Introduction	Risk	Ambiguity	Last thoughts	Annex
00000	0000000000	00	0	

Risk and Ambiguity in Models of Business Cycles

Dave Backus, Axelle Ferriere, and Stan Zin

North American Meetings of the Econometric Society

June 20, 2014

This version: August 2, 2014

Percentage change from previous peak, Seasonally Adjusted

Quarters from previous peak

Percentage change from previous peak, Seasonally Adjusted

Quarters from previous peak

Backus, Ferriere, & Zin (NYU) Risk & Ambiguity

Real Private Nonresidential Fixed Investment

Percentage change from previous peak, Seasonally Adjusted

Quarters from previous peak

Introduction	Risk	Ambiguity	Last thoughts	Annex
•••••	00000000000	00	○	
What hap	pened?			

What we see

- Magnitude: deeper recession than usual
- Persistence: longer recovery maybe slower, too
- Like Kydland-Prescott with productivity shocks?
 - Relative magnitudes look right
 - Comovements look right, too
 - But... measured productivity didn't fall very much

Introduction	Risk 0000000000	Ambiguity	Last thoughts O	Annex
What happer	ned?			

What we see

- Magnitude: deeper recession than usual
- Persistence: longer recovery maybe slower, too
- Like Kydland-Prescott with productivity shocks?
 - Relative magnitudes look right
 - Comovements look right, too
 - But... measured productivity didn't fall very much
- More

What's missing?

Introduction	Risk 0000000000	Ambiguity 00	Last thoughts ○	Annex
What we do				

- Take a streamlined business cycle model
- Ask: How does uncertainty affect the dynamics of output, consumption, and investment?
 - Magnitude: Does uncertainty magnify fluctuations?
 - Persistence: Can it reduce the speed of recovery?
- Compute solutions with
 - Transparent loglinear approximation
 - Acurate numerical method

Introduction	Risk 00000000000	Ambiguity 00	Last thoughts ○	Annex
Modeling in	ngredients			

Streamlined business cycle model

- Recursive preferences
- Unit root in productivity
- Fixed labor supply
- With fluctuations in uncertainty
 - Risk (stochastic volatility)
 - Ambiguity (unobservable long-term growth)

Introduction	Risk 0000000000	Ambiguity 00	Last thoughts O	Annex
What we find	l			

Fluctuations in uncertainty have little impact

Persistence

- Separation property: internal dynamics independent of risk and risk aversion
- Persistence must be in the shock
- Magnitude
 - Impact typically small, but magnified by risk aversion

Business cycle properties governed by IES

Introduction	Risk ●0000000000	Ambiguity	Last thoughts O	Annex
Risk				

Recursive references

$$U_t = V[c_t, \mu_t(U_{t+1})]$$

= $[(1 - \beta)c_t^{\rho} + \beta\mu_t(U_{t+1})^{\rho}]^{1/\rho}$
 $\mu_t(U_{t+1}) = [E_t(U_{t+1}^{\alpha})]^{1/\alpha}$

 V, μ_t homogeneous of degree one, $RA = 1 - \alpha$, $IES \equiv \sigma = 1/(1 - \rho)$ Productivity a_t

$$\log g_t = \log(a_t/a_{t-1}) = \log g + e^\top x_t$$

$$x_{t+1} = Ax_t + v_t^{1/2} Bw_{1t+1} \quad (\text{``news''})$$

$$v_{t+1} = (1 - \varphi_v)v + \varphi_v v_t + \tau w_{2t+1} \quad (\text{``risk''})$$

$$w_{1t}, w_{2t}) = \text{iid standard normals}$$

Introduction	Risk	Ambiguity	Last thoughts	Annex
00000	○●○○○○○○○○	00	○	
Scaling				

Bellman equation

$$J(k_t, x_t, v_t, a_t) = \max_{c_t} V\{c_t, \mu_t[J(k_{t+1}, x_{t+1}, v_{t+1}, a_{t+1})]\}$$

s.t. $k_{t+1} = f(k_t, a_t n) - c_t$

f hd1: eg, f(k, an) =
$$k^{\omega}(an)^{1-\omega} + (1-\delta)k$$

Rescaled Bellman equation $[\tilde{k}_t = k_t/a_t, \tilde{c}_t = c_t/a_t]$

$$J(\tilde{k}_{t}, x_{t}, v_{t}) = \max_{\tilde{c}_{t}} V\{\tilde{c}_{t}, \mu_{t}[g_{t+1}J(\tilde{k}_{t+1}, x_{t+1}, v_{t+1})]\}$$

s.t. $g_{t+1}\tilde{k}_{t+1} = f(\tilde{k}_{t}, n) - \tilde{c}_{t}$

Introduction 00000	Risk ○○●○○○○○○○	Ambiguity	Last thoughts ○	Annex
Parameter va	lues			

Parameter	Value	Comment
Preference	s	
ho	-1	intertemporal substitution $= \sigma = 1/(1- ho) = 1/2$
α	_9	risk aversion = $1 - \alpha = 10$
β	—	chosen to hit $k/y = 10$ (quarterly)
Technology	y	
ω	1/3	Kydland and Prescott (1982, Table I), rounded off
δ	0.025	Kydland and Prescott (1982, Table I)
Productivit	ty growth	
log g	0.004	Tallarini (2000, Table 4)
е	1	normalization
A	0	no predictable component ("news")
В	1	normalization
$v^{1/2}$	0.015	Tallarini (2000, Table 4), rounded off
φ_{v}	0.95	arbitrary
au	$0.74 imes10^{-5}$	makes v three standard deviations from zero

Introduction	Risk	Ambiguity	Last thoughts	Annex
00000	0000000000	00	0	
Madal ia a	مم المحالية المعانية			

Introduction	Risk	Ambiguity 00	Last thoughts ○	Annex
Loglinearizati	on I			

Goal: loglinear decision rule for capital

$$\log \tilde{k}_{t+1} = h_k \log \tilde{k}_t + h_x^\top x_t + h_v v_t - \log g_{t+1}$$

- Dynamic programming version of Campbell (JME, 1994)
- Loglinearization around the stochastic steady-state

Introduction	Risk	Ambiguity	Last thoughts	Annex
00000	○○○○○●○○○○○	00	○	
Loglinearizati	on II			

Loglinearize capital's marginal product and law of motion

$$\log f_{kt} = \lambda_r \log \tilde{k}_t + \lambda_0$$

$$\log \tilde{k}_{t+1} = \lambda_k \log \tilde{k}_t - \lambda_c \log \tilde{c}_t + \lambda_1 - \log g_{t+1}$$

where $(\lambda_k, \lambda_c, \lambda_r)$ are steady-state objects.

Guess loglinear value function and derivative

$$\log J_t = p_k \log \tilde{k}_t + p_x^\top x_t + p_v v_t + p_0$$

$$\log J_t^{\rho-1} J_{kt} = q_k \log \tilde{k}_t + q_x^\top x_t + q_v v_t + q_0$$

Introduction	Risk	Ambiguity	Last thoughts	Annex
00000	○○○○○●○○○○	00	○	
Separation p	property			

Claim (Tallarini)

Consider the loglinear approximation of capital's law of motion,

$$\log \tilde{k}_{t+1} = h_0 + h_k \log \tilde{k}_t + h_x^{\top} x_t + h_v v_t - \log g_{t+1}$$

If we hold constant the stochastic steady state:

- *h_k* is independent of properties of all shocks and risk aversion
- h_x is independent of properties of uncertainty shocks and risk aversion

$$h_{k} = \lambda_{k} + \sigma \lambda_{c} (q_{k} - \lambda_{r}), \quad h_{x}^{\top} = \sigma \lambda_{c} q_{x}^{\top}$$

$$q_{k} = q_{k} [\lambda_{k} + \sigma \lambda_{c} (q_{k} - \lambda_{r})] + \lambda_{r}$$

$$q_{x} = -(\sigma^{-1} + q_{k}) e^{T} A [(1 - \sigma q_{k} \lambda_{c})I - A]^{-1}$$

Introduction	Risk ○○○○○○●○○○	Ambiguity 00	Last thoughts O	Annex
Loglineariz	ation III			

Introduction	Risk	Ambiguity	Last thoughts	Annex
00000	○○○○○○○○●○	00	○	
Business cycl	es and risk ave	rsion		

	US Data	Мо	del w/	RA =	Cst. vol.
Risk Aversion		2	10	50	10
Standard deviations Output growth	(%) 1.04	0.82	0.82	0.82	0.82
Consumption growth Investment growth	0.55 2.79	0.75 1.03	0.75 1.04	0.76 1.06	0.75
Correlations with ou	tput growt	h			
Consumption growth Investment growth	0.52 0.65	0.99 0.98	0.99 0.97	0.97 0.93	0.99 0.98

Intertemporal elasticity of substitution: 0.5

Introduction	Risk ○○○○○○○○●	Ambiguity	Last thoughts ○	Annex
Business cycl	es and IES			

	US Data	Мо	del	
IES		0.5	1.5	
Standard deviations (% Output growth Consumption growth Investment growth	%) 1.04 0.55 2.79	0.82 0.75 1.04	0.82 0.39 1.92	
Correlations with output growth				
Consumption growth Investment growth	0.52 0.65	0.99 0.97	0.98 0.93	
9				

Risk aversion: 10

Introduction	Risk 0000000000	Ambiguity ●○	Last thoughts ○	Annex
Risk and amb	oiguity			

Divide state in two: $s_t = (s_{1t}, s_{2t})$ (ask about Stan's story)

Smooth ambiguity

risk =
$$p_{1t}(s_{1t+1}|s_{2t+1}, \mathcal{I}_t)$$

ambiguity = $p_{2t}(s_{2t+1}|\mathcal{I}_t)$

Two-part certainty equivalent

$$\mu_{1t}(U_{t+1}) = [E_{1t}(U_{t+1}^{\alpha})]^{1/\alpha} \text{ ("risk")}$$

$$\mu_{2t}[\mu_{1t}(U_{t+1})] = \{E_{2t}[\mu_{1t}(U_{t+1})]^{\gamma}\}^{1/\gamma} \text{ ("ambiguity")}$$

 α controls risk aversion, $\gamma < \alpha$ controls ambiguity aversion

Introduction	Risk 0000000000	Ambiguity ○●	Last thoughts ○	Annex
Ambiguity ab	out what?			

- Rule of thumb
 - Risk about observables
 - Ambiguity about unobservables

• Example: observe productivity growth g_t but not its mean x_t

$$\begin{array}{lll} \mathsf{Risk:} & \log g_{t+1} | x_{t+1} \ \sim \ \mathcal{N}(\log g + x_{t+1}, b) \\ \mathsf{Ambiguity:} & x_{t+1} \ \sim \ \mathsf{AR}(1) \end{array}$$

Filtering gives us (say)

$$|x_{t+1}|\mathcal{I}_t \sim \mathcal{N}(\widehat{x}_{t+1}, h_{t+1}), \quad \mathcal{I}_t = g^t$$

Introduction	Risk 0000000000	Ambiguity ○●	Last thoughts ○	Annex
Ambiguity ab	out what?			

- Rule of thumb
 - Risk about observables
 - Ambiguity about unobservables

• Example: observe productivity growth g_t but not its mean x_t

$$\begin{array}{lll} \mathsf{Risk:} & \log g_{t+1} | x_{t+1} \ \sim \ \mathcal{N}(\log g + x_{t+1}, b) \\ \mathsf{Ambiguity:} & x_{t+1} \ \sim \ \mathsf{AR}(1) \end{array}$$

Filtering gives us (say)

$$|X_{t+1}|\mathcal{I}_t \sim \mathcal{N}(\widehat{x}_{t+1}, h_{t+1}), \quad \mathcal{I}_t = g^t$$

But: none of this has much impact

Introduction	Risk	Ambiguity	Last thoughts	Annex
00000	0000000000	00	●	
Summary				

- Uncertainty fluctuations have intuitive appeal
- But they add little to standard business cycle model
 - Magnitude: impact is small with common parameter values
 - Persistence: they add nothing to internal dynamics, just the persistence of the shocks themselves

- Uncertainty fluctuations have intuitive appeal
- But they add little to standard business cycle model
 - Magnitude: impact is small with common parameter values
 - Persistence: they add nothing to internal dynamics, just the persistence of the shocks themselves
- Where next?
 - Uncertainty about parameters?
 - Endogenous uncertainty? (Veldkamp, Schaal)
 - Micro uncertainty with financial frictions? (Arellano, Bai, & Kehoe)
 - Cause or effect? (Alessandria, Choi, Kaboski, & Midrigan)

Introduction	Risk 0000000000	Ambiguity 00	Last thoughts ○	Annex
Related work	(some of it)			

- Recursive business cycles
 - Campanale, Castro, & Clementi; Tallarini
- Approximation methods
 - Anderson, Hansen, McGrattan, & Sargent; Campbell; Kaltenbrunner and Lochstoer; Malkhozov
- Risk and business cycles
 - Basu & Bundick; Caldara, Fernandez-Villaverde, Rubio-Ramirez, & Wen; Justiniano & Primiceri; Liu & Miao
- Ambiguity and business cycles
 - Klibanoff, Marinacci, & Mukerji; Ju & Miao; Ilut & Schneider; Jahan-Parvar & Miao

Introduction	Risk	Ambiguity	Last thoughts	Annex
00000	0000000000	00	○	
Productivity				

Output Per Hour of All Persons

Percentage change from previous peak, Seasonally Adjusted, Nonfarm Business

Backus, Ferriere, & Zin (NYU)