
Risk and ambiguity in models of business cycles∗

David Backus,† Axelle Ferriere,‡ and Stanley Zin§

December 19, 2014

Abstract

We inject aggregate uncertainty — risk and ambiguity — into an otherwise standard busi-
ness cycle model and describe its consequences. We find that increases in uncertainty
generally reduce consumption, but they do not account, in this model, for either the mag-
nitude or the persistence of the most recent recession. We speculate about extensions that
might do better along one or both dimensions.

JEL Classification Codes: E32, D81, G12.

Keywords: uncertainty; smooth ambiguity; certainty equivalent; recursive preferences;
pricing kernel; asset returns; learning.

∗Prepared for the Carnegie-Rochester-NYU Conference, Rochester, April 2014. Along with conference
participants, we also thank seminar participants at the Toulouse School of Economics, Ryerson University,
The Federal Reserve Bank of San Francisco, the University of California Davis, and especially Rudi Bach-
mann, Anmol Bhandari, Rhys Bidder, Jarda Borovicka, Ana Fostel, Lars Hansen, Cosmin Ilut, Sydney
Ludvigsen, Jianjun Miao, Laura Veldkamp, Venky Venkateswaran and Amir Yaron for helpful comments.
Chase Coleman and Spencer Lyon provided valuable programming assistance. The latest version is available
at http://pages.stern.nyu.edu/~dbackus/BFZ/ms/BFZ_CRN_latest.pdf.
† Stern School of Business, New York University, and NBER; david.backus@nyu.edu.
‡ Stern School of Business, New York University; axelle.ferriere@nyu.edu.
§ Stern School of Business, New York University, and NBER; stan.zin@nyu.edu.

http://pages.stern.nyu.edu/~dbackus/BFZ/ms/BFZ_CRN_latest.pdf


1 Introduction

In the United States, the most recent recession was the most severe since the 1930s, and it’s

been followed by an unusually long recovery. We see how this played out in the four panels

of Figure 1, which are adapted from Bethune, Cooley, and Rupert (2014). The figures

illustrate the recession and recovery, relative to the previous peak, in output, consumption,

and investment over the last five recessions. Output, for example, hit a cyclical peak in

the fourth quarter of 2007, declined by about 4 percent over the next 6 quarters, and only

surpassed its previous peak 14 quarters later. The depth and duration are greater than in

any of the earlier recessions. The duration reflects both the depth of the recession — it

takes longer to dig your way out of a deeper hole — and a slower rate of recovery. We see

broadly similar behavior in consumption. Consumption fell 3 percent and took 12 quarters

to return to its previous level. Nonresidential fixed investment fell almost 20 percent and

took 24 quarters (6 years!) to recover. Housing, of course, has yet to recover.

These patterns are familiar to all of us. The relative magnitudes are what we tell our

students: consumption falls less than output, and investment falls more. The same with

comovements: all three variables, and many more besides, declined together. The only

somewhat unusual feature here is the slow speed of recovery, particularly in investment.

Since the patterns are familiar, we might expect to account for them with some variant

of the Kydland-Prescott (1982) model, in which declines in productivity generate precisely

this collection of facts. The unusually large magnitude of the recession would reflect, in

this model, an unusually large drop in productivity. The problem with this account is that

measured productivity barely fell. We could document this in a number of ways, but the

simplest is to measure productivity by the ratio of output to hours worked. We see the

result in the last panel of Figure 1 and in related work by Sprague (2014). Productivity

was essentially flat for six quarters until growth resumed, and at its lowest point was only

one percent below its peak.

But if productivity wasn’t the source of the last recession, what was? Yes, we know,

there was a financial crisis. But what shocks — or wedges — do we need to add to the

model to reproduce its effects? We have no shortage of candidates, but the leading one

right now is “uncertainty.” Among the many suggestions to this effect is a wonderful

comment from the European Commission (2013, page 7): “Economic theory suggests that

uncertainty has a detrimental effect on economic activity by giving agents the incentive to

postpone investment, consumption and employment decisions until uncertainty is resolved,

and by pushing up the cost of capital through increased risk premia.” Bloom (2013),

who has written extensively on uncertainty, adds: “The onset of the Great Recession was

accompanied by a massive surge in uncertainty. The size of this uncertainty shock was so



large it potentially accounted for around one third of the 9% drop in GDP versus trend

during 2008-2009.” At minimum, we observe strong countercyclical patterns in measures of

uncertainty that beg for explanation; see, for example, the evidence reported by Bachmann

and Bayer (2013) and Bloom, Floetotto, Jaimovich, Saporta, and Terry (2012).

With this motivation, we study uncertainty in a streamlined business cycle model and

ask: Can an increase in uncertainty account for the magnitude and persistence of the

last recession in this model? How does uncertainty affect the dynamics of consumption,

investment, and output? Does it interfere with traditional business cycle comovements,

in which all of these variables move up and down together? Can uncertainty account for

differences in the responses of consumption and investment during the latest recovery?

To answer these questions, we inject uncertainty into a streamlined version of the Kydland

and Prescott (1982) model with constant labor supply. We add three ingredients: recursive

preferences, a unit root in the aggregate productivity process, and several kinds of uncer-

tainty. Recursive preferences are a natural generalization of the additive preferences used

in most business cycle models. A large body of work suggests that their extra flexibility is

helpful in accounting for asset prices (Bansal and Yaron, 2004, for example) but has little

impact on the behavior of macroeconomic quantities (Tallarini, 2000). In this respect they

differ markedly from habit-based preferences, which affect both quantities and asset prices.

The unit root is essential to delivering realistic risk premiums. Without it, the asset with

the largest risk premium is a long-maturity bond (Alvarez and Jermann, 2005, Proposition

2), which is not what we see in the data.

The most important new ingredient is the third one: uncertainty. We specify stochastic pro-

cesses for the conditional mean and variance of aggregate productivity growth. Preferences

play a role here in the representative agent’s responses to these sources of uncertainty,

whether risk (where the probabilities are well understood) or ambiguity (where they’re

not). Typically greater aversion to uncertainty leads to stronger responses of consumption

to fluctuations in the conditional variance. We consider preferences toward risk, in which

the distribution of outcomes is understood by our representative agent, and ambiguity, in

which it is not.

We use these ingredients to assess the impact of uncertainty on the magnitude and persis-

tence of economic fluctuations. Consumption and investment decisions are functions of the

state, which here includes a state variable representing uncertainty. We find that consump-

tion typically falls when uncertainty rises, although there are parameter configurations in

which the reverse is true. The magnitude of the effect depends on both the IES and un-

certainty aversion. In this respect, recursive preferences are central to the transmission of

uncertainty to the economy. The effects, however, are small: fluctuations in uncertainty

play a minor role in the model’s business cycle properties.
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Does uncertainty interfere with business cycle comovements, the tendency for output, con-

sumption, and investment to move up and down together? Barro and King (1984) showed

that shocks to anything but productivity generate counterfactual comovements. Uncer-

tainty is one such shock. In our model, a change in uncertainty drives consumption and

investment in opposite directions. If the effect is strong enough, we lose the strong pro-

cyclicality of these variables that we see in the data. We find, however, that in models with

quasi-realistic parameter values, the productivity shocks dominate. In fact, the modest

decline in the correlations of consumption and investment with output brings the model

closer to the evidence.

Does uncertainty increase the persistence of economic fluctuations? The answer is no, but

it’s helpful to describe precisely how uncertainty affects decisions. We compute properties

of model economies with accurate numerical procedures, but we get sharper insights from

loglinear approximations analogous to Campbell’s (1994). We think the approximations

give us clarity about how uncertainty works that would be hard to come by otherwise.

And despite rumors to the contrary, such loglinear approximations are compatible with

uncertainty. These loglinear approximations have two striking properties:

• Tallarini property. Tallarini (2000) showed that in a model with an intertemporal elas-

ticity of substitution (IES) of one, iid productivity growth, and constant uncertainty, the

behavior of quantities is the same in models with recursive and additive preferences. We

extend his result to a model with arbitrary IES and arbitrary linear dynamics in pro-

ductivity growth: the behavior of quantities is affected by the IES but not uncertainty

aversion. The result applies to loglinear approximations, but we find the approximations

hard to distinguish from more accurate solutions.

• Separation property. The impact of uncertainty on dynamics is limited by what we call

the separation property : the endogenous dynamics of the capital stock are independent

of uncertainty and its properties. More precisely, the response of consumption and next

period’s capital stock to today’s capital stock is independent of the shocks and their

properties, including shocks to uncertainty. This is a standard feature of linear-quadratic

models. It also applies to our loglinear approximations and, to a close approximation, to

accurate numerical solutions of our models. One consequence is that uncertainty cannot

account for an unusually slow recovery in this model except through persistence in the

shock.

What’s the bottom line? The recursive business cycle model provides a mechanism through

which fluctuations in aggregate uncertainty affect the dynamics of aggregate quantities.

This mechanism changes the magnitudes of, and correlations between, growth rates of

output, consumption, and investment. The effects, however, are small. We also find that

uncertainty has essentially no impact on the endogenous dynamics of the model: an increase
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in uncertainty produces a more persistent decline in (say) consumption only if uncertainty

is itself persistent. We conclude not that uncertainty is irrelevant to business cycles, but

that any mechanism that produces a greater impact must operate through other channels.

A few words on notation: We use a number of conventions to keep it as simple as we

can. (i) For the most part, Greek letters are parameters and Latin letters are variables or

coefficients. (ii) We use t subscripts (xt, for example) to represent random variables and

the same letters without subscripts (x) to represent their means. Or, more commonly, log x

represents the mean of log xt rather than the log of the mean of xt. (iii) We also use t

subscripts to denote dependence of a function on the state. Thus f(xt) might be denoted

ft. (iv) We use variable subscripts to denote derivatives; for example, fxt = ∂f(xt)/∂xt.

(v) The abbreviation iid means independent and identically distributed and NID(a, b) means

normally and independently distributed with mean a and variance b.

2 Risk

We approach uncertainty from the perspective of decision theory. We use the term risk

to describe random environments in which the distribution of outcomes is known. We use

ambiguity to describe environments in which some aspect of the distribution is unknown.

Uncertainty is an umbrella term that includes both risk and ambiguity. We consider risk

here and turn to ambiguity in Section 6.

2.1 Risk preference in static environments

Our treatment of risk is standard in macroeconomics and finance: the distribution over

outcomes is known (risk) and equal to the distribution that generates the data (rational

expectations).

To make this concrete, consider a static environment with a random state s and consumption

c(s) defined over it. Risk is a known nonconstant probability distribution over s, which

induces a distribution over c. We summarize attitude toward risk with a certainty equivalent

function, which transforms utility back into consumption units. More formally, the certainty

equivalent µ(c) is the level of constant consumption that delivers the same utility. If c is

constant, then µ(c) = c. If c is risky, then risk aversion is indicated by µ(c) < E(c). Some

common examples are described in Backus, Routledge, and Zin (2005, Section 3). We refer

to the log difference logE(c)− logµ(c) > 0 as a risk adjustment .

We rely exclusively on the expected utility certainty equivalent,

µ(c) = u−1 [Eu(c)] ,
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for some increasing concave function u. The standard example in macroeconomics and

finance is power utility, u(c) = cα/α, which implies the certainty equivalent

µ(c) = [E(cα)]1/α . (1)

Here α < 1 and 1−α > 0 is commonly referred to as the coefficient of relative risk aversion

(CRRA).

Most of our models are at least approximately loglinear with normal (Gaussian) uncertainty.

Neither is essential, but the combination gives us relatively simple certainty equivalents.

Suppose, for example, log c = s ∼ N (κ1, κ2) (the log of consumption is normal with mean

κ1 and variance κ2). The log of the moment generating function for s is logE(eθs) =

logE(cθ) = θκ1 + θ2κ2/2. Therefore logE(c) = κ1 + κ2/2, logE(cα) = ακ1 + α2κ2/2, and

logµ(c) = κ1 +ακ2/2. Risk aversion is implied by the risk adjustment logE(c)− logµ(c) =

(1− α)κ2/2 > 0.

2.2 Risk preference in dynamic environments

We follow standard practice and extend risk preference to dynamic environments with the

recursive technology developed by Kreps and Porteus (1978). Utility Ut from date t on has

the form

Ut = V [ct, µt(Ut+1)]. (2)

Time preference is built into the time aggregator V and risk preference is built into the

certainty equivalent µt. The notation is intended to imply that ct and Ut are functions of st,

the state at date t. The certainty equivalent is computed from the conditional distribution

of future states st+1 given current state st.

We assume throughout that the time aggregator V and certainty equivalent µt are homo-

geneous of degree one, which allows us to use them in environments that are stationary in

growth rates. We use the constant elasticity time aggregator suggested by Epstein and Zin

(1989),

V [ct, µt(Ut+1)] = [(1− β)cρt + βµt(Ut+1)
ρ]
1/ρ

, (3)

with 0 < β < 1 and ρ < 1. Here σ = 1/(1−ρ) is the intertemporal elasticity of substitution

or IES: the elasticity of substitution between current consumption and the certainty equiv-

alent of future utility. If we use the power certainty equivalent function (1), the coefficient

of relative risk aversion is again 1− α, but the risk in this case is to future utility.

The time aggregator (3), like a certainty equivalent, expresses utility in consumption units.

Consider a constant consumption path ct+j = c for all j ≥ 0. Then Ut = Ut+1 = µt(Ut+1) =

c. Differences of Ut from current consumption ct reflect some combination of timing and

uncertainty in the path of future consumption.
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3 A recursive business cycle model

We imbed these preferences in a business cycle model, a streamlined version of Kydland

and Prescott (1982). The model is conveniently summarized by a Bellman equation. We

describe the Bellman equation and show how it can be scaled to take into account growth

in productivity. Although risk premiums are not our focus, they provide a useful link to

related work in finance. We show how asset returns are related to a pricing kernel, which

in this model is the representative agent’s intertemporal marginal rate of substitution. We

also show how the maximum risk premium can be computed from the entropy of the pricing

kernel.

3.1 Model

Our benchmark model starts with recursive preferences: equation (2) with time aggregator

V and certainty equivalent function µt both homogeneous of degree one. Production uses

capital (kt) and labor (nt) inputs and leads to the law of motion

kt+1 = f(kt, atnt)− ct, (4)

where f is also homogeneous of degree one and at is (labor) productivity. We fix labor

supply at one (nt = 1) and use a constant elasticity production function with constant

depreciation:

f(kt, atnt) = [ωkνt + (1− ω)(atnt)
ν ]1/ν + (1− δ)kt = yt + (1− δ)kt, (5)

where ν < 1, 1/(1− ν) is the elasticity of substitution between capital and labor, 0 < δ ≤ 1

is the depreciation rate, and yt is output. Investment is it = yt − ct.

The source of fluctuations in this model is a stochastic process for productivity growth. We

refer to its components as “news” and “risk.” Productivity growth gt = at/at−1 is tied to

a state vector xt by log gt = log g+ e>xt, where e is an arbitrary vector of coefficients. The

vector xt has linear dynamics,

xt+1 = Axt +Bv
1/2
t w1t+1, (6)

with {w1t} ∼ NID(0, I). If A = [0] then the conditional mean of log gt is constant. Otherwise

Axt adds a predictable component of future productivity: in a word, news.

Risk is represented by stochastic volatility. The conditional variance vt (loosely speaking,

“volatility”) is a linear first-order autoregression,

vt+1 = (1− ϕv)v + ϕvvt + τw2t+1, (7)
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with 0 < ϕv < 1 and {w2t} ∼ NID(0, 1) and independent of {w1t}. This gives positive

probability to negative conditional variances, but we choose parameter values that make

this probability tiny.

We find a competitive equilibrium as the solution to a planning problem: maximize utility

subject to the laws of motion for the state st = (kt, at, xt, vt). The associated Bellman

equation is

J(kt, at, xt, vt) = max
ct

V
{
c, µt[J(kt+1, at+1, xt+1, vt+1)]

}
subject to the laws of motion (4), at+1 = atgt+1 = at exp(log g + e>xt+1), (6), and (7).

Since V , µ, and f are all homogeneous of degree one, J is homogeneous of degree one in kt
and at. We can, therefore, divide the Bellman equation by at and express the problem in

terms of scaled variables, k̃t = kt/at and c̃t = ct/at. The scaled Bellman equation is

J(k̃t, 1, xt, vt) = max
c̃t

V
{
c̃, µt[gt+1J(k̃t+1, 1, xt+1, vt+1)]

}
(8)

subject to the laws of motion. Similar logic gives us a scaled law of motion for k̃t,

gt+1k̃t+1 = f(k̃t, 1)− c̃t. (9)

From here on, we drop the 1 and write the value function as J(k̃t, xt, vt).

We find it convenient to work with the log of J . With the constant elasticity time aggregator

(3), we can rewrite (8) as

log J(k̃t, xt, vt) = max
c̃t

ρ−1 log
{

(1− β)c̃ρ + βµt[gt+1J(k̃t+1, xt+1, vt+1)]
ρ
}
. (10)

In the limiting case of ρ = 0 — and intertemporal elasticity of substitution σ = 1/(1−ρ) = 1

— we have

log J(k̃t, xt, vt) = max
c̃t

(1− β) log c̃+ β logµt[gt+1J(k̃t+1, xt+1, vt+1)].

Additive models generally work instead with Jρ/ρ,

J(k̃t, xt, vt)
ρ/ρ = max

c̃t
(1− β)c̃ρ/ρ+ βµt[gt+1J(k̃t+1, xt+1, vt+1)]

ρ/ρ,

which also follows from (8). If we redefine the value function as Ĵt = Jρt /ρ and set α = ρ

(the additive case), the second term becomes µt(gt+1Jt+1)
ρ/ρ = Et(g

ρ
t+1Ĵt). We use this in

Appendix C.
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3.2 Asset pricing fundamentals

The properties of asset returns in our model depend, in large part, on the marginal rate

of substitution of the agent. In general no-arbitrage environments, there exists a positive

pricing kernel mt+1 that satisfies the asset pricing relation

Et
(
mt+1rt+1

)
= 1

for gross returns rt+1 on all assets. In representative agent models such as ours, the pricing

kernel is the marginal rate of substitution and the equation is one of the agent’s first-order

conditions. With recursive preferences, the marginal rate of substitution is

mt+1 = β

(
ct+1

ct

)ρ−1( Ut+1

µt(Ut+1)

)α−ρ
.

See Appendix A. The first term is familiar from additive power utility. The next one is

what we might term the Epstein-Zin term; it reflects the non-additivity of preferences over

time and across states. It disappears if we set ρ = α, which sends us back to the additive

case.

A solution of our model includes a stochastic process for consumption that we can use to

compute asset prices and, more commonly, risk premiums such as the equity premium. We

use the maximum risk premium as an indicator of how risk is priced. The maximum risk

premium is related to the entropy of the pricing kernel. The return on a one-period (riskfree)

bond is r1t+1 = 1/Et(mt+1). The return rt+1 with the highest log expectation Et(log rt+1)

is rt+1 = 1/mt+1. The (logarithmic) risk premium on an arbitrary asset with return rt+1

is Et(log rt+1− log r1t+1). The maximum risk premium follows from the maximum expected

return:

Et(log rt+1 − log r1t+1) ≤ Lt(mt+1),

where Lt(mt+1) = logEt(mt+1) − Et(logmt+1) is the conditional entropy of the pricing

kernel. See Alvarez and Jermann (2005, Proposition 2) and Backus, Chernov, and Zin

(2014, Section I). Taking expectations of both sides gives us the entropy bound:

E(log rt+1 − log r1t+1) ≤ E[Lt(mt+1)]. (11)

The object on the right is the largest risk premium that can be generated by this pricing

kernel.

4 Risk in the recursive Brock-Mirman example

Now that we have a handle on risk, we can explore its impact on the properties of business

cycle models. We start with a textbook standard, to which we add a number of bells and
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whistles. None of the bells and whistles affect the decision rule for consumption, so you

might ask why we bothered. We do it to illustrate some general properties in an example

we can solve with pen and paper.

4.1 Model and solution

What’s come to be known as the Brock-Mirman example shows up in most introductions to

dynamic programming for economists, including Ljunqvist and Sargent (2000, Chapter 4,

Appendix B). In the notation of the previous section, it consists of additive preferences (ρ =

α), log utility (ρ = 0, corresponding to IES σ = 1), Cobb-Douglas technology (f(a, k) =

kωa1−ω with 0 ≤ ω < 1), and one hundred percent depreciation (δ = 1). With this structure,

the value function and decision rule are loglinear. See, for example, Appendix B. The same

is true of the recursive version, where we allow the risk aversion parameter α to take on

nonzero values in the certainty equivalent function (1).

The Bellman equation for this recursive Brock-Mirman example is

log J(k̃t, xt, vt) = max
c̃t

(1− β) log c̃+ β logµt[gt+1J(k̃t+1, xt+1, vt+1)]

subject to (9), (6), and (7). Equation (9) in this case is gt+1k̃t+1 = f(k̃t, 1)− c̃t = k̃ωt − c̃t.
When ω = 0, we have the Bansal-Yaron (2004) asset pricing model with ρ = 0.

We find the solution by guess and verify. We guess the value function is loglinear:

log J(k̃t, xt, vt) = p0 + pk log k̃t + p>x xt + pvvt

with coefficients (p0, pk, px) to be determined. Next we substitute the laws of motion into

next period’s value function and evaluate the certainty equivalent:

log[gt+1J(k̃t+1, xt+1, vt+1)] = (1− pk)(log g + e>xt+1) + p0 + pk log(k̃ωt − c̃t) + p>x xt+1 + pvvt+1

= p0 + (1− pk) log g + pv(1− ϕv)v + pk log(k̃ωt − c̃t)
+ [(1− pk)e+ px]>(Axt +Bv

1/2
t w1t+1) + pv[ϕvvt + τ1/2w2t+1]

logµt[gt+1J(k̃t+1, xt+1, vt+1)] = p0 + (1− pk) log g + pv(1− ϕv)v + pk log(k̃ωt − c̃t)
+ [(1− pk)e+ px]>Axt + [αVx/2 + pvϕv]vt + αp2vτ/2,

where Vx = [(1 − pk)e + px]>BB>[(1 − pk)e + px]. Note the risk adjustment αVx/2 in the

certainty equivalent, it’s central to how risk works in such models and shows how the risk

parameter α magnifies its effect.

If we substitute the certainty equivalent into the Bellman equation, the first order condition

(1− β)/c̃t = βpk/(k̃
ω
t − c̃t)
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gives us the decision rule

c̃t = {(1− β)/[βpk + (1− β)]}k̃ωt .

Traditionally we would substitute this back into the Bellman equation and solve for pk.

Here there’s a simpler method. The envelope condition for k̃t gives us the decision rule

c̃t = (1− βω)k̃ωt .

The controlled law of motion is therefore gt+1k̃t+1 = k̃ωt − c̃t = βωk̃ωt .

If we substitute the decision rule into the Bellman equation and line up terms, we find

pk = (1− β)ω/(1− βω)

p>x = β(1− pk)e>A(I − βA)−1

pv = β(α/2)Vx/(1− βϕv)
(1− β)p0 = (1− β) log(1− βω) + β(1− pk) log g + βpv(1− ϕv)v + βpk log(βω) + βα(pv)

2τ/2.

The coefficient pk is between zero and one, which makes J(k̃t, xt, vt) increasing and concave

in k̃t. The coefficient px captures the predictability of log productivity growth: if A = 0,

so that productivity growth is unpredictable, then px = 0 as well. And if α < 0, as we’ll

typically assume, then pv < 0: an increase in vt lowers utility.

4.2 Qualitative properties

This model has a number of features of general interest. Among them:

• Loglinear solution. If we were searching for a loglinear decision rule, something like

log c̃t = hc0 + hck log k̃t + h>cxxt + hcvvt, (12)

then we’ve found it: hc0 = log(1 − βω) and hcv = ω. Note that hcx = hcv = 0: neither

news xt nor risk vt affects scaled consumption. The controlled law of motion is similar:

log k̃t+1 = log(βω) + ω log k̃t − log gt+1. (13)

Loglinearity allows us to define the steady state in a simple and useful way. We use

the term steady state to refer to the mean log of a variable. The steady state value of

k̃, for example, is log k̃ = E(log k̃t) = log(βω/g)/(1 − ω). That implies a steady state

capital-output ratio of log k̃ − log ỹ = (1 − ω) log k̃ = log(βω/g). This last expression

contains a result we use later: the discount factor β can be used to adjust the steady

state capital-output ratio.
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• Tallarini property. It’s evident from the decision rule and controlled law of motion that

quantities don’t depend on risk aversion. This is an illustration of Tallarini’s (2000)

result: to a loglinear approximation, the decision rules, and therefore the properties of

quantities, are approximately the same with additive (α = ρ) and recursive (arbitrary

α) preferences. Here the result is exact. The risk aversion parameter α affects the value

function (see p0), but not the dynamics of consumption, capital (=investment), or output.

In this respect the extension to recursive preferences is a waste of time.

• Separation property. The Brock-Mirman example, like most dynamic programs, includes

both endogenous (k̃t) and exogenous (xt, vt) state variables. Anderson, Hansen, McGrat-

tan, and Sargent (1996, Sections 2 and 3) show that in analogous linear-quadratic control

problems, the components of the solution separate: the coefficients of the endogenous

state variables in the value function and decision rules do not depend on the properties

of the exogenous state variables and can be computed separately.

This problem has a similar feature. The coefficients pk = (1− β)ω/(1− βω) in the value

function and hck = ω in the decision rule do not depend on the parameters governing

the dynamics of (xt, vt). Similarly, the slope of the controlled law of motion (13) is

independent of the shocks. If we plot log k̃t+1 against log k̃t for given values of (xt, vt, gt+1),

the separation property tells us that slope is the same for all values of these other variables.

That’s clearly the case here, where the slope is ω.

Now think about this in the context of our problem. If we want to generate a slow

recovery with risk, we have only two options: make risk more persistent or break the

separation property.

• Asset prices. This is in Tallarini (2000), too: although quantities do not depend on α,

asset prices and risk premiums do. In this case the pricing kernel has these components:

log(c̃t+1/c̃t) = ω log(βω) + ω(ω − 1) log k̃t − ω log gt+1

log(ct+1/ct) = log(c̃t+1/c̃t) + log gt+1

= ω log(βω) + (1− ω) log g + ω(ω − 1) log k̃t

+ (1− ω)e>Axt + (1− ω)e>Bv
1/2
t w1t+1

log[gt+1Jt+1/µt(gt+1Jt+1)] = [(1− pk)e+ px]>Bv
1/2
t w1t+1 + pvτ

1/2w2t+1

− (α/2)Vxvt − (α/2)(pv)
2τ.

The pricing kernel is therefore

logmt+1 = log β − log(ct+1/ct) + α log[gt+1Jt+1/µt(gt+1Jt+1)]

= log β − ω log(βω)− (1− ω) log g − α(α/2)(pv)
2τ

− ω(ω − 1) log k̃t − (1− ω)e>Axt − α(α/2)Vxvt

+
{
α[(1− pk)e+ px]− (1− ω)e

}>
Bv

1/2
t w1t+1 + αpvτ

1/2w2t+1.
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Conditional on the state at date t, most of this is constant. All the variation comes from

the last two terms.

The entropy bound (11) gives us the maximum risk premium:

Lt(mt,t+1) = (1/2)[Vmvt + (αpv)
2τ ],

with

Vm =
{
α[(1− pk)e+ px] + (1− ω)e

}>
BB>

{
α[(1− pk)e+ px]− (1− ω)e

}
.

Both terms are affected by α. In a typical case, if we increase risk aversion (meaning larger

negative values of α) risk premiums go up, even though the dynamics of consumption are

the same. This mirrors Tallarini, where risk premiums are affected by risk aversion, but

consumption is not.

Returning to the subject of the paper: introducing stochastic volatility to this economy has

no impact on the decision rules for consumption or (implicitly) investment or on the speed

at which the capital stock returns to its steady state value. It’s not all that helpful, then,

in giving us a mechanism through which risk can affect either the magnitude or persistence

of macroeconomic fluctuations.

5 Risk in the recursive business cycle model

The Brock-Mirman example is illustrative, but its simplicity is misleading. If we change

the technology or allow the IES to differ from one, the role of uncertainty changes and the

model isn’t nearly as tractable. It is, however, solvable by loglinear approximation methods

not much different from Campbell’s (1994). It can also be solved, of course, by any number

of numerical methods, but a loglinear approximation has the advantage of transparency:

we can see exactly how it works and which features determine its properties. We do both:

describe the properties of a loglinear approximation and quantify the model’s properties

with a more accurate numerical solution.

5.1 Model and solution

The recursive business cycle model consists of the Bellman equation (10), the certainty

equivalent (1), and the laws of motion (9), (6), and (7). The first-order and envelope

conditions are

0 = J−ρt
{

(1− β)c̃ρ−1t − βµt(gt+1Jt+1)
ρ−αEt[(gt+1Jt+1)

α−1Jkt+1]
}

Jkt/Jt = J−ρt βµt(gt+1Jt+1)
ρ−αEt[(gt+1Jt+1)

α−1Jkt+1]fkt. (14)
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Together they imply

(1− β)c̃ρ−1t = Jρ−1t Jkt/fkt. (15)

This is similar to what we’d get in the additive model. The resemblance is closer if we

transform the value function, as we did at the end of Section 3.1. If we define the tranformed

value function by Ĵt = Jρt /ρ, its derivative is Ĵkt = Jρ−1t Jkt. We see, then, that the decision

rule — the solution of (15) — depends on the derivative of the (transformed) value function

but not on the value function itself. That’s a general feature of additive dynamic programs

with continuous control variables. It’s not true of the recursive model, where the first-order

and envelope conditions involve the value function as well as its derivative.

We gain some insight into the model from computing loglinear appproximations to the

solution. The idea is to take functions that are not loglinear and nevertheless approximate

them by loglinear functions. We’ll see that this works amazingly well for models of the kind

studied here. The approximations involve derivatives at a point, which in our case is the

steady state, defined earlier as the mean of the log.

As an illustration, consider an arbitrary positive function f of a positive random variable

xt. A linear approximation in logs around the point xt = x is

log f(xt) = log f + (fxx/f)(log xt − log x).

Typically we ignore the intercept and write this as log f(xt) = (fxx/f) log xt. Similarly,

with two variables we have log f(xt, yt) = (fxx/f) log xt + (fyy/f) log yt. An example we

use repeatedly is the marginal product of capital fkt = fk(k̃t, 1), which we approximate by

log fkt = (fkkk̃/fk) log k̃t = λr log k̃t. (16)

This is the gross return at date t on one unit of capital invested at t − 1. Another is the

law of motion (4), which we approximate by

log k̃t+1 = (fk/g) log k̃t − (c̃/k̃g) log c̃t − e>xt+1

= λk log k̃t − λc log c̃t − e>xt+1. (17)

The notation and approach should be familiar from Campbell (1994).

We apply similar methods to our dynamic programming problem and derive a loglinear

approximation to the consumption decision rule and controlled law of motion for capital.

In the additive case, we reproduce Campbell’s approximation; see Appendix C. We derive

an analogous approximation for the recursive case in Appendix D. The result is a decision

rule of the form (12) for consumption and a similar approximation to the controlled law of

motion,

log k̃t+1 = hk0 + hkk log k̃t + h>kxxt + hkvvt − log gt+1. (18)

The primary difference from (13) is the possibility of nonzero values for hkx and hkv.
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5.2 Qualitative properties

We leave the calculations to Appendix D, but summarize the features of the loglinear

approximation in a proposition:

Proposition. If we hold constant the steady state capital-output ratio, the loglinear ap-

proximation to the solution is block triangular:

(a) The coefficients (hck, hkk) in (12,18) governing dependence of the decision rule and

controlled law of motion on the current capital stock are independent of the risk aversion

parameter α and of the properties of the shocks (xt, vt) to news and risk.

(b) The analogous coefficients (hcx, hkx) of the news shock xt are independent of the risk

parameter α and of the properties of the shock vt to risk.

To see how the loglinear approximation works, consider the equations for capital. We make

the loglinear guess

log(Jρ−1t Jk,t) = qk log k̃t + q>x xt + qvvt

for coefficients (qk, qx, qv) to be determined. Then (15) and (17) give us

hck = −σ(qk − λr)
hkk = λk + σλc(qk − λr).

These equations and the combined first-order and envelope condition (15) imply the Riccati-

like equation for qk:

qk = qk[λk + σλc(qk − λr)] + λr.

As we note in the proposition, none of this depends on risk aversion or the properties of the

shocks.

Thus we have:

• Tallarini property. Without variation in risk — that is, with τ = 0 in equation (7) — the

loglinear approximations of the decision rule and controlled law of motion are identical

in the additive and recursive models. Recursive preferences are irrelevant here to the

behavior of quantities. This generalizes Tallarini’s result to economies with arbitrary

IES and arbitrary linear dynamics for log productivity growth. Similar examples run

throughout Hansen and Sargent (2007).
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• Separation property. The endogenous dynamics of the capital stock — namely, the co-

efficient hkk in (18) — are independent of the shocks. Similarly, the dynamics induced

by news — namely, hkx — are independent of risk vt and risk aversion α. The relevant

equations here are

h>x = −σq>x
q>x = −(σ−1 + qk)e

>A
[
(1− σqkλc)I −A

]−1
.

Not only are recursive preferences irrelevant here, but there’s no impact of risk on the

decision rule other than the direct one.

Risk does matter in this model, but only through its direct impact on consumption, sum-

marized by the coefficients hcv and hkv. We turn next to the magnitude of this impact.

5.3 Quantitative properties

We can get a sense of the magnitude of the impact of risk if we choose specific parameter

values. We compute numerical examples, rather than carefully calibrated models, but

most of the parameter values have a history in the literature. We report them in Table

1 without further comment on most of the choices. The parameter values we use for the

stochastic variance process, however, merit some discussion given our focus on uncertainty

shocks. Jurado, Ludvigsson and Ng (2014), provide a robust estimate of the persistence of

the common volatility process across a large set of macroeconomic variables. Since this is

precisely the role played by the conditional variance of the productivity shock in our model,

we use ϕv = 0.95 which is consistent with their quarterly estimate. We set τ = 0.0000072

to match the conditional variance of the endogenous consumption-growth process in our

model to that of the exogenous endowment growth process in Bansal and Yaron (2004). We

then compute properties of the model using a piecewise linear approximation to the value

function over a fine grid for the capital stock. Experiments with finer grids and higher-order

splines suggest that our calculations are extremely accurate.

So what do we find? We find, first, that the loglinear approximation is very good. If we

plot log k̃t+1 against log k̃t over the range of values generated by the model, the solution

produced by our numerical procedure is indistinguishable from the loglinear approximation

(18). See Figure 2. The same is true of the Tallarini and separation properties: they’re not

exact, but they’re very good approximations.

Now consider the impact of risk. In Figure 3 we show the responses of (the logarithms of)

consumption, investment and the real interest rate to a unit increase in the innovation w2t

in the conditional variance vt in the benchmark model. The effect is small. A two standard

deviation (of vt) increase would be roughly six times larger. We see that the unit increase
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reduces consumption by a small amount in the benchmark case; roughly 0.03%. Conversely,

since current output is unaffected by this shock, the aggregate resource constraint dictates

that investment rises, roughly 0.06% in this example (see Barro and King (1984)). These

changes are intermediated by an increase in the real interest rate displayed in the lower

panel, which also displays the negative interest-rate response to a comparable shock to the

endowment-growth process in an exchange economy. Shocks to volatility, therefore, have a

measurable effect, but it’s not hard to see that the model needs help to generate an impact

as large as we saw in 2008, or even a substantial fraction of it.

We report business cycle properties of various parameter choices in Table 2. The statistics

summarized in the table also suggest that the impact of uncertainty fluctuations is small in

this model. The first column of the table includes a summary of the evidence taken from

Tallarini (2000, Table 6). The statistics are based on (continuously-compounded) growth

rates rather than some kind of filtered object, but the properties are familiar: the standard

deviation of consumption is smaller, and the standard deviation of investment larger, than

that of output. And both consumption and investment are positively correlated with output,

although the correlations are smaller than we would see with (say) Hodrick-Prescott filtered

variables.

The properties of models are broadly similar to the data, although the differences in standard

deviations are smaller in the models and the correlations are larger. More relevant to

us is the role of uncertainty shocks. Column (3) summarizes the model with benchmark

parameter values. Column (2) shows us that it’s not much different from the additive case.

Column (5) shows how it changes when we eliminate variation in risk: hardly at all. We

get a larger difference when we increase risk aversion to 1−α = 50; column (4). As we have

seen, this increases the impact of fluctuations in uncertainty, but even in this case the effect

is modest. Changing the IES has a bigger effect on business cycle statistics, but uncertainty

shocks have little to do with this. When we increase the IES to 1.5, as we do in column

(6), the standard deviation of consumption growth falls. If this seems counterintuitive,

see Kaltenbrunner and Lochstoer (2010, Figure 1B). The long-term effect of a shock on

consumption is the same for all values of the IES, but the short-term effect is not.

We also see the impact of risk aversion on risk premiums noted by Tallarini. Here the

maximum risk premium is the entropy bound (11), reported at the bottom of the table.

When we increase risk aversion from 1 − α = 2 in column (2) to 50 in column (4), the

maximum risk premium increases from 0.02 percent (per quarter) to 16 percent.

6 Ambiguity

We use the term ambiguity to describe situations in which the decision maker does not

know some aspect of the distribution of outcomes. Whether it’s a parameter or a state
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variable is in large part a matter of language. The critical aspect of ambiguity is that

it’s treated differently in preferences than risk. Our treatment of ambiguity is built on

the smooth ambiguity foundation laid by Hayashi and Miao (2011), Jahan-Parvar and Liu

(2012), Ju and Miao (2012), and especially Klibanoff, Marinacci, and Mukerji (2005, 2009).

We find it more user-friendly than more popular approaches built on maxmin expected

utility, although others may feel that it leaves out something essential.

6.1 Smooth ambiguity in static environments

Consider ambiguity in a static setting with two sources of uncertainty, s = (s1, s2). Con-

sumption outcomes are defined over them by c(s) = c(s1, s2). The sources of uncertainty

are, first, the distribution of s1 conditional on s2 and, second, the distribution over s2.

There’s no difference between s1 and s2 at this level of generality, but in applications s2 is

often a parameter or a hidden state.

We denote the expectations based on these distributions by E1 and E2, respectively, and the

overall expectation by E = E2E1. More explicitly, the various expectations of an arbitrary

function f(s1, s2) might be expressed by

E1[f(s1, s2)] = E[f(s1, s2)|s2]
E[f(s1, s2)] = E2

(
E[f(s1, s2)|s2]

)
= E2

(
E1[f(s1, s2)]

)
.

The second line follows from the law of iterated expectations.

With smooth ambiguity , we allow different “smooth” preferences over these two sources of

uncertainty. The certainty equivalent has two parts,

µ(c) = µ2[µ1(c)],

where

µ1(c) = u−1
[
E1u(c)

]
µ2[µ1(c)] = v−1

(
E2v[µ1(c)]

)
.

These functions exhibit risk aversion if u is concave and ambiguity aversion if v ◦ u−1 is

concave — roughly speaking, if v is more concave than u. The power utility versions are

µ1(c) =
[
E1(c

α)
]1/α

, µ2[µ1(c)] =
(
E2[µ1(c)

γ ]
)1/γ

(19)

with parameters α < 1 and γ ≤ α. We refer to 1 − α as risk aversion and 1 − γ as

ambiguity aversion. The latter is slightly misleading, given that ambiguity aversion requires
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1 − γ > 1 − α, but it’s clearer than the alternatives that cross our minds. If γ = α, (19)

reduces to expected utility:

µ(c) = µ2[µ1(c)] =
[
E2E1(c

α)
]1/α

=
[
E(cα)

]1/α
.

Alternatively, if we drive γ to minus infinity we get the popular maxmin expected utility.

For values of γ between minus infinity and α, the smooth ambiguity model captures the

idea of model uncertainty in a user-friendly way.

Example (continued). We illustrate the impact of ambiguity aversion in two variants of

our example from Section 2.1. (i) Ambiguous mean. We express ambiguity over the mean

with a two-part distribution. Part 1: Conditional on s2, log c = s1 ∼ N (s2, κ2). Part

2: s2 ∼ N (κ1, ν). The first certainty equivalent is logµ1(c) = s2 + ακ2/2. The overall

certainty equivalent is logµ(c) = logµ2[µ1(c)] = κ1 + γν/2 + ακ2/2. The mean satisfies

logE(c) = κ1 + κ2 + ν/2, so the adjustment for risk is (1 − α)κ2/2 and the adjustment

for ambiguity is (1 − γ)ν/2. (ii) Ambiguous variance. Part 1: conditional on s2, log c =

s1 ∼ N (κ1, s2). Part 2: s2 ∼ N (ν1, ν2). The variance is normal and therefore negative

with positive probability, which is impossible but analytically convenient. The certainty

equivalents are logµ1(c) = κ1 + αs2/2. and logµ2[µ1(c)] = κ1 + αν1/2 + γ(α/2)2ν2/2.

Evidently there’s no clean separation here between the adjustments for risk and ambiguity.

6.2 Smooth ambiguity in dynamic environments

We follow Hayashi and Miao (2011) and imbed preference toward risk and ambiguity in the

traditional recursive utility setup summarized by equation (3).

The action is in the certainty equivalent function µt. The main issue in applications is how

we distinguish between risk and ambiguity. We associate risk with components of the state

we observe (s1t) and ambiguity with components we do not observe (s2t). Aversion to risk

and ambiguity are built into the certainty equivalent functions µ1t and µ2t, respectively:

µt(Ut+1) = µ2t[µ1t(Ut+1)].

Here the subscript t refers to the information set at date t, typically the complete history

of observable states s1t. The inner certainty equivalent µ1t is computed from the distribu-

tion over s1t+1 conditional on this history and on the unobserved state s2t+1. The outer

certainty equivalent µ2t is the conditional distribution over s2t+1 given the same history.

By assumption, we have stronger aversion to the latter than the former. We use the same

power certainty equivalent functions we used in equation (19).

The marginal rate of substitution now includes an additional term:

mt+1 = β

(
ct+1

ct

)ρ−1( Ut+1

µ2t[µ1t(Ut+1)]

)α−ρ( µ1t(Ut+1)

µ2t[µ1t(Ut+1)]

)γ−α
. (20)

If γ = α the last term drops out, and if α = ρ as well we’re back to additive utility.
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7 Risk and ambiguity in a business cycle model

We construct three examples of business cycle models with both risk and ambiguity. The

models are like the one in Section 5 except for the stochastic process for productivity growth

and the certainty equivalent functions. All of them have ambiguity over the conditional

mean of log productivity growth, but they differ in whether the amount of ambiguity varies

over time. The structure and properties are similar to our model with risk. More specif-

ically, their loglinear approximations have the same structure block triangular structure

summarized in the proposition of Section 5.2. Nevertheless, we find ambiguity interesting

enough to make it worth working through the details.

7.1 A model with constant volatility

The simplest example has ambiguity over the conditional mean. The process for (log)

productivity growth changes from (6,7) to

log gt+1 = log g + xt+1 + τ1w1t+1

xt+1 = ϕxxt + τ2w2t+1,

with (w1t, w2t) independent iid standard normal random variables. The state here is

(s1t, s2t) = (log gt, xt). The agent observes log gt but not xt, making τ1w1t the forecast

error of log gt conditional on xt. Therefore, in the first equation the agent treats w1t+1 as

risky and xt+1 as ambiguous. Risk is constant. Ambiguity depends on what we can learn

about xt+1 from observations of log gt.

This is a standard filtering problem with “state” xt and “measurement” log gt. At each

date t, given the history of productivity growth to that date, the agent’s distribution over

xt is normal with (say) mean x̂t and variance bt. Starting with arbitrary values (x̂0, b0), we

compute them recursively:

θt = bt/(bt + τ21 )

bt+1 = τ22 + θtϕ
2
xτ

2
1

x̂t+1 = ϕx(1− θt)x̂t + ϕxθt(log gt+1 − log g).

At the same date t, the distribution of xt+1 conditional on the history to date is normal

with mean ϕxx̂t and variance bt+1. Note, too, that the conditional variance is deterministic.

It converges (rapidly in practice) to a constant, which is what we assume here.

Now that we’ve solved the filtering problem, we apply the two-part certainty equivalent.

Risk preference applies to τ21 , the variance of log gt+1 conditional on (the unobserved) xt+1.
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Ambiguity applies to bt+1, the standard deviation of xt+1 conditional on the history of

productivity growth. Other than the initial dynamics of bt, risk and ambiguity are constant.

We can plug this into our business cycle model and solve as before. The full-information

state here is (k̃t, xt), but the effective state is (k̃t, x̂t). The scaled Bellman equation is

(8) with the appropriate modification of the state and certainty equivalent function. The

first-order and envelope conditions become

(1− β)c̃ρ−1t = Jρ−1t Jkt

Jρ−1t Jkt = βµ2t(µ1t)
ρ−γE2t

{
µ1t(gt+1Jt+1)

γ−αE1t

[
(gt+1Jt+1)

α−1Jkt+1

]}
fkt. (21)

A loglinear approximation still satisfies the proposition of Section 5.2. And with risk and

ambiguity constant, neither affects the dynamics of quantities. See Appendix E.

This example is helpful is showing how we might distinguish between risk and ambiguity,

but since both are constant they contribute nothing to business cycles. In short, this ex-

ample can generate time-varying ambiguity, reflected in bt+1, which may have a substantial

affect on the levels of endogenous variables in the model (see Collin-Dufresne, Johannes

and Lochstoer (2013)), but does not affect cross-correlations. Moreover, once learning has

converged the amount of ambiguity is constant. To generate interesting business-cycle prop-

erties, therefore, we once again introduce a stochastic process for the conditional variance,

which creates variation in the quantity of ambiguity.

7.2 Models with stochastic volatility

Our next two examples have stochastic variation in the quantity of ambiguity (its conditional

variance) and in this respect has a broadly similar flavor to Ilut and Schneider (2014).

In Model I, risk and ambiguity are stochastic. Productivity growth is

log gt+1 = log g + τ1v
1/2
t w1t+1 + τ2v

1/2
t w2t+1

vt+1 = (1− ϕv)v + ϕvvt + τvw3t+1,

where (w1t, w2t, w3t) are independent standard normal. We also set τ21 +τ22 = 1, a normaliza-

tion that makes the unconditional variance of log gt equal to v. Note that this normalization

has important content: since productivity is assumed to be observable, we can only vary

the relative size of ambiguity to risk, not to total amount of ambiguity. Relative to the pre-

vious model, we have introduced stochastic volatility. We also eliminated dynamics in the

conditional mean (ϕx = 0), so that xt+1 = τ2w2t+1, which eliminates the need for filtering.

The agent observes log gt and vt, but not the components of productivity growth w1t and

w2t, so that w1t represents risk and w2t represents ambiguity. The parameters τ1 and τ2
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control their relative magnitudes. Since both are multiplied by v
1/2
t , the amount of risk and

ambiguity varies together.

The model is similar to the previous one with state (k̃t, vt). The first-order and envelope

conditions don’t change. We compute numerical solutions by other methods, but a loglinear

approximation is again instructive. In particular, the solution still exhibits the separation

property: the parameters governing the shocks and uncertainty aversion affect only the

loading on volatility vt. See Appendix E.

In Model II, only ambiguity is stochastic. Productivity growth is

log gt+1 = log g + τ1v
1/2w1t+1 + τ2v

1/2
t w2t+1

vt+1 = (1− ϕv)v + ϕvvt + τvw3t+1,

where (w1t, w2t, w3t) are independent standard normal and τ21 + τ22 = 1 (a normalization).

The change is that risk is now constant. The agent observes log gt and vt but not the

components of productivity growth w1t and w2t. The idea is that w1t represents risk and

w2t represents ambiguity. Since the latter is multiplied by vt, the quantity of ambiguity,

but not risk, changes over time.

The loglinear approximation to the solution has the same form as the proposition. In

particular, the coefficient hkk is independent of risk and ambiguity aversion. The coefficient

of the conditional variance, for example, is

qv = qkhkv + qvϕv + [(ρ− γ)γ + (γ − 1)2]τ22 /2.

We see here that we can make the response to variance shocks solely an artifact of ambiguity

aversion through the parameter γ. See Appendix E.

Both of these models generate ambiguity that varies randomly through time. In this respect

they’re similar to earlier work by Ilut and Schneider (2014) and Jahan-Parvar and Liu

(2012). Ilut and Schneider model ambiguity with a dynamic version of maxmin expected

utility. They posit exogenous variation in the worst-case probability distribution, just as

we posit exogenous variation in the conditional variance. Jahan-Parvar and Liu adopt an

environment closer to our first example. They have a world that alternates between two

“states” and solve a nonlinear filtering problem to determine the probabilities over the two

states for each history. This mechanism generates endogenous variation in the conditional

variance as the probabilities change.

We report quantitative properties of these two models in Table 3. Column (1) is again US

data. Columns (2) to (5) refer to Model I. We see that the impact of risk and ambiguity

on quantities is small regardless. We also see that while ambiguity has little impact on
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quantities, it has a larger impact on asset prices. The impact on quantities is slightly larger

if we increase ambiguity aversion from 1−γ = 30 to 50. Columns (6) and (7) refer to Model

II, in which ambiguity varies but risk is constant. The impact is larger when ambiguity

plays a greater role [Column (6)]. This reflects, in part, our choice of parameters, in which

ambiguity is limited by the amount of the observed variance of productivity growth.

8 Discussion

We have described how aggregate uncertainty affects the dynamics of quantities in a tra-

ditional business cycle model. The short answer: The impact is small. A longer answer:

Variations in uncertainty in this model have, for reasonable parameter values, a small effect

on consumption, investment, and output. They have no effect on the endogenous dynamics

of the capital stock: the speed at which the economy recovers from a temporary increase

in uncertainty. Prolonged uncertainty could generate a prolonged recession on its own, but

the evidence suggests that this hasn’t been the case in the US. As a result, the model can-

not account for either the magnitude or the persistence of the most recent recession with

uncertainty.

If uncertainty does little in this model, could other mechanisms produce larger, more persis-

tent effects? We review related work and go on to explore alternatives that we think could

lead to a more central role of uncertainty in business cycle dynamics.

8.1 Related work

We are hardly the first to explore the role of aggregate uncertainty in business cycle dy-

namics and the methods used to compute solutions to such models. We summarize some

of the most prominent contributions below, organized by topic.

Computation. We’ve noted the connection to Campbell’s (1994) work; Kaltenbrunner and

Lochstoer (2010) is similar. Malkhozov (2014) extends loglinear approximation to models

with recursive preferences and linear (“affine”) conditional variance processes. Dew-Becker

(2012) is similar. Caldara, Fernandez-Villaverde, Rubio-Ramirez, and Wen (2012) epitomize

a large body of work based on “perturbation methods.” These methods, as they are com-

monly used in macroeconomics, start with first-order approximations in which uncertainty

has been turned off. Uncertainty enters when we move on to higher-order approximations.

It is possible, of course, to incorporate uncertainty in first-order approximations, as we

have done here. The same approach is widely used in finance. We suggest that loglinear

approximations can be a useful source of insight even if other methods are used to compute

quantitative properties.
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Uncertainty and business cycles. A number of papers incorporate time-varying uncertainty

in similar models. Most of them use a normal autoregressive process for the log of the

conditional variance, which makes the conditional variance lognormal rather than normal.

Justiniano and Primiceri (2008) do this for all of their shocks, but decisions in their model

do not respond to these measures of uncertainty. Caldara, Fernandez-Villaverde, Rubio-

Ramirez, and Wen (2012) compare a number of methods of approximating the decision

rules for a business cycle model with stochastic uncertainty. They plot, for their benchmark

parameter values, decision rules for consumption and labor supply. They find that con-

sumption falls with uncertainty and labor supply rises (leisure falls). They do not examine

further the quantitative impact of uncertainty on business cycles.

Liu and Miao (2014), in a paper presented at this conference, consider a model with dis-

appointment aversion in which the conditional mean and variance of productivity growth

vary between high- and low-value states. The structure of uncertainty is different but its

effects are the same: an increase in the conditional variance leads consumption to rise and

investment to fall. It also leads to a decline in the price and return on equity. Overall,

variation in uncertainty has only a small impact on the cyclical properties of the model.

Basu and Bundick (2012) add Keynesian features to an otherwise similar model: sticky

prices, countercyclical markups, and shocks to current consumption in the time aggregator.

They find, as we do, that the effects of uncertainty are small, but they’re larger with these

additional features. They also find that their model corrects some of the comovement

problems associated with fluctuations in uncertainty. We solve the same problem simply by

having productivity as the dominant driving process.

Ambiguity. The literature on ambiguity and business cycles includes notable contributions

by Bidder and Smith (2013), Hansen and Sargent (2007), Ilut and Schneider (2014), and

Jahan-Parvar and Liu (2012). Hansen and Sargent summarize an extensive line of research

in which maxmin expected utility is extended to dynamic environments. One issue they

address at length is what we’ve called the Tallarini property: the observational equivalence

of additive and recursive preferences for the behavior of quantities.

Bidder and Smith (2013) consider a robust control interpretation of recursive preferences and

explore the impact of stochastic volatility on the agent’s implicit (“distorted”) probabilities

over future events. They show, as we do, that the impact on the model’s business cycle

properties is modest (their Table 4).

Ilut and Schneider use a different version of dynamic maxmin expected utility. In their

model, the conditional mean of productivity growth is bounded by an interval [−at, at]
for some at > 0 that varies with time. The min in maxmin leads the agent act as if the

conditional mean is −at, a state variable that shows up in decision rules. In their model,

variations in at account for most of the variation in output.
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Jahan-Parvar and Liu use smooth ambiguity. Productivity growth is conditionally log-

normal with a conditional mean that follows a two-state Markov chain. The state is not

observed, but the agent computes a distribution over states from past realizations. The

agent is ambiguous over this uncertainty, leading to a role for ambiguity aversion. Varia-

tion in the distribution over states leads to time-varying ambiguity. Their focus is on asset

prices, but their reported business cycle properties suggest that quantities are not greatly

affected by uncertainty.

8.2 Extensions

Several extensions strike us as having potential for increasing the impact of uncertainty.

Among them:

Uncertainty in what? Many applications, including ours, place uncertainty in exogenous

variables: in productivity growth, in shocks to current utility, and so on. In the language of

traditional business cycle research, this gives us different impulses to the same propagation

mechanisms. The effects are likely to be much different if the uncertainty is in an endogenous

variable or a parameter. Suppose, for example, the share parameter in the production

function is uncertain. The effects would run throughout the model. The separation property

disappears, giving us the potential to generate more interesting dynamics than we have

described above.

Learning. Several applications of ambiguity to asset pricing involve learning: the models

have hidden states whose probabilities are inferred from other variables. This additional

uncertainty about the state is a natural source of ambiguity. Several applications do exactly

this in models with discrete state spaces, notably Jahan-Parvar and Liu (2012), Ju and Miao

(2012), and Klibanoff, Marinacci, and Mukerji (2009). The same idea is easily applied to

models with continuous state spaces. For example, a model based on a law of motion like

(6) would serve this purpose if some or all of xt is not observed. If volatility vt is constant,

uncertainty is constant, too. Otherwise it varies through time as in our examples.

The advantage of learning in such models is that it gives us another source of dynamics.

If learning is slow enough, it can contribute in a significant way to the dynamics of the

model. Collard, Mukerji, Sheppard, and Tallon (2012) and Collin-Dufresne, Johannes, and

Lochstoer (2013) generate significant effects on asset prices. A logical next step is to study

its effects on business cycles.

8.3 Alternative mechanisms

Endogenous uncertainty. A related line of thought is to make uncertainty endogenous.

One version builds in feedback from economic activity to uncertainty. Since uncertainty
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is no longer exogenous, the model loses the separation property, leaving more room for an

impact on aggregate dynamics. Striking examples of this include Fajgelbaum, Schaal, and

Taschereau-Dumouchel (2014), Navarro (2014), Van Nieuwerburgh and Veldkamp (2006),

and Veldkamp (2005). In all of them, a decline in economic activity produced by other means

reduces the amount of information available and increases uncertainty. This reinforces the

decline in output, and can prolong deep recessions or even make them (in the words of the

first paper) “near permanent.”

Fostel and Geanakoplos (2012, 2014) build multi-agent models with incomplete markets in

which asset trades are limited by collateral. Several of their examples generate procyclical

leverage and endogenous increases in volatility during downturns.

Microeconomic uncertainty. A number of influential papers explore the impact on business

cycles of microeconomic uncertainty: of variation in the uncertainty faced by individual

firms or households. Bloom, Floetotto, Jaimovich, Saporta, and Terry (2012) imbed an

industry model in a business cycle framework. Firms face idiosyncratic shocks to their

productivities whose variance follows a two-state Markov chain. Fixed costs reduce firms’

willingness to adjust capital and labor inputs as firm-level productivities change. The

striking result, also evident in earlier work, is that an increase in microeconomic uncertainty

reduces aggregate productivity. The effect can be substantial, perhaps (they argue) three

percent of GDP (Figure 6). Declines in labor and investment are larger still (Figure 7).

The model does not, however, explain why the recovery has been so slow.

Bachmann and Bayer (2013) argue that the impact is likely to be smaller. They estimate

a process for microeconomic uncertainty from German data and find that the variation in

firm-level uncertainty is smaller than estimates used elsewhere. They also find that the

overall impact of micro uncertainty on business cycle properties is small (Table 5).

Arellano, Bai, and Kehoe (2012) combine microeconomic uncertainty with financial frictions

for firms. They note, as we do in Figure 1, that labor productivity was flat during the

recession. They propose an explanation of the 2008 recession that operates through financial

frictions and employment. In their model, firms must finance their wage bills in advance

with noncontingent debt. If they are unable to repay the debt at the end of the period,

they default and forego future profits. When uncertainty rises, the probability of default

rises with it, and firms hire fewer workers and produce less output. In this way uncertainty

generates a negative “labor wedge” that reduces employment and output (Figure 1).

9 Where next?

Even a casual look at the evidence suggests a connection between uncertainty and business

cycles. Economic downturns are generally associated with increases in the uncertainty of
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financial returns and of near-term macroeconomic performance. They are also associated

with increases in the dispersion of outcomes experienced by households and firms. The

question is what mechanisms connect uncertainty and the economy. Like others before us,

we looked at the impact of exogenous increases in uncertainty. Also like others, we’ve found

that the effects are small. Given the evidence, that can’t be the end of the story. Perhaps

future work will give us more effective ways in which uncertainty influences economic be-

havior, or even generate such uncertainty as part of a more complete explanation of business

cycles than we have now.

26



Appendix

The appendix is an integral part of the paper and was designed to be part of the published
text. If that’s not possible, let us know and we will reintegrate the content into the text,
which is currently of modest length.

A Marginal rates of substitution

We derive the marginal rates of substitution for recursive preferences with risk and ambi-
guity. Consider an event tree with histories or states st = (s0, s1, . . . , st). We’re interested
in the marginal rate of substitution between consumption in state st and a succeeding state
st+1 = (st, s). Since everything starts at st, we can ignore it in what follows. We use a
finite state-space to simplify the notation.

Preferences are characterized by the time aggregator (3) and the risk and ambiguity cer-
tainty equivalents (19). Denote current utility by U(st) = Ut and future utility by U(st, s) =
Ut+1(s) = Ut+1. We divide s into (s1, s2) and consider probabilities π(s1, s2) = π1(s1|s2)π2(s2),
all conditional on the current state st. The overall certainty equivalent is µt(Ut+1) =
µ2t[µ1t(Ut+1)]. The inner one,

µ1t(Ut+1) =
[∑
s1

π1(s1|s2)Ut+1(s1, s2)
α
]1/α

,

might be expressed µ1t(s2), a function of s2. The outer one is

µ2t[µ1t(s2)] =
[∑
s2

π2(s2)µ1t(s2)
γ
]1/γ

.

Marginal utilities follow from repeated application of the chain rule. The relevant derivatives
are

∂Ut/∂ct = U1−ρ
t (1− β)cρ−1t

∂Ut/∂µ2t[µ1t(s2)] = U1−ρ
t βµ2t[µ1t(s2)]

ρ−1

∂µ2t[µ1t(s2)]/∂µ1t(s2) = µ2t[µ1t(s2)]
1−γπ2(s2)µ1t(s2)

γ−1

∂µ1t(s2)/∂Ut+1(s1, s2) = µ1t(s2)
1−απ(s1|s2)Ut+1(s1, s2)

α−1.

The marginal rate of substitution is therefore

∂Ut/∂ct+1(s1, s2)

∂Ut/∂ct
=

[∂Ut/∂µ2t][∂µ2t/∂µ1t][∂µ1t/∂Ut+1][∂Ut+1/∂ct+1]

∂Ut/∂ct

= π(s1|s2)π2(s2) β
(
ct+1(s1, s2)

ct

)ρ−1( Ut+1(s1, s2)
α−ρ

µ2t[µ1t(Ut+1)]γ−ρµ1t(Ut+1)α−γ

)
= π(s1, s2) β

(
ct+1(s1, s2)

ct

)ρ−1( Ut+1(s1, s2)

µ2t[µ1t(Ut+1)]

)α−ρ( µ1t(Ut+1)

µ2t[µ1t(Ut+1)]

)γ−α
.
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B The Brock-Mirman example

Ljungqvist and Sargent (2000, Chapter 4, Appendix B) give the traditional stripped-down
version of the Brock-Mirman example. Agents have log utility, which corresponds to our
recursive preferences with ρ = α = γ = 0. The laws of motion for capital and productivity
are kt+1 = yt − ct = atk

ω
t − ct and log at+1 = ϕa log at + τ1/2wt+1, where 0 ≤ ω < 1 and

{wt} is an iid sequence of standard normal random variables. The Bellman equation is

log J(kt, at) = max
ct

(1− β) log ct + βEt[log J(kt+1, at+1)]

subject to the laws of motion for kt and at.

We solve by guess and verify. Start with the guess log J(kt, at) = p0 + pk log kt + pa log at.
Then next period’s value function and its expectation are

log J(kt+1, at+1) = p0 + pk log(atk
ω
t − ct) + pa(ϕa log at + τ1/2wt+1)

Et log(Jt+1) = p0 + pk log(atk
ω
t − ct) + paϕa log at.

If we substitute into the Bellman equation, the envelope condition for kt is

pk/kt = βpkωatk
ω−1
t /(atk

ω
t − ct).

That gives us the decision rule

ct = (1− βω)atk
ω
t ,

which implies the controlled law of motion kt+1 = βωatk
ω
t . The Bellman equation is then

p0 + pk log kt + pa log at = (1− β)[log(1− βω) + log at + ω log kt]

+ β
{
p0 + pk[log(βω) + log at + ω log kt] + paϕa log at

}
.

Lining up terms gives us the solution:

pk = (1− β)ω/(1− βω) ⇒ 1− pk = (1− ω)/(1− βω)

pa = [1− β(1− pk)]/(1− βω) = (1− β)/[(1− βω)(1− βϕa)]
p0 = [(1− β) log(1− βω) + βpk log(βω)]/(1− β).

Note that 0 ≤ pk < 1, which makes J(kt, at) (weakly) increasing and concave in kt.

C Approximating the additive business cycle model

We compute an approximate loglinear solution to a business cycle model with additive
preferences and constant volatility and compare it to Campbell’s (1994) solution of the
same model. The approaches are different, but they deliver the same decision rule.
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We approach the problem as a dynamic program. With additive preferences (α = ρ) the
Bellman equation can be written

J(k̃t, xt) = max
c̃t

(1− β)c̃ρt /ρ+ βEt[g
ρ
t+1J(k̃t+1, xt+1)].

subject to the laws of motion k̃t+1 = [f(k̃t, 1)−c̃t]/gt+1 and xt+1 = Axt+Bwt+1. Here we’ve
taken equation (8) to the power ρ, divided by ρ, and redefined Jρt /ρ as Jt. The first-order
and envelope conditions are

(1− β)c̃ρ−1t = βEt
(
gρ−1t+1 Jkt+1

)
Jkt = βEt

(
gρ−1t+1 Jkt+1

)
fkt.

Together they imply

(1− β)c̃ρ−1t = Jkt/fkt.

Evidently a loglinear decision rule requires loglinear approximations of Jkt and fkt. This
illustrates a point we made earlier: in the additive case, we need the derivative of the value
function but not the value function itself.

We guess the derivative of the value function has the form

log Jkt = qk log k̃t + q>x xt

with coefficients (qk, qx) to be determined. Putting this together with the loglinear approx-
imations (16,17) gives us

log Jkt − log fkt = (qk − λr) log k̃t + q>x xt

log c̃t = −σ(qk − λr) log k̃t − σq>x xt
log k̃t+1 =

[
λk + σλc(qk − λr)

]
log k̃t + σλcq

>
x xt − e>xt+1.

Ordinarily we would substitute the decision rule for consumption into the Bellman equation
and solve for qk. Here it’s sufficient to use the envelope condition, the derivative of the
Bellman equation. The right-hand side involves

log(gρ−1t+1 Jkt+1) = qk log k̃t+1 + [qx + (ρ− 1)e]>xt+1

= qk
[
λk + σλc(qk − λr)

]
log k̃t

+ qkσλcq
>
x xt + [qx + (ρ− 1− qk)e]>(Axt +Bwt+1)

logEt(g
ρ−1
t+1 Jkt+1) = qk

[
λk + σλc(qk − λr)

]
log k̃t

+
{
σλcqkqx + [qx + (ρ− 1− qk)e]>A

}
xt + Vx/2,

where Vx = [qx + (ρ− 1)e]>BB>[qx + (ρ− 1)e]. The variance term Vx only shows up in the
intercept, so we ignore it from here out. The envelope condition then gives us

qk log k̃t + q>x xt = qk
[
λk + σλc(qk − λr)

]
log k̃t

+
{
qkλcσq

>
x + [qx + (ρ− 1)e]>A

}
xt + λr log k̃t.
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Equating similar terms, we have

qk = qk
[
λk + σλc(qk − λr)

]
+ λr

q>x = σλcqkq
>
x + [qx + (ρ− 1)e]>A.

The first equation is quadratic in qk and has two solutions, one positive and one negative.
We take the negative one, which corresponds to a concave value function and a stable
controlled law of motion. Note the separation property: the solution for qk is independent
of anything related to the shock x. Given solutions for qk and qx, the decision rule for
consumption follows immediately.

Campbell derives the same decision rule by another route. He starts with the “Euler
equation,”

Et
[
β(ct+1/ct)

ρ−1fkt+1

]
= 1,

a consequence of the first-order and envelope conditions. Ignoring risk (which is constant,
in any case), the loglinear version is

Et(log ct+1 − log ct) = −σEt(log fkt+1) = σλrEt(log k̃t+1). (22)

Where we use a guess for Jkt, he uses a guess for the consumption decision rule,

log c̃t = hck log k̃t + h>cxxt,

with coefficients (hck, hcx) to be determined. Using (16,17), the (controlled) law of motion
for capital is

log k̃t+1 = (λk − λchck) log k̃t − λch>cxxt − e>xt+1.

The right side of the Euler equation (22) then becomes

σλrEt(log k̃t+1) = σλr(λk − λchck) log k̃t − σλr
(
λch
>
cx + e>A

)
xt.

The left side becomes

Et(log ct+1 − log ct) = hck(log k̃t+1 − log k̃t) + h>cx(xt+1 − xt) + e>xt+1

= [hck(λk − λchck)− hck] log k̃t + [h>cx(A− I) + e>A+ hckλch
>
cx]xt.

Equating the two gives us

hck(λk − λchck)− hck = σλr(λk − λchck)
h>cx(A− I) + e>A+ hckλch

>
cx = −σλr

(
λch
>
cx + e>A

)
.

The first equation is Campbell’s equation (24) in slightly different notation. Kaltenbrunner
and Lochstoer (2010) do the same. It’s tedious but direct to show that the two solutions
are identical: use the relation hck = −σ(qk − λr) to convert the quadratic in hck into one
for qk.
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D Approximating the risky business cycle model

We take two approaches to loglinear approximation of the model in Section 5. The first is
based on a loglinear approximation to the Bellman equation suggested by Hansen, Heaton,
and Li (2008, Section III). The second is based on a loglinear approximation of the envelope
condition, the derivative of the Bellman equation. We find the second more helpful, but in
principle the two should give similar answers.

Value function approximation. Relative to the additive case of Appendix C, we need log-
linear approximations of both the value function and its derivative. Consider a loglinear
approximation to Jkt:

log Jkt = p1 + log pk + (pk − 1) log k̃t + p>x xt + pvvt

⇒ Jkt = pkk̃
pk−1
t exp(p1 + p>x xt + pvvt).

If we integrate with respect to k̃t, we get the value function

Jt = p0 + k̃pkt exp(p1 + p>x xt + pvvt)

It’s unfortunate that Jt isn’t loglinear unless p0 = 0, but we use a loglinear approximation,

log Jt = d(pk log k̃t + p>x xt + pvvt)

with d = (J − p0)/J . The combined term

log(Jρ−1t Jkt) = {[1 + (ρ− 1)d]pk − 1} log k̃t + [1 + (ρ− 1)d](p>x xt + pvvt).

appears in the combined first-order and envelope condition (15).

Hansen-Heaton-Li approximation. The idea is to approximate (10), the log of the Bellman
equation:

log Jt = ρ−1 log
[
(1− β)eρ log c̃t + βeρ log µt(gt+1Jt+1)

]
∼= b0 + (1− b1) log c̃t + b1 logµt(gt+1Jt+1). (23)

This is exact if ρ = 0, in which case b0 = 0 and b1 = β.

We need three things to put this to work: the value function Jt, consumption c̃t, and the
certainty equivalent of future utility µt(gt+1Jt+1). The first one we’ve done. Condition (15)
then gives us the decision rule

log c̃t = [(d− σ)pk + σ(1 + λr)] log k̃t + (d− σ)(p>x xt + pvvt),

the second component of the approximate Bellman equation. The final component is the
certainty equivalent of future utility. For that, we need the controlled law of motion (17),

log k̃t+1 = λk log k̃t − λc log c̃t − e>xt+1

=
{
λk − λc[(d− σ)pk + σ(1 + λr)]

}
log k̃t − λc(d− σ)(p>x xt + pvvt)− e>xt+1.
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Future utility and its certainty equivalent are then

log(gt+1Jt+1) = log gt+1 + d(pk log k̃t+1 + p>x xt+1 + pvvt+1)

= dpk
{
λk − λc[(d− σ)pk + σ(1 + λr)]

}
log k̃t

+
{

[(1− dpk)e> + dp>x ]A− (λcdpk(d− σ)p>x
}
xt

+ dpv[ϕv − λcdpk(d− σ)]vt

+ [(1− dpk)e+ dpx]>v
1/2
t Bw1t+1 + dpvτw2t+1

logµt(gt+1Jt+1) = dpk
{
λk − λc[(d− σ)pk + σ(1 + λr)]

}
log k̃t

+
{

[(1− dpk)e> + dp>x ]A− λcdpk(d− σ)p>x
}
xt

+
{
dpv[ϕv − λcdpk(d− σ)] + (α/2)Vx

}
vt,

where Vx = [dpx + (1 − dpk)e]>BB>[dpx + (1 − dpk)e] is the contribution of xt+1 to the
conditional variance of log(gt+1Jt+1).

Now we plug this into the approximate Bellman equation and line up coefficients:

pk = (1− b1)
[
σ + (d− σ)pk + σλr

]
+ b1dpk

{
λk − λc[σ + (d− σ)pk + σλr]

}
p>x = (1− b1)(d− σ)p>x + b1

{
[(1− dpk)e> + dp>x ]A− λcdpk(d− σ)p>x

}
pv = (1− b1)(d− σ)pv + b1

{
dpv[ϕv − λcdpk(d− σ)] + (α/2)Vx

}
.

The first equation is quadratic in pk. Given a solution for pk, the equations for px and pv
are linear.

Envelope condition approximation. Our second method is based on the envelope condition
and mirrors the approach we took to the additive model in Appendix C. The envelope
condition for the recursive model is

Jρ−1t Jkt = βµt(gt+1Jt+1)
ρ−αEt[(gt+1Jt+1)

α−1Jkt+1]fkt. (24)

For the left side we reconstitute our earlier expression,

log(Jρ−1t Jkt) =
{

[1 + (ρ− 1)d]pk − 1
}

log k̃t + [1 + (ρ− 1)d](p>x xt + pvvt)

= qk log k̃t + q>x xt + qvvt.

The substitution of coefficients (qk, qx, qv) for (pk, px, pv) is helpful because the same terms
reappear elsewhere.

We need to evaluate gt+1Jt+1, which requires the decision rule and controlled law of motion.
The decision rule in this notation is

log c̃t = −σ(qk − λr) log k̃t − σ(q>x xt + qvvt).

That gives us the controlled law of motion

log k̃t+1 =
[
λk + σλc(qk − λr)

]
log k̃t + σλc(q

>
x xt + qvvt)− e>xt+1.
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Now back to the envelope condition (24). The critical components are

log(gt+1Jt+1) = dpk log k̃t+1 + (e+ dpx)>xt+1 + dpvvt+1

= dpk
[
λk + σλc(qk − λr)

]
log k̃t + dpkλcσq

>
x xt + dpkλcσqvvt

+ [(1− dpk)e+ dpx]>(Axt + v
1/2
t Bw1t+1) + dpv[(1− ϕv)v + ϕvvt + τw2t+1]

log Jkt+1 = (pk − 1) log k̃t+1 + p>x xt+1 + pvvt+1

= (pk − 1)
[
λk + σλc(qk − λr)

]
log k̃t + (pk − 1)λcσq

>
x xt + (pk − 1)λcσqvvt

+ [(1− pk)e+ px]>(Axt + v
1/2
t Bw1t+1) + pv[(1− ϕv)v + ϕvvt + τw2t+1],

which show up in µt(gt+1Jt+1) and Et[(gt+1Jt+1)
α−1Jkt+1]. We collect similar terms and

find:

• Capital. These terms show up only in the mean. If we work through the right side of the
envelope condition, we see that the mean terms are multiplied by (ρ−α)+(α−1) = ρ−1.
The log k̃t terms are therefore

qk = (ρ− 1)dpk[λk + σλc(qk − λr)] + (pk − 1)[λk + σλc(qk − λr)] + λr

= qk[λk + σλc(qk − λr)] + λr.

In the first line, the first term on the right comes from log(gt+1Jt+1) and the second from
log Jkt+1. Through some piece of luck, they combine nicely. We are left with a quadratic
in the coefficient qk, in fact the same one we derived in Appendix C for the additive case.

As a result, the coefficients hck of the approximate decision rule (12) and hkk of the
controlled law of motion (18) are the same in the additive and recursive cases. As in
Tallarini (2000), the risk aversion parameter plays no role in what we call the “endogenous
dynamics” of the capital stock. Note, too, that the behavior of the exogenous state
variables xt and vt have no impact on the solution. This is what we call the separation
property: the capital coefficients (qk, hck, hkk) are independent of the rest of the model.

• News. Again, xt shows up only in the mean terms, so we find the coefficient qx in much
the same way. The relevant terms are

q>x = qkλcσq
>
x + [(ρ− 1)e+ qx]>A.

This is, again, the same as the additive case we solved earlier. It’s also independent of
risk (vt) and risk aversion (α): capital dynamics enter through qk, but the properties of
risk don’t affect the response to news. When A = 0, there’s no persistence in xt and
qx = 0.

• Risk. This one’s more involved, it incorporates risk and recursive preferences in a funda-
mental way. The coefficients of vt might be collected in two groups:

qv = mean terms + variance terms.
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The former are similar to what we’ve done:

mean terms = (qkλcσ)qv.

The latter involve the variances of terms containing v
1/2
t in the envelope condition (24)

in both the certainty equivalent µt(gt+1Jt+1) and the expectation Et[(gt+1Jt+1)
α−1Jkt+1].

Adding them in order, we have

variance terms = (ρ− α)αV1/2 + V2/2

where

V1 = [(1− dpk)e+ dpx]>BB>[(1− dpk)e+ dpx]

V2 =
{

(α− 1)[(1− dpk)e+ dpx] + [(1− pk)e+ px]
}>
BB>{

(α− 1)[(1− dpk)e+ dpx] + [(1− pk)e+ px]
}
.

We need a value for d to implement this, but we can get a sense of where the sign comes
from. Both V1 and V2 are positive, so the sign depends on their relative magnitudes and
the sign of ρ− α.

E Approximating the ambiguous business cycle model

Constant volatility. The ambiguous business cycle model has the same structure and prop-
erties as the model with risk. In the notation of Appendix D, let

log(Jρ−1t Jkt) = [((ρ− 1)d+ 1)pk − 1] log k̃t + [((ρ− 1)d+ 1)px]x̂t

= qk log k̃t + qxx̂t.

As before, the calculation the right-hand side of (21) follows from loglinear approximations of
the relevant functions and the certainty equivalent formula for lognormal random variables.
Consider first the term inside the square brackets. We will need the expected value of the
log (the constant variances will ultimately enter the intercept terms which we ignore):

E1t[(α− 1)(log gt+1 + log Jt+1) + log Jkt+1]

= E1t[(ρ− 1) log Jt+1 + log Jkt+1] + (ρ− 1)E1t log gt+1 + (α− ρ)E1t[log gt+1 + log Jt+1]

= E1t[qk log k̃t+1 + qxx̂t+1] + (ρ− 1)E1t log gt+1 + (α− ρ)E1t[log gt+1 + log Jt+1].

The last expected value in this expression, E1t[log gt+1+log Jt+1], is precisely the expectation
in µ1t, which affords some convenient cancellation of terms, such that the expectation inside
the square brackets on the right-hand side of (21) is simply

logE2t log
[
µγ−α1t E1t(gt+1Jt+1)

α−1Jkt+1

]
= E2tE1t[qk log k̃t+1 + qxx̂t+1 + (ρ− 1) log gt+1]

+(γ − ρ)E2tE1t[log gt+1 + log Jt+1].
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Once again, the last expected value in this expression is precisely the expectation that
appears in the term µ2t(µ1t)

ρ−γ , but with the opposite sign, which once again affords some
convenient cancellation of terms resulting in greatly simplified version of equation (21):

(qk − λr) log k̃t + qxx̂t = E2tE1t[qk log k̃t+1 + qxx̂t+1 + (ρ− 1) log gt+1]

= qkhkk log k̃t + [qkhkx + qxϕx(1− θ)]x̂t
+[ρ− 1− qk + qxϕxθ]E2tE1t log gt+1

= qkhkk log k̃t + [qk(hkx − 1) + qxϕx + ρ− 1]x̂t.

(Recall: hkk = λk+σλc(qk−λr) and hkx = σλcqx.) This equation gives us identical loglinear
solutions as the earlier models. Neither the ambiguity aversion parameter γ nor the risk
aversion parameter α affects the dynamics of the model. (Both parameters appear only in
the intercept terms.)
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Figure 1
Changes in output, consumption, investment and productivity for the last
five recessions
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Notes: Adapted from Bethune, Cooley, and Rupert (2014). Each figure plots the last five
recessions starting from the previous peak, with the most recent indicated by the thicker
line. FRED data codes are GDPC1, PCECC96, GPDIC96, and OPHNFB.

39



Figure 2
Slope of controlled law of motion: loglinear approximation and numerical
solution
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Notes: Both solutions are displayed for the mean of vt. Other points in the state space
exhibit an identical pattern, however, they are difficult to display given the large difference
in the scale of vt and log kt+1.
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Figure 3
Response to a one standard deviation increase in conditional variance

Notes: Impulse response to an uncertainty shock in the benchmark model. The lower
panel also displays the interest-rate response in a version of the model corresponding to the
Bansal and Yaron (2004) model with exogenous consumption growth.
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Table 1
Benchmark parameter values

Parameter Value Comment

(a) Preferences
ρ −1 IES = σ = 1/(1− ρ) = 1/2
α −9 RA = 1− α = 10, Bansal & Yaron (2004, Table II)
β — chosen to hit k/y = 10 (quarterly)
(b) Technology
ν 0 Cobb-Douglas
ω 1/3 Kydland & Prescott (1982, Table I), rounded off
δ 0.025 Kydland & Prescott (1982, Table I)
(c) Productivity growth
log g 0.004 Tallarini (2000, Table 4)
e 1 normalization
A 0 no predictable component (news)
B 1 normalization

v1/2 0.015 Tallarini (2000, Table 4), rounded off
ϕv 0.95 Jurado, Ludvigson & Ng (2014, Table 1)
τ 0.74× 10−5 Bansal & Yaron (2004, Table II), rescaled
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