^τ is the price of an American call at strike K that expires in $n - 1$ periods.

- American call price:
 \[
 C_n^t = E_t [M_{t,n+1} \max\{S_{t+1} - K, C_{t+1}^{n-1}\}]
 \]

- American call is found “recursively”
 - $n = 1$: (one-period European)
 \[
 C_{1,n+1}^1 = E_{t+1} [M_{t+1,n+1} (S_{t+1} - K)^+]
 \]
 - $n = 2$:
 \[
 C_{2,n+2}^2 = E_{t+2} [M_{t+2,n+2} \max\{S_{t+2} - K, C_{t+2}^1\}]
 \]
 - and so on ...
Cash flow at date τ of an American put with n-period left until expiration:
$$\max\{K - S_\tau, P_{\tau}^{n-1}\}$$
- S is the price of the underlying
- K is the strike price
- P^{n-1} is the price of an American put at strike K that expires in $n - 1$ periods

American put price:
$$P_t^n = E_t \left[M_{t,t+1} \max\{S_{t+1} - K, P_{t+1}^{n-1}\}\right]$$

American put is also found “recursively”
- $n = 1$: (one-period European)
 $$P_{t+n-1}^1 = E_{t+n-1} \left[M_{t+n-1,t+n} (K - S_{t+n})^+\right]$$
- $n = 2$:
 $$P_{t+n-2}^2 = E_{t+n-2} \left[M_{t+n-2,t+n-1} \max\{K - S_{t+n-1}, P_{t+n-1}^1\}\right]$$
- and so on ...
4. Payoff and Price... cont’d

- Note: It is easy to see why Black-Scholes breaks down

- B-S works for $n = 1$:

$$C^1_{t+n-1} = b^1_{t+n-1} F^1_{t+n-1} \Phi(d) - b^1_{t+n-1} K \Phi(d - \omega)$$

- recall that $d = \log(F^1_{t+n-1}/K)/\omega + \omega/2$

- this implies that when trying to calculate the expectation at date $t + n - 2$ to calculate C^2_{t+n-2}, we are trying to evaluate an expectation of some highly nonlinear functions of random variables, e.g., $\Phi(d)$

- the “normality” assumptions that help for deriving B-S are of little use here
5. Valuation with Trees

- Backward recursions are very easy to calculate on trees

- Accounts for the popularity of discrete methods in general and binomial models in particular

- Example: 2-year, 5.5% coupon bond
 - Interest rate tree:

 $\begin{align*}
 5.5400 & \leftarrow 6.0040 & \leftarrow 6.9150 & \leftarrow 7.8640 \\
 4.7210 & \leftarrow 5.4370 & \leftarrow 4.8620 & \leftarrow 3.8230 \\
 \end{align*}$

 - 6-month zeros (discount factors):

 $\begin{align*}
 0.9730 & \leftarrow 0.9709 & \leftarrow 0.9666 & \leftarrow 0.9622 \\
 0.9769 & \leftarrow 0.9735 & \leftarrow 0.9763 & \leftarrow 0.9812 \\
 \end{align*}$

 - Coupon-bond prices (ex-coupon):

 $\begin{align*}
 100.0019 & \leftarrow 99.089 & \leftarrow 98.606 & \leftarrow 98.863 \\
 100.955 & \leftarrow 100.021 & \leftarrow 100.311 & \leftarrow 100.823 \\
 \end{align*}$
5. Valuation... cont’d

- Value European call, $n = 3$, $K = 100$

- Value American call, $n = 3$, $K = 100$

- Call Premium?

- **Note:** This methodology is the same for all trees!
6. Example: Callable bond

- The buyer of a callable bond may be viewed as being:
 - long a noncallable bond with the same maturity as the callable one
 - short an option on this bond

- Price of a callable bond

\[P^{(callable)} = P^{(non-call)} - C \]

- In the example, at time-0, the callable bond is worth

\[100.0019 - 0.5003 = 99.5016 \]

- Interest rate delta of a callable bond is equal to the delta of the noncallable minus the delta on the option → callable bond has less interest rate sensitivity than the noncallable