Solving models with external habit

Jessica A. Wachter

The Wharton School, University of Pennsylvania, 3620 Locust Walk, Philadelphia, PA 19104, USA

Received 24 May 2005; accepted 8 August 2005
Available online 15 September 2005

Abstract

Habit utility has been the focus of a large and growing body of literature in financial economics. This study investigates ways of accurately and efficiently solving the Campbell and Cochrane [1999. Journal of Political Economy 107, 205–251] external habit model. Solutions for this model based on a grid of values for the state variable are shown to converge as the grid becomes increasingly fine. Convergence is substantially faster if the price–dividend ratio is computed as a series of “zero-coupon equity” claims rather than as the fixed point of the Euler equation. Fitting the model to the term structure as well as to equity moments (as in [Wachter, J.A., 2005. A consumption-based model of the term structure of interest rates. Journal of Financial Economics, in press]) also results in faster convergence.

© 2005 Elsevier Inc. All rights reserved.

JEL classification: C61; C63; G12; G13

Keywords: Habit formation; Numerical solution methods; Catching up with the Joneses

Introduction

Habit utility has been the focus of a large and growing body of literature in financial economics. Constantinides (1990) and Sundaresan (1989) show that habit preferences, which assume an agent’s previous consumption affects his utility from current consumption, can help explain the high equity premium documented by Mehra and Prescott (1985). Abel (1990) shows that preferences where the agent evaluates consumption relative to past aggregate consumption (“catching up with the Joneses”) can also help resolve the equity premium puzzle. In both types of models, consumption is evaluated relative to a time-varying reference point, however, in the Abel model
this reference point is external in that the agent’s current consumption choice does not affect future utility. For this reason, “catching up with the Joneses” preferences are sometimes referred to as external habit formation. Building on these contributions, Campbell and Cochrane (1999) show that a model where utility is a function of consumption minus external habit is capable of reconciling the low standard deviation of consumption growth with a high equity premium, high volatility of returns, and a low and smooth riskfree rate. Recently, external habit models have been extended to address a broad range of phenomena (see, e.g., Abel (1999), Brandt and Wang (2003), Buraschi and Jiltsov (2003), Campbell and Cochrane (2000), Chan and Kogan (2002), Dai (2000), Lettau and Uhlig (2000), Menzly et al. (2004), Pastor and Veronesi (2005), Wachter (2005)), and tested in a variety of ways (see, e.g., Chen and Ludvigson (2003), Duffee (2004), Gomes and Michaelides (2003), Korniotis (2005), Li (2001), Tallarini and Zhang (2005)). Given the enduring interest in external habit models, it is important to investigate ways of solving such models accurately and efficiently.

This study focuses on the external habit model of Campbell and Cochrane (1999) and its extension in Wachter (2005). Both papers solve for the price–dividend ratio by iterating on a grid of values for the state variable. While choosing a grid that is too coarse can lead to inaccuracies, this study shows that for both calibrations of the model (Campbell and Cochrane; Wachter), the solution for the price–dividend ratio converges as the grid becomes finer. Convergence is substantially faster if the price–dividend ratio is computed as a series of “zero-coupon equity” claims, rather than as the fixed point of the Euler equation. Fitting the model to the term structure as well as to equity moments (as in Wachter (2005)) also results in faster convergence.

The remainder of this paper is organized as follows. Section 1 briefly describes the model for the representative agent and the aggregate endowment. Section 2 describes the solution techniques explored in this paper, Section 3 the calibration, and Section 4 the results. Extensions to the basic model are considered in Appendices A and B.

1. Model

This section briefly describes the external habit model of Campbell and Cochrane (1999) and its extension in Wachter (2005). Identical investors are assumed to have utility over consumption relative to a reference point X_t:

$$ E \sum_{t=0}^{\infty} \delta^t \frac{(C_t - X_t)^{1-\gamma} - 1}{1 - \gamma}, $$

(1)

where $\delta > 0$ is the time preference parameter and $\gamma > 0$ is the curvature parameter. Habit, X_t, is defined through surplus consumption S_t, where

$$ S_t \equiv \frac{C_t - X_t}{C_t}. $$

It is assumed that $s_t = \ln S_t$ follows the process

$$ s_{t+1} = (1 - \phi)\bar{s} + \phi s_t + \lambda(s_t)(\Delta c_{t+1} - E(\Delta c_{t+1})), $$

(2)

where \bar{s} is the unconditional mean of s_t, ϕ is the persistence, and $\lambda(s_t)$ is the sensitivity to changes in consumption. In what follows, \bar{s} and $\lambda(s_t)$ will be specified in terms of the primitive parameters. Aggregate consumption C_t follows a random walk:

$$ \Delta c_{t+1} = g + v_{t+1}, $$

(3)
where \(c_t = \ln C_t \) and \(v_{t+1} \) is a \(N(0, \sigma_v^2) \) shock that is independent across time.

The process for \(s_t \) is heteroscedastic and perfectly conditionally correlated with innovations in consumption growth. The sensitivity function \(\lambda(s_t) \) is specified so that the real riskfree rate is linear and that for \(s_t \approx \bar{s} \), \(x_t \) is a deterministic function of past consumption. These considerations imply that

\[
\lambda(s_t) = \left(\frac{1}{\bar{S}} \right) \sqrt{1 - \frac{\phi - b}{\gamma}} - 1, \tag{4}
\]

\[
\bar{S} = \sigma_v \sqrt{1 - \phi - b/\gamma}, \tag{5}
\]

where \(b \) is a preference parameter that determines the behavior of the riskfree rate. In order that the quantity within the square root remains positive, \(\lambda(s_t) \) is set to be 0 when \(s_t > s_{\text{max}} \), for

\[
s_{\text{max}} = \bar{s} + \frac{1}{2} \left(1 - \bar{S}^2 \right). \tag{6}
\]

In Campbell and Cochrane (1999), \(b \) is chosen to be zero to produce a constant real riskfree rate. Wachter (2005) shows that values of \(b > 0 \) allow the model to capture aspects of the term structure of interest rates.

Because habit is external, the investor’s intertemporal marginal rate of substitution is given by

\[
M_{t+1} \equiv \delta \left(\frac{S_{t+1}}{S_t} \frac{C_{t+1}}{C_t} \right)^{-\gamma}. \tag{7}
\]

Any asset return \(R_{t+1} \) must satisfy

\[
E_t[M_{t+1} R_{t+1}] = 1. \tag{8}
\]

Let \(R_{t+1}^f \) denote the one-period real riskfree rate between \(t \) and \(t+1 \), and \(r_{t+1}^f = \ln R_{t+1}^f \). Because \(R_{t+1}^f \) is known at \(t \), applying (8) implies

\[
r_{t+1}^f = - \ln \delta + \gamma g + \gamma \left(1 - \phi \right) (\bar{s} - s_t) - \frac{\gamma^2 \sigma_v^2}{2} (1 + \lambda(s_t))^2. \tag{9}
\]

Strictly speaking, (10) is an approximation, as it assumes there is a zero probability of \(s_t \) rising above \(s_{\text{max}} \). Because \(s_t > s_{\text{max}} \) occurs very rarely for relevant parameter values, the approximation in (10) is highly accurate, as shown in what follows. Substituting the equation for \(\lambda(s_t) \) into (10) produces the equation

\[
r_{t+1}^f = - \ln \delta + \gamma g - \frac{\gamma (1 - \phi) - b}{2} + b(\bar{s} - s_t). \tag{11}
\]

Thus (4) implies a riskfree rate that is linear in \(s_t \).

The aggregate market is represented as the claim to the future consumption stream. If \(P_t \) denotes the ex-dividend price of this claim, then (8) implies that in equilibrium \(P_t \) satisfies

\[
E_t \left[M_{t+1} \left(\frac{P_{t+1} + C_{t+1}}{P_t} \right) \right] = 1,
\]

which can be rewritten as

\[
E_t \left[M_{t+1} \left(\frac{P_{t+1}}{C_{t+1}} + 1 \right) \frac{C_{t+1}}{C_t} \right] = \frac{P_t}{C_t}. \tag{12}
\]
Because C_t is the dividend paid by the aggregate market, P_t/C_t is the price–dividend ratio.\footnote{It is possible to model aggregate dividends as separate from aggregate consumption. Campbell and Cochrane (1999) introduce a dividend process D_t, where $d_t = \ln D_t$ and explore a model with $\Delta d_{t+1} = g + w_{t+1}$, where w_{t+1} is correlated with v_{t+1}. Wachter (2000), following Campbell (1986) and Abel (1999), allows dividends to be a levered claim on consumption: $D_t = C_t^\theta$. Prices for these claims can be determined by straightforward modifications to (12). Both have the potential disadvantage that the consumption–dividend ratio is non-stationary: either the claim to dividends or the claim to consumption eventually takes over the economy. An alternative is to assume that consumption and dividends are co-integrated. Appendix A shows how to modify (12) to such a model.}

The model is simulated by drawing from the consumption process (3), feeding these draws through (2) to obtain draws for s_t, and then using the s_t values to obtain draws for the riskfree rate and the price–dividend ratio. Returns on the aggregate market are simulated using

$$R_{t+1}^m = \frac{(P_{t+1}/C_{t+1}) + 1}{P_t/C_t} \frac{C_{t+1}}{C_t}.$$\quad(13)

Whatever difficulties lie in solving the model lie in solving (12) for the price–dividend ratio as a function of s_t, and, to a lesser extent, solving (9) for the riskfree rate.

2. Solution methods

The riskfree rate can be computed directly by solving the expectation in (9), where

$$E_t[M_{t+1}] = \delta e^{-\gamma (g + (1-\phi)(\bar{s} - s_t))} \int_{-\infty}^{\infty} p(v) e^{-\gamma (\lambda (s_t) + 1)v} \, dv,$$\quad(14)

and $p(v)$ is the probability density function of a normal distribution with mean zero and standard deviation σ_v.2 Computing the price–dividend ratio is less straightforward. One method, used by Campbell and Cochrane (1999) and referred to here as the fixed-point method, involves solving (12) recursively. Conjecturing a solution $G^0(s_t)$, $G^1(s_t)$ is obtained on a grid of values for s_t as

$$G^1(s_t) = E_t \left[M_{t+1}(G^0(s_{t+1}) + 1) \frac{C_{t+1}}{C_t} \right]$$

$$= \delta e^{\gamma (g - \gamma (1-\phi)(\bar{s} - s_t))}$$

$$\times \int_{-\infty}^{\infty} p(v) e^{(1-\gamma)\varphi (s_{t+1})v} \left(G^0(\frac{(1-\phi)\bar{s} + \phi s_t + \lambda(s_t)v}{s_{t+1}}) + 1 \right) \, dv.$$\quad(15)

More generally, given G^k, G^{k+1} satisfies

1 Solving this integral requires a choice of bounds on the shock, as well as a choice of numerical integration routine. Here, and in the rest of this paper, Gauss–Legendre 40-point quadrature is used, and the integral is bounded by -8 and $+8$ standard deviations. Increasing the number of standard deviations in the integral has a negligible effect on the results.
\[G^{k+1}(s_t) = \delta e^{(1-\gamma)g-\gamma(1-\phi)(\bar{s}-s_t)} \times \int_{-\infty}^{\infty} p(v)e^{(1-\gamma)\gamma(\bar{s}_t)\gamma v}(G^k((1-\phi)\bar{s} + \phi s_t + \lambda(s_t)v) + 1) \, dv. \]

The procedure is repeated until \(G^{k+1} \) and \(G^k \) differ by at most \(10^{-4} \). The resulting fixed point is the solution \(G(s_t) \) to (12). Chen et al. (2004) show that this recursive definition of the price–dividend ratio is well defined, continuous, and smooth in a wide interval. Each step in this recursion requires computing the function obtained in the previous step at a set of points \{ \((1-\phi)\bar{s} + \phi s_t + v_j\) \} (where \{\(v_j\}\) is determined by the numerical integration routine) for each value of \(s_t \). These points generally lie outside of the grid. To evaluate \(G^k \) at these points, Campbell and Cochrane (1999) use log-linear interpolation. That is, they assume that \(\ln G^k \) is approximately linear in \(\ln s_t \).

A second way of solving for the price–dividend ratio also takes (12) as the starting point. Iterating (12) \(N \) times produces

\[G^N(s_t) = \sum_{n=1}^{N} E_t \left[\left(\prod_{j=1}^{n} M_{t+j} \right) \frac{C_{t+n}}{C_t} \right] + E_t \left[\left(\prod_{j=1}^{N} M_{t+j} \right) \frac{C_{t+N}}{C_t} G^0(s_{t+N}) \right], \]

(16)

where \(M_{t+j} \equiv \delta (s_{t+j} - s_{t+j-1})^{-\gamma} \) for \(j \geq 1 \). Assuming one has chosen an initial \(G^0 \) such that

\[\lim_{N \to \infty} E_t \left[\left(\prod_{j=1}^{N} M_{t+j} \right) \frac{C_{t+N}}{C_t} G^0(s_{t+N}) \right] = 0, \]

(16) implies a convenient characterization of the price–dividend ratio as an infinite sum of expectations:

\[G(s_t) \equiv \lim_{N \to \infty} G^N(s_t) = \sum_{n=1}^{\infty} E_t \left[\left(\prod_{j=1}^{n} M_{t+j} \right) \frac{C_{t+n}}{C_t} \right]. \]

(17)

Each term in (17) is the time-\(t \) price of a claim to the aggregate dividend \(n \) periods from now divided by the dividend today. This can be thought of as “zero-coupon equity” with maturity \(n \).

Equation (17) suggests another way of solving for the price–dividend ratio: computing each expectation on the right-hand side of (17), or at least enough terms so that what remains is sufficiently small. This can be done recursively, using the Euler equation (8). Let \(F_n(s_t) \) denote the \(n \)th term in this expectation:

\[F_n(s_t) = E_t \left[\left(\prod_{j=1}^{n} M_{t+j} \right) \frac{C_{t+n}}{C_t} \right]. \]

(18)

\(F_n(s_t)C_t \) is then the price of zero-coupon equity that matures in \(n \) periods. Because this security pays no dividends, its one-period return equals

\[R_{n,t+1} = \frac{F_{n-1}(s_{t+1})C_{t+1}}{F_n(s_t)C_t} \]

and (8) implies

\[F_n(s_t) = E_t \left[M_{t+1} \frac{C_{t+1}}{C_t} F_{n-1}(s_{t+1}) \right]. \]

(19)
Finally, when the equity matures it pays the aggregate dividend. Therefore $F_0(s_t) = 1$. Finally,

$$G(s_t) = \sum_{n=1}^{\infty} F_n(s_t).$$

Similar computations to solve for the aggregate price–dividend ratio have been employed in Ang and Liu (2004), Bekaert et al. (2004), and Lettau and Wachter (2005).

Iterating on (19) (using $F_0(s_t) = 1$ to start the process), and summing the terms is a second method of solving for the price–dividend ratio of the aggregate market. I call this the series method. Like the fixed-point method, the series method must also be implemented numerically. The recursion (19) has no closed-form solution, and is solved on a grid of values for s_t. Given $F_{n-1}(s_t)$,

$$F_n(s_t) = \delta e^{(1-\gamma)\bar{s} - \gamma(1-\phi)(\bar{s}-s_t)} \int_{-\infty}^{\infty} p(v) e^{(1-\gamma)v - \gamma \lambda(s_t)v} F_{n-1}((1-\phi)\bar{s} + \phi s_t + \lambda(s_t)v) \, dv.$$

As in the fixed-point method, $F_{n-1}((1-\phi)\bar{s} + \phi s_t + v)$ is found by interpolating between grid points.

These calculations rely on numerical methods to evaluate the solution for the price–dividend ratio. Having a closed-form solution would obviate the need for these methods, but such a solution is not apparent. The lack of an explicit expression does not arise from the assumption of discrete time, as Appendix B shows. While the stochastic discount factor M_{t+1} shares certain similarities with continuous-time, affine term structure models of the Cox et al. (1985) form they are in fact quite different. In continuous time, a version of the formula (10) for the riskfree rate is exact rather than approximate. However, this is a minor gain, as the discussion below makes clear. The solution for zero-coupon claims satisfies a differential equation in s_t and the maturity, but this differential equation does not have an exponential-affine solution.

3. Calibration

To address the accuracy of the fixed-point and series methods, it is necessary to choose reasonable parameter values. Two sets of parameter values are considered. The first set is from Campbell and Cochrane (1999). Campbell and Cochrane choose this set of parameters to fit the mean and volatility of consumption growth, the average riskfree rate, the Sharpe ratio, and the persistence of the price–dividend ratio in annual data from 1947 until 1995. The parameter b is set to zero, and therefore the (real) riskfree rate is constant. Campbell and Cochrane calculate the price–dividend ratio using the fixed-point method, simulate the model at a monthly frequency, and aggregate the data to an annual frequency.

The second set of parameters is from Wachter (2005). Wachter chooses this set to fit the same equity moments as in Campbell and Cochrane, but in quarterly data from 1952 until 2004. A more important difference is that b is allowed to differ from zero to match the upward-sloping yield curve for nominal Treasury bonds. This choice of parameters is shown to account for features of

3 These relations can also be derived directly from (18).

4 Menzly et al. (2004) specify a different process for surplus consumption S_t. In their specification, it is possible to find a closed-form solution in continuous time.
Table 1
Parameter choices

<table>
<thead>
<tr>
<th>Parameter</th>
<th>CC value</th>
<th>Wachter value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean consumption growth (%) g</td>
<td>1.89</td>
<td>2.20</td>
</tr>
<tr>
<td>Standard deviation of consumption growth (%) σ_v</td>
<td>1.50</td>
<td>0.86</td>
</tr>
<tr>
<td>Utility curvature γ</td>
<td>2.00</td>
<td>2.00</td>
</tr>
<tr>
<td>Coefficient on $-s_j$ in the riskfree rate b</td>
<td>0.00</td>
<td>0.011</td>
</tr>
<tr>
<td>Habit persistence ϕ</td>
<td>0.87</td>
<td>0.89</td>
</tr>
<tr>
<td>Discount rate δ</td>
<td>0.90</td>
<td>0.93</td>
</tr>
</tbody>
</table>

Note. This table reports the assumed parameters in Campbell and Cochrane (1999) (CC) and Wachter (2005). The CC specification is simulated at a monthly frequency while the Wachter specification is simulated at a quarterly frequency. Parameters are annualized, e.g., $12g, \sqrt{12}\sigma, \phi^{12}$ and δ^{12} for the CC values, and $4g, 2\sigma, \phi^4$ and δ^4 for the Wachter values.

the term structure of interest rates. This model is simulated at a quarterly frequency. Parameter values for both calibrations are reported in Table 1.

4. Results

To assess the accuracy of the fixed-point and series methods, I first calculate the solution under each method using three different grids, and under both the Campbell and Cochrane (1999) and Wachter (2005) calibrations. The first grid (“Grid 1”) is identical to that used by Campbell and Cochrane. To form this grid, 12 points are chosen at equally spaced intervals between 0 and S_{max}. S_{max} is included in the grid for a total of 13 points. Zero is not included because log-linear interpolation requires taking the log of S_t. To capture non-linear behavior of the price–dividend ratio near S_{max}, additional points are added at intervals of 0.01, for a total of 17 grid points.5

The second grid (“Grid 2”) starts with Grid 1 and extends it to include values of S_t closer to zero by adding points 0.0005, 0.0015, 0.0025, 0.0035, and 0.0045. Finally, the third grid (“Grid 3”) is finer and includes values much closer to zero. This grid is constructed in two parts, an upper segment and a lower segment. The upper segment consists of 101 equally spaced points S_t between 0 and S_{max} with S_{max} included. The lower segment consists of 900 logarithmically spaced points between the lowest point in the upper segment (e.g., ln 0.0072 for the Campbell and Cochrane parameter values), and -300.

Figure 1 illustrates the solution for the price–dividend ratio computed using each method (fixed-point or series) and each grid. The top panel shows results for Campbell and Cochrane (1999) parameter values and the bottom panel shows results for Wachter (2005) parameter values. Triangles denote the solution obtained with the fixed-point method; circles denote the solution obtained with the series method. Symbols are decreasing in size from the coarsest grid (Grid 1) to the finest grid (Grid 3). For the Campbell and Cochrane parameter values, the solution is the same for the fixed-point and the series method as long as the finest grid is used. However, the coarser grids produce solutions for the price–dividend ratio that are different from one another, and different from the solution produced by the finest grid. These differences are substantially smaller for the series method as compared to the fixed-point method.

The bottom panel of Fig. 1 shows analogous results for parameter values from Wachter (2005). Once again, the solution is the same whether one uses the fixed-point or series method as long

5 For example, for the Campbell and Cochrane calibration, the values S_t included in Grid 1 are [0.0072 0.0144 0.0217 0.0289 0.0361 0.0433 0.0506 0.0578 0.0650 0.0722 0.0794 0.0867 0.0902 0.0911 0.0920 0.0930 0.0939].
as the finest grid is used. Moreover, the series method produces accurate solutions for all three grids at these parameter values. Slight inaccuracies are present for the fixed-point method when Grids 1 and 2 are used, but on the whole the differences for the solutions across grids and methods are small.

Figure 1 shows that the solution for the price–dividend ratio depends on the choice of grid. Tables 2 and 3 show the consequences of this dependence for statistics in simulated data. For both sets of parameters, I simulate 100,000 years of data. Table 2 reports results for the Campbell and Cochrane (1999) calibration: the equity premium $E(r^m - r^f)$, where $r^m = \ln R^m$, the standard deviation of $r^m - r^f$ and the Sharpe ratio (the equity premium divided by the standard deviation).
Table 2
Simulation results: Campbell and Cochrane (1999) calibration

<table>
<thead>
<tr>
<th>Moment/Grid</th>
<th>Fixed point</th>
<th>Series</th>
<th>Data</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>$E(r^m - r^f)$ (%)</td>
<td>6.59</td>
<td>5.18</td>
<td>3.89</td>
</tr>
<tr>
<td>$\sigma(r^m - r^f)$ (%)</td>
<td>15.05</td>
<td>11.80</td>
<td>8.23</td>
</tr>
<tr>
<td>Sharpe ratio</td>
<td>0.44</td>
<td>0.44</td>
<td>0.47</td>
</tr>
<tr>
<td>Skewness</td>
<td>0.26</td>
<td>0.12</td>
<td>0.04</td>
</tr>
<tr>
<td>Kurtosis</td>
<td>4.58</td>
<td>3.87</td>
<td>3.37</td>
</tr>
<tr>
<td>$E(r^f)$ (%)</td>
<td>0.94</td>
<td>0.94</td>
<td>0.94</td>
</tr>
<tr>
<td>$\exp{E(p-d)}$</td>
<td>18.62</td>
<td>24.35</td>
<td>34.66</td>
</tr>
<tr>
<td>$\sigma(p-d)$</td>
<td>0.27</td>
<td>0.21</td>
<td>0.13</td>
</tr>
<tr>
<td>Corr$(p-d)$</td>
<td>0.86</td>
<td>0.85</td>
<td>0.84</td>
</tr>
</tbody>
</table>

Notes. 100,000 years of artificial data are simulated based on the Campbell and Cochrane calibration in Table 1 for the fixed-point and series methods, and for Grids 1 (coarse), 2, and 3 (fine) as described in Section 4. The model is simulated at a monthly frequency and results are aggregated to an annual frequency. Data moments are calculated using annual data from 1947 to 1995.

Table 3
Simulation results: Wachter (2005) calibration

<table>
<thead>
<tr>
<th>Moment/Grid</th>
<th>Fixed point</th>
<th>Series</th>
<th>Data</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>$E(r^m - r^f)$ (%)</td>
<td>5.86</td>
<td>5.43</td>
<td>5.64</td>
</tr>
<tr>
<td>$\sigma(r^m - r^f)$ (%)</td>
<td>17.24</td>
<td>16.07</td>
<td>16.10</td>
</tr>
<tr>
<td>Sharpe ratio</td>
<td>0.34</td>
<td>0.34</td>
<td>0.35</td>
</tr>
<tr>
<td>Skewness</td>
<td>0.33</td>
<td>0.32</td>
<td>0.33</td>
</tr>
<tr>
<td>Kurtosis</td>
<td>4.04</td>
<td>3.86</td>
<td>3.83</td>
</tr>
<tr>
<td>$E(r^f)$ (%)</td>
<td>1.47</td>
<td>1.47</td>
<td>1.47</td>
</tr>
<tr>
<td>$\exp{E(p-d)}$</td>
<td>20.68</td>
<td>22.31</td>
<td>21.39</td>
</tr>
<tr>
<td>$\sigma(p-d)$</td>
<td>0.34</td>
<td>0.31</td>
<td>0.31</td>
</tr>
<tr>
<td>Corr$(p-d)$</td>
<td>0.97</td>
<td>0.97</td>
<td>0.97</td>
</tr>
</tbody>
</table>

Notes. 400,000 quarters of artificial data are simulated based on the Wachter calibration in Table 1 for the fixed-point and series methods, and for Grids 1 (coarse), 2, and 3 (fine) as described in Section 4. The model is simulated at a quarterly frequency. Results are reported in annual terms (expected returns are multiplied by 4, and the standard deviation of returns is multiplied by 2). Data moments are calculated using quarterly data from 1952 to 2004.

This table also reports the skewness and kurtosis of returns, the mean of the riskfree rate, and the mean, standard deviation, and persistence of the log of the price–dividend ratio.

As Table 2 shows, the differences in the price–dividend ratio across grids lead to noticeable differences in simulated data. The first column contains results using Grid 1 and the fixed-point method. The Sharpe ratio is 0.44, the equity premium is 6.6% per annum and the volatility of excess returns is 15%. The standard deviation of the price–dividend ratio is 0.27. When Grid 3 is used with the fixed-point method, the Sharpe ratio is 0.47, the equity premium is 3.9%, and the volatility is 8.2%. The standard deviation of the price–dividend ratio is 0.13.

Table 2 also shows that results in simulated data are virtually identical for the fixed-point and series methods, as long as the finest grid (Grid 3) is used. As in Fig. 1, the series method gives more accurate results than the fixed-point method. Using Grid 1, for example, the equity premium

6 Slight differences from Campbell and Cochrane (1999) are due to simulation noise.
under the series method is 4.4%, close to 3.9%, its value under Grid 3. Although differences in grids imply differences in equity moments, they do not result in differences for the riskfree rate. Under the Campbell and Cochrane (1999) calibration, the riskfree rate is constant, so the mean of the riskfree rate is identically equal to its value. As Table 2 shows, this value is always 0.94, regardless of which method or grid is used (indeed, 0.94 is also the value produced by the approximation (10)). It is not surprising that the choice of grid and method matters for the computation of the price–dividend ratio and not for the riskfree rate. The riskfree rate is computed using only one integral, while the price–dividend ratio is computed iteratively. This iterative procedure allows small errors to compound.

Table 3 contains analogous results for the Wachter (2005) calibration. The series method is again more accurate than the fixed-point method, and in fact the results are indistinguishable across all three grids when the series method is applied. At these parameter values, the model can match the equity premium, return volatility, and the volatility of the price–dividend ratio. Wachter shows that these parameter values also enable the model to capture important aspects of the term structure of interest rates. However, as noted by Tallarini and Zhang (2005), this type of model produces returns that are skewed in the opposite direction as returns in the data, and that exhibit less kurtosis than in the data.

I now turn to the question of whether the solution for the price–dividend ratio converges as the grid becomes increasingly fine. This is important in establishing both that Grid 3 is sufficiently fine (i.e. constructing an even finer grid would not produce a substantially different solution) and as a means of determining how coarse the grid can be without producing unacceptable errors.

To address the question of convergence, grids are varied along three dimensions. These dimensions are suggested by the construction of Grid 3. As described above, Grid 3 has an upper and a lower segment. The upper segment consists of equally spaced points between 0 and S_{max}. The lower segment consists of logarithmically spaced points between a minimum value and the natural log of the lowest point in the upper segment. When viewed as a grid on S_t, the resulting grid is evenly spaced in the upper segment, and more dense in the lower segment, with the density increasing as S_t declines to zero. When viewed as a grid on $s_t = \ln S_t$, the grid is evenly spaced in the lower segment, and more dense in the upper segment, with the density increasing as s_t rises toward s_{max}. To assess convergence, the grids are varied by decreasing the minimum value, increasing the density of the lower segment, and increasing the density of the upper segment. For each grid and method, the solution for the price–dividend ratio is compared to the solution computed using Grid 3 and the corresponding method. More precisely, the solution is subtracted from the solution computed using Grid 3. This quantity is divided by the solution computed using Grid 3 and multiplied by 100. For purposes of comparison the solutions are evaluated at s_{max}. Repeating the exercise using \bar{s} rather than s_{max} yields results that are nearly identical; they are omitted for brevity.

Figure 2 shows the results of altering the minimum value, keeping other aspects of the grid the same as in Grid 3 (the number of points in the upper segment is maintained at 100 and the number of points in the lower segment is set at three times the minimum value, so that the density remains constant even as the minimum value changes). The least fine grid has a minimum value of zero, so there are no points in the lower segment. The finest grid has a minimum value of -300, and so is equal to Grid 3. The top graph shows results for the Campbell and Cochrane (1999) parameter values and the bottom graph shows results for the Wachter (2005) parameter values. The x-axis is in terms of the log of the minimum value. This figure shows that the solution converges to its Grid-3 value as the minimum value approaches -300 for both calibrations and
Fig. 2. Percent difference in the price–dividend ratio between the grid with the lowest minimum value and grids with greater minimum values. Lines with triangles denote computations with the fixed-point (FP) method, lines with circles denote computations with the series method. The number of grid points in the lower segment is equal to three times the minimum value. The number of grid points in the upper segment is equal to 100. The difference is evaluated at S_{max}. The y-axis scale differs for the upper and lower graphs.

Methods. This convergence is faster for the series method than for the fixed-point method and, for the Wachter (2005) calibration, the errors are negligible for all grids under the series method.

Figures 3 and 4 display results for altering the density in the lower segment and the upper segment respectively. In both cases, the log of the minimum value is kept at -300. For Fig. 3, the number of points in the upper segment is maintained at 100, while for Fig. 4, the number of points in the lower segment is maintained at 900. In both cases, the price–dividend ratio converges to the
Fig. 3. Percent differences in the price–dividend ratio between the grid with the most density in the lower segment and grids with less density in the lower segment. Lines with triangles denote computations with the fixed-point (FP) method, lines with circles denote computations with the series method. The minimum value is equal to -300. The number of grid points in the upper segment is equal to 100. The difference is evaluated at S_{max}.

Grid-3 value. The convergence is faster for the Wachter (2005) parameter values and the series method again results in substantially faster convergence as compared to the fixed-point method.

5. Conclusion

This paper has investigated two related methods of solving for the equilibrium price–dividend ratio in the Campbell and Cochrane (1999) model and its extension in Wachter (2005). Both
methods involve solving for the price–dividend ratio of the consumption claim on a grid of values. The series method computes the price–dividend ratio as a sum of claims to individual future dividend payments. The fixed-point method computes the price–dividend ratio as a fixed point of the investor’s Euler equation. If each method could be applied without error, they would give identical solutions. However, because both methods involve numerical approximations, there may be differences. This paper has shown that the two methods indeed give the same answer if the grid used in the approximation is sufficiently fine. Moreover, the solution is shown to con-
verge for both methods as the grid becomes finer. The speed of this convergence is shown to depend on the calibration: when the model is calibrated to the term structure of interest rates as well as equity moments (as in Wachter (2005)), the solution converges more quickly. For both calibrations, the series method leads to substantially faster convergence and greater accuracy for any given grid.

Acknowledgments

I am grateful to John Campbell, Thomas Cosimano, Motohiro Yogo, and Harold Zhang for helpful comments.

Appendix A

This appendix solves the model in the case of cointegrated consumption and dividends. Let $z_t = c_t - d_t$, the consumption–dividend ratio, and assume that

$$z_{t+1} = (1 - \psi)\bar{z} + \psi z_t + w_{t+1},$$

where w_{t+1} is iid and jointly normally distributed with v_{t+1}. Let ρ denote the correlation between v_{t+1} and w_{t+1} and σ_w the standard deviation of w_{t+1}. The ex-dividend price of the claim to dividends, P^d, satisfies

$$E_t\left[M_{t+1}\frac{P^d_{t+1}}{P_t} + D_{t+1} \right] = 1.$$

P^d_{t+1} can be expressed as the sum of claims to individual dividends P^d_{nt} that satisfy

$$\frac{P^d_{nt}}{D_t} = E_t\left[M_{t+1}\frac{P^d_{n-1,t+1}}{D_{t+1}} \frac{D_{t+1}}{D_t} \right] = E_t\left[M_{t+1}\frac{P^d_{n-1,t+1}}{D_{t+1}} e^{g+v_{t+1} - \Delta z_{t+1}} \right],$$ (A.1)

with boundary condition

$$\frac{P^d_{0,t}}{D_t} = 1.$$

The presence of z_t adds a complication, as in principle the integration for the recursion (A.1) must be done over two variables. However, it turns out that P^d_{nt} can be written as

$$\frac{P^d_{nt}}{D_t} = F^d_n(s_t) \exp\{A_n + B_n z_t\},$$ (A.2)

where F^d satisfies the one-dimensional recursion

$$F^d_n(s_t) = E_t\left[M_{t+1} e^{g+(1+(B_n-1)\rho \frac{\sigma_w}{\sigma_v})v_{t+1} - B_n z_{t+1}} \right],$$ (A.3)

with boundary condition $F^d_0(s_t) = 1$.

I now verify Eqs. (A.2) and (A.3) by substituting (A.2) into (A.1) and using the law of iterated expectations. A similar argument is used to obtain expressions for nominal bonds in Wachter (2005). Substituting for $P^d_{n-1,t+1}/D_{t+1}$ inside the expectation yields

$$\frac{P^d_{nt}}{D_t} = E_t\left[M_{t+1} F^d_{n-1}(s_{t+1}) \exp\{A_{n-1} + B_{n-1} z_{t+1}\} \exp\{g + v_{t+1} - \Delta z_{t+1}\} \right]$$
\[\exp \left\{ A_{n-1} + (B_{n-1} - 1)(1 - \psi)\bar{z} + (B_{n-1} \psi - \psi + 1)z_t \right\} \times E_t \left[M_{t+1} e^{g+v_{t+1}} F^d_{n-1}(s_{t+1}) E \left[e^{(B_{n-1} - 1)w_{t+1}} | v_{t+1} \right] \right]. \] (A.4)

Conditional on \(v_{t+1} \), \((B_{n-1} - 1)w_{t+1}\) is normally distributed:

\[(B_{n-1} - 1)w_{t+1} | v_{t+1} \sim N \left((B_{n-1} - 1)\rho \frac{\sigma_w}{\sigma_v} v_{t+1}, (B_{n-1} - 1)^2 \sigma_w^2 (1 - \rho^2) \right), \]

so the inner expectation in (A.4) can be written as

\[E \left[e^{(B_{n-1} - 1)w_{t+1}} | v_{t+1} \right] = \exp \left\{ (B_{n-1} - 1)\rho \frac{\sigma_w}{\sigma_v} v_{t+1} + \frac{1}{2} (B_{n-1} - 1)^2 \sigma_w^2 (1 - \rho^2) \right\}. \]

Define recursions

\[A_n = A_{n-1} + (B_{n-1} - 1)(1 - \psi)\bar{z} + \frac{1}{2} (B_{n-1} - 1)^2 \sigma_w^2 (1 - \rho^2), \] (A.5)

\[B_n = B_{n-1} \psi - \psi + 1, \] (A.6)

and let \(A_0 = B_0 = 0 \). By induction, it follows that (A.2) is satisfied. Equation (A.6) and the boundary condition imply

\[B_n = (1 - \psi) \frac{1 - \psi^n}{1 - \psi}. \]

Using the decomposition (A.2), it is possible to solve this model using the series method described in Section 2. The recursion (A.3) is solved iteratively using quadrature. For any values of the state variables, a price–dividend ratio can be produced by interpolating to find the correct \(F^d_n(s_t) \), and multiplying by \(e^{A_n+B_n\bar{z}_t} \). The price–dividend ratio for the aggregate market is equal to

\[\frac{P^d_t}{D_t} = \sum_{n=1}^{\infty} F^d_n(s_t) \exp \{A_n + B_n\bar{z}_t \}. \]

Note that a decomposition analogous to (A.2) does not hold for the market price–dividend ratio, and thus solving this model would be quite difficult with the fixed-point method.

Appendix B

This appendix describes a continuous-time version of the economy in Section 1. Let \(Z_t \) be a one-dimensional Brownian motion, and assume that the log of consumption follows:

\[dc_t = g \, dt + \sigma_v \, dZ_t. \]

Log surplus consumption \(s_t = \ln[(C_t - X_t)/C_t] \) is assumed to follow the process

\[ds_t = (1 - \phi)(\bar{s} - s_t) \, dt + \lambda(s_t) \sigma_v \, dZ_t. \]

Let \(\xi_t \) denote the pricing kernel in this economy (see Duffie, 1996, Chapter 6), which will be determined endogenously in equilibrium. The pricing kernel follows the process

\[\frac{d\xi_t}{\xi_t} = -r^f_t \, dt - \eta_t \, dZ_t, \]
where \(r_t^f \) is the instantaneous riskfree rate (the continuous-time analogue to the one-period riskfree rate in Section 1), and \(\eta_t \) is the price of risk.

Identical agents maximize

\[
E \int_0^\infty \delta_t (C_t - X_t)^{1-\gamma} \frac{1}{1-\gamma} dt
\]

subject to

\[
E \left[\int_0^\infty \zeta_t C_t \right] = W_0,
\]

where \(W_0 \) is the initial wealth in the economy. The condition for equilibrium equates marginal utility with a constant multiplied by the pricing kernel (see Duffie, 1996, Chapter 10):

\[
\delta_t (S_t C_t)^{-\gamma} = k \zeta_t.
\]

The constant \(k \) adjusts such that (B.1) is satisfied. Applying Ito’s lemma to the left-hand side of (B.2) and equating drift and diffusion terms implies

\[
\eta_t = \gamma \sigma_v \left(1 + \lambda(s_t) \right),
\]

and

\[
r_t^f = -\ln \delta + \gamma g + \gamma (1 - \phi) (\bar{s} - s_t) - \frac{\gamma^2 \sigma^2_v}{2} \left(1 + \lambda(s_t) \right)^2.
\]

Unlike (10), (B.3) does not require an approximation.

Specifying \(\lambda(s_t) \) as

\[
\lambda(s_t) = \left(\frac{1}{\bar{S}} \right) \sqrt{1 - 2(s_t - \bar{s})} - 1
\]

implies that (B.3) reduces to (11). In the continuous-time set-up, there is no need to require that \(\lambda(s_t) \) be identically zero above \(s_{\text{max}} \), as this will never occur.

To solve for the price of the consumption claim, note that any risky asset with price \(P \) that follows the process

\[
\frac{dP_t}{P_t} = \mu_{P,t} \, dt + \sigma_{P,t} \, dZ_t
\]

must satisfy the no-arbitrage condition

\[
\mu_{P,t} - r_t^f = \sigma_{P,t} \eta_t.
\]

As in Section 2, conjecture that the price of a zero-coupon consumption claim maturing at date \(t + \tau \) takes the form

\[
P_t(C_t, s_t, \tau) = C_t F(s_t, \tau)
\]

for some smooth function \(F \). Applying Ito’s lemma to (B.5) and substituting into (B.4) indicates that (B.5) is satisfied, and that \(F \) solves the following partial differential equation:

\[
g + \frac{1}{2} \sigma^2_v + \frac{F_s}{F} (1 - \phi) (\bar{s} - s_t) - \frac{F_{\tau}}{F} + \frac{1}{2} \frac{F_{ss}}{F} \lambda(s_t)^2 \sigma^2_v + \frac{F_s}{F} \lambda(s_t) \sigma^2_v - r_t^f
\]
\[
\left(\sigma_v + \frac{F_v}{F} \sigma_v \lambda(s_t) \right) \left(1 + \lambda(s_t) \right) \gamma \sigma_v, \tag{B.6}
\]

where \(F_v, F_\tau, F_{ss} \) denote appropriate first and second derivatives of \(F \). Equation (B.6) thus characterizes prices of zero-coupon equity and provides an alternative route to a solution for the model in Section 1.

References